1
|
Shao T, Guo A, Zhang J, Hu S. Reducing tetracycline resistance genes in wheat soil using natural quorum sensing inhibitors: A new approach for mitigating antibiotic resistance gene contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175982. [PMID: 39241890 DOI: 10.1016/j.scitotenv.2024.175982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
The distribution and transmission of antibiotic resistance genes (ARGs) in agricultural soils constitute a significant threat to food safety and human health. Natural quorum sensing inhibitors (QSIs), with advantages such as low plant toxicity and low application costs, present a potential approach for mitigating ARG contamination by targeting bacterial quorum sensing systems. This study explored the impacts and mechanisms of three natural QSIs (vanillin, catechin, and tannin) on the abundance of tetracycline resistance genes (TRGs) in both rhizosphere and non-rhizosphere soils. Results illustrated a notable reduction in TRG abundance across three natural QSI treatments, with catechin displaying the most pronounced effect in the rhizosphere soil. Furthermore, the application of natural QSIs had a significant influence on the bacterial community structure and population dynamics, particularly evident in the alterations induced by catechin on bacterial interactions within the soil ecosystem. Natural QSIs inhibited the production of N-acyl homoserine lactone (AHL) signaling molecules. The primary environmental factors driving changes in bacterial community were identified as pH and NO3--N content. Through mechanisms involving the modulations of AHL concentrations and soil environmental factors, natural QSIs were found to impact bacterial population, ultimately leading to a decrease in TRG abundance. Importantly, the application of natural QSIs did not exhibit adverse effects on plant phenotypic traits. These findings serve as a useful reference for implementing natural QSIs to effectively control soil ARG contamination.
Collapse
Affiliation(s)
- Tengteng Shao
- School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Aiyun Guo
- School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jian Zhang
- School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shugang Hu
- School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
2
|
Zhou M, Zhang C, Wang F, Hao P, Cheng Y. Oxidative stress, DNA damage, and gene expression in earthworms (Eisenia fetida) exposure to ethiprole. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27679-27688. [PMID: 38517630 DOI: 10.1007/s11356-024-32964-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
To evaluate the potential ecotoxicity of ethiprole and early warning to earthworms (Eisenia fetida), different concentrations (0 mg·kg-1, 416 mg·kg-1, 625 mg·kg-1, and 1000 mg·kg-1) of ethiprole were added to artificial soil. The key bioindicators were measured and screened at 3 days, 7 days, 14 days, 21 days, and 28 days. The results show that the activity of catalase (CAT) was inhibited for all treatments during the whole exposure period. Besides, the olive tail moment (OTM) value increased gradually as the concentration got higher, which exhibited a dose-time-dependent relationship. Superoxide dismutase (SOD) gene reached the maximum on the 7th day. Mitochondrial large ribosomal RNA (l-rRNA) subunit gene was always in a downregulated state as the concentration increased. Our results show that different concentrations of ethiprole induced certain oxidative stress, DNA damage, and genotoxicity in earthworms. The CAT activity, OTM, and SOD gene could be the most sensitive biomarkers to monitor the toxicity of ethiprole in the soil.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Caixia Zhang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300384, China
- Gansu Yasheng Potato Group Chemical Limited, Lanzhou, 730030, China
| | - Fuhao Wang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300384, China
| | - Peipei Hao
- Tianjin Lüheng Chemical Company Limited, Tianjin, 300270, China
| | - Youpu Cheng
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
3
|
Su X, Wang X, Zhou Z, Zeng X, Wu Q, Leung JYS. Can antimony contamination in soil undermine the ecological contributions of earthworms? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166305. [PMID: 37586541 DOI: 10.1016/j.scitotenv.2023.166305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/30/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
As antimony (Sb) has been increasingly used in manufacturing industries (e.g., alloy, polymer and electronics industries), Sb contamination in the soil environment becomes widely reported and has drawn growing attention due to the toxicity of Sb to living organisms. Whether soil-dwelling organisms can tolerate Sb toxicity and maintain their ecological functions remains poorly understood. Using a cosmopolitan, ecologically important earthworm species (Eisenia fetida) as an ideal model organism, we examine the effects of Sb on the physiological, molecular and behavioural responses of earthworms to different levels of Sb contamination in soil (0, 10, 50, 100, 250 and 500 mg/kg). We found that earthworms could tolerate heavy Sb contamination (100 mg/kg) by boosting their antioxidant defence (POD and GST) and immune systems (ACP) so that their body weight and survival rate were sustained (c.f. control). However, these systems were compromised under extreme Sb contamination (500 mg/kg), leading to mortality. As such, earthworms exhibited avoidance behaviour to escape from the Sb-contaminated soil, implying the loss of their ecological contributions to the environment (e.g., increase in soil aeration and maintenance of soil structure). By measuring various types of biomarkers along a concentration gradient, this study provides a mechanistic understanding of how earthworms resist or succumb to Sb toxicity. Since extreme Sb contamination in soil (>100 mg/kg) is rarely found in nature, we are optimistic that the health and performance of earthworms are not influenced by Sb in most circumstances, but regular monitoring of Sb in soil is recommended to ensure the integrity and functioning of soil environment. Further studies are recommended to evaluate the long-term impact of Sb in the soil ecosystem through bioaccumulation and trophic transfer among soil-dwelling organisms.
Collapse
Affiliation(s)
- Xiaotong Su
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta (Ministry of Education), School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Zhiqian Zhou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Xuan Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta (Ministry of Education), School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qihang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta (Ministry of Education), School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Jonathan Y S Leung
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
4
|
Baihetiyaer B, Jiang N, Li X, He B, Wang J, Fan X, Sun H, Yin X. Oxidative stress and gene expression induced by biodegradable microplastics and imidacloprid in earthworms (Eisenia fetida) at environmentally relevant concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121285. [PMID: 36796666 DOI: 10.1016/j.envpol.2023.121285] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The environmental issues caused by biodegradable microplastics (BMPs) from polylactic acid (PLA) as well as pesticides are of increasing concern nowadays. In this study, the toxicological effects of the single and combined exposure of PLA BMPs and imidacloprid (IMI), a neonicotinoid insecticide, on earthworms (Eisenia fetida) were investigated in terms of oxidative stress, DNA damage, and gene expression, respectively. The results showed that compared with the control, SOD, CAT and AChE activities in the single and combined treatments decreased significantly, and POD activity showed an "inhibition-activation" trend. SOD and CAT activities of combined treatments on day 28 and AChE activity of combined treatment on day 21 were significantly higher than those of the single treatments. For the rest of the exposure period, SOD, CAT and AChE activities in the combined treatments were lower than those in the single treatments. POD activity in the combined treatment was significantly lower than those of single treatments at day 7 and higher than that of single treatments at day 28. MDA content showed an "inhibition-activation-inhibition" trend, and the ROS level and 8-OHdG content increased significantly in both the single and combined treatments. This shows that both single and combined treatments led to oxidative stress and DNA damage. ANN and HSP70 were expressed abnormally, while the SOD and CAT mRNA expression changes were generally consistent with the corresponding enzyme activities. The integrated biomarker response (IBR) values were higher under combined exposures than single exposures at both biochemical and molecular levels, indicating that combined treatment exacerbated the toxicity. However, the IBR value of the combined treatment decreased consistently at the time axis. Overall, our results suggest that PLA BMPs and IMI induce oxidative stress and gene expression in earthworms at environmentally relevant concentrations, thereby increasing the risk of earthworms.
Collapse
Affiliation(s)
- Baikerouzi Baihetiyaer
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Bo He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712000, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712000, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712000, PR China.
| |
Collapse
|
5
|
Sujeeth NK, Aravinth R, Thandeeswaran M, Angayarkanni J, Rajasekar A, Mythili R, Gnanadesigan M. Toxicity analysis and biomarker response of Quinalphos Organophosphate Insecticide (QOI) on eco-friendly exotic Eudrilus eugeniae earthworm. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:274. [PMID: 36607436 DOI: 10.1007/s10661-022-10834-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
An ever-increasing use of pesticides in agricultural fields has led to a catastrophic decline in crop quality and, ultimately soil fertility. To control various pests, quinalphos is commonly used in India's tea plantations. This study aims to investigate the effects of the Quinalphos organophosphate insecticide on the non-target beneficial organism Eudrilus eugeniae earthworms and the biomarkers that respond to its effects. Earthworm species, especially E. eugeniae, remains as the most trustworthy and well-suited model organism for conducting a wide variety of environmental studies. The median lethal concentration (LC50) was identified as 3.561 µg cm-2 (contact filter paper) and 1.054 mg kg-2 (artificial soil toxicity). The 5% and 10% of LC50 value 3.561 µg cm-2 was exposed to earthworm to analyze the sublethal effects at pre-clitellum, clitellum, and post-clitellum segments. Specific enzymatic activities of neurotransmitter enzyme acetylcholinesterase; antioxidant enzymes such as lipid peroxidase, superoxide dismutase, and catalase; and detoxification enzymes including glutathione S transferase, reduced glutathione, carboxylesterase, and Cytochrome P450 were analyzed. Exposure of E. eugeniae earthworm to subacute exposures of pesticides caused significant alterations in these stress markers in a concentration-dependent manner. Morphological abnormalities like bulginess, coiling, and bleeding were observed after exposure of the insecticide treatments. Histological cellular disintegration, a reduced NRRT time, and an inhibited proteolytic zone were also identified in pesticide-exposed earthworms. Studies demonstrate that the organophosphate insecticide quinalphos causes acute toxicity in E. eugeniae; hence, it is suggested that non-target eco-friendly E. eugeniae earthworms may be at risk if exposed to the excessive concentrations of quinalphos organophosphate insecticide in soil.
Collapse
Affiliation(s)
- Nachimuthu Krishnan Sujeeth
- Natural Product Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Ramasamy Aravinth
- Natural Product Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Murugesan Thandeeswaran
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Jayaraman Angayarkanni
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Aruliah Rajasekar
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamilnadu, India
| | - R Mythili
- PG & Research, Department of Biotechnology, Mahendra Arts & Science College, Kallipatti, 637501, Namakkal, Tamilnadu, India
| | - Murugesan Gnanadesigan
- Natural Product Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India.
| |
Collapse
|
6
|
Li S, Yuan Y, Wang X, Cai L, Wang J, Zhao Y, Jiang L, Yang X. Bioaccumulation and toxicity of terbuthylazine in earthworms (Eisenia fetida). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104016. [PMID: 36435387 DOI: 10.1016/j.etap.2022.104016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Terbuthylazine is an effective and widely used s-triazine herbicide. However, limited data exists on its toxicity and bioaccumulation in earthworms (Eisenia fetida). In this study, we investigated the bioaccumulation, antioxidant enzyme activity, detoxification enzyme activity, and DNA damage in earthworms when exposed to terbuthylazine. The results indicated that terbuthylazine in soil had low bioaccumulation in earthworms and the biota-soil accumulation factors of terbuthylazine declined with an increasing soil terbuthylazine concentration. In the enzyme activity assays, the superoxide dismutase (SOD), catalase (CAT), and glutathione-S-transferase (GST) activities showed upward trends when compared with the control. The carboxylesterase (CarE) activity increased on day 21. The 8-hydroxy-2-deoxyguanosine (8-OHdG) content, a DNA damage bioindicator, was higher than that of the control on day 21. Combined with the integrated biological response index version 2 analysis, these results can provide a comprehensive evaluation of the toxicological effects that terbuthylazine has on earthworms and soil ecosystems.
Collapse
Affiliation(s)
- Shun Li
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China; Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Ye Yuan
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China; Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Xing Wang
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China
| | - Leiming Cai
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China; Shenyang Research Institute of Chemical Industry, Shenyang 110021, China.
| | - Jiao Wang
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China
| | - Yuanji Zhao
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China
| | - Lei Jiang
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China; Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Xu Yang
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China; Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| |
Collapse
|
7
|
Veedu SK, Ayyasamy G, Tamilselvan H, Ramesh M. Single and joint toxicity assessment of acetamiprid and thiamethoxam neonicotinoids pesticides on biochemical indices and antioxidant enzyme activities of a freshwater fish Catla catla. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109336. [PMID: 35354075 DOI: 10.1016/j.cbpc.2022.109336] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
Neonicotinoids pesticides are extensively used in many countries due to their high insect selectivity. Acetamiprid and thiamethoxam are the neonicotinoids most commonly detected in the aquatic environment. This work examined the single and joint toxicity of acetamiprid and thiamethoxam in a freshwater fish Catla catla. Fish were exposed to acetamiprid (0.5 mg/L and 1 mg/L), thiamethoxam (0.01 mg/L and 0.5 mg/L) and their binary mixtures (0.5 mg/L of acetamiprid and 0.01 mg/L of thiamethoxam) for 96 h. The stress biomarkers such as glucose, protein, electrolytes, Na+/K+ -ATPase and oxidative stress were evaluated. Among the biochemical parameters, plasma protein, electrolytes (sodium, potassium and chloride) and gill ATPase activity were decreased in response to individual and binary mixtures treatments. In contrast, blood glucose level showed significant increase in all the treatments. Exposure to various concentrations of acetamiprid and thiamethoxam resulted in significant decrease in superoxide dismutase (SOD) activity in the gill tissue. However, SOD activity was significantly elevated during binary mixtures treatment. Glutathione peroxidase (GPx), catalase (CAT), glutathione-S-transferase (GST) and reduced glutathione (GSH) levels in gills were decreased significantly after individual and binary mixtures treatments. Fish exposed at individual and binary mixtures significantly elevated the level of LPO in gill tissue. Our findings suggest that multi-biomarker approach can be effectively used to assess the effects of joint toxicity of pesticides and to monitor the neonicotinoids pesticides in the aquatic environment.
Collapse
Affiliation(s)
| | - Gowthami Ayyasamy
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - Hema Tamilselvan
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
8
|
Zhou M, Cheng Y, Zhang Y, Liu Z, Zhang M. Oxidative stress, DNA damage, and gene expression induced by flufiprole enantiomers in the earthworms (Eisenia fetida). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109341. [PMID: 35381367 DOI: 10.1016/j.cbpc.2022.109341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/03/2022]
Abstract
To evaluate flufiprole enantiomers ecotoxicology and early warning to earthworms in the soil, the effect of flufiprole enantiomers on the activity of antioxidative enzymes (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD), malondialdehyde (MDA) content, DNA damage and expression level of target genes (SOD, TCTP, l-rRNA, and HSP90) have been investigated. Compared to the controls, the activities of SOD, CAT, POD, and MDA content were first inhibited and then stimulated by all concentrations of flufiprole enantiomers in 28 days. The olive tail moment (OTM) value was maximum on the 14th day, then decreased gradually, and the higher the concentration, the slower the decrease. The expression level of the SOD and TCTP genes increased first and then decreased. In conclusion, the toxicity of flufiprole enantiomers to earthworms is: R-(+)- flufiprole >Rac-(±)- flufiprole >S-(-)- flufiprole. The SOD could be the key biomarker for monitoring the risk of flufiprole enantiomers.
Collapse
Affiliation(s)
- Min Zhou
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Youpu Cheng
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China.
| | - Ying Zhang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Ziqi Liu
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Minghao Zhang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
9
|
Liu Y, Xu G, Yu Y. Effects of polystyrene microplastics on accumulation of pyrene by earthworms. CHEMOSPHERE 2022; 296:134059. [PMID: 35189193 DOI: 10.1016/j.chemosphere.2022.134059] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Micro- and nano-plastics (MNPs) are recognized as a class of emerging and ubiquitous contaminants in soil, which influence the behavior of pollutants and have potential adverse impacts on organisms. This study explored the potential mechanisms of polystyrene microplastics (MPs, 10 μm) and nanoplastics (NPs, 100 nm) with different concentrations (10 and 100 mg/kg) in soil on the accumulation and elimination of pyrene in earthworms, Eisenia fetida. MPs facilitated the accumulation of pyrene by earthworms in the first week via injuring the integrity of earthworm intestine. The representative antioxidant enzyme activities indicated that MPs induced severer oxidative stress to earthworms than NPs, especially at the concentration of 100 mg/kg, thus leading to increased accumulation of pyrene by earthworms at the initial stage. In addition, high-throughput 16S rRNA gene sequencing demonstrated that NPs inhibited the pyrene-degrading bacteria in earthworms, resulting in the higher concentration of pyrene in the end. The results elucidated the effects of MNPs with different sizes and concentrations on the accumulation of organic pollutants in the terrestrial invertebrates.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
10
|
Boughattas I, Zitouni N, Hattab S, Mkhinini M, Missawi O, Helaoui S, Mokni M, Bousserrhine N, Banni M. Interactive effects of environmental microplastics and 2,4-dichlorophenoxyacetic acid (2,4-D) on the earthworm Eisenia andrei. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127578. [PMID: 34736209 DOI: 10.1016/j.jhazmat.2021.127578] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Given the wide use of plastic and pesticides in agriculture, microplastics (MP) and the herbicide 2,4 dichloro-phenoxy-acetic acid (2-4-D) can be present simultaneously in soil. Nevertheless, little is known about their combined toxicity. In this study, Eisenia andrei was exposed to environmental MP (100 µg kg-1 soil) and 2,4-D (7 mg kg-1 soil) for 7 and 14 days. Bioaccumulation, genotoxicity, oxidative stress and gene expression level were assessed. Results revealed that MP increased 2,4-D bioaccumulation in earthworms. Simultaneous exposure to both these pollutants caused a significant reduction in lysosomal membrane stability (LMS) and an increase in micronuclei (MNi) frequency. Biochemical analysis revealed oxidative alterations in earthworms exposed to all treatments; being very pronounced in earthworms exposed to the mixture in terms of increase in glutathione-S-Transferase (GST), catalase (CAT) and malondialdehydes accumulation (MDA). Furthermore, an up-regulation in cat and gst expression level was recorded in worms exposed to single or mixture treatment, except MP in case of gst. Our data highlight the toxicity of the combined exposure to MP and 2,4-D and afford new insights into the potential ecological risks posed by MP in terrestrial ecosystems.
Collapse
Affiliation(s)
- Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia; Regional Field Crops Research Center of Beja, Tunisia.
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Sabrine Hattab
- Regional Research Centre in Horticulture and Organic Agriculture, Chott-Mariem, 4042 Sousse, Tunisia
| | - Marouane Mkhinini
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Omayma Missawi
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Sondes Helaoui
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Moncef Mokni
- Department of Pathology, CHU Farhat Hached, Sousse, Tunisia
| | - Noureddine Bousserrhine
- Laboratory of Water Environment and Urban systems, University Paris-Est Créteil, Créteil cedex 94010, France
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia
| |
Collapse
|
11
|
Xu G, Yang Y, Yu Y. Size effects of polystyrene microplastics on the accumulation and toxicity of (semi-)metals in earthworms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118194. [PMID: 34543956 DOI: 10.1016/j.envpol.2021.118194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are plastic fragments less than 5 mm, which may have adverse impacts on organisms. In this study, we investigated the impacts and mechanisms of polystyrene MPs (10 μm and 100 μm) and nanoplastics (NPs, 100 nm) with different concentrations (10 mg/kg and 100 mg/kg) in soil on the uptake of metal Cd and semi-metal As in earthworms, Eisenia fetida. MPs facilitated the accumulation of (semi-)metals via damaging the integrity of earthworm intestine, and earthworms accumulated more (semi-)metals in MP treatment groups than NP treatment groups, especially in group of 100 mg/kg of 10 μm MP with concentrations of 1.13 mg/kg and 32.7 mg/kg of Cd and As, respectively. Higher genotoxicity to earthworms was observed for MPs than NPs. Antioxidant enzymes activity and their mRNA gene relative expression levels indicated that MPs with high concentration induced severer damage to earthworms, thus resulting in the increased accumulation of (semi-)metals by earthworms. In addition, proteomic and metabolomic analysis revealed that MPs (100 ppm of 10 μm) disturbed the earthworm immune and metabolic systems, resulting in the highest accumulation of (semi-)metals in earthworms. This study clarifies the influence mechanisms of MPs with different sizes and levels on the accumulation of (semi-)metals by terrestrial invertebrates.
Collapse
Affiliation(s)
- Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
12
|
Xu G, Yu Y. Polystyrene microplastics impact the occurrence of antibiotic resistance genes in earthworms by size-dependent toxic effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125847. [PMID: 34492800 DOI: 10.1016/j.jhazmat.2021.125847] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are two classes of emerging and prevalent contaminants in terrestrial environments. To date, effects of MPs on the occurrence of ARGs in terrestrial invertebrates remain uncertain. Here we exposed earthworms to a soil amended with polystyrene MPs at two environmentally relevant concentrations to elucidate the occurrence and mechanisms of ARGs in earthworms impacted by MPs with different sizes. Nano-size and 10 mg/kg of 100 µm MPs slightly affected the occurrence of ARGs in earthworms. Highest abundance of ARGs was found in the presence of 10 mg/kg of 10 µm MPs, whereas 100 mg/kg of 10 µm MPs significantly changed the profile of ARGs. Metagenomics sequencing and toxicity tests indicated that MPs caused toxicity and influenced the abundance of microbial community in earthworms, resulting in the changes of ARGs. Results of proteomics and metabolomics demonstrated that 100 mg/kg of 10 µm MPs changed the microenvironment of earthworm gut, built a new homeostatic process, and thus increased the abundance of key bacterial that carried a variety of ARGs. This study highlights the size-dependent toxic effects of MPs and their impacts on the transfer of ARGs in terrestrial environments.
Collapse
Affiliation(s)
- Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
13
|
Georgieva E, Yancheva V, Stoyanova S, Velcheva I, Iliev I, Vasileva T, Bivolarski V, Petkova E, László B, Nyeste K, Antal L. Which Is More Toxic? Evaluation of the Short-Term Toxic Effects of Chlorpyrifos and Cypermethrin on Selected Biomarkers in Common Carp ( Cyprinus carpio, Linnaeus 1758). TOXICS 2021; 9:toxics9060125. [PMID: 34072750 PMCID: PMC8229483 DOI: 10.3390/toxics9060125] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023]
Abstract
The general aim of this study was to investigate the negative short-term effects of different concentrations of chlorpyrifos (CPF) and cypermethrin (CYP), based on the EU legislation (MAC-EQS) in common carp (Cyprinus carpio Linnaeus, 1758) under laboratory conditions and to compare their toxicity. The fish were exposed to the pesticides for 96 h and then different histological and biochemical biomarkers were investigated in the gills and liver, and bioaccumulation analyses were conducted. The chemical studies showed increased pesticide concentrations in the gills as the first site for pollutants compared to the liver at the 96th hour. In addition, the histological analyses showed severe alterations in the gills and liver after exposure to both tested pesticides. In the gills, we found mainly intense proliferative and, to a lesser extent, degenerative changes and alterations in the circulatory system, such as necrosis and vasodilation. In the liver, regressive and progressive lesions, as well as circulatory disturbances and inflammation, were observed. The regressive lesions showed a higher degree of expression compared to the other changes. Furthermore, we found altered enzymatic activities—catalase, glutathione reductase, and glutathione peroxidase—in the liver, compared to the control. Overall, both tested pesticides impacted the studied biomarkers in common carp, even at concentrations lower than those permitted by law. However, the results of the comparative analysis showed a relatively higher toxicity of CYP compared to CPF in the fish. Still, questions persist as to whether the observed changes are adaptive or entirely destructive. To avoid any danger or risk, these pesticides must be applied cautiously, especially near water bodies.
Collapse
Affiliation(s)
- Elenka Georgieva
- Department of Developmental Biology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (E.G.); (S.S.); (E.P.)
| | - Vesela Yancheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (V.Y.); (I.V.)
| | - Stela Stoyanova
- Department of Developmental Biology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (E.G.); (S.S.); (E.P.)
| | - Iliana Velcheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (V.Y.); (I.V.)
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (I.I.); (T.V.); (V.B.)
| | - Tonka Vasileva
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (I.I.); (T.V.); (V.B.)
| | - Veselin Bivolarski
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (I.I.); (T.V.); (V.B.)
| | - Eleonora Petkova
- Department of Developmental Biology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (E.G.); (S.S.); (E.P.)
| | - Brigitta László
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Krisztián Nyeste
- Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
- Correspondence:
| | - László Antal
- Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
14
|
Xu G, Liu Y, Song X, Li M, Yu Y. Size effects of microplastics on accumulation and elimination of phenanthrene in earthworms. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123966. [PMID: 33265007 DOI: 10.1016/j.jhazmat.2020.123966] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are a class of emerging contaminants with diverse sizes. They influence the behavior of pollutants in the environment and cause harmful effects on organisms. To date, the size effects of MPs on the accumulation of organic pollutants by terrestrial invertebrates remain unclear. Here, we study the impacts and mechanisms of polystyrene MPs on the accumulation and elimination of phenanthrene in earthworms. Results showed that larger-size MPs (10 and 100 µm) facilitated the accumulation of phenanthrene by earthworms in the first week, whereas 100 nm MPs inhibited the elimination of phenanthrene in earthworms afterwards. Higher genotoxicity to earthworms was observed for co-exposure of micron-size MPs and phenanthrene, and 10 µm MPs were detected at the highest concentration and caused the most serious DNA damage to earthworm coelomocytes. Biomarkers and their mRNA gene expression levels suggested that larger-size MPs caused severer damage to earthworms, thus leading to increased accumulation of phenanthrene by earthworms at the beginning. Moreover, high-throughput 16S rRNA gene sequencing indicated that nano-size MPs significantly inhibited phenanthrene-degrading bacteria in earthworms, resulting in the highest residual concentration of phenanthrene. This study highlights the size effects of MPs and their impacts on the accumulation of organic pollutants by terrestrial organisms.
Collapse
Affiliation(s)
- Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xue Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Ming Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| |
Collapse
|
15
|
Baag S, Mahapatra S, Mandal S. An Integrated and Multibiomarker approach to delineate oxidative stress status of Bellamya bengalensis under the interactions of elevated temperature and chlorpyrifos contamination. CHEMOSPHERE 2021; 264:128512. [PMID: 33049511 DOI: 10.1016/j.chemosphere.2020.128512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 05/12/2023]
Abstract
Synergistic effects of warming on bioconcentration and receptiveness of pollutants are still poorly unravelled in conjunction with cellular and molecular responses. The present study addressed the impact of an environmental relevant dose of chlorpyrifos (organophosphate pesticide), under control (25 °C) and elevated levels of temperature (30 °C, 35 °C) in Bellamya bengalensis, a freshwater gastropod for 60 days across various endpoints. Multiple levels of biomarkers were measured: growth conditions (organ to flesh weight ratio, condition index), oxidative stress status (SOD, CAT, GST, LPO) and DNA damage (Comet assay-3rd, 30th and 60th days only) after acute (24, 48 and 72 h) and long-term exposures (10th, 20th, 30th, 40th, 50th and 60th days). An integrated biomarker response (IBR) strategy was adapted to amalgamate results generated from various biomarkers to assess organism's vulnerability to pesticide pollution and how it may shift with warming climate. Significant changes were observed in growth conditions under longer exposure periods. Acute as well as long-term exposures enhanced the antioxidant and detoxification enzyme activity. DNA damage was extensive under longer exposure to stress howbeit was also significantly escalated under acute severe warming. Antioxidant and detoxification mechanisms fell short in counteracting cellular level damage. The IBR results indicated long-term acclimation of B. bengalensis to elevated temperatures and pesticide contamination lead to an improved tolerance level howbeit, acute stress was more detrimental. This study provided evidence for the efficiency of employing an integrated biomarker approach for B. bengalensis in future bio-monitoring studies.
Collapse
Affiliation(s)
- Sritama Baag
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Sayantan Mahapatra
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India.
| |
Collapse
|
16
|
Cheng Y, Zhu L, Song W, Jiang C, Li B, Du Z, Wang J, Wang J, Li D, Zhang K. Combined effects of mulch film-derived microplastics and atrazine on oxidative stress and gene expression in earthworm (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141280. [PMID: 32745867 DOI: 10.1016/j.scitotenv.2020.141280] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
With the wide use of mulch film and pesticides, mulch film-derived microplastics are very likely to produce combined effects with pesticides in agricultural soil. However, little is known about their combined toxicity on terrestrial organisms. This study aimed to investigate the combined toxicity of unused or farmland residual transparent low-density polyethylene mulch film-derived microplastics (MPs and MPs-aged, respectively) (550-1000 μm) and atrazine (ATZ; 0.02 and 2.0 mg/kg) on the earthworm (Eisenia fetida). After single and combined exposure to ATZ and microplastics for 28 d, the results showed an accumulation of reactive oxygen species, a decrease in superoxide dismutase, catalase, and glutathione-S-transferase activities, an increase in the malondialdehyde and 8-hydroxydeoxyguanosine levels, and abnormal expression of annetocin, heat shock protein 70, translationally controlled tumor protein and calreticulin genes. Integrated biological response (IBR) values calculated at the biochemical level indicated that the combined exposure to ATZ and microplastics, particularly to high concentrations of ATZ, induced greater oxidative stress in E. fetida compared with that of exposure to ATZ or microplastics alone. In addition, the IBR values calculated at the gene level did not show regular changes after combined exposure to ATZ and microplastics compared with those of a single exposure. The oxidative stress and abnormal expression of genes in E. fetida induced by MPs-aged were higher than those induced by MPs; a similar trend was observed for oxidative stress induced by MPs/MPs-aged + ATZ2.0, whereas an opposite trend was observed for the abnormal expression of genes in E. fetida induced by MPs/MPs-aged + ATZ0.02/ATZ2.0. Our results suggest that mulch film-derived microplastics have the potential to enhance the toxicity of ATZ within the soil environment.
Collapse
Affiliation(s)
- Yali Cheng
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Tai'an 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Tai'an 271018, China.
| | - Wenhui Song
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Tai'an 271018, China
| | - Chunying Jiang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Tai'an 271018, China
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Tai'an 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Tai'an 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Tai'an 271018, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Tai'an 271018, China.
| | - Dengtan Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Tai'an 271018, China
| | - Kaihua Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Tai'an 271018, China
| |
Collapse
|
17
|
Physiological Responses of Earthworm Under Acid Rain Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197246. [PMID: 33023052 PMCID: PMC7579360 DOI: 10.3390/ijerph17197246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
Acid rain has become one of the major global environmental problems, and some researches reported that acid rain may have a certain inhibition on soil biodiversity. Besides this, it is well known that earthworm (Eisenia fetida) plays an important role in the functioning of soil ecosystems. For this point, we conducted a series of experiments to investigate whether acid rain would take effects on earthworms. In the present study, the earthworms were incubated on filter paper and in soil under acid rain stress. The mortality and behavior of earthworms were recorded, and epidermal damage and the activity of the CYP3A4 enzyme were measured for the tested earthworms. Our experimental results showed that the earthworms could not survive in the acid rain stress of pH below 2.5, and acid rain with weak acidity (i.e., 4.0 ≤ pH ≤ 5.5) promoted the activity of the CYP3A4 enzyme in the earthworms, while acid rain with strong acidity (i.e., 3.0 ≤ pH ≤ 3.5) inhibited it. Moreover, the degree of damage in sensitive parts of the earthworms increased with the decrease of pH value. This study suggests that acid rain can cause discomfort response and the direct epidermal damage of earthworms, and even kill them.
Collapse
|
18
|
Kaur H, Sharma S, Vijaya P. Toxicological effect of Parthenium hysterophorus and milk processing industry sludge on earthworms, Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33464-33473. [PMID: 31062245 DOI: 10.1007/s11356-019-05222-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Production of large quantities of organic waste all over the world poses major environmental and disposal problems. The present study was conducted to explore the deleterious effects of Parthenium hysterophorus and milk processing industry sludge on the health of earthworm, Eisenia fetida. Earthworms were allowed to grow in the mixture of cow dung:Parthenium hysterophorus (75:25) and cow dung:milk processing industry sludge (60:40) for 60 days. The biochemical markers viz. superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels and histological changes in earthworm's intestine were assessed after 15, 30, 45, and 60 days of exposure. The results revealed increased MDA level, while SOD, CAT, and GPx activities showed variation in both treatments. Furthermore, histopathological changes revealed damage in the intestinal tissue in both treatments during all intervals. More severe effects were registered in P. hysterophorus treatment. Obtained results may contribute to the understanding of P. hysterophorus and milk processing industry sludge induced toxic effects on earthworms and to identify defense mechanism of Eisenia fetida.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Zoology & Environmental Sciences, Punjabi University, Patiala, Punjab, 147002, India.
| | - Suman Sharma
- Department of Zoology & Environmental Sciences, Punjabi University, Patiala, Punjab, 147002, India
| | - Puttaganti Vijaya
- Department of Zoology & Environmental Sciences, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
19
|
Mkhinini M, Helaoui S, Boughattas I, Amemou C, Banni M. Earthworm Eisenia andrei modulates oxidative stress in bean plants Vicia faba irrigated with treated wastewater. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1003-1016. [PMID: 32617728 DOI: 10.1007/s10646-020-02243-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
With respect to reducing the pressure on freshwater resources, treated wastewater (TWW) irrigation represents a sustainable alternative in agriculture. Due to their low quality and variable composition, TWW could entail harmful consequences for living organisms in terrestrial ecosystems. This study aims to evaluate how earthworm (Eisenia andrei) can modulate oxidative stress in bean plants (Vicia faba) that are irrigated over a course of 60 days with two doses of TWW (50 and 100%) in addition to a control condition (0%) irrigated with distilled water. This is achieved by measuring glutathione-S-transferase (GST) activity and malondialdehyde accumulation (MDA) in plants. Furthermore, catalase (CAT), GST, MDA, and acetylcholinesterase (AChE) activities of the earthworms are also assessed. Our results show that growth and physiological parameters are modified when applying TWW irrigation. Moreover, oxidative stress apprehended by GST activity and MDA accumulation is exacerbated in V. faba plants after exposure to increased TWW doses. Similarly, TWW irrigation enhances oxidative stress parameters in earthworms with a crucial decrease in AChE activity. In addition, the presence of earthworms increases growth and physiological parameters; it also results in a significant reduction in GST activity and MDA rate in V. faba plants. Our results provide new insights into the impact of TWW irrigation on soil organisms and the importance of earthworms in the reduction of oxidative stress in plants.
Collapse
Affiliation(s)
- Marouane Mkhinini
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Sondes Helaoui
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, University of Sousse, Sousse, Tunisia.
| | - Cyrine Amemou
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Mohammed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, University of Sousse, Sousse, Tunisia
| |
Collapse
|
20
|
Zhu L, Li B, Wu R, Li W, Wang J, Wang J, Du Z, Juhasz A, Zhu L. Acute toxicity, oxidative stress and DNA damage of chlorpyrifos to earthworms (Eisenia fetida): The difference between artificial and natural soils. CHEMOSPHERE 2020; 255:126982. [PMID: 32416393 DOI: 10.1016/j.chemosphere.2020.126982] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Pesticides can damage the soil environment, including damage to sentinel organisms such as earthworms. When assessing the toxicity of pesticides towards earthworms, assays are usually performed using standardized artificial soil, however, soil physicochemical properties may affect pesticide toxicity. In the present study, the toxicity of a commonly used insecticide (chlorpyrifos) to earthworms (Eisenia fetida) was determined in artificial soil and three typical natural soils (fluvo-aquic soil, black soil and red clay) by measuring acute and subchronic toxicity. Soil tests were conducted to measure the acute toxicity of chlorpyrifos to Eisenia fetida quantified by the half lethal concentration (LC50) while subchronic toxicity tests assessed the impact of low dose chlorpyrifos exposure (0.01, 0.1, 1 mg/kg; up to 56 d) on reactive oxygen species content, antioxidant enzymes activities, detoxifying enzyme activity, malondialdehyde content, and 8-hydroxydeoxyguanosine content. Subchronic toxicity was quantified using the integrated biomarker response (IBR) which highlighted that the toxicity of chlorpyrifos in artificial and natural soils was not the same. Outcomes from artificial soil studies may underestimate (fluvo-aquic soil and red clay) or overestimate (black soil) chlorpyrifos effects.
Collapse
Affiliation(s)
- Lei Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Ruolin Wu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Wenxiu Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| |
Collapse
|
21
|
Ehiguese FO, Alam MR, Pintado-Herrera MG, Araújo CVM, Martin-Diaz ML. Potential of environmental concentrations of the musks galaxolide and tonalide to induce oxidative stress and genotoxicity in the marine environment. MARINE ENVIRONMENTAL RESEARCH 2020; 160:105019. [PMID: 32907733 DOI: 10.1016/j.marenvres.2020.105019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic musk compounds have been identified in environmental matrices (water, sediment and air) and in biological tissues in the last decade, yet only minimal attention has been paid to their chronic toxicity in the marine environment. In the present research, the clams Ruditapes philippinarum were exposed to 0.005, 0.05, 0.5, 5 and 50 μg/L of the fragrances Galaxolide® (HHCB) and Tonalide® (AHTN) for 21 days. A battery of biomarkers related with xenobiotics biotransformation (EROD and GST), oxidative stress (GPx, GR and LPO) and genotoxicity (DNA damage) were measured in digestive gland tissues. HHCB and AHTN significantly (p < 0.05) induced EROD and GST enzymatic activities at environmental concentrations. Both fragrances also induced GPx activity. All concentrations of both compounds induced an increase of LPO and DNA damage on day 21. Although these substances have been reported as not acutely toxic, this study shows that they might induce oxidative stress and genotoxicity in marine organisms.
Collapse
Affiliation(s)
- Friday O Ehiguese
- Chemical Physics Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cádiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain.
| | - Md Rushna Alam
- Chemical Physics Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cádiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain; Department of Aquaculture, Faculty of Fisheries, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Marina G Pintado-Herrera
- Chemical Physics Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cádiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain
| | - M Laura Martin-Diaz
- Chemical Physics Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cádiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
22
|
Wu J, Ren Z, Zhang C, Motelica-Heino M, Deng T, Wang H, Dai J. Effects of soil acid stress on the survival, growth, reproduction, antioxidant enzyme activities, and protein contents in earthworm (Eisenia fetida). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33419-33428. [PMID: 30838490 DOI: 10.1007/s11356-019-04643-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
This study focused on the study of earthworm survival, growth, reproduction, enzyme activities, and protein contents to evaluate and predict the effects of different soil pH levels and determine the optimal risk assessment indicators for the effects. Survival rate, growth rate, and cocoon number as well as four enzyme (glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) activities and two proteins (total protein (TP) and metallothionein (MT)) contents in earthworms were determined to characterize the responses of earthworm activity to five soil pH levels. These biological datasets (survival, growth, and reproduction) were compared with biochemical indexes (GSH-PX, SOD, POD, CAT, TP, and MT), mainly using biphasic dose-response models. The results indicated that the soil pH value had significant inhibitory effects on the survival, growth, and reproduction of earthworms beginning with 3.0, 4.0, and 5.2, respectively. The dose-response models (J-shaped and inverted U-shaped curves) statistics indicated that the critical values (ECZEP) of the GSH-PX, SOD, POD, CAT, TP, and MT inhibited by soil acid stress were 3.46, 3.76, 3.35, 3.54, 3.50, and 3.96 (average 3.60), respectively. In the present study, the fitting curve analysis showed that the responses of the CAT activities and TP and MT contents in earthworm in response to soil pH have the behavior of hormesis.
Collapse
Affiliation(s)
- Jialong Wu
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
- Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture People's Republic of China, Guangzhou, 510642, China
- Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Land Use and Consolidation, Guangzhou, 510140, China
| | - Zongling Ren
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
- Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture People's Republic of China, Guangzhou, 510642, China.
- Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation, Guangzhou, 510640, China.
- Guangdong Province Key Laboratory of Land Use and Consolidation, Guangzhou, 510140, China.
| | - Chi Zhang
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
- Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture People's Republic of China, Guangzhou, 510642, China
- Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Land Use and Consolidation, Guangzhou, 510140, China
| | - Mikael Motelica-Heino
- Université d'Orléans, CNRS/INSU Institut des Sciences de la Terre d'Orléans, UMR 6113, Campus Géosciences, 1A rue de la Férollerie, 41071, Orléans, France
| | - Ting Deng
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
- Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture People's Republic of China, Guangzhou, 510642, China
- Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Land Use and Consolidation, Guangzhou, 510140, China
| | - Haoyu Wang
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
- Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture People's Republic of China, Guangzhou, 510642, China
- Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Land Use and Consolidation, Guangzhou, 510140, China
| | - Jun Dai
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
- Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture People's Republic of China, Guangzhou, 510642, China.
- Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation, Guangzhou, 510640, China.
- Guangdong Province Key Laboratory of Land Use and Consolidation, Guangzhou, 510140, China.
| |
Collapse
|
23
|
Zhou D. Effects of tetracycline on the relationship between the microbial community and oxidative stress in earthworms based on canonical correlation analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103342. [PMID: 32035326 DOI: 10.1016/j.etap.2020.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
In this study, Eisenia fetida was taken as the test organism and tetracycline was taken as the stress compound. The artificial soil test was conducted to study the utilization intensity of different carbon sources (the Biolog-microplate supplied) by microorganisms under different stress times and stress concentrations. The changes in the in vivo key enzymes activities of earthworms and oxidative stress indicators, such as malondialdehyde (MDA), were explored. The canonical correlation analysis method was the first used to establish a analysis-model to explore the relationship between the functional diversity of microbial community and the oxidative stress in earthworms in vivo under different stress times and concentrations. Research shows: 1) after tetracycline stress, in the earthworm, the CAT, POD, SOD, GPX were related to the microbes that use carbohydrate carbon sources; the GST and AChE were related to the microbes that use polymer carbon sources; the MDA was related to the microbes that use carbon sources: amino acid, carboxylic acid and phenolic acid. 2) Under low concentrations of tetracycline stress, there was no significant relationship between the functional diversity of the microbial communities and the effects of oxidative stress at this concentration. The high concentration of tetracycline can be utilized to screen probiotics that alleviate the effects of oxidative stress. 3) The utilization of carbon sources by microbial community in the earthworm after stress can be used as biomarker of ecotoxicology. It provides a basic theoretical for adding beneficial carbon sources to combat oxidative damage in vivo.
Collapse
Affiliation(s)
- Dongxing Zhou
- Northeast Agricultural University, Wood Street No.59, 150030, Harbin, PR China.
| |
Collapse
|
24
|
Li Y, Guo P, Liu Y, Su H, Zhang Y, Deng J, Wu Y. Effects of sulfur on the toxicity of cadmium to Folsomia candida in red earth and paddy soil in southern Fujian. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121683. [PMID: 31771886 DOI: 10.1016/j.jhazmat.2019.121683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 05/23/2023]
Abstract
Sulfur has been shown to mitigate the toxic effects of metals on soil organisms. Here we report the effects of sulfur on cadmium toxicity to the collembolan Folsomia candida in soil, including its effects on glutathione (GSH) level, catalase (CAT) activity and metallothionein (MT) content. Following sulfur treatment, catalase, glutathione and metallothionein activities were all significantly increased in cadmium-contaminated soil, and as the cadmium concentration increased, the activities decreased. In addition, because of the reducing effects of pH and organic matter on cadmium bioavailability, the bioavailable cadmium varied among soils of different pH values and organic matter contents, causing the catalase activity, glutathione content and metallothionein levels of F. candida to vary among soils. Our study suggests that sulfur can affect the toxicity of certain concentrations of cadmium and that soil properties are very important to consider. This study provides insight into the effects of sulfur application on soil animals.
Collapse
Affiliation(s)
- Yanqi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Peiyong Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China.
| | - Yongjun Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Haitao Su
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Yuxuan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Jun Deng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Yanmei Wu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
25
|
Cossi PF, Herbert LT, Yusseppone MS, Pérez AF, Kristoff G. Toxicity evaluation of the active ingredient acetamiprid and a commercial formulation (Assail® 70) on the non-target gastropod Biomphalaria straminea (Mollusca: Planorbidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110248. [PMID: 32036096 DOI: 10.1016/j.ecoenv.2020.110248] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/20/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Neonicotinoids emerged as an environmentally safe alternative to previous generations of insecticides becoming one of the most widely applied in modern agriculture. Nevertheless, they have been reported to affect several non-target organisms. Most toxicity studies focus on the effects on pollinators or terrestrial invertebrates and evaluate either the active ingredient or the commercial formulation. In the present study, we aimed to assess the long-term effects of the active ingredient acetamiprid and a broadly used commercial formulation (Assail® 70) on the non-target freshwater gastropod Biomphalaria straminea using a battery of biomarkers. A 14 day-exposure of adult organisms to both active ingredient and commercial formulation increased carboxylesterase activity and glutathione content, inhibited superoxide dismutase activity and decreased reactive oxygen species levels. The commercial formulation additionally increased glutathione S-transferase activity and inhibited catalase activity. The results indicate a greater toxicity of the commercial formulation than that of the active ingredient alone. Cholinesterase activity, development and offspring survival of B. straminea were not impaired. We conclude that the toxicity of acetamiprid on this gastropod species is mainly related to effects on detoxification and oxidative metabolism responses. This study provides novel information about the adverse effects of the active ingredient and a commercial formulation of a widely used neonicotinoid on a non-target aquatic species.
Collapse
Affiliation(s)
- Paula Fanny Cossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina; Universidad Maimónides, CEBBAD, Laboratorio de Invertebrados Marinos, Buenos Aires, Argentina
| | - Lucila Thomsett Herbert
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - María Soledad Yusseppone
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Enzimología, Estrés Oxidativo, y Metabolismo, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Analía Fernanda Pérez
- Universidad Maimónides, CEBBAD, Laboratorio de Invertebrados Marinos, Buenos Aires, Argentina
| | - Gisela Kristoff
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Čadková Z, Száková J, Mukhtorova D, Hlava J, Pulkrabová J, Balík J, Tlustoš P, Vadlejch J. The response of soil nematode Caenorhabditis elegans on the sewage sludge-derived micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121468. [PMID: 31761648 DOI: 10.1016/j.jhazmat.2019.121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Sewage sludge application to soil is of great interest, due to required organic matter and the wide spectra of nutrients it provides. However, the presence of unpredictable content of emerging contaminants may turn this valuable raw material into a hazardous substance. In this study, three selected sewage sludges derived micropollutants from different origins; that is, one each under persistent organic pollutants (POPs), pharmaceuticals and personal care products (PPCPs) were considered. The effect of each micropollutant on the feeding activity of free-living soil nematode Caenorhabditis elegans was analysed. The analysis was performed in model soil solution using a larval feeding inhibition assay. The results showed no significant effects from selected POP-2,2',4,4',5-pentabromodiphenyl either and pharmaceutical-chlortetracycline on the feeding activity of tested nematodes. On the contrary, feeding activity was inhibited by PPCP-galaxolide (HHCB) with an effective concentration of 12.2 ± 2.2 mg.l-1. The calculated risk quotient for galaxolide (RQ = 0.14) demonstrated a medium ecological risk to the nematodes. Based on our findings, concentrations of micropollutants in sewage sludge treated soil pose negligible risk to feeding activity of soil nematode. However, the potential impact of musk compounds on free-living soil biota requires detailed evaluation in further research.
Collapse
Affiliation(s)
- Zuzana Čadková
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, CZ-165 21 Prague 6, Czech Republic.
| | - Jiřina Száková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Kamýcká 129, CZ-165 21 Prague 6, Czech Republic
| | - Dilnora Mukhtorova
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Kamýcká 129, CZ-165 21 Prague 6, Czech Republic
| | - Jakub Hlava
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, CZ-165 21 Prague 6, Czech Republic
| | - Jana Pulkrabová
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 00, Prague 6, Czech Republic
| | - Jiří Balík
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Kamýcká 129, CZ-165 21 Prague 6, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Kamýcká 129, CZ-165 21 Prague 6, Czech Republic
| | - Jaroslav Vadlejch
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, CZ-165 21 Prague 6, Czech Republic
| |
Collapse
|
27
|
Chen Y, Liu X, Leng Y, Wang J. Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109788. [PMID: 31648073 DOI: 10.1016/j.ecoenv.2019.109788] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
The potential threats of microplastics to global health are a new problem. However, little is known about the influence of microplastics on soil organisms. Here, we investigated the effects of low-density polyethylene (LDPE, < 400 μm) on earthworms (Eisenia fetida) under different concentrations (0.1, 0.25, 0.5, 1.0, 1.5 g/kg dry) with three replicates in artificial soil. Results showed that surface damage of earthworms was observed at the concentration of 1.5 g/kg LDPE after exposure 28 days. The microplastics were ingested in a dose-response manner. Smaller sizes of LDPE microplastics were found in the casts of E. fetida, and approximately 30% of the microplastics egested (size < 100 μm) were increased compared with initial microplastics in the soil. The catalase activity and malondialdehyde content increased significantly at the concentration of 1.0 g/kg LDPE after exposure 28 days, and acetylcholine esterase was significantly stimulated at concentrations of 1.5 and 1.0 g/kg LDPE on days 21 and 28, respectively. The results of this study demonstrate the potential risk of LDPE microplastics to E. fetida and may provide a reference for the impact of microplastics on terrestrial creatures.
Collapse
Affiliation(s)
- Yuling Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoning Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yifei Leng
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Qiao Z, Zhang F, Yao X, Yu H, Sun S, Li X, Zhang J, Jiang X. Growth, DNA damage and biochemical toxicity of cyantraniliprole in earthworms (Eisenia fetida). CHEMOSPHERE 2019; 236:124328. [PMID: 31310971 DOI: 10.1016/j.chemosphere.2019.07.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Cyantraniliprole is a second-generation diamide insecticide that exhibited excellent biological efficacy against a variety of pests. To assess the toxic impact of cyantraniliprole on earthworms, the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), as well as DNA damage were measured after exposed to five cyantraniliprole concentrations ranging from 0 to 10.00 mg/kg for 7, 14, 21 and 28 days. In most treatment groups, the ROS levels increased significantly before exposure time of 14 days and then returned to normal levels. However, the SOD and CAT activities showed different response with activities were first significantly decreased and subsequently increased. The peroxidase (POD) activity showed no significant differences between treatment and control groups at first and then significantly increased. However, the opposite pattern characterized the GST activity. Also, maybe being dose-dependent before 14 days. The MDA concentration was used as a measure of lipid peroxidation (LPO). During experiment period, the MDA concentrations significantly increased when treated by this pesticide. The olive tail moment (OTM) was used as a measure of DNA damage. At higher concentrations of cyantraniliprole and longer exposure times, the OTM gradually increased, and DNA damage in the earthworms gradually increased. The weight of the high-dose (i.e., 5 mg/kg, 10 mg/kg) earthworms showed a significant trend of decrease phenomenon. Overall, the results suggest that sub-chronic exposure to cyantraniliprole causes DNA damage and LPO, weight loss and growth inhibition, leading to antioxidant defence responses in earthworms.
Collapse
Affiliation(s)
- Zhihua Qiao
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Fengwen Zhang
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Xiangfeng Yao
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Haoyong Yu
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Shiang Sun
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Xiangdong Li
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
29
|
Shao Y, Wang J, Wang J, Du Z, Li B, Zhu L, Juhasz A, Liu X, Xu Y, Li W. Oxidative stress and genotoxic effects in earthworms induced by five imidazolium bromide ionic liquids with different alkyl chains. CHEMOSPHERE 2019; 227:570-579. [PMID: 31004823 DOI: 10.1016/j.chemosphere.2019.04.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
In this study, the acute and subchronic toxicity of 1-alkyl-3-methyl imidazole bromide ionic liquids (ILs) [Cnmim]Br (n = 2, 4, 6, 10, 12) was evaluated utilizing earthworms (Eisenia fetida) as a basis for their impact on terrestrial ecosystems. The filter paper tests and artificial soil tests were conducted as acute toxicity tests to investigate the LC50 of ILs, while in subchronic toxicity tests, earthworms were exposed to ILs in artificial soil (5, 10, 20 and 40 mg kg-1) for 28 d. Reactive oxygen species (ROS), antioxidant enzymes, detoxifying enzymes and oxidative damage were measured to determine subchronic effects of ILs on E. fetida. The results showed that when the earthworms were exposed to these five ILs in acute toxicity experiments, [C2mim]Br had the lowest toxicity, as the alkyl length increased, the toxicity increased up to [C10mim]Br: a "cut-off effect" (decreased toxicity) was observed at [C12mim]Br. The results highlight the varying toxicity of ILs with different alkyl chains to E. fetida and provide valuable data for detailing the impact of ILs on ecological receptors.
Collapse
Affiliation(s)
- Yuting Shao
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, China.
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - Xiaoyan Liu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, China.
| | - Yaqi Xu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, China.
| | - Wenxiu Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
30
|
Duo L, Yin L, Zhang C, Zhao S. Ecotoxicological responses of the earthworm Eisenia fetida to EDTA addition under turfgrass growing conditions. CHEMOSPHERE 2019; 220:56-60. [PMID: 30579174 DOI: 10.1016/j.chemosphere.2018.12.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
As a commonly used chelator, ethylenediaminetetraacetic acid (EDTA) enters soil environment inevitably and has the potential to cause negative effects on soil organisms. The objective of the current study was to investigate the effects of EDTA on earthworm growth, survival and activities of antioxidant enzymes. The assessment for EDTA toxicity toward earthworms (Eisenia fetida) was conducted on day 14 and 35 after exposure to four concentrations (0, 5, 10, 15 mmol kg-1) of EDTA under turfgrass growing conditions. Exposure to EDTA resulted in a significant decrease of earthworm growth and survival. The toxicity of EDTA increased with the increase in concentration and exposure duration. The activities of antioxidant enzymes increased at low concentration and decreased at high concentration, which indicates that oxidative stress was induced by EDTA addition. These results suggest EDTA is highly toxic and ecologically dangerous to earthworms.
Collapse
Affiliation(s)
- Lian Duo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| | - Lijia Yin
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, PR China
| | - Cancan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| | - Shulan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China.
| |
Collapse
|
31
|
Assessment of acute toxicity and biochemical responses to chlorpyrifos, cypermethrin and their combination exposed earthworm, Eudrilus eugeniae. Toxicol Rep 2019; 6:288-297. [PMID: 30989054 PMCID: PMC6447753 DOI: 10.1016/j.toxrep.2019.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 03/21/2019] [Indexed: 01/02/2023] Open
Abstract
In the present study, co-exposed administered pesticides induced a higher level of toxicity to Eudrilus eugeniae. Statistically significant changes were observed after 48 h exposure of CPF, cypermethrin and combination of the two, reflects the synergistic cumulative impact on the AChE and oxidative stress parameters in dose- dependent manner. Significant changes were observed in different body segments (Pre-Clitellar, Clitellar and Post-Clitellar) of earthworm in tissue specific pattern.
Recurrent application of chemical pesticides in the agricultural fields have adverse impact on flora and fauna of soil ecosystem. Earthworms immensely contribute in increasing the fertility of soil. They may act as a bioindicator for the ecotoxicological analysis of pesticide induced soil pollution. Earthworms, Eudrilus eugeniae were exposed to different concentrations of pesticides chlorpyrifos (OP), cypermethrin (a pyrethroid) and their combination for 48 h by paper contact toxicity method. The LC50 for commercial grade of chlorpyrifos, cypermethrin and combined pesticides were determined as 0.165, 0.066 and 0.020 μg/cm2, respectively. To assess the sub-lethal effect of these pesticides, E. eugeniae were exposed to 5% and 10% of LC50 of the pesticides for 48 h. Variation in morpho-behavioural changes such as coiling, clitellar swelling, mucus release, bleeding and body fragmentation in earthworms were observed after exposure of both pesticides and their combination. Various biochemical estimations such as specific activity of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), glutathione -S-transferase (GST); levels of lipid peroxidation (LPO) and reduced glutathione (GSH) were carried out in different body segments. Significant changes in these stress markers were observed at low and high sub-acute concentration of pesticides exposed earthworm, Eudrilus eugeniae. Such changes indicate potential health risk to E. eugeniae if exposed to the high concentrations of these pesticides accumulated in soil.
Collapse
|
32
|
Ye X, Ma J, Wei J, Sun K, Xiong Q. Comparison of the bioavailability of benzo[a]pyrene (B[a]P) in a B[a]P-contaminated soil using the different addition approaches. Sci Rep 2019; 9:3848. [PMID: 30846813 PMCID: PMC6405738 DOI: 10.1038/s41598-019-40813-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/22/2019] [Indexed: 11/12/2022] Open
Abstract
Determination of the bioavailability of the hydrophobic organic contaminant benzo[a]pyrene (B[a]P) is extremely important for assessing its environmental risk. The effect of addition manner of B[a]P on the bioavailability and toxicity of B[a]P in soil remains unclear. In this study, soil samples, spiked with B[a]P by one-time or multiple-time additions, were tested to investigate the available fraction of B[a]P in soils, the uptake of B[a]P by red wiggler worms (Eisenia fetida), as well as superoxide dismutase (SOD) and peroxidase (POD) activities in earthworm coelomocytes at different periods. Results showed that the available fraction of B[a]P in soils and the amount of B[a]P assimilated by earthworms declined sharply from 1 d to 28 d during the incubation period and then decreased slowly from 28 to 56 d in both the one-time and the multiple-time addition tests. The available fraction of B[a]P in soils and its uptake by earthworms were significantly lower in multiple-time addition samples than those in one-time addition samples, a finding which was consistent with the SOD and POD activities in earthworms during the whole 56-d incubation period. These variations in the characteristics of the two addition treatments may be due to the differences in the way the B[a]P aged in the soil. These results indicated that the addition method was an important factor influencing the bioavailability of organic contaminants in soils.
Collapse
Affiliation(s)
- Xinxin Ye
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jingjing Ma
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Junling Wei
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Qizhong Xiong
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
33
|
Liu T, Wang X, Chen D, Li Y, Wang F. Growth, reproduction and biochemical toxicity of chlorantraniliprole in soil on earthworms (Eisenia fetida). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:18-25. [PMID: 29268110 DOI: 10.1016/j.ecoenv.2017.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Diamide insecticides have become the fourth most commonly used insecticide class in the world. Chlorantraniliprole (CAP) is a first-generation diamide insecticide with broad application potential. In this experiment, the eco-toxicity of CAP in soil at 0.1, 1.0, 5.0 and 10.0mg/kg on earthworms (Eisenia fetida) was evaluated during a 42 d exposure. More specifically, the environmental fate and transport of CAP between soil and earthworms was monitored during the exposure period. The present results indicated that the CAP contents of 0.1, 1.0, 5.0 and 10.0mg/kg treatments decreased to no more than 20% in the soil after 42 d of exposure. The accumulation of CAP in earthworms was 0.03, 0.58, 4.28 and 7.21mg/kg earthworm (FW) at 0.1, 1.0, 5.0 and 10.0mg/kg after 42 d of exposure. At 0.1mg/kg and 1.0mg/kg, CAP had no effect on earthworms during the exposure period. The weight of earthworms was significantly reduced at 5.0 and 10.0mg/kg at 28 and 42 days after CAP application. After the 14th day, CAP induced excess production of reactive oxygen species (ROS) at 5.0 and 10.0mg/kg, resulting in oxidative damage to biomacromolecules. We believe that CAP has a high risk potential for earthworms when used at 5.0 and 10.0mg/kg.
Collapse
Affiliation(s)
- Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Dan Chen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Yiqiang Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Fenglong Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
34
|
Dai W, Ke X, Li Z, Gao M, Wu L, Chiristie P, Luo Y. Antioxidant enzyme activities of Folsomia candida and avoidance of soil metal contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2889-2898. [PMID: 29143931 DOI: 10.1007/s11356-017-0489-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Induction of the antioxidant enzymes catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) and the avoidance of potentially toxic metals in soil by Folsomia candida were investigated. Both laboratory-spiked and field-polluted agricultural soils were used. Cadmium (Cd) concentrations in body tissues, animal avoidance behaviour and physico-chemical properties of the field soils were also determined. In laboratory Cd-spiked soils, the CAT and SOD activities in the Cd treatments were 71.1-94.7 and 1.31-4.55 times higher than in the control, respectively. In field-polluted agricultural soils, the CAT and POD activities generally increased with increasing pollution index (PI Nemerow ) of soil Cd, Cu, Pb and Zn. The CAT, POD and SOD activities at different PI Nemerow were 65.7-128, 30.1-180 and 36.5-95.8% higher than in the control, respectively. In line with the enzyme activities, Cd concentrations in the animal bodies were 8.31-15.1 and 3.21-10.0 times higher than in the control in spiked and field-polluted soils, respectively. Avoidance behaviour also increased with increasing metal concentrations in both soils. The effects of metals on CAT, POD or SOD activity were influenced by soil properties such as soil texture and pH. These results indicate that the antioxidant enzymes activities of F. candida can be induced by heavy metals and potentially used to assess the toxicity, and also that soil properties must be considered in the analysis of enzyme activities in different types of field soils.
Collapse
Affiliation(s)
- Wencai Dai
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xin Ke
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zhu Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ming Gao
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Peter Chiristie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongming Luo
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| |
Collapse
|
35
|
Hong Y, Tan Y, Meng Y, Yang H, Zhang Y, Warren A, Li J, Lin X. Evaluation of biomarkers for ecotoxicity assessment by dose-response dynamic models: Effects of nitrofurazone on antioxidant enzymes in the model ciliated protozoan Euplotes vannus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:552-559. [PMID: 28688356 DOI: 10.1016/j.ecoenv.2017.06.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
Understanding dose-responses is crucial for determining the utility of biomarkers in ecotoxicity assessment. Nitrofurazone is a broad-spectrum antibiotic that is widely used in the aquaculture industry in China despite its detrimental effects on ecosystems. Potential dose-response models were examined for the effect of nitrofurazone on two antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GPx), in the ciliated protozoan Euplotes vannus. This was achieved by measuring enzyme activity and gene expression profiling of SOD and GPx in ciliate cells exposed to nitrofurazone at doses ranging from 0 to 180mgl-1 for 6h, 12h, 18h and 24h. Dose-response dynamics were characterized by mathematical models. Results showed that: 1) dose-response patterns differed significantly among the tested endpoints, nitrofurazone concentrations and durations of exposure; 2) GPx activity was the best candidate biomarker because of its linear dose-response relationship; 3) SOD activity and mRNA relative expression levels of GPx and SOD are also candidate biomarkers but their dose-responses were non-linear and therefore more difficult to interpret; 4) partitioning the dose-response dynamic model by piecewise function can help to clarify the relationships between biological endpoints. This study demonstrates the utility of dynamic model analysis and the potential of antioxidant enzymes, in particular GPx activity, as a candidate biomarkers for environmental monitoring and risk assessment of nitrofurazone in the aquaculture industry.
Collapse
Affiliation(s)
- Yazhen Hong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Yalin Tan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Yang Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Hao Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Yu Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jiqiu Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China.
| | - Xiaofeng Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
36
|
Zhiqun T, Jian Z, Junli Y, Chunzi W, Danju Z. Allelopathic effects of volatile organic compounds from Eucalyptus grandis rhizosphere soil on Eisenia fetida assessed using avoidance bioassays, enzyme activity, and comet assays. CHEMOSPHERE 2017; 173:307-317. [PMID: 28113065 DOI: 10.1016/j.chemosphere.2017.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Allelopathy has been identified as an underlying mechanism of detrimental environmental impacts within commercial plantations. Eucalyptus spp. are known to generate huge amounts of volatile organic compounds (VOCs) that can function as phytotoxins and thus inhibit other plants. In the present study, biochemical markers, including activities of acetylcholinesterase (AChE) and oxidative stress enzymes, such as superoxide dismutase (SOD) and glutathione S-transferase (GST), were assayed to assess changes in Eisenia fetida at the physiological level induced by different doses of VOCs as part of an acute toxicity test over 7 and 14-day exposures. In addition, the toxicities of VOCs were investigated using a soil avoidance test and comet assay. The results revealed that E. fetida exhibited significant avoidance behavior towards the highest concentrations of undecane, decane, 2,4-dimethyl heptane, and 2,2,4,6,6-pentametyl heptane. The tail DNA percentages were significantly increased for all experimental treatments relative to control. However, under the treatments of VOCs, Olive tail moment content and comet tail length also display an obvious increase compared to control, except for that of octane, undecane and decane treatments. As VOC concentrations and durations increased in the soil, activities of AChE, SOD, and GST were either stimulated or inhibited. Among the VOCs, decane, 2,4-dimethyl heptane, 2,2,4,6,6-pentamethyl heptane, and 2,4-di tert buyl phenol exerted stronger effects on enzymatic activities. In summary, VOCs in rhizosphere soils of E. grandis might exert a toxic impact on E. fetida, among which 2,4-dimethyl heptane, 2,2,4,6,6-pentamethyl heptane, and 2,4-di tert buyl phenol have the strongest effects.
Collapse
Affiliation(s)
- Tang Zhiqun
- Institute of Ecological Forestry, Sichuan Provincial Key Laboratory of Ecological Forestry Engineering, College of Forestry, Sichuan Agricultural University, Wenjiang 611130, China
| | - Zhang Jian
- Institute of Ecological Forestry, Sichuan Provincial Key Laboratory of Ecological Forestry Engineering, College of Forestry, Sichuan Agricultural University, Wenjiang 611130, China
| | - Yu Junli
- Institute of Ecological Forestry, Sichuan Provincial Key Laboratory of Ecological Forestry Engineering, College of Forestry, Sichuan Agricultural University, Wenjiang 611130, China
| | - Wang Chunzi
- Institute of Ecological Forestry, Sichuan Provincial Key Laboratory of Ecological Forestry Engineering, College of Forestry, Sichuan Agricultural University, Wenjiang 611130, China
| | - Zhang Danju
- Institute of Ecological Forestry, Sichuan Provincial Key Laboratory of Ecological Forestry Engineering, College of Forestry, Sichuan Agricultural University, Wenjiang 611130, China.
| |
Collapse
|
37
|
Wang C, Zhang Q, Wang F, Liang W. Toxicological effects of dimethomorph on soil enzymatic activity and soil earthworm (Eisenia fetida). CHEMOSPHERE 2017; 169:316-323. [PMID: 27886533 DOI: 10.1016/j.chemosphere.2016.11.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
The objective of this study was to evaluate the toxicity of the fungicide dimethomorph to soil microbial activity and the earthworm Eisenia fetida. Multiple biomarkers, namely, four soil enzymes (urease, dehydrogenase, invertase, and acid phosphatase), four earthworm biochemical indices (dismutase, catalase, cellulase, and malondialdehyde), and the transcriptional levels of both target genes (dismutase and catalase) were measured at 1, 10, and 100 mg kg-1 after 1, 7, 21, and 28 days. The degradation rate of dimethomorph in soil was also determined, and the results indicated that most parameters did not differ from the controls at 1 and 10 mg kg-1 dimethomorph by the last exposure time (28 d). However, high concentrations (100 mg kg-1) of dimethomorph had varying effects on soil enzymatic activity and earthworms. These effects gradually decreased with prolonged exposure times. Positive correlations (R2 > 0.57) between the target gene expression levels and antioxidant enzyme activities were observed in this study. We also found that earthworms have improved soil microbial activity and accelerated the degradation of dimethomorph. Overall, higher concentrations of dimethomorph might pose an ecological hazard to soil environments in the short term.
Collapse
Affiliation(s)
- Caixia Wang
- College of Agronomy and Plant Protection, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qingming Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Feifei Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenxing Liang
- College of Agronomy and Plant Protection, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
38
|
Dongxing Z, Yucui N, Jiabin L, Jie D, Guohua R, Bilige S, Yijun L. Effects of oxidative stress reaction for the Eisenia fetida with exposure in Cd 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21883-21893. [PMID: 27528521 DOI: 10.1007/s11356-016-7422-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Earthworms are widely used in all kinds of pollutants as sensitive bio-indicator organisms because of their immediately oxidative stress response under the stress of heavy metal. However, there are a large number of indexes associated with the oxidative stress response. Finding out the key monitoring indexes in the stress process becomes a practical demand of the pollution monitoring and warning process. We studied two groups, the short-term test and the long-term test. The former one is for 10 days, taking out an earthworm every day. The latter test lasted 30 days, taking out an earthworm every 10 days. The Cd2+ concentration was set at 50, 100, 125, 250, and 500 mg kg-1. Post-clitellum segments of earthworms were chosen to determine superoxide enzyme (SOD), peroxidase (POD), glutathione peroxidase (GSH-Px), glutathione-S transferase (GST), catalase (CAT), vitamin E (VE), malondialdehyde (MDA), and acetylcholinesterase (AChE). The results showed that the main bio-indicators associating with oxidative stress reaction in short-term group were CAT, SOD, and POD. MDA could be used as a bio-indicator in the early and mid-term. VE was only the bio-indicator in the mid-term stress. While with the long-term test, the main bio-indicators associated with oxidative stress reaction were GSH-Px and MDA. The AChE activity was only suitable for oxidative stress response caused by heavy metal stress more than 30 days.
Collapse
Affiliation(s)
- Zhou Dongxing
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Ning Yucui
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liu Jiabin
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Deng Jie
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Rong Guohua
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Siqin Bilige
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liu Yijun
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
39
|
Hu S, Zhang W, Li J, Lin K, Ji R. Antioxidant and gene expression responses of Eisenia fetida following repeated exposure to BDE209 and Pb in a soil-earthworm system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 556:163-168. [PMID: 26971217 DOI: 10.1016/j.scitotenv.2016.02.194] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
This study first adopted repeated treatment model to investigate stress responses in earthworms (Eisenia fetida) following exposure to decabromodiphenyl ether (BDE209) and lead (Pb), which are the mainly co-existed contaminants at e-waste recycling sites. We evaluated the impacts of BDE209-Pb on antioxidative enzyme (superoxide dismutase, SOD; catalase, CAT) activities, malondialdehyde (MDA) contents and transcriptional levels of three target genes (SOD, CAT and Hsp70), and further explored the relationships among these biomarkers. Results demonstrated that almost all the parameters were generally induced and the responses followed certain dose-effect relationships. Compared to the controls, a significant (P<0.05) up-regulation trend of expression levels of the three genes could be clearly observed after 14days incubation. Additionally, there existed good correlations between target genes expression levels and antioxidant enzyme activities (R>0.64). The observations could provide important information of ecotoxicological effects of BDE209-Pb in a soil-earthworm system as well as the mechanism of antioxidant defense.
Collapse
Affiliation(s)
- Shuangqing Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jing Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
40
|
Liu X, Zhang S, Wang J, Wang J, Shao Y, Zhu L. Biochemical responses and DNA damage in earthworms (Eisenia fetida) induced by ionic liquid [omim]PF6. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6836-6844. [PMID: 26667645 DOI: 10.1007/s11356-015-5827-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Ionic liquids that are not that "green" to many organisms have recently been identified. This study examined the subchronic toxicity of the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate ([omim]PF6) to earthworms (Eisenia fetida). Earthworms were exposed for a 28-day period (sampled on days 7, 14, 21, and 28) at concentrations of 0, 5, 10, 20, and 40 mg/kg. The levels of reactive oxygen species (ROS), antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD)), detoxifying enzyme (glutathione S-transferase (GST)), lipid peroxidation, and DNA damage were measured. ROS significantly accumulated in all the treatment groups; the maximum ROS content was 51.9% higher than the control at 40 mg/kg [omim]PF6 on day 28. Increased SOD activities attenuated over the time of exposure, while the CAT activities of the treatment groups were similar to the controls, except on day 14. Furthermore, the activities of POD and GST were stimulated. Lipid peroxidation in earthworms was not apparent at 5 and 10 mg/kg [omim]PF6 but was quite obvious at 40 mg/kg [omim]PF6. In addition, DNA damage was dose- and time-dependent. In conclusion, [omim]PF6 caused oxidative stress and genotoxicity in earthworms.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Key Laboratory of Agricultural Environment in Universities of Shandong, Taian, 271018, People's Republic of China
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, People's Republic of China
| | - Shumin Zhang
- Key Laboratory of Agricultural Environment in Universities of Shandong, Taian, 271018, People's Republic of China
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, People's Republic of China
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, Taian, 271018, People's Republic of China.
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China.
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, People's Republic of China.
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, Taian, 271018, People's Republic of China
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, People's Republic of China
| | - Yuting Shao
- Key Laboratory of Agricultural Environment in Universities of Shandong, Taian, 271018, People's Republic of China
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, People's Republic of China
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, Taian, 271018, People's Republic of China.
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China.
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, People's Republic of China.
| |
Collapse
|
41
|
Ma T, Chen L, Wu L, Zhang H, Luo Y. Oxidative Stress, Cytotoxicity and Genotoxicity in Earthworm Eisenia fetida at Different Di-n-Butyl Phthalate Exposure Levels. PLoS One 2016; 11:e0151128. [PMID: 26982081 PMCID: PMC4794152 DOI: 10.1371/journal.pone.0151128] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/24/2016] [Indexed: 12/16/2022] Open
Abstract
Recognized as ubiquitous contaminants in soil, the environmental risk of phthalic acid esters (PAEs) is of great concern recently. Effects of di-n-butyl phthalate (DnBP), an extensively used PAE compound to Eisenia fetida have been investigated in spiked natural brown yellow soil (Alfisol) for soil contact test. The toxicity of DnBP to E. fetida on the activity of superoxide dismutase (SOD) activity, peroxidase (POD), reactive oxygen species (ROS) content, and the apoptosis of coelomocytes and DNA damage at the 7th, 14th, 21st and 28th day of the incubation have been paid close attention to. In general, SOD activity and ROS content were significantly induced, opposite to total protein content and POD activity, during the toxicity test of 28 days especially under concentrations higher than 2.5 mg kg-1. The reduction in neutral red retention (NRR) time along with the increase of dead coelomocytes as the increasing of DnBP concentrations, indicating severe damage to cell viability under varying pollutant stress during cultivation, which could also be proved by comet assay results for exerting evident DNA damage in coelomocytes. DnBP in spiked natural soil could indeed cause damage to tissues, coelomocytes and the nucleus of E. fetida. The key point of the apparent change in different indices presented around 2.5 mg DnBP kg-1 soil, which could be recommended as the threshold of DnBP soil contamination, so that further investigation on threshold values to other soil animals or microorganisms could be discussed.
Collapse
Affiliation(s)
- Tingting Ma
- Institute of Hanjiang, Hubei University of Arts and Science, Xiangyang, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Li’ke Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Shanghai Research Institute of Chemical Industry, Shanghai, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Haibo Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, China
- * E-mail:
| |
Collapse
|
42
|
Shi Y, Zhang Q, Huang D, Zheng X, Shi Y. Survival, growth, detoxifying and antioxidative responses of earthworms (Eisenia fetida) exposed to soils with industrial DDT contamination. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 128:22-29. [PMID: 26969436 DOI: 10.1016/j.pestbp.2015.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
The survival, growth, activity of the biotransformation system phase II enzyme glutathione-S-transferase (GST) and the oxidative defense enzyme catalase (CAT) of earthworms exposed to the contaminated soils from a former DDT plant and reference soils were investigated, and compared with the corresponding indicators in simulated soil-earthworm system, unpolluted natural soils with spiked-in DDT series, to identify the toxic effects of DDT on earthworms and their cellular defense system in complex soil system. The results indicated that DDT level in the contaminated soils was significantly higher than that in the reference soils with similar level of other pollutants and soil characters. The mortality, growth inhibition rates, GST and CST activities of earthworms exposed to the contaminated soils were significantly higher than that in reference soils. The contribution of historical DDT in contaminated soils to earthworms was confirmed by the DDT spiked tests. DDT spiked in soils at rates of higher than 200 mg·kg(-1) was significantly toxic to both the survival and the growth of earthworms. DDT significantly stimulated GST and CAT activity in earthworms after 14 days. The CAT and GST activities were also stimulated by DDT exposure at rates of 100 mg·kg(-1) after chronic exposure (42 days). The results provide implications for validating the extrapolation from laboratory simulated soils criteria to contaminated soils and for making site risk assessments.
Collapse
Affiliation(s)
- Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qiangbin Zhang
- College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
| | - Dunqi Huang
- College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xiaoqi Zheng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Center for Climate Change Strategy and International Cooperation, Beijing 100038, China
| | - Yajing Shi
- Liaoning Institute of Science and Technology, Liaoning 117004, China
| |
Collapse
|
43
|
Wang J, Wang J, Wang G, Zhu L, Wang J. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida. CHEMOSPHERE 2016; 144:510-517. [PMID: 26397468 DOI: 10.1016/j.chemosphere.2015.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
To investigate the soil ecological effect of imidacloprid, earthworm Eisenia fetida was exposed to various concentrations of imidacloprid (0.10, 0.50, and 1.00 mg kg(-1) soil) respectively after 7, 14, 21, and 28 d. The effect of imidacloprid on reactive oxygen species (ROS) generation, antioxidant enzymes activity [superoxide dismutase (SOD) and catalase (CAT), glutathione S-transferase enzyme (GST)], malondialdehyde (MDA) content and DNA damage of the E. fetida was investigated. Significant increase of the ROS level was observed. The SOD and GST activity were significantly induced at most exposure intervals. CAT activity was inhibited and reflected a dose-dependent relationship on days 7, 14 and 21. High MDA levels were observed and the olive tail moment (OTM) as well as the percentage of DNA in the comet tail (tail DNA%) in comet assay declined with increasing concentrations and exposure time after 7 d. Our results suggested that the sub-chronic exposure of imidacloprid caused DNA damage and lipid peroxidation (LPO) leading to antioxidant responses in earthworm E. fetida.
Collapse
Affiliation(s)
- Juan Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, People's Republic of China.
| | - Guangchi Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, People's Republic of China
| |
Collapse
|
44
|
Gao C, Xu J, Li J, Liu Z. Determination of Metallothionein, Malondialdehyde, and Antioxidant Enzymes in Earthworms (Eisenia fetida) Following Exposure to Chromium. ANAL LETT 2016. [DOI: 10.1080/00032719.2015.1120738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Khalil AM. Neurotoxicity and biochemical responses in the earthworm Pheretima hawayana exposed to TiO2NPs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:455-461. [PMID: 26398239 DOI: 10.1016/j.ecoenv.2015.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
Serious concerns have been expressed about potential risks of manufactured TiO2NPs. In this research, toxicity of nanoparticulate and bulk TiO2 were examined to the earthworm Pheretima hawayana. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic. The 24-h LC50 for TiO2NPs (145.36 mg kg(-1)) was highly toxic than that of bulk TiO2 (357.77 mg kg(-1)). The aim of the present work is to evaluate the suitability of P. hawayana and its biochemical responses to be used as a bioindicator organism and biomarkers of TiO2 toxicity. Earthworms were exposed to three sublethal concentrations of TiO2NPs (1, 10 and 100 µg kg(-1)) for 28 days to test acetylcholinesterase (AChE), antioxidant enzymes (superoxide dismutase: SOD and catalase: CAT) activities and MDA content. The response of the antioxidant enzymes combined with AChE inhibition and MDA accumulation indicated that TiO2NPs could induce significant impairments to the earthworms at the actual environment tested concentrations. The results pointed out the high sensitivity of the antioxidant and oxidative stress related responses to TiO2NPs exposure, demonstrating their usefulness in environmental monitoring and risk assessment. The study highlights also the usefulness of earthworm P. hawayana as potential bioindicator species for assessing the risk of nanoparticles environmental contamination.
Collapse
Affiliation(s)
- Abdelmonem M Khalil
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
46
|
Zhang Q, Zhang G, Yin P, Lv Y, Yuan S, Chen J, Wei B, Wang C. Toxicological effects of soil contaminated with spirotetramat to the earthworm Eisenia fetida. CHEMOSPHERE 2015; 139:138-145. [PMID: 26081578 DOI: 10.1016/j.chemosphere.2015.05.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to evaluate the potential toxicity of spirotetramat to the earthworm Eisenia fetida in a natural soil environment. Many biochemical markers, viz., superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione S-transferase (GST), cellulase, and malondialdehyde (MDA) contents were measured after exposure to 0.25, 1.25, and 2.5mgkg(-1) for 2, 7, 14, 21, and 28days. In addition, the comet assay was performed on earthworm coelomocytes to assess the level of genetic damage. The results demonstrate that the SOD activity and MDA content were significantly stimulated by the highest dose (2.5mgkg(-1)) of spirotetramat for the entire period of exposure. The activities of CAT and POD increased significantly by 2d and 21d, respectively, but the activities of both were significantly inhibited after prolonged exposure (28d). After an initial increase on the 2nd day, the cellulase activity in the high-dose treatment group was significantly inhibited for the entire remaining exposure period. The comet assay results demonstrate that spirotetramat (⩽2.5mgkg(-1)) can induce low and intermediate degrees of DNA damage in earthworm coelomocytes. The results indicate that spirotetramat may pose potential biochemical and genetic toxicity to earthworms (E. fetida), and this information is helpful for understanding the ecological toxicity of spirotetramat on soil invertebrate organisms.
Collapse
Affiliation(s)
- Qingming Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Guoli Zhang
- Organization Department of Qingdao Agricultural University, Qingdao 266109, China
| | - Peijun Yin
- Huangdao Entry-Exit Inspection and Quarantine Bureau, Qingdao 266555, China
| | - Yanzhen Lv
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun Yuan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiqiang Chen
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Binbin Wei
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Caixia Wang
- College of Agronomy and Plant Protection, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
47
|
Shi YJ, Xu XB, Zheng XQ, Lu YL. Responses of growth inhibition and antioxidant gene expression in earthworms (Eisenia fetida) exposed to tetrabromobisphenol A, hexabromocyclododecane and decabromodiphenyl ether. Comp Biochem Physiol C Toxicol Pharmacol 2015; 174-175:32-8. [PMID: 26117064 DOI: 10.1016/j.cbpc.2015.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/15/2022]
Abstract
Tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD) and decabromodiphenyl ether (BDE 209), suspected ubiquitous contaminants, account for the largest volume of brominated flame retardants (BFRs) since penta-BDE and octa-BDE have been phased out globally. In this paper, the growth inhibition and gene transcript levels of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT)) and the stress-response gene involved in the prevention of oxidative stress (Hsp70) of earthworms (Eisenia fetida) exposed to TBBPA, HBCD and BDE 209 were measured to identify the toxicity effects of selected BFRs on earthworms. The growth of earthworms treated by TBBPA at 200 and 400 mg/kg dw were inhibited at rate of 13.7% and 22.0% respectively, while there was no significant growth inhibition by HBCD and BDE 209. A significant (P<0.01) up-regulation of SOD expression level was observed in earthworms exposed to TBBPA at 50 mg/kg dw (1.77-fold) and to HBCD at 400 mg/kg dw (2.06-fold). The transcript level of Hsp70 gene was significantly up-regulated (P<0.01) when earthworms exposed to TBBPA at concentration of 50-200 mg/kg (2.16-2.19-fold) and HBCD at 400 mg/kg (2.61-fold). No significant variation of CAT gene expression in all the BFRs treatments was observed, neither does all the target gene expression level exposed to BDE 209. Assessed by growth inhibition and the changes at mRNA levels of encoding genes in earthworms, TBBPA showed the greatest toxicity, followed by HBCD and BDE 209, consistent with trends in molecular properties. The results help to understand the molecular mechanism of antioxidant defense.
Collapse
Affiliation(s)
- Ya-juan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiang-bo Xu
- Beijing Municipal Environmental Monitoring Center, Beijing 100048, China
| | - Xiao-qi Zheng
- National Center for Climate Change Strategy and International Cooperation, Beijing 100038, China
| | - Yong-long Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
48
|
Chen C, Cai Z. Physiological and Antioxidant Responses in Wheat (Triticum aestivum) to HHCB in Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:272-277. [PMID: 26013820 DOI: 10.1007/s00128-015-1565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
Seedlings of wheat (Triticum aestivum) were exposed in soil to the polycyclic musk chemical, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyran (HHCB) for 21 days, to evaluate its effect upon chlorophyll (CHL), lipid peroxidation and the antioxidant system. The content of CHL in leaves was inhibited significantly after 14- and 21-days exposures, whereas it was significantly induced by a low level of HHCB after a 7-days exposure. The content of malondialdehyde (MDA) in wheat leaves increased with an increase in the concentration of HHCB in soil, indicating that oxidative stress could be induced by HHCB. Moreover, HHCB exposure induced significant antioxidant responses in wheat. The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in wheat leaves were induced by HHCB after 14 and 21 days of exposure. However, the changing trend of the antioxidant enzymes in wheat roots was different from that in leaves. The results suggested that the assayed parameters of T. aestivum could be used as responsive biomarkers for oxidative stress in the soil environment.
Collapse
Affiliation(s)
- Cuihong Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China,
| | | |
Collapse
|
49
|
Bernard F, Brulle F, Dumez S, Lemiere S, Platel A, Nesslany F, Cuny D, Deram A, Vandenbulcke F. Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:273-303. [PMID: 24951273 DOI: 10.1016/j.ecoenv.2014.04.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 04/15/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
Pollutants, such as Metal Trace Elements (MTEs) and organic compounds (polycyclic aromatic hydrocarbons, pesticides), can impact DNA structure of living organisms and thus generate damage. For instance, cadmium is a well-known genotoxic and mechanisms explaining its clastogenicity are mainly indirect: inhibition of DNA repair mechanisms and/or induction of Reactive Oxygen Species (ROS). Animal or vegetal cells use antioxidant defense systems to protect themselves against ROS produced during oxidative stress. Because tolerance of organisms depends, at least partially, on their ability to cope with ROS, the mechanisms of production and management of ROS were investigated a lot in Ecotoxicology as markers of biotic and abiotic stress. This was mainly done through the measurement of enzyme activities The present Review focuses on 3 test species living in close contact with soil that are often used in soil ecotoxicology: the worm Eisenia fetida, and two plant species, Trifolium repens (white clover) and Brassica oleracea (cabbage). E. fetida is a soil-dwelling organism commonly used for biomonitoring. T. repens is a symbiotic plant species which forms root nodule with soil bacteria, while B. oleracea is a non-symbiotic plant. In literature, some oxidative stress enzyme activities have already been measured in those species but such analyses do not allow distinction between individual enzyme involvements in oxidative stress. Gene expression studies would allow this distinction at the transcriptomic level. A literature review and a data search in molecular database were carried out on the basis of keywords in Scopus, in PubMed and in Genbank™ for each species. Molecular data regarding E. fetida were already available in databases, but a lack of data regarding oxidative stress related genes was observed for T. repens and B. oleracea. By exploiting the conservation observed between species and using molecular biology techniques, we partially cloned missing candidates involved in oxidative stress and in metal detoxification in E. fetida, T. repens and B. oleracea.
Collapse
Affiliation(s)
- F Bernard
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - F Brulle
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Dumez
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Lemiere
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France
| | - A Platel
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - F Nesslany
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - D Cuny
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - A Deram
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France; Faculté de Management de la Santé (ILIS) - Université de Lille 2, EA4483, F-59120 Loos, France
| | - F Vandenbulcke
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France.
| |
Collapse
|
50
|
Wang X, Liu Z, Wang W, Zhang C, Chen L. Derivation of predicted no effect concentration (PNEC) for HHCB to terrestrial species (plants and invertebrates). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 508:122-127. [PMID: 25474169 DOI: 10.1016/j.scitotenv.2014.11.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
The 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(γ)-2-benzopyrane (HHCB) is a synthetic musk which is used as a fragrance in a variety of personal care products, and due to this it is widely spread in the environment. However, there is no paper dealing with the predicted no effect concentration (PNEC) for HHCB to terrestrial species using the species sensitivity distribution (SSD) method, mainly results from the shortage of species toxicity data of different taxonomic levels. In this study, toxicity data were obtained from 10 chronic toxicity tests using 10 terrestrial species (3 dicotyledonous plants, 5 monocotyledonous plants and 2 terrestrial invertebrates) from 3 Phyla and 9 Families. The PNEC of HHCB was derived using the SSD method. The result of present research showed that the dicotyledonous Solanum lycopersicum was the most sensitive plants to HHCB contamination. The PNEC ranged between 0.70 and 3.52 mg HHCB/kg when using the log-logistic SSD method. It is recommended to use toxicity data of different taxonomic levels for the development of PNEC values in terrestrial environment due to different species sensitivity.
Collapse
Affiliation(s)
- Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wanhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cong Zhang
- China Offshore Environmental Services Co. Ltd., Tianjin 300452, China
| | - Lihong Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|