1
|
Zhang H, Xie S, Du X, Bao Z, Xu F, Awadelseid SF, Yaisamut O. Effects and mechanisms of different exogenous organic matters on selenium and cadmium uptake by rice in natural selenium-cadmium-rich soil. Heliyon 2024; 10:e37740. [PMID: 39381237 PMCID: PMC11458970 DOI: 10.1016/j.heliyon.2024.e37740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Many natural selenium (Se)-rich rice plants are being polluted by cadmium (Cd). In this study, for reducing Cd concentrations in rice grains while maintaining Se concentrations, the effects of different exogenous organic matters (OMs), such as humic acid (HA), cow manure (CM), and vermicompost (VC), on Se and Cd uptake in rice growing in natural Se-Cd-rich paddy soils were investigated by pot experiments. The Se and Cd concentrations in the soil solution, their species in the soil, and their concentrations and translocations in rice tissues were determined. Results showed that different exogenous OMs exhibited distinct percentage changes in Se and Cd levels in rice grains with amplitudes of -19.42 % and -56.90 % (significant, p < 0.05) in the HA treatments, +10.79 % and -1.72 % in the CM treatments, and +15.83 % and -15.52 % in the VC treatments, respectively. Correlation analysis showed that the concentrations of Se and Cd in rice grains might be primarily influenced by their concentrations in the soil solution, rather than the Se/Cd molar ratios in the soil solution or their translocations in rice tissues. HA decreased Se and Cd bioavailability in soil by increasing HA-bound Se and residual Cd, respectively. Meanwhile, HA increased soil solution pH, which was negative for Cd bioavailability but positive for Se bioavailability. This additive effect made HA lowered Cd concentration more than Se concentration in both soil solution and grain. CM and VC did not have this additive effect and thus have limited effects on grain Se and Cd concentrations. In addition, according to grain Se and Cd concentrations, to prioritize reducing Cd in rice, use HA; to prioritize increasing Se in rice, use VC. This study enhances the understanding of Se and Cd uptake mechanisms in rice with the applications of various OMs and offers potential remediation methods for Se-Cd-rich paddy soils.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hebei Key Laboratory of Strategic Critical Mineral Resources, College of Earth Sciences, Hebei GEO University, Shijiazhuang, 050031, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang, 725000, China
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Shuyun Xie
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoping Du
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang, 725000, China
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Feng Xu
- Ankang Se-Resources Hi-Tech Co., Ltd., Ankang, 725000, China
| | | | - Oraphan Yaisamut
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
- Department of Mineral Resources, Ministry of Natural Resources and Environment, 75/10 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
2
|
Zhao X, Lu Y, Dai L, Wang L, Zhou G, Liang T. Selenium spatial distribution and bioavailability of soil-plant systems in China: a comprehensive review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:341. [PMID: 39073467 DOI: 10.1007/s10653-024-02126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Selenium (Se) has a dual nature, with beneficial and harmful effects on plants, essential for both humans and animals, playing a crucial role in ecosystem regulation. Insufficient Se in specific terrestrial environments raises concerns due to its potential to cause diseases, while excess Se can lead to severe toxicity. Thus, maintaining an optimal Se level is essential for living organisms. This review focuses first on Se transformation, speciation, and geochemical properties in soil, and then provides a concise overview of Se distribution in Chinese soil and crops, with a focus on the relationship between soil Se levels and parent materials. Additionally, this paper explores Se bioavailability, considering parent materials and soil physicochemical properties, using partial least squares path modeling for analysis. This paper aimed to be a valuable resource for effectively managing Se-enriched soil resources, contributing to a better understanding of Se role in ecosystems.
Collapse
Affiliation(s)
- Xiaoyuan Zhao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiqing Lu
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing, 100035, China
| | - Lijun Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjin Zhou
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Pi K, Van Cappellen P, Li H, Gan Y, Tong L, Zhong X, Wang Y. Soil respiration induces co-emission of greenhouse gases and methylated selenium from cold-region Mollisols: Significance for selenium deficiency. ENVIRONMENT INTERNATIONAL 2024; 188:108758. [PMID: 38781702 DOI: 10.1016/j.envint.2024.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Mollisols rich in natural organic matter are a significant sink of carbon (C) and selenium (Se). Climate warming and agricultural expansion to the cold Mollisol regions may enhance soil respiration and biogeochemical cycles, posing a growing risk of soil C and Se loss. Through field-mimicking incubation experiments with uncultivated and cultivated soils from the Mollisol regions of northeastern China, this research shows that soil respiration remained significant even during cold seasons and caused co-emission of greenhouse gases (CO2 and CH4) and methylated Se. Such stimulus effects were generally stronger in the cultivated soils, with maximum emission rates of 7.45 g/m2/d C and 1.42 μg/m2/d Se. For all soil types, the greatest co-emission of CO2 and dimethyl selenide occurred at 25 % soil moisture, whereas measurable CH4 emission was observed at 40 % soil moisture with higher percentages of dimethyl diselenide volatilization. Molecular characterization with three-dimensional fluorescence and ultra-high resolution mass spectrometry suggests that CO2 emission is sensitive to the availability of microbial protein-like substances and free energy from organic carbon biodegradation under variable moisture conditions. Predominant Se binding to biodegradable organic matter resulted in high dependence of Se volatilization on rates of greenhouse gas emissions. These findings together highlight the importance of dynamic organic carbon quality for soil respiration and consequent Mollisol Se loss risk, with implications for science-based management of C and Se resources in agricultural lands to combat with Se deficiency.
Collapse
Affiliation(s)
- Kunfu Pi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, N2L 3G1 Waterloo, Canada; Heilongjiang Key Laboratory of Black Soil and Water Resources Research, 150036 Harbin, China
| | - Philippe Van Cappellen
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, N2L 3G1 Waterloo, Canada
| | - Hongyan Li
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, 100037 Beijing, China
| | - Yiqun Gan
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Lei Tong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; Heilongjiang Key Laboratory of Black Soil and Water Resources Research, 150036 Harbin, China
| | - Xinlin Zhong
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Yanxin Wang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China.
| |
Collapse
|
4
|
Zhang Z, Miller LM, He H, Nadagouda MN, Borch T, O'Shea KE, Dionysiou DD. Molecular insights into the bonding mechanisms between selenium and dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169429. [PMID: 38123086 DOI: 10.1016/j.scitotenv.2023.169429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Natural organic matter (NOM) plays a critical role in the mobilization and bioavailability of metals and metalloids in the aquatic environment. Selenium (Se), an environmental contaminant of aquatic systems, has drawn increasing attention over the years. While Se is a vital micronutrient to human beings, animals and plants, excess Se intake may pose serious long-term risks. However, the interaction between Se and dissolved organic matter (DOM) remains relatively unexplored, especially the reaction mechanisms and interactions of specific NOM components of certain molecular weight and the corresponding functional group change. Herein, we report an investigation on the interactions between Se and DOM by focusing on the mass distribution profile change of operationally defined molecular weight fractions of humic acid (HA) and fulvic acid (FA). The results showed that across all molecular weights studied, HA fractions were more prone to enhanced aggregation upon introduction of Se into the system. For FA, the presence of Se species results in aggregation, dissociation, and redox reactions with the first two being the major mechanisms. Total organic carbon analysis (TOC), UV-vis spectroscopy (UV-vis), and Orbitrap MS data showed that [10, 30] kDa MW fraction had the largest aromatic decrease (CRAM-like, lignin-like and tannin-like) upon addition of SeO2 via dissociation as the dominant mechanism. Fourier transform infrared spectroscopy (FT-IR) revealed that Se based bridging or chelation of functional groups from individual DOM components through hydrogen bonding in the form of SeO⋯H and possibly Se⋯H and/or attractive electrostatic interactions lead to aggregated DOM1⋯Se⋯DOM2. It was concluded from two-dimensional correlation analyses of excitation emission matrix (EEM) and FT-IR that the preferred Se-binding follows lipid ➔ peptide ➔ tannin ➔ aromatic functionalities. These results provide new understanding of Se interactions with various NOM components in aquatic environments and provide insight for Se assessing health risk and/or treatment of Se contaminated water.
Collapse
Affiliation(s)
- Zhe Zhang
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DCEE), University of Cincinnati, OH 45221, USA
| | - Lance M Miller
- Department of Chemical Engineering, Purdue University, IN 47907, USA
| | - Huan He
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mallikarjuna N Nadagouda
- The U.S. Environmental Protection Agency, ORD, CESER, WID, CMTB, 26 W. Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Thomas Borch
- Department of Soil and Crop Sciences and Department of Chemistry, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, University Park, Miami, FL 33199, USA.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DCEE), University of Cincinnati, OH 45221, USA.
| |
Collapse
|
5
|
Zhang C, Guan DX, Jiang YF, Menezes-Blackburn D, Yu T, Yang Z, Ma LQ. Insight into the availability and desorption kinetics of Se and Cd in naturally-rich soils using diffusive gradients in thin-films technique. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133330. [PMID: 38147757 DOI: 10.1016/j.jhazmat.2023.133330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Cadmium (Cd) contamination of selenium (Se)-rich soils may jeopardize the nutritional benefits of Se-biofortified crops. This study employed diffusive gradients in thin-films (DGT) technique and DIFS (DGT-induced fluxes in soils) model to understand the interdependency and driving factors of Se and Cd distribution and desorption kinetics across 50 soils from south China with naturally elevated levels. DGT-labile Se was the highest (up to 2.66 μg L-1) in non-carbonate/shale-derived soils, while Cd was maximal (5.53 μg L-1) in carbonate-based soils, reflecting soil background concentrations and soil characteristics. Over one-third of the soils showed labile Se:Cd molar ratio below 0.7, suggesting Cd phytotoxicity risks. The DIFS-derived response times (Tc) and desorption rate constants (k-1) suggested that Se was resupplied to the soil solution faster than Cd in soils with higher pH and SOM level, but Se resupply was still restricted due to the rapid depletion of its labile pool. As the first study of Se and Cd release kinetics in soils, our results reveal dependence on soil parent materials, with low labile Se:Cd soils presenting greater Cd hazards. By elucidating Se and Cd lability and interactions in soils, our findings help to inform management strategies to balance reduced Cd risk with adequate Se availability.
Collapse
Affiliation(s)
- Chao Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yi-Fan Jiang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daniel Menezes-Blackburn
- Department of Soils, Water and Agricultural Engineering, CAMS, Sultan Qaboos University, PO Box 34, Al-khod 123, Sultanate of Oman
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Dalai S, Sivan M, Husain MA, Alam N, Landrot G, Biswas A. Mechanistic Insight into the Abiotic Interactions of Selenate and Selenite with Natural Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16595-16605. [PMID: 37855829 DOI: 10.1021/acs.est.3c06276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Natural organic matter (NOM) decreases the selenium (Se) mobility in soil and sediment. Biotic dissimilatory reduction of selenate and selenite and assimilation of the reduced Se species into biomolecules are thought to be primarily responsible for this decreased Se mobility. However, the possibility of Se immobilization due to the abiotic interaction of Se species with NOM is still poorly understood. Equilibrating selenate and selenite with a model NOM (Pahokee peat soil), followed by X-ray absorption spectroscopic analysis, this study shows that the NOM can abiotically reduce highly mobile selenate into relatively less mobile selenite. NOM can sorb Se species, especially selenite, considerably. Preloading of the NOM with Fe(III) increases the sorption of selenite and selenate by several orders of magnitude. Modeling of the Se and Fe K-edge EXAFS data revealed that Se species are sorbed to NOM due to indirect complexation with the organically complexed Fe(O,OH)6 octahedra through the corner- (2C) and edge-sharing (1E) and direct complexation with the oxygen-containing functional groups of the NOM. This study concludes that the abiotic reduction and complexation of the Se species with NOM can be the additional or alternative route of Se immobilization in the NOM-rich soil and sediment.
Collapse
Affiliation(s)
- Subhashree Dalai
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India
| | - Malavika Sivan
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India
| | - Mohd Amir Husain
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India
| | - Naved Alam
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India
| | - Gautier Landrot
- SOLEIL Synchrotron, L'Orme des Merisiers, Saint-Aubin, BP 48, Gif-sur-Yvette Cedex 91192, France
| | - Ashis Biswas
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India
| |
Collapse
|
7
|
Cai K, Zhao Y, Song Z, Luan W, Yang J, Hu L, Liu X, Lei G, Delgado AN. Fate of selenium in a Se-enriched region of North China: Translocation, bioaccumulation, source, and health benefits. ENVIRONMENTAL RESEARCH 2023; 231:115856. [PMID: 37068724 DOI: 10.1016/j.envres.2023.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
There are limited studies on the translocation and bioaccumulation of selenium (Se) in weak alkaline cultivated Se-enriched soil, and the sources and speciation of Se in wheat grains remain unclear. In this study, we measured the Se levels in soils, roots, stems, and wheat grains from Se-enriched cultivated land in Ci County, China, which has a high incidence of esophageal cancer. The Se levels in the roots were higher than those in the soils, indicating that wheat plants bioaccumulated high concentrations of Se from the soil (enrichment coefficient [EC] range from the soil to the root: 0.94-3.29). Redundancy analysis indicated that the bioaccumulated factor, translocation coefficient, and EC were mainly controlled by phosphorus, pH, and Fe2O3 (contribution rates: 37.5%, 19.5%, and 15.9%, respectively). Linear regression analysis revealed that the sources of Se in grains were mainly from the water-soluble fraction (R2 = 0.55, at p < 0.05), the weakly acidic fraction (R2 = 0.84, at p < 0.05), the reducible fraction (R2 = 0.84, at p < 0.05), and the oxidizable fraction (R2 = 0.70, at p < 0.05), as well as from atmospheric deposition (R2 = 0.37, at p < 0.01). There is a significant correlation between the Se from atmospheric deposition and the oxidizable fraction (R2 = 0.62, at p < 0.01) and the residual fraction (R2 = 0.33, at p < 0.01). The contribution of Se input flux from atmospheric deposition was 5.50 g/hm2 for one year. Furthermore, the average content of organic Se in wheat grains was 58.93%. The Se concentrations found in wheat grains were considered beneficial for human health based on a comparison with the Chinese Society of Nutrition standard and worldwide levels. The results of this study will increase the overall knowledge on the theme, which could help prevent and control the harmful effects of undesirable concentrations of Se on human health.
Collapse
Affiliation(s)
- Kui Cai
- Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang, 050031, China; Institute of Geological Survey, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Yan Zhao
- School of Resources and Environment Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Zefeng Song
- Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Wenlou Luan
- Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Jian Yang
- College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Li Hu
- Hunan Sihuan Environmental Protection Technology Co., Ltd., Changsha, 410142, China
| | - Xin Liu
- College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Ge Lei
- College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Avelino Núñez Delgado
- Department of Soil Science and Agricultural Chemistry, Univ. Santiago de Compostela, Engineering Polytechnic School, Campus Univ. S/n, 27002, Lugo, Spain
| |
Collapse
|
8
|
Pinzon-Nuñez DA, Wiche O, Bao Z, Xie S, Fan B, Zhang W, Tang M, Tian H. Selenium Species and Fractions in the Rock-Soil-Plant Interface of Maize ( Zea mays L.) Grown in a Natural Ultra-Rich Se Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4032. [PMID: 36901044 PMCID: PMC10001709 DOI: 10.3390/ijerph20054032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Selenium (Se) enrichments or deficiency in maize (Zea mays L.), one of the world's most important staple foods and livestock feeds, can significantly affect many people's diets, as Se is essential though harmful in excess. In particular, Se-rich maize seems to have been one of the factors that led to an outbreak of selenosis in the 1980s in Naore Valley in Ziyang County, China. Thus, this region's geological and pedological enrichment offers some insight into the behavior of Se in naturally Se-rich crops. This study examined total Se and Se species in the grains, leaves, stalks, and roots of 11 maize plant samples, Se fractions of soils around the rhizosphere, and representative parent rock materials from Naore Valley. The results showed that total Se concentrations in the collected samples were observed in descending order of soil > leaf > root > grain > stalk. The predominant Se species detected in maize plants was SeMet. Inorganic Se forms, mainly Se(VI), decreased from root to grain, and were possibly assimilated into organic forms. Se(IV) was barely present. The natural increases of Se concentration in soils mainly affected leaf and root dry-weight biomasses of maize. In addition, Se distribution in soils markedly correlated with the weathered Se-rich bedrocks. The analyzed soils had lower Se bioavailability than rocks, with Se accumulated predominantly as recalcitrant residual Se. Thus, the maize plants grown in these natural Se-rich soils may uptake Se mainly from the oxidation and leaching of the remaining organic-sulfide-bound Se fractions. A viewpoint shift from natural Se-rich soils as menaces to possibilities for growing Se-rich agricultural products is also discussed in this study.
Collapse
Affiliation(s)
- Diego Armando Pinzon-Nuñez
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Ziyang Zhongdida Selenium Technology Co., Ltd., Ankang 725000, China
| | - Oliver Wiche
- Biology/Ecology Unit, Institute of Biosciences, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China
- Ankang Se-Resources Hi-Tech Co., Ltd., Ankang 725000, China
| | - Shuyun Xie
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Bolun Fan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Scientific Research Academy of Guangxi Environment Protection, Nanning 530022, China
| | - Wenkai Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Molan Tang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- New Generation Information Technology Research Institute, Guangxi Academy of Sciences, Nanning 530007, China
| | - Huan Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Ziyang Zhongdida Selenium Technology Co., Ltd., Ankang 725000, China
| |
Collapse
|
9
|
Chang H, Zhu JM, Lin ZQ, Meng L. Topographic constraints on the distribution of selenium in the supergene environment: A case study at Yutangba, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121026. [PMID: 36621714 DOI: 10.1016/j.envpol.2023.121026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The local topography and leaching conditions significantly affect the spatial distribution of selenium (Se) in the local environment. However, the driving factors controlling Se distribution have not been well addressed. In this paper, taking Yutangba, a village known for human selenosis in China, as an example, we demonstrate how topographic factors influence the spatial distribution of Se in soils and plants. In the scenarios of slope ≤25°, the correlations among slope and soil/extractable/plant Se are significantly negative (P < 0.05), whereas they become weak or unclear when the slope is > 25°, suggesting that 25° of slope is a critical transition boundary. Similar observations were further verified by the soil erosion modulus (SEM) and the surface runoff intensity index (SRI), indicating that Se transport via soil erosion is limited and accounts for 11.2-17% of the soil Se, while surface runoff plays a dominant role in the Se distribution, accounting for 83-88.1%. Soil extractable Se is negatively correlated with SRI (Pearson r = -0.87 at slope < 25°), showing that the migration capacity of Se is higher at steep terrain and controlled by topography through soil erosion and surface runoff. The positive relationship between plant Se and soil/extractable Se demonstrates that topography indirectly influences plant Se through soil Se bioavailability. Abnormally local Se enrichment observed at the elevated steep hillside (>25°) in northwestern Yutangba primarily was resulted from the weathering of Se-rich rocks. These observations confirm that the topographic slope gradient influences the transport and spatial distribution of soil Se, implying that topography should be considered when studying the spatial distribution of soil Se at a regional scale, especially for the Se-poor belt in China.
Collapse
Affiliation(s)
- Hui Chang
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jian-Ming Zhu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Zhi-Qing Lin
- Department of Environmental Sciences and Department of Biological Sciences, Southern Illinois University, Edwardsville, IL 62026-1099, USA
| | - Lei Meng
- Department of Geography, Environment, and Tourism, Western Michigan University, Kalamazoo, MI 49008, USA
| |
Collapse
|
10
|
Zhang L, Ning J, Liu G, Tong L, Gan Y, Li C, Yang W, Pi K. Mechanisms of changing speciation and bioavailability of selenium in agricultural mollisols of northern cold regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159897. [PMID: 36336061 DOI: 10.1016/j.scitotenv.2022.159897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/07/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The distribution, speciation, and bioavailability of selenium (Se) - an essential micronutrient for human beings - in agricultural soils influence the resource recovery of agricultural benefits and the sustainable use of Se in agroecosystems. Quantitative understanding in this regard however remains limited in the world's mollisol agroecosystems, despite their critical importance in securing global food supply. Herein, a systematic investigation of Se in the river sediment-irrigation water-mollisols-rhizosphere-rice seeds continuum, at the core zone of the northern mollisol regions, was conducted to elucidate the hydrological-hydrogeochemical processes and mechanisms responsible for the distribution and bioavailability of Se. The content of total Se in the mollisols ranged between 0.12 and 0.54 mg/kg with an average of 0.31 mg/kg. At the riverside flood plains, humic-acid bound Se accounted on average for 39 % of total Se. This pool of Se can be transformed to water-soluble and ion-exchangeable Se(VI), supporting a higher potential of Se bioavailability at riparian agricultural mollisols. For mollisol lands far from the river channels, the topography affects the speciation and partitioning of Se presumably through regulating water retention and organic matter transport. Moreover, altering pH and redox conditions in response to irrigation with the river water may boost Se bioavailability in weakly acidic and high Eh mollisols. It can be in part ascribed to the transformation of organic-bound Se along with infiltrated oxygenated water that leads to the increase of water-soluble and ion-exchangeable Se. These findings reinforce that hydrological-hydrogeochemical perturbations due to irrigation with surface water need to be assessed carefully in the management of Se resources in the mollisol agroecosystems.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, 110034 Shenyang, China; Natural Resources Survey Institute of Heilongjiang Province, 150036 Harbin, China; Key Laboratory of Black Soil and Water Resources Research of Heilongjiang Province, 150036 Harbin, China
| | - Junna Ning
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Guodong Liu
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, 110034 Shenyang, China; Shenyang Center of Geological Survey, China Geological Survey, 110034 Shenyang, China
| | - Lei Tong
- Key Laboratory of Black Soil and Water Resources Research of Heilongjiang Province, 150036 Harbin, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Yiqun Gan
- Key Laboratory of Black Soil and Water Resources Research of Heilongjiang Province, 150036 Harbin, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Chenglu Li
- Natural Resources Survey Institute of Heilongjiang Province, 150036 Harbin, China; Key Laboratory of Black Soil and Water Resources Research of Heilongjiang Province, 150036 Harbin, China
| | - Wenpeng Yang
- Natural Resources Survey Institute of Heilongjiang Province, 150036 Harbin, China; Key Laboratory of Black Soil and Water Resources Research of Heilongjiang Province, 150036 Harbin, China
| | - Kunfu Pi
- Key Laboratory of Black Soil and Water Resources Research of Heilongjiang Province, 150036 Harbin, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China.
| |
Collapse
|
11
|
Guo Q, Ye J, Zeng J, Chen L, Korpelainen H, Li C. Selenium species transforming along soil-plant continuum and their beneficial roles for horticultural crops. HORTICULTURE RESEARCH 2023; 10:uhac270. [PMID: 36789256 PMCID: PMC9923214 DOI: 10.1093/hr/uhac270] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/01/2022] [Indexed: 05/15/2023]
Abstract
Selenium (Se) acquirement from daily diet can help reduce the risk of many diseases. The edible parts of crop plants are the main source of dietary Se, while the Se content in crops is determined by Se bioavailability in soil. We summarize recent research on the biogeochemical cycle of Se driven by specific microorganisms and emphasize the oxidizing process in the Se cycle. Moreover, we discuss how plant root exudates and rhizosphere microorganisms affect soil Se availability. Finally, we cover beneficial microorganisms, including endophytes, that promote crop quality and improve crop tolerance to environmental stresses. Se availability to plants depends on the balance between adsorption and desorption, reduction, methylation and oxidation, which are determined by interactions among soil properties, microbial communities and plants. Reduction and methylation processes governed by bacteria or fungi lead to declined Se availability, while Se oxidation regulated by Se-oxidizing microorganisms increases Se availability to plants. Despite a much lower rate of Se oxidization compared to reduction and methylation, the potential roles of microbial communities in increasing Se bioavailability are probably largely underestimated. Enhancing Se oxidation and Se desorption are crucial for the promotion of Se bioavailability and uptake, particularly in Se-deficient soils. Beneficial roles of Se are reported in terms of improved crop growth and quality, and enhanced protection against fungal diseases and abiotic stress through improved photosynthetic traits, increased sugar and amino acid contents, and promoted defense systems. Understanding Se transformation along the plant-soil continuum is crucial for agricultural production and even for human health.
Collapse
Affiliation(s)
- Qingxue Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianhui Ye
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianming Zeng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Shetaya WH, Bailey EH, Young SD, Mohamed EF, Antoniadis V, Rinklebe J, Shaheen SM, Marzouk ER. Soil and plant contamination by potentially toxic and emerging elements and the associated human health risk in some Egyptian environments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:359-379. [PMID: 34676511 DOI: 10.1007/s10653-021-01097-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work was to assess the origins, mobility, bioavailability and potential health risks of V, Cr, Co, As, Se, Mo, Cd, Sn and Sb, which are not sufficiently studied in the terrestrial environment of Egypt. This has been carried out by employing a combination of chemical fractionation, plants uptake, mathematical modeling and risk assessment approaches on a wide range of soils and plants sampled from industrial, urban and agricultural locations across Egypt. The contents of As, Cd, Sn and Sb were elevated in the soils of some urban and industrial locations within Cairo, although their soil geo-accumulation (Igeo) indices remained ≤ 2, indicating only moderate contamination. Selenium showed moderate to heavy contamination levels (Igeo up to 4.7) in all sampling locations, and Sb was highly elevated (Igeo = 7.1; extreme contamination) in one industrial location. Therefore, Se was the most important contributor to the pollution load followed by Sb and Cd. Both principle component analysis (of total content) and geochemical fractionation (by sequential extraction) suggested that V, Cr and Co are mostly of geogenic origin, while Se and Sb contents appear to be highly influenced by anthropogenic inputs. The most mobile and bioavailable element was Cd with a large non-residual fraction in all soils (76% of total Cd). The bio-concentration factors of Cd in leafy and fruiting plants were 50 times larger than other elements (except Mo) indicating preferential systematic plant uptake of Cd. Risk assessment models showed an overall low noncarcinogenic and carcinogenic risks to the population of Egypt due to the studied elements with only a few anomalies.
Collapse
Affiliation(s)
- Waleed H Shetaya
- Air Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt.
| | - Elizabeth H Bailey
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Scott D Young
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Elham F Mohamed
- Air Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany
- Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, Republic of Korea
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Sabry M Shaheen
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
- Faculty of Meteorology, Environment and Arid Land Agriculture, Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Faculty of Agriculture, Department of Soil and Water Sciences, University of Kafrelsheikh, Kafr El-Sheikh, 33 516, Egypt.
| | - Ezzat R Marzouk
- Division of Soil and Water Sciences, Faculty of Environmental Agricultural Sciences, Arish University, North Sinai, 45516, Egypt.
| |
Collapse
|
13
|
Pi K, Van Cappellen P, Gan Y, Zhong X, Tong L, Chen W, Wang X, Wang Y. Fluvial Deposition and Land Use Change Control Selenium Occurrence in Mollisols of Cold Region Agroecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:751-760. [PMID: 36548446 DOI: 10.1021/acs.est.2c03647] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mollisols support the most productive agroecosystems in the world. Despite their critical links to food quality and human health, the varying distributions of selenium (Se) species and factors governing Se mobility in the mollisol vadose zone remain elusive. This research reveals that, in northern mollisol agroecosystems, Se hotspots (≥0.32 mg/kg) prevail along the regional river systems draining the Lesser Khingan Mountains, where piedmont Se-rich oil shales are the most probable source of regional Se. While selenate and selenite dominate Se species in the water-soluble and absorbed pools, mollisol organic matter is the major host for Se. Poorly crystalline and crystalline Fe oxides are subordinate in Se retention, hosting inorganic and organic Se at levels comparable to those in the adsorbed pool. The depth-dependent distributions of mollisol Se species for the non-cropland and cropland sites imply a predominance of reduced forms of Se under the mildly acidic and reducing conditions that, in turn, are variably impacted by agricultural land use. These findings therefore highlight that fluvial deposition and land use change together are the main drivers of the spatial variability and speciation of mollisol Se.
Collapse
Affiliation(s)
- Kunfu Pi
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, N2L 3G1 Waterloo, Canada
- Heilongjiang Key Laboratory of Black Soil and Water Resources Research, 150036 Harbin, China
| | - Philippe Van Cappellen
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, N2L 3G1 Waterloo, Canada
- Water Institute, University of Waterloo, N2L 3G1 Waterloo, Canada
| | - Yiqun Gan
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Xinlin Zhong
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Lei Tong
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
- Heilongjiang Key Laboratory of Black Soil and Water Resources Research, 150036 Harbin, China
| | - Weitao Chen
- Heilongjiang Key Laboratory of Black Soil and Water Resources Research, 150036 Harbin, China
- School of Computer Sciences, China University of Geosciences, 430074 Wuhan, China
| | - Xun Wang
- Heilongjiang Key Laboratory of Black Soil and Water Resources Research, 150036 Harbin, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| |
Collapse
|
14
|
Gong J, Gao J, Fu Y, Tang S, Cai Y, Yang J, Wu H, Ma S. Vertical distribution and major influencing factors of soil selenium in tropical climate: A case study of Chengmai County, Hainan Island. CHEMOSPHERE 2023; 312:137207. [PMID: 36370764 DOI: 10.1016/j.chemosphere.2022.137207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Soil selenium is of great significance to human health. Soil-forming parent rocks are the most critical factor that influences soil Se levels. Chengmai County, Hainan Island, has a tropical climate and diverse types of parent rocks, in which soil Se content is high. This study investigated the vertical distribution of soil Se from various parent rock substrates under tropical climatic conditions, and the factors that influence these soil Se contents, with 69 vertical soil profiles covering Chengmai County. The vertical distribution of soil Se and correlations with CIA (chemical alteration index), Al2O3, TFe2O3 (total iron oxide expressed as Fe2O3), total iodine, SOC (soil organic carbon), and pH were analysed. As per the results, the mean ± standard error of Se content in the A, B, and C horizons was 0.88 ± 0.13 mg/kg, 0.77 ± 0.08 mg/kg and 0.45 ± 0.05 mg/kg, respectively. The parent rock strictly controlled the horizon distribution of Se in the A-horizon. Soil Se showed A-B-horizons-enrichment in the vertical profile, especially in soil profiles overlying granite and basalt. It is hypothesised that the Se enriched in soils developed from the Tuolie Formation due to the release of Se from the weathering process of Se-rich rocks. Meanwhile, Se in soils developed from granite and basalt is more closely associated with exogenous input. Another crucial factor for the high level of Se in Chengmai County is the tropical climate, which has led the rocks to generally undergo intense chemical weathering. This results in soils rich in clay minerals and Fe/Al oxyhydroxides, which easily absorb and retain Se. Furthermore, the Se content of the B-horizon was generally higher than that of the A-horizon due to leaching. These results provide further knowledge and understanding of the geochemical behaviour of soil Se and guide the evaluation of Se-rich land resources under tropical climatic conditions.
Collapse
Affiliation(s)
- Jingjing Gong
- Key Laboratory of Geochemical Exploration, Ministry of Nature Resources, Langfang, 065000, China; Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China.
| | - Jianweng Gao
- Key Laboratory of Geochemical Exploration, Ministry of Nature Resources, Langfang, 065000, China; Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China
| | - Yangang Fu
- Key Laboratory of Geochemical Exploration, Ministry of Nature Resources, Langfang, 065000, China; Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China
| | - Shixin Tang
- Key Laboratory of Geochemical Exploration, Ministry of Nature Resources, Langfang, 065000, China; Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China.
| | - Yongwen Cai
- Key Laboratory of Geochemical Exploration, Ministry of Nature Resources, Langfang, 065000, China; Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China
| | - Jianzhou Yang
- Key Laboratory of Geochemical Exploration, Ministry of Nature Resources, Langfang, 065000, China; Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China
| | - Hui Wu
- Key Laboratory of Geochemical Exploration, Ministry of Nature Resources, Langfang, 065000, China; Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China
| | - Shengming Ma
- Key Laboratory of Geochemical Exploration, Ministry of Nature Resources, Langfang, 065000, China; Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China
| |
Collapse
|
15
|
Ma X, Yang Z, Yu T, Guan DX. Probability of cultivating Se-rich maize in Se-poor farmland based on intensive field sampling and artificial neural network modelling. CHEMOSPHERE 2022; 309:136690. [PMID: 36202379 DOI: 10.1016/j.chemosphere.2022.136690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/06/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Selenium (Se) is a necessary micronutrient for humans, and its supplementation from crop grains is important to address the ubiquitous Se deficiency in people worldwide. Se uptake by crops largely depend on soil bioavailable Se rather than soil total Se content, which provides possibilities to explore the Se-rich crops in Se-poor area. Here, the possibility of cultivating Se-rich maize grains in Se-poor farmland was tested based on intensive field sampling and mathematical modelling. Sampling was conducted at county scale, and a total of 7779 topsoil samples and 109 maize samples with paired rhizosphere soils samples were collected. Results showed that although the soil Se content in the study county from southwestern China was at a low level (0.01-2.75 mg kg-1), 54.1% of the maize grain samples satisfied the standard for Se-rich products (0.02-0.30 mg kg-1). Soil organic matter, iron oxide, and phosphorus levels were correlated negatively with Se bioconcentration factor (BCF) of maize grain. Compared with the multivariate linear regression model, the artificial neural network (ANN) model was more accurate and reliable in predicting maize Se BCF. Prediction using the ANN model showed that 22.7% of the county's farmland was suitable for cultivating naturally Se-rich maize, which increased 21.3% growing areas than that from cultivation based on simply soil total Se. This study provided a new methodological framework for natural Se-rich maize production and verified the probability of cultivating naturally Se-rich maize in Se-poor farmland.
Collapse
Affiliation(s)
- Xudong Ma
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; Key Laboratory of Ecological Geochemistry, Ministry of Natural Resources, Beijing 100037, PR China.
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing 100083, PR China; Key Laboratory of Ecological Geochemistry, Ministry of Natural Resources, Beijing 100037, PR China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
16
|
Ding F, Wei X, Dao Y, Zhao F, Wang R, Li P. Use of fulvic acid-like compounds from pulp-derived black liquor for enhancing the selenium content of peanut buds. BMC PLANT BIOLOGY 2022; 22:546. [PMID: 36443656 PMCID: PMC9703723 DOI: 10.1186/s12870-022-03903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cleaner production involving the extraction of useful material from the black liquor by-product of straw pulp would be environmentally beneficial and would permit increased wastewater usage. RESULTS The fulvic-acid-like components of pulp black liquor (PFA) with molecular weights below 10 kDa were isolated. The chemical and physiological characteristics of PFAs were investigated. Selenite can enhance the selenium nutrition level of crops, but excessive selenite may be toxic to plant growth. In order to explore how to increase selenite tolerance and selenium accumulation in peanut, the effects of PFA on selenium-associated properties in peanut seedlings were examined by growing seedlings with sodium selenite (0, 5, 15, and 25 mg·L- 1 Na2SeO3, 15 mg·L- 1 Na2SeO3 solution containing 60 mg-C/L PFA, and 25 mg·L- 1 Na2SeO3 containing 60 mg-C/L PFA). CONCLUSION The results showed that with 15 mg·L- 1 Na2SeO3, PFA significantly increased both the total and hypocotyl fresh weight of the seedlings but reduced the fresh weight of the root. PFA also effectively promoted the conversion of Se from inorganic to organic compounds in the root and hypocotyl, increased the soluble total sugar and soluble protein contents of the hypocotyl, and thus improved the edible quality and food safety of the selenium-enriched peanut buds. The results suggest that PFA can be used as an innovative bio-based substance for selenium-enriched sprout vegetable production.
Collapse
Affiliation(s)
- Feng Ding
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.
| | - Xiaofeng Wei
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Yuanren Dao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Fei Zhao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.
| |
Collapse
|
17
|
Jiang T, Yu T, Qi H, Li F, Yang Z. Analysis of phosphorus and sulfur effect on soil selenium bioavailability based on diffusive gradients in thin films technique and sequential extraction. CHEMOSPHERE 2022; 302:134831. [PMID: 35523297 DOI: 10.1016/j.chemosphere.2022.134831] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Human intake of selenium (Se) mainly occurs through the food chain, and is largely dependent on the bioavailability of soil Se. Sulfur (S) and phosphorus (P) also as essential nutrients for plants, their antagonistic with Se effects on Se bioavailability should be considered. We conducted pot experiments to investigate the interaction effect on the bioavailability of Se in the soil using a sequential extraction method and diffusive gradients in thin films (DGT). The results showed that the root and shoot Se of pak choi increased at most 340%-360% with S and P application, while the Se uptake by pak choi was slightly inhibited when S and P application was 100 mg kg-1. With high S and P application, pak choi Se had a high bioaccumulation factor (BAF) and low translocation factor (TF), and soil Soluble-Se (SOL-Se) increased 178%-299%, which due to the competitive adsorption of S, P with Se and changes in soil pH that lead to the transformation of soil Se fractions. In addition, the available Se concentration in soil measured by the DGT (CDGT-Se) increased by 866% with exogenous S and P application, and its source was HA-Se. However, CDGT-Se failed to show a good linear relationship with the Se content of pak choi. The application of DGT to assess the bioavailability of Se in soils where Se is present in the steady state needs to be further explored. We discuss the effect of S and P application on the bioavailability of soil Se and provide evidence for agricultural production and rational fertilizer use on Se-rich land.
Collapse
Affiliation(s)
- Tianyu Jiang
- School of Science, China University of Geosciences, Beijing, 100083, China
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing, 100083, China; Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing, 100037, China.
| | - Hongbin Qi
- School of Science, China University of Geosciences, Beijing, 100083, China
| | - Fengyan Li
- School of Science, China University of Geosciences, Beijing, 100083, China
| | - Zhongfang Yang
- School of Earth Science and Resources, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
18
|
Pang Y, He J, Niu X, Song T, Fu L, Liu K, Bi E. Selenium distribution in cultivated Argosols and Gleyosols of dry and paddy lands: A case study in Sanjiang Plain, Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155528. [PMID: 35489500 DOI: 10.1016/j.scitotenv.2022.155528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Distribution pattern of selenium (Se) fractions in soil could influence Se content in crops and thereby intake of Se in human body. In order to investigate the effects of soil types and farming conditions on Se distribution in small-scaled cultivated land developed under the same conditions of climate, topography and parent materials, two types of soils (i.e., Argosols and Gleyosols) from paddy and dry lands in the Sanjiang Plain of Northeast China were selected. Total Se (T-Se) content in Argosols was influenced by organic carbon (Org C) content and pH of bulk topsoil. In Gleyosols, it was mainly affected by Org C content in dry land and pH in paddy land, respectively. In rice root associated topsoil, organic matter associated Se (OM-Se) accounted for 70% of T-Se. Compared with pH (median 6.10) and OM weakly bound Se (OW-Se) (0.14 ± 0.04 mg kg-1) of Argosols, the higher pH (median 6.77) resulted in less OW-Se (0.10 ± 0.04 mg kg-1) of Gleyosols. Vertical distribution of Se in borehole cores within the depth of 0-900 cm was mainly affected by the soil type. Se accumulated mainly within 0-150 cm depth (horizon A, E and B) in Argosols and above 40 cm depth (horizon H), existing prominently as OM strongly bound Se (OS-Se), in Gleyosols. Within the depth of 0-150 cm, various Se fractions for both soils were probably controlled by reductive fixation and complexation of Org C; In the alkaline paddy land, DOM-complexed Se was the main composition of A-Se. The findings of this study could help in understanding the mechanisms of Se distribution and enrichment in soils developed under different formation processes and farming conditions.
Collapse
Affiliation(s)
- Yajie Pang
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China; Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071000, P. R. China.
| | - Jin He
- Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071000, P. R. China
| | - Xue Niu
- Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071000, P. R. China.
| | - Tiejun Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, P. R. China
| | - Lei Fu
- Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071000, P. R. China.
| | - Kai Liu
- Shenyang Geological Survey Center, China Geological Survey, Shenyang 110000, P. R. China.
| | - Erping Bi
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China.
| |
Collapse
|
19
|
Lyu C, Chen J, Li L, Zhao Z, Liu X. Characteristics of Se in water-soil-plant system and threshold of soil Se in seleniferous areas in Enshi, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154372. [PMID: 35259387 DOI: 10.1016/j.scitotenv.2022.154372] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Se-enrichment characteristics in water-soil-plant system and dietary Se status of local residents in seleniferous areas were investigated. Results showed that Se in well water might mainly derived from Se-enriched shales and coals, and Se mobility in seleniferous soils was relatively low with less than 6.7% bioavailable forms in high-Se areas. Soil Se with irrigation, precipitation and fertilization sources contributed more to soil Se than Se-enriched shales and coals in low-Se areas, resulting in slightly higher mobility of Se in low-Se soils. Se concentration in edible parts of main crops ranged from 0.005 mg kg-1 to 4.17 mg kg-1, and cereal plants had a higher Se-enrichment ability than tuber plants. The probable dietary Se intake (PDI) in high-Se areas was decreased to 959.3 μg d-1 in recent years, which might be attributed to tap water as drinking water in recent year rather than well water-dependent and changes in dietary structure, but still far above the permissible value of 400 μg d-1. Reducing cereal-derived dietary Se intake is an important strategy to better Se nutrition status in high-Se areas. After synthesis considerations on soil Se bioavailability and PDI of Se, the soil total Se of 4 mg kg-1 and the soil available Se content of 0.32 mg kg-1 were proposed to be the reference threshold values of soil Se excess in high-Se areas in Enshi, respectively.
Collapse
Affiliation(s)
- Chenhao Lyu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Jiawei Chen
- Agriculture and Rural Bureau of Jianshi County, Jianshi 445300, Hubei, China
| | - Lei Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Zhuqing Zhao
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Xinwei Liu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China.
| |
Collapse
|
20
|
Ye W, Zhu R, Yuan L, Zhang W, Zang H, Jiao Y, Yin X. The influence of sea animals on selenium distribution in tundra soils and lake sediments in maritime Antarctica. CHEMOSPHERE 2022; 291:132748. [PMID: 34736939 DOI: 10.1016/j.chemosphere.2021.132748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The biogeochemical behavior of selenium (Se) has been extensively studied in Se-enriched or Se contaminated soils at low and middle latitudes. However, the Se distribution patterns have not been studied in tundra ecosystems of remote Antarctica. Here, the soils/sediments were collected from penguin and seal colonies, their adjacent tundra and lakes, tundra marsh, human-activity areas, normal tundra and the periglacial in maritime Antarctica, and total Se and seven operationally defined Se fractions were analyzed. Overall the regional distribution of Se levels showed high spatial heterogeneity (coefficient of variation, CV = 114%) in tundra soils, with the highest levels in penguin (mean 6.12 ± 2.66 μg g-1) and seal (mean 2.29 ± 1.43 μg g-1) colony soils, and the lowest in normal tundra soils and periglacial sediments (<0.5 μg g-1). The contribution rates of penguins and seals to tundra soil Se levels amounted to 91.7% and 78.0%. The lake sediment Se levels (mean 2.15 ± 0.87 μg g-1) close to penguin colonies were one order of magnitude higher than those (mean 0.49 ± 0.87 μg g-1) around normal tundra. Strong positive correlations (p < 0.01) of Se concentrations between lake sediments and adjacent tundra soils, and lower Se: P (<0.001) and S: P (<1) ratios in the lake sediments close to penguin colonies, indicated the infiltration or leaching of penguin guano as the predominant Se source in lake sediment. The Se species in penguin and seal guano were dominated by SeCys2 (76.6%) and SeMet (73.5%), respectively. The evidence from the predominant proportions of total organic matter-bound Se (Seom, 67%-70% of total Se) in penguin or seal colony soils further supported penguin or seal guano had a great influence on the distribution patterns of Se fractions in the tundra. This study confirmed that sea animal activities transported substantial amount Se from ocean to land, and significantly altered the biogeochemical cycle of Se in maritime Antarctica.
Collapse
Affiliation(s)
- Wenjuan Ye
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Renbin Zhu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China.
| | - Wanying Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Huawei Zang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Jiao
- Department of Geography, University of California, Berkeley, CA, 94720, United States
| | - Xuebin Yin
- Key Laboratory of Functional Agriculture, Suzhou Research Institute, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
21
|
Lyu L, Wang H, Liu R, Xing W, Li J, Man YB, Wu F. Size-dependent transformation, uptake, and transportation of SeNPs in a wheat-soil system. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127323. [PMID: 34601411 DOI: 10.1016/j.jhazmat.2021.127323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Foliar application of selenium nanoparticles (SeNPs) has been used to enhance Se concentration in winter wheat, but soil application of SeNPs on Se uptake in the crop and their transformation in soil are still limited. This study investigated the effects of varying sizes (50, 100, 200 nm) and concentrations (0, 2, 5, 25, 100 mg kg-1) of chemical synthesized SeNPs in soil on uptake and accumulation of Se in the crop at maturity and related mechanisms. SeNPs not only posed very low toxic to plant growth, except for leaf, but also significantly enhanced grain Se concentration. Regardless of concentration of SeNPs added to soil, the transformation rate of the larger sized SeNPs (200 nm) in soil was significantly (p < 0.05) higher than that of the smaller one, which is mainly due to the latter was more easily adsorbed onto soil organic matter and reluctant to be oxidized. Significantly higher grain Se concentration under the larger sized SeNPs contributed to significantly higher transformation rate of SeNPs and concentration of available Se in soil. The present study showed that the larger sized SeNPs in soil had significant advantages including higher grain Se concentration and Se utilization efficiency for wheat Se biofortification.
Collapse
Affiliation(s)
- Lihui Lyu
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hanqi Wang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Ruifang Liu
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Wenjing Xing
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jiao Li
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Lyu C, Qin Y, Chen T, Zhao Z, Liu X. Microbial induced carbonate precipitation contributes to the fates of Cd and Se in Cd-contaminated seleniferous soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126977. [PMID: 34481395 DOI: 10.1016/j.jhazmat.2021.126977] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Bioremediation based on microbial induced carbonate precipitation (MICP) was conducted in Cd-contaminated seleniferous soils with objective to investigate effects of MICP on the fates of Cd and Se in soils. Results showed that soil indigenous microorganisms could induce MICP process to stabilize Cd and mobilize Se without inputting exogenous urease-producing strain. After remediation, soluble Cd (SOL-Cd) and exchangeable Cd (EXC-Cd) concentrations were decreased respectively by 59.8% and 9.4%, the labile Cd measured by the diffusive gradients in thin-films technique (DGT) was decreased by 14.2%. The MICP stabilized Cd mainly by increasing soil pH and co-precipitating Cd during the formation of calcium carbonate. Compared with chemical extraction method, DGT technique performs better in reflecting Cd bioavailability in soils remediated with MICP since this technique could eliminate the interference of Ca2+. The increase in pH resulted in Se conversion from nonlabile fraction to soluble and exchangeable fractions, thus improving Se bioavailability. And Se in soil solution could adsorb to or co-precipitate with the insoluble calcium carbonate during MICP, which would partly weaken Se bioavailability. Taken together, MICP had positive effects on the migration of Se. In conclusion, MICP could stabilize Cd and improve Se availability simultaneously in Cd-contaminated seleniferous soils.
Collapse
Affiliation(s)
- Chenhao Lyu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Yongjie Qin
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Tian Chen
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China
| | - Zhuqing Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Xinwei Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China.
| |
Collapse
|
23
|
Yokoyama Y, Qin HB, Tanaka M, Takahashi Y. The uptake of selenite in calcite revealed by X-ray absorption spectroscopy and quantum chemical calculations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149221. [PMID: 34464812 DOI: 10.1016/j.scitotenv.2021.149221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se) is an important trace element in the environment, but the interaction of Se with calcite that may control the fate and geochemical behavior of Se is not fully understood. In this study, the molecular-scale mechanism for the uptake of selenite in calcite was investigated by a combination of laboratory experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy, and quantum chemical calculations. Results showed that selenite can be largely distributed to calcite at circumneutral pH. The local structure of Se in calcite obtained from EXAFS analyses, in combination with quantum chemical calculations, demonstrated that selenite can be incorporated into calcite by substituting for the carbonate, and that the geometric incompatibility of selenite could be accommodated by a slight expansion of crystal volume. The findings from this study suggest that calcite could be a potential Se sink, providing an important insight into the understanding of the mobility and geochemical behavior of Se in the subsurface environments particularly in the groundwater system.
Collapse
Affiliation(s)
- Yuka Yokoyama
- Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hai-Bo Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Masato Tanaka
- Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Photon Factory, Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
24
|
Ahmad S, Bailey EH, Arshad M, Ahmed S, Watts MJ, Young SD. Multiple geochemical factors may cause iodine and selenium deficiency in Gilgit-Baltistan, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4493-4513. [PMID: 33895908 PMCID: PMC8528784 DOI: 10.1007/s10653-021-00936-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/12/2021] [Indexed: 05/03/2023]
Abstract
Deficiencies of the micronutrients iodine and selenium are particularly prevalent where populations consume local agricultural produce grown on soils with low iodine and selenium availability. This study focussed on such an area, Gilgit-Baltistan in Pakistan, through a geochemical survey of iodine and selenium fractionation and speciation in irrigation water and arable soil. Iodine and selenium concentrations in water ranged from 0.01-1.79 µg L-1 to 0.016-2.09 µg L-1, respectively, which are smaller than levels reported in similar mountainous areas in other parts of the world. Iodate and selenate were the dominant inorganic species in all water samples. Average concentrations of iodine and selenium in soil were 685 µg kg-1 and 209 µg kg-1, respectively, much lower than global averages of 2600 and 400 µg kg-1, respectively. The 'reactive' fractions ('soluble' and 'adsorbed') of iodine and selenium accounted for < 7% and < 5% of their total concentrations in soil. More than 90% of reactive iodine was organic; iodide was the main inorganic species. By contrast, 66.9 and 39.7% of 'soluble' and 'adsorbed' selenium, respectively, were present as organic species; inorganic selenium was mainly selenite. Very low distribution coefficients (kd = adsorbed/soluble; L kg-1) for iodine (1.07) and selenium (1.27) suggested minimal buffering of available iodine and selenium against leaching losses and plant uptake. These geochemical characteristics suggest low availability of iodine and selenium in Gilgit-Baltistan, which may be reflected in locally grown crops. However, further investigation is required to ascertain the status of iodine and selenium in the Gilgit-Baltistan food supply and population.
Collapse
Affiliation(s)
- Saeed Ahmad
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK
| | - Elizabeth H Bailey
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK.
| | - Muhammad Arshad
- Mountain Agriculture Research Centre Gilgit, Pakistan Agricultural Research Council), Gilgit-Baltistan, Pakistan
| | - Sher Ahmed
- Mountain Agriculture Research Centre Gilgit, Pakistan Agricultural Research Council), Gilgit-Baltistan, Pakistan
| | - Michael J Watts
- Centre for Environmental Geochemistry, Inorganic Geochemistry, British Geological Survey, Nottingham, NG12 5GG, UK
| | - Scott D Young
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK
| |
Collapse
|
25
|
Lima LW, Nardi S, Santoro V, Schiavon M. The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-19) Pandemic Era. Antioxidants (Basel) 2021; 10:antiox10071031. [PMID: 34202330 PMCID: PMC8300636 DOI: 10.3390/antiox10071031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Dietary selenium (Se)-compounds accumulated in plants are essential for human metabolism and normal physiological processes. Inorganic and organic Se species can be readily absorbed by the human body, but are metabolized differently and thus exhibit distinct mechanisms of action. They can act as antioxidants or serve as a source of Se for the synthesis of selenoproteins. Selenocysteine, in particular, is incorporated at the catalytic center of these proteins through a specific insertion mechanism and, due to its electronic features, enhances their catalytic activity against biological oxidants. Selenite and other Se-organic compounds may also act as direct antioxidants in cells due to their strong nucleophilic properties. In addition, Se-amino acids are more easily subjected to oxidation than the corresponding thiols/thioethers and can bind redox-active metal ions. Adequate Se intake aids in preventing several metabolic disorders and affords protection against viral infections. At present, an epidemic caused by a novel coronavirus (SARS-CoV-2) threatens human health across several countries and impacts the global economy. Therefore, Se-supplementation could be a complementary treatment to vaccines and pharmacological drugs to reduce the viral load, mutation frequency, and enhance the immune system of populations with low Se intake in the diet.
Collapse
Affiliation(s)
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy;
| | - Veronica Santoro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
- Correspondence: ; Tel.: +1-1670-8520
| |
Collapse
|
26
|
Dinh QT, Zhou F, Wang M, Peng Q, Wang M, Qi M, Tran TAT, Chen H, Liang D. Assessing the potential availability of selenium in the soil-plant system with manure application using diffusive gradients in thin-films technique (DGT) and DOM-Se fractions extracted by selective extractions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143047. [PMID: 33129537 DOI: 10.1016/j.scitotenv.2020.143047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Knowledge of the Se fractionation and the role of dissolved organic matter (DOM) in soil is the key to understanding Se mobility and its bioavailability in the soil-plant system. In this study, single extractions using phosphate-buffer (PBS), sequential extraction procedures (SEP), and diffusive gradients in thin-films (DGT) were used to measure Se bioavailability in soil supplemented with selenite and organic amendment (cow and chicken manures). Selenium fraction was isolated into DOM-Se fractions, such as hydrophilic acid-bound Se (HY-Se), fulvic acid-bound Se (FA-Se), humic acid-bound Se (HA-Se), and hydrophobic organic neutral-bound Se (HON-Se), by a rapid batch technique using XAD-8 resin (AMBERLITE XAD™, USA). Simultaneous application of either cow or chicken manure with selenite could result in the decrease of Se availability in the soil. Isolating Se available fraction into DOM-Se fractions showed that low-molecular-weight DOM-Se as an available fraction and even HY-Se as a less available fraction (OM-Se) were likely the major sources for Brassica juncea (L.) Czern. et Coss uptake in soil. Moreover, knowledge of the DOM-Se composition, especially the low-molecular-weight DOM-Se fractions, is important for assessing the bioavailability of Se in soil, the results of which are more accurate than the chemical extraction method. The high value of Pearson correlation coefficients between CDGT-Se and Se concentrations in shoots, tubers and roots of Brassica juncea (L.) Czern. et Coss in cow and chicken manures treatment were 0.95 and 0.99, 0.96 and 0,96, and 0.89 and 0.97 (p < 0,05), respectively, indicating that DGT-Se can reflect the Se uptake ability by plants and can be used to predict the bioavailability of Se when manure and selenite are simultaneously applied.
Collapse
Affiliation(s)
- Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Natural Resources and Environment of Thanh Hoa, Thanh Hoa 400570, Viet Nam
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Peng
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Thi Anh Thu Tran
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Faculty of Management Sciences, Thu Dau Mot University, Thu Dau Mot city, Binh Duong, Viet Nam
| | - Haiyi Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
27
|
Lyu C, Qin Y, Zhao Z, Liu X. Characteristics of selenium enrichment and assessment of selenium bioavailability using the diffusive gradients in thin-films technique in seleniferous soils in Enshi, Central China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116507. [PMID: 33493758 DOI: 10.1016/j.envpol.2021.116507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Agricultural products from seleniferous areas commonly face problems associated with substantial variation in selenium (Se) concentration, which is mainly caused by the heterogeneity of Se bioavailability in soil. Many studies have assessed the bioavailability of Se and its influencing factors using soil samples treated with exogenous Se. Given the distinctly different characteristics of Se-spiked soils and naturally seleniferous soils, exploring Se bioavailability in naturally seleniferous soils is crucial to the stable production of Se-enriched agricultural products. In this study, we used the classical sequential extraction method to determine the Se fractionation and then applied the diffusive gradients in thin-films (DGT) technique to assess the Se bioavailability in naturally seleniferous soils. The results indicated that soluble and exchangeable Se fractions with high bioavailability accounted for only 0.7% and 5.1% of total Se, respectively. Both soluble and exchangeable Se concentrations were significantly positively correlated with soil pH (r = 0.329 and 0.262, respectively; P < 0.01). Se mainly exists in Fe-Mn oxide-bound, organic matter-bound, and residual Se fractions with low mobility (94.2% of total Se), among which organic matter-bound Se was the predominant fraction (49.5% of total Se). A significant positive correlation was found between total Se and soil organic matter (r = 0.539; P < 0.01). Multiple regression analysis revealed that the DGT-determined Se was mostly derived from soluble and exchangeable Se. The high correlation between the DGT-determined Se fraction and Se uptake by rice (r = 0.91; P < 0.01) confirmed that DGT can accurately assess Se bioavailability in naturally seleniferous soils in Enshi and other similar environmental settings.
Collapse
Affiliation(s)
- Chenhao Lyu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, 430070, China
| | - Yongjie Qin
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, 430070, China
| | - Zhuqing Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, 430070, China
| | - Xinwei Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, 430070, China.
| |
Collapse
|
28
|
Qin HB, Zhu JM, Tan D, Xu WP, Liang DX, Takahashi Y. Microscale Investigation into Selenium Distribution and Speciation in Se-Rich Soils from Enshi, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:40-43. [PMID: 33452893 DOI: 10.1007/s00128-020-03090-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the distribution and chemical speciation of Se in Se-rich soil by using micro-focused X-ray absorption near-edge structure (μ-XANES) spectroscopy coupling with X-ray fluorescence (μ-XRF) mapping. The microscale distribution showed that Se is heterogeneously distributed in the soil from seleniferous areas in Enshi, China. Se K-edge μ-XANES analysis suggested that Se is mainly present as Se(IV), organic Se(-II) or Se(0) species in Se-rich agricultural soil. The findings from this study would help improve the understanding of the fate, mobility, bioavailability, and biogeochemical cycling of Se in the seleniferous soil environment.
Collapse
Affiliation(s)
- Hai-Bo Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Jian-Ming Zhu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China
| | - Decan Tan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wen-Po Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Dong-Xu Liang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
29
|
Peng Q, Wu M, Zhang Z, Su R, He H, Zhang X. The Interaction of Arbuscular Mycorrhizal Fungi and Phosphorus Inputs on Selenium Uptake by Alfalfa ( Medicago sativa L.) and Selenium Fraction Transformation in Soil. FRONTIERS IN PLANT SCIENCE 2020; 11:966. [PMID: 32676094 PMCID: PMC7333729 DOI: 10.3389/fpls.2020.00966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/12/2020] [Indexed: 05/26/2023]
Abstract
Selenium (Se) is a beneficial element to plants and an essential element to humans. Colonization by arbuscular mycorrhizal fungi (AMF) and supply of phosphorus (P) fertilizer may affect the bioavailability of Se in soils and the absorption of Se by plants. To investigate the interaction between AMF and P fertilizer on the transformation of soil Se fractions and the availability of Se in the rhizosphere of alfalfa, we conducted a pot experiment to grow alfalfa in a loessial soil with three P levels (0, 5, and 20 mg kg-1) and two mycorrhizal inoculation treatments (without mycorrhizal inoculation [-AMF] and with mycorrhizal inoculation [+AMF]), and the interaction between the two factors was estimated with two-way ANOVA. The soil in all pots was supplied with Se (Na2SeO3) at 1 mg kg-1. In our results, shoot Se concentration decreased, but plant Se content increased significantly as P level increased and had a significant positive correlation with AMF colonization rate. The amount of total carboxylates in the rhizosphere was strongly affected by AMF. The amounts of rhizosphere carboxylates and alkaline phosphatase activity in the +AMF and 0P treatments were significantly higher than those in other treatments. The concentration of exchangeable-Se in rhizosphere soil had a positive correlation with carboxylates. We speculated that rhizosphere carboxylates promoted the transformation of stable Se (iron oxide-bound Se) into available Se forms, i.e. exchangeable Se and soluble Se. Colonization by AMF and low P availability stimulated alfalfa roots to release more carboxylates and alkaline phosphatase. AMF and P fertilizer affected the transformation of soil Se fractions in the rhizosphere of alfalfa.
Collapse
Affiliation(s)
- Qi Peng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Zekun Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Rui Su
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Honghua He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Xingchang Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Wang D, Peng Q, Yang WX, Dinh QT, Tran TAT, Zhao XD, Wu JT, Liu YX, Liang DL. DOM derivations determine the distribution and bioavailability of DOM-Se in selenate applied soil and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113899. [PMID: 31927276 DOI: 10.1016/j.envpol.2019.113899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/07/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Straw amendment and plant root exudates modify the quality and quantities of soil dissolved organic matter (DOM) and then manipulate the fractions of soil selenium (Se) and its bioavailability. Two typical soils with distinct pH were selected to investigate the effect of different contributors on DOM-Se in soil. The mechanisms relying on the variation in DOM characteristics (quality, quantity and composition) were explored by UV-Vis, ATR-FTIR and 3D-EEM. Straw amendment significantly (p < 0.05) suppressed the selenate bioavailability. The reduction in wheat Se content was greater in krasnozems than in Lou soil, as more HA fraction appeared in krasnozems. The root exudates of wheat mainly elevated the low molecular hydrophilic compounds (Hy) in soil, which contributed to the SOL-Hy-Se fractions and thus grain Se in soils (p < 0.01). However, straw amendment promoted DOM transforming from small molecules (Hy and FA) to aromatic large molecules (HA), when accompanied with the reduction and retention of Se associated with these molecules. As a result, selenium bioavailability and toxicity reduced with DOM amendment and DOM-Se transformation.
Collapse
Affiliation(s)
- Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637002, China
| | - Qin Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Wen-Xiao Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Thi Anh Thu Tran
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xing-Da Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiang-Tong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yong-Xian Liu
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China.
| | - Dong-Li Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
31
|
Xiao K, Tang J, Chen H, Li D, Liu Y. Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a karst area of southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135201. [PMID: 31796274 DOI: 10.1016/j.scitotenv.2019.135201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is an essential micronutrient for human health, and its abundance and potential bioavailability in the soil are of increasing concern worldwide. To date, how total soil Se and its bioavailability would respond to human disturbance or future environmental change is not yet clear, and associated controlling factors remain incompletely understood. Here, we collected soil samples (0-15 cm) from different land use/land cover types, including active cropland, grassland, shrubland, and secondary forest, in a Se-enriched area of Guangxi, southwest China. Total Se concentration and its potential bioavailability, as estimated by phosphate extractability, were investigated. Total soil Se concentration (Setotal) for all samples ranged from 220 to 1820 μg kg-1, with an arithmetic average value of 676 ± 24 μg kg-1 (Mean ± SE, the same below). The concentration of phosphate extractable Se (Sephosphate) varied between 1 and 257 μg kg-1, with an arithmetic mean value of 79 ± 5 μg kg-1, accounting for on average 13 ± 1% of the Setotal. Among the four land use/land cover types, Setotal and Sephosphate were generally more enriched in the secondary forest than those in the grassland and cropland. The content of soil organic carbon (SOC) was the overriding edaphic factor controlling the abundance and potential bioavailability of Se in topsoils. In addition, climatic variables such as mean annual precipitation and mean annual temperature were also key factors affecting the abundance and potential bioavailability of soil Se. Our results suggest that changes in land use/land cover types may deeply influence Se biogeochemistry likely via alterations in soil properties, particularly SOC content.
Collapse
Affiliation(s)
- Kongcao Xiao
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Junjie Tang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences, Huanjiang 547100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chen
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Dejun Li
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences, Huanjiang 547100, China.
| | - Yongxian Liu
- Institute of Agricultural Resources and Environment, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
32
|
Both EB, Stonehouse GC, Lima LW, Fakra SC, Aguirre B, Wangeline AL, Xiang J, Yin H, Jókai Z, Soós Á, Dernovics M, Pilon-Smits EAH. Selenium tolerance, accumulation, localization and speciation in a Cardamine hyperaccumulator and a non-hyperaccumulator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135041. [PMID: 31767332 PMCID: PMC7060786 DOI: 10.1016/j.scitotenv.2019.135041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 05/23/2023]
Abstract
Cardamine violifolia (family Brassicaceae) is the first discovered selenium hyperaccumulator from the genus Cardamine with unique properties in terms of selenium accumulation, i.e., high abundance of selenolanthionine. In our study, a fully comprehensive experiment was conducted with the comparison of a non-hyperaccumulator Cardamine species, Cardamine pratensis, covering growth characteristics, chlorophyll fluorescence, spatial selenium/sulfur distribution patterns through elemental analyses (synchrotron-based X-Ray Fluorescence and ICP-OES) and speciation data through selenium K-edge micro X-ray absorption near-edge structure analysis (μXANES) and strong cation exchange (SCX)-ICP-MS. The results revealed remarkable differences in contrast to other selenium hyperaccumulators as neither Cardamine species showed evidence of growth stimulation by selenium. Also, selenite uptake was not inhibited by phosphate for either of the Cardamine species. Sulfate inhibited selenate uptake, but the two Cardamine species did not show any difference in this respect. However, μXRF derived speciation maps and selenium/sulfur uptake characteristics provided results that are similar to other formerly reported hyperaccumulator and non-hyperaccumulator Brassicaceae species. μXANES showed organic selenium, "C-Se-C", in seedlings of both species and also in mature C. violifolia plants. In contrast, selenate-supplied mature C. pratensis contained approximately half "C-Se-C" and half selenate. SCX-ICP-MS data showed evidence of the lack of selenocystine in any of the Cardamine plant extracts. Thus, C. violifolia shows clear selenium-related physiological and biochemical differences compared to C. pratensis and other selenium hyperaccumulators.
Collapse
Affiliation(s)
- Eszter Borbála Both
- Department of Applied Chemistry, Szent István University, Villányi út 29-43., 1118 Budapest, Hungary; Department of Biology, Colorado State University, 251 West Pitkin Street, Fort Collins, CO 80523, USA
| | - Gavin C Stonehouse
- Department of Biology, Colorado State University, 251 West Pitkin Street, Fort Collins, CO 80523, USA
| | - Leonardo Warzea Lima
- Department of Biology, Colorado State University, 251 West Pitkin Street, Fort Collins, CO 80523, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Bernadette Aguirre
- Biology Department, Laramie County Community College, 1400 E. College Drive, Cheyenne, WY 82007, USA
| | - Ami L Wangeline
- Biology Department, Laramie County Community College, 1400 E. College Drive, Cheyenne, WY 82007, USA
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, 517 Shizhou Road, Enshi, Hubei Province 445002, China
| | - Hongqing Yin
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, 517 Shizhou Road, Enshi, Hubei Province 445002, China
| | - Zsuzsa Jókai
- Department of Applied Chemistry, Szent István University, Villányi út 29-43., 1118 Budapest, Hungary
| | - Áron Soós
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138., 4032 Debrecen, Hungary
| | - Mihály Dernovics
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2., 2462 Martonvásár, Hungary.
| | - Elizabeth A H Pilon-Smits
- Department of Biology, Colorado State University, 251 West Pitkin Street, Fort Collins, CO 80523, USA
| |
Collapse
|
33
|
Wang M, Cui Z, Xue M, Peng Q, Zhou F, Wang D, Dinh QT, Liu Y, Liang D. Assessing the uptake of selenium from naturally enriched soils by maize (Zea mays L.) using diffusive gradients in thin-films technique (DGT) and traditional extractions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1-9. [PMID: 31260894 DOI: 10.1016/j.scitotenv.2019.06.346] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 05/21/2023]
Abstract
A generally accepted method to predict selenium (Se) bioavailability of long-term contaminated soils has not yet been established, even if risk assessments in selenosis areas are crucial. In this study, a set of methods were tested to assess the bioavailability of Se to field maize. Fifty maize (Zea mays L.) samples and corresponding soils were collected from a selenosis area (Ziyang, China). The diffusive gradients in thin-films (DGT) technique and the traditional chemical extraction methods, including seven single-step extraction procedures and a five-step sequential extraction were used to predict the bioaccumulation of Se in plant. The result verified the presence of 50% of total Se in the form of residual Se fraction, followed by organic-bound and Fe-Mn oxide-bound Se fractions in soil. In addition, Se6+, Se4+, and Se2- were all detected in the solution extracted by H2O, KCl, phosphate-buffered solution (PBS), NaHCO3, ethylenediaminetetraacetic acid-2Na (EDTA-2Na) and ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA), but Se6+ was not extracted by NaOH. The Se extracted by single-step extraction methods was weakly correlated with the Se uptake by plants with relatively high Se concentration (>3 mg·kg-1). The abilities of the tested methods to predict Se bioavailability in naturally Se-enriched soils declined in the following order: DGT > soil solution > PBS > KCl > H2O > NaHCO3 > EDTA > DTPA > NaOH. The ratio of CDGT to soil solution Se (Csoln) totaled 0.13, indicating an extremely low Se supply from the soil solid phase to the soil solution. Se measured by DGT was mainly derived from the soluble and exchangeable Se fractions that can accurately reflect the plant-absorbed Se pool. Therefore, the DGT technique is highly applicable in the simultaneous prediction of Se bioavailability in naturally Se-enriched soils.
Collapse
Affiliation(s)
- Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zewei Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingyue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Peng
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongxian Liu
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
34
|
Fan J, Zhao G, Sun J, Hu Y, Wang T. Effect of humic acid on Se and Fe transformations in soil during waterlogged incubation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:476-485. [PMID: 31154220 DOI: 10.1016/j.scitotenv.2019.05.246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/17/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Humic acid (HA) serves as electron donor and acceptor in the biogeochemical cycle of Fe and Se in soil. In anoxic condition, a series of redox reactions occur, including reductive dissolution of Fe oxides, decomposition of organic matters, and transformation of trace elements. Thus, this study demonstrates the effect of HA on Se and Fe transformations in soil during waterlogged incubation. Soils were incubated under anoxic condition for 56 days, and pH, redox potential (Eh), and Fe and Se concentrations were measured at specific reaction times (days 2, 4, 8, 15, 28, and 56 of incubation). Moreover, sequential extraction and X-ray photoelectron spectroscopy (XPS) were used to obtain Se and Fe transformations, respectively. High resolution transmission electron microscopy (HR-TEM) was used to observe the morphology properties of soil. Results indicated that 4% HA addition decreased the pH and inhibited Eh decline continuously, and HA addition inhibited the Fe and Se release from soil. The Se concentration in soil solution without and with 4% HA addition at the day 15 of incubation were 1.05 mg L-1 and 0.30 mg L-1, respectively. Moreover, the residual Se fraction in soil with HA addition was evidently more than that in soil without HA addition. XPS of Se3d and Fe2p revealed that the binding energy of the main peak shifted to low values and the peak shape varied with the increase in HA addition. XPS2p3/2 and HR-TEM data indicated that the surface structure of Fe oxides in soil varied with the variations in anoxic incubation time and HA addition amount. HA addition would negatively influence Se and Fe release in soil solution and then reduce their bioavailability. This study aids in understanding the environmental behavior changes of Se and Fe when high HA concentrations enter the soils, especially wetland or paddy soil.
Collapse
Affiliation(s)
- Jianxin Fan
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China; College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Guoliang Zhao
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jiaoxia Sun
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Ying Hu
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Tujin Wang
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
35
|
Chang C, Yin R, Wang X, Shao S, Chen C, Zhang H. Selenium translocation in the soil-rice system in the Enshi seleniferous area, Central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:83-90. [PMID: 30878943 DOI: 10.1016/j.scitotenv.2019.02.451] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Rice is an important source of selenium (Se) exposure; however, the transformation and translocation of Se in the soil-rice system remain poorly understood. Here, we investigated the speciation of Se in Se-rich soils from Enshi, Central China and assessed which Se species is bioavailable for rice grown in Enshi. Extremely high Se concentrations (0.85 to 11.46 mg/kg) were observed in the soils. The soil Se fractions, which include water-soluble Se (0.2 to 3.4%), ligand-exchangeable Se (4.5 to 15.0%), organically bound Se (57.8 to 80.0%) and residual Se (6.1 to 32.9%), are largely controlled by soil organic matter (SOM) levels. Decomposition of SOM promotes the transformation of organically bound Se to water-soluble Se and ligand-exchangeable Se, thereby increasing the bioavailability of Se. The bioaccumulation factors (BAFs) of Se decrease in the following order: roots (0.84 ± 0.30) > bran (0.33 ± 0.17) > leaves (0.18 ± 0.09) > polished rice (0.14 ± 0.07) > stems (0.12 ± 0.07) > husks (0.11 ± 0.07). Selenium levels in rice plants are affected by multiple soil Se fractions in the soil. Water-soluble, ligand-exchangeable and organically bound Se fractions are the major sources of Se in rice tissues.
Collapse
Affiliation(s)
- Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Shuxun Shao
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chongying Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
36
|
Xu X, Yan M, Liang L, Lu Q, Han J, Liu L, Feng X, Guo J, Wang Y, Qiu G. Impacts of selenium supplementation on soil mercury speciation, and inorganic mercury and methylmercury uptake in rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:647-654. [PMID: 30933762 DOI: 10.1016/j.envpol.2019.03.095] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/28/2019] [Accepted: 03/23/2019] [Indexed: 05/09/2023]
Abstract
Rice grain is known to accumulate methylmercury (MeHg) and has been confirmed to be the major pathway of MeHg exposure to residents in mercury (Hg) mining areas in China. Selenium (Se) supplementation has been proven to be effective in mitigating the toxicity of Hg. To understand how Se supplementation influences soil Hg speciation, a wide range of Se (0-500 mg/kg) was applied to Hg polluted paddy soils in this study, which decreased MeHg concentration in soil from 2.95 ± 0.36 to 0.69 ± 0.16 μg/kg (or 77%). After Se addition, humic acid state Hg (F4) was transformed into strong-complexed state Hg (F5), indicating that Hg bound up to the non-sulfur functional groups of humic acid (non-RSH) was released and reabsorbed by strong binding Se functional group (F5). As a result, inorganic Hg (IHg) was reduced by >48%, 18%, and 80% in root, stem, and grain, respectively, however, the reduction was not apparent in leaf. Substantial reductions were also found for MeHg in grain and root, but not in stem and leaf. Soil is suggested to be the main source of both MeHg and IHg in rice grain. Such a finding may provide an idea for improving Hg-polluted paddies through controlling soil IHg and MeHg. Further research on the molecular structure of the strong-complexed Hg in F5 should be conducted to elucidate the mechanism of Hg-Se antagonism.
Collapse
Affiliation(s)
- Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Qinhui Lu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Lin Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jianyang Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Yajie Wang
- College of Food Safety, Guizhou Medical University, Guiyang, 550025, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
37
|
Little M, Achouba A, Dumas P, Ouellet N, Ayotte P, Lemire M. Determinants of selenoneine concentration in red blood cells of Inuit from Nunavik (Northern Québec, Canada). ENVIRONMENT INTERNATIONAL 2019; 127:243-252. [PMID: 30928848 DOI: 10.1016/j.envint.2018.11.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Selenium (Se) is a trace mineral essential to human health, and is especially abundant in marine foods consumed by Inuit populations in Nunavik (northern Quebec, Canada), leading to exceptionally high whole blood Se levels. While most epidemiological studies to date examine plasma or whole blood Se, little is known about the health implications of specific Se biomarkers (e.g. selenoproteins and small Se compounds). Selenoneine, a novel Se compound, is found in high concentrations in marine foods (and particularly beluga mattaaq) and the red blood cells (RBCs) of populations that consume them. We report here RBC selenoneine concentrations in a population of Inuit adults (n = 885) who participated in the Qanuippitaa? 2004 survey. Simple associations between RBC selenoneine and other Se and mercury (Hg) biomarkers were assessed using Spearman correlations and linear regressions. Wilcoxon ranksum tests were used to examine differences in biomarkers and characteristics between tertiles of RBC selenoneine concentration. A multiple linear regression analysis was used to determine factors (sociodemographic, lifestyle, and dietary) associated with RBC selenoneine concentrations. Selenoneine comprised a large proportion of whole blood Se and RBC Se in this population. Age and sex-adjusted geometric mean RBC selenoneine concentration was 118 μg/L (range: 1-3226 μg/L) and was much higher (p = 0.001) among women (150.3 μg/L) than men (87.6 μg/L) across all regions of Nunavik after controlling for age, region, and diet. RBC selenoneine was highly correlated with RBC Se (rs = 0.96, p < 0.001) and whole blood Se (rs = 0.89, p < 0.001), but only weakly correlated with plasma Se (rs = 0.13, p < 0.001). Overall, increasing age (standardized β = 0.24), higher body-mass index (BMI; β = 0.08), female sex (β = 0.10), living in a Hudson Strait community (compared to Hudson Bay and Ungava Bay; β = 0.38), and consuming beluga mattaaq (g/day; β = 0.19) were positively associated with RBC selenoneine. Meanwhile, consumption of market meats (g/day; β = -0.07) was negatively associated with RBC selenoneine. RBC selenoneine is an important biomarker of Se dietary intake from local marine foods in Inuit populations. Further studies are needed to examine the health effects of selenoneine intake and the underlying mechanisms for sex differences among Inuit populations.
Collapse
Affiliation(s)
- Matthew Little
- Axe santé des populations et pratiques optimales en Santé, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, 1050, chemin Sainte-Foy, Québec, QC G1S 4L8, Canada; Département de Médecine Sociale et Préventive, Université Laval, Pavillon Ferdinand-Vandry, Québec, QC G1V 0A6, Canada.
| | - Adel Achouba
- Axe santé des populations et pratiques optimales en Santé, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, 1050, chemin Sainte-Foy, Québec, QC G1S 4L8, Canada
| | - Pierre Dumas
- Centre de Toxicologie du Québec, Institut national de santé publique du Québec (INSPQ), 945 Avenue Wolfe, QC G1V 5B3, Canada
| | - Nathalie Ouellet
- Axe santé des populations et pratiques optimales en Santé, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, 1050, chemin Sainte-Foy, Québec, QC G1S 4L8, Canada
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en Santé, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, 1050, chemin Sainte-Foy, Québec, QC G1S 4L8, Canada; Département de Médecine Sociale et Préventive, Université Laval, Pavillon Ferdinand-Vandry, Québec, QC G1V 0A6, Canada; Centre de Toxicologie du Québec, Institut national de santé publique du Québec (INSPQ), 945 Avenue Wolfe, QC G1V 5B3, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en Santé, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, 1050, chemin Sainte-Foy, Québec, QC G1S 4L8, Canada; Département de Médecine Sociale et Préventive, Université Laval, Pavillon Ferdinand-Vandry, Québec, QC G1V 0A6, Canada
| |
Collapse
|
38
|
Jia M, Zhang Y, Huang B, Zhang H. Source apportionment of selenium and influence factors on its bioavailability in intensively managed greenhouse soil: A case study in the east bank of the Dianchi Lake, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:238-245. [PMID: 30529918 DOI: 10.1016/j.ecoenv.2018.11.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Selenium (Se) is an essential trace element for humans and animals. In China, intensive agricultural inputs in greenhouse vegetable production (GVP) have resulted in great changes in Se concentration and bioavailability in soil, which have great influences on Se flux to living organisms through food chains. It is crucial to understand the factors on Se concentration and bioavailability in greenhouse soil. Thus, we chose the east bank of the Dianchi Lake, a typical GVP area covering 177 km2 in Southwest China, as the study area to quantify source contributions to soil Se and estimate relative importance of influence factors on its bioavailability in GVP with a receptor model (absolute principal component scores-multiple linear regression, APCS-MLR) after principal component analysis (PCA). According to the enrichment factor (EF), total Se in greenhouse soil was accumulated at a minor level (1 < EF < 3) by long-term and intensive fertilization. Source contributions to total Se decreased in the sequence of parent materials > fertilization > atmospheric deposition. It suggested that fertilization, especially manure, might be an important way to increase total Se in greenhouse soils in Se-deficient areas. The bioavailability of Se was affected by several factors, among of which total Se was the foremost one. In comparison with organic matter and clay, Fe/Al oxides exerted more controls on Se bioavailability, which was dependent on pH. Increasing Olsen P was helpful in improving soil Se bioavailability in greenhouse. More attention should be paid to soil physicochemical characteristics when Se-containing fertilizers are applied to increase Se levels in greenhouse vegetables.
Collapse
Affiliation(s)
- Mengmeng Jia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Haidong Zhang
- Suzhou Academy of Agricultural Sciences, Suzhou 215000, China
| |
Collapse
|
39
|
De Feudis M, D'Amato R, Businelli D, Guiducci M. Fate of selenium in soil: A case study in a maize (Zea mays L.) field under two irrigation regimes and fertilized with sodium selenite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:131-139. [PMID: 30597463 DOI: 10.1016/j.scitotenv.2018.12.200] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 05/21/2023]
Abstract
Selenium (Se) is a trace element necessary for both human and livestock nutrition. To increase Se human intake, soil Se fertilizations were performed but the fate of the added Se remains unclear. The present research aims to: (1) determine the influence of Se fertilization on the fractionation of Se in soil; (2) assess the influence of water availability on the distribution of soil Se chemical fractions; and (3) monitor the Se content in soil, leachates and plants. To reach these goals, 200 g Se ha-1 was applied to soil as sodium selenite in maize crops under two irrigation regimes, and the Se content in plant, soil chemical fractions and leachates were analyzed. Se application increased the total Se content of the soil, specifically it increased the Se content of the soluble, exchangeable and organic fractions with more pronounced effect in the soils with higher water availability. These differences disappeared over time likely due to the Se loss through volatilization. The hypothesis of Se volatilization is confirmed by the absence of both leachates during the maize growing season and differences among the treatments of Se content in sub-soil samples. Also, although the Se treated plants showed higher Se content than the untreated ones, overall <1% of the added Se was assimilated by plants. Hence, this study demonstrated that the addition of selenite to the soil increased the Se contents of the plants, but the Se does not accumulate in the soil because it is likely lost via volatilization. Further, leaching of Se into groundwater is avoided due to its association with both the soil organic matter and positively charged binding sites of soil, and due to its loss via volatilization. Therefore, soil Se fertilization could increase the nutritional value of plants without consequences on the environment.
Collapse
Affiliation(s)
- M De Feudis
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.
| | - R D'Amato
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - D Businelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - M Guiducci
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
40
|
Wang D, Xue MY, Wang YK, Zhou DZ, Tang L, Cao SY, Wei YH, Yang C, Liang DL. Effects of straw amendment on selenium aging in soils: Mechanism and influential factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:871-881. [PMID: 30677952 DOI: 10.1016/j.scitotenv.2018.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Soil dissolved organic matter (DOM) alters heavy metal availability, but whether straw amendment can manipulate soil selenium (Se) speciation and availability through DOM mineralization remains unclear. In this study, allochthonous maize straw and selenate were incubated together in four different soils for 1 y. The transformation and availability of DOM associated Se (DOM-Se) was investigated during aging. Results indicated that soil solution and soil particle surfaces were dominated by hexavalent hydrophilic acid-bound Se (Hy-Se). The amount of fulvic acid bound Se in soil solution (SOL-FA-Se) was higher than humic acid bound Se in soil solution (SOL-HA-Se), except in krasnozems, and mainly existed as hexavalent Se (Se(VI)). Tetravalent Se (Se(IV)) was the main valence state of FA-Se adsorbed on soil particle surfaces (EX-FA-Se) after 5 w of aging. The proportion of soil-available Se (SOL + EX-Se) decreased with increasing straw rate. However, under an application rate of 7500 kg·hm-2, soluble Se fraction (SOL-Se) reduction was minimal in acidic soils (18.7%-34.7%), and the organic bound Se fraction (OM-Se) was maximally promoted in alkaline soils (18.2%-39.1%). FA and HON could enhance the availability of Se in the soil solution and on particle surfaces of acidic soil with high organic matter content. While Se incorporation with HA could accelerate the fixation of Se into the solid phase of soil. Three mechanisms were involved in DOM-Se aging: (1) Reduction, ligand adsorption, and inner/outer-sphere complexation associated with the functional groups of straw-derived DOM, including hydroxyls, carboxyl, methyl, and aromatic phenolic compounds; (2) interconnection of EX-FA-Se between non-residual and residual Se pools; and (3) promotion by soil electrical conductivity (EC), clay, OM, and straw application. The dual effect of DOM on Se aging was highly reliant on the characteristics of the materials and soil properties. In conclusion, straw amendment could return selenium in soil and reduce soluble Se loss.
Collapse
Affiliation(s)
- Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming-Yue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying-Kun Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - De-Zhi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Tang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sheng-Yan Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu-Hong Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chen Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong-Li Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
41
|
Zhang J, Wang Y, Shao Z, Li J, Zan S, Zhou S, Yang R. Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions. J Environ Sci (China) 2019; 77:238-249. [PMID: 30573088 DOI: 10.1016/j.jes.2018.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 06/09/2023]
Abstract
Microbes play important roles in the transport and transformation of selenium (Se) in the environment, thereby influencing plant resistance to Se and Se accumulation in plant. The objectives are to characterize the bacteria with high Se tolerance and reduction capacity and explore the significance of microbial origins on their Se tolerance, reduction rate and efficiency. Two bacterial strains were isolated from a naturally occurred Se-rich soil at tea orchard in southern Anhui Province, China. The reduction kinetics of selenite was investigated and the reducing product was characterized using scanning electron microscopy and transmission electron microscopy-energy dispersive spectroscopy. The bacteria were identified as Lysinibacillus xylanilyticus and Lysinibacillus macrolides, respectively, using morphological, physiological and molecular methods. The results showed that the minimal inhibitory concentrations (MICs) of selenite for L. xylanilyticus and L. macrolides were 120 and 220 mmol/L, respectively, while MICs of selenate for L. xylanilyticus and L. macrolides were 800 and 700 mmol/L, respectively. Both strains aerobically reduced selenite with an initial concentration of 1.0 mmol/L to elemental Se nanoparticles (SeNPs) completely within 36 hr. Biogenic SeNPs were observed both inside and outside the cells suggesting either an intra- or extracellular reduction process. Our study implied that the microbes from Se-rich environments were more tolerant to Se and generally quicker and more efficient than those from Se-free habitats in the reduction of Se oxyanions. The bacterial strains with high Se reduction capacity and the biological synthesized SeNPs would have potential applications in agriculture, food, environment and medicine.
Collapse
Affiliation(s)
- Ju Zhang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
| | - Yue Wang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
| | - Zongyuan Shao
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
| | - Jing Li
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
| | - Shuting Zan
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Shoubiao Zhou
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Institute of Functional Food, Anhui Normal University, Wuhu 241002, China
| | - Ruyi Yang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Institute of Functional Food, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
42
|
Tabelin CB, Igarashi T, Villacorte-Tabelin M, Park I, Opiso EM, Ito M, Hiroyoshi N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1522-1553. [PMID: 30248873 DOI: 10.1016/j.scitotenv.2018.07.103] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/01/2018] [Accepted: 07/05/2018] [Indexed: 05/28/2023]
Abstract
Massive and ambitious underground space development projects are being undertaken by many countries around the world to decongest megacities, improve the urban landscapes, upgrade outdated transportation networks, and expand modern railway and road systems. A number of these projects, however, reported that substantial portions of the excavated debris are oftentimes naturally contaminated with hazardous elements, which are readily released in substantial amounts once exposed to the environment. These contaminated excavation debris/spoils/mucks, loosely referred to as "naturally contaminated rocks", contain various hazardous and toxic inorganic elements like arsenic (As), selenium (Se), boron (B), and heavy metals like lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn). If left untreated, these naturally contaminated rocks could pose very serious problems not only to the surrounding ecosystem but also to people living around the construction and disposal sites. Several incidents of soil and ground/surface water contamination, for example, have been documented due to the false assumption that excavated materials are non-hazardous because they only contain background levels of environmentally regulated elements. Naturally contaminated rocks are hazardous wastes, but they still remain largely unregulated. In fact, standard leaching tests for their evaluation and classification are not yet established. In this review, we summarized all available studies in the literature about the factors and processes crucial in the enrichment, release, and migration of the most commonly encountered hazardous and toxic elements in naturally contaminated geological materials. Although our focus is on naturally contaminated rocks, analogue systems like contaminated soils, sediments, and other hazardous wastes that have been more widely studied will also be discussed. Classification schemes and leaching tests to properly identify and regulate excavated rocks that may potentially pose environmental problems will be examined. Finally, management and mitigation strategies to limit the negative effects of these hazardous wastes are introduced.
Collapse
Affiliation(s)
- Carlito Baltazar Tabelin
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Toshifumi Igarashi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Mylah Villacorte-Tabelin
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Ilhwan Park
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Einstine M Opiso
- Geoenvironmental Engineering Group, Central Mindanao University, Maramag 8710, Bukidnon, Philippines
| | - Mayumi Ito
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Naoki Hiroyoshi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
43
|
Zhang Y, Wu S, Zheng H, Weng L, Hu Y, Ma H. Modes of selenium occurrence and LCD modeling of selenite desorption/adsorption in soils around the selenium-rich core, Ziyang County, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018. [PMID: 29527646 DOI: 10.1007/s11356-018-1595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Studying the modes of selenium occurrence in high-Se soils and its behaviors can improve understanding and evaluating its cycling, flux, and balance in geo-ecosystems and its influence on health. In this paper, using a modified sequential chemical extraction technique, seven operationally defined selenium fractions and Se valence distribution were determined about five soils in which paddy was planted (W1, W2, W3, W4, W5) and five soils in which maize was planted (H1, H2, H3, H4, H5) around the selenium-rich core, Ziyang County, Shaanxi Province, China. The results show that selenium fractions in the soils mainly include sulfide/selenide and base-soluble Se, and ligand-exchangeable Se is also high for five soils in which paddy was planted. For water-soluble Se, Se (IV) is main Se valence and almost no Se (VI) was determined about five soils in which paddy was planted, while almost 1:1 of Se (IV) and Se (VI) coexist about five soils in which maize was planted. For exchangeable Se, similar results were found. For the first time, two typical high-Se soils (W1 soil and H1 soil) were chosen to measure the pH-dependent solid-solution distribution of selenite in the pH range 3-9, and the results were explained using LCD (ligand and charge distribution) adsorption modeling. The desorbed selenite concentrations from the two soils are in general underestimated by the model due to a comparable binding affinity of phosphate and selenite on goethite and much lower amount of total selenite than total reactively adsorbed phosphate. The pH dependency of adsorption of selenite added to the soil can be successfully described with the LCD model for W1 soil. Whereas considering the influence of Al-oxides, by lowering selenite adsorption affinity constant K of Se adsorption on goethite by 16 times, the LCD model can describe the adsorption much better. The results can help to understand selenium cycling, flux, and balance in typical high-Se soils.
Collapse
Affiliation(s)
- Yu Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Siyuan Wu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Hong Zheng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, People's Republic of China.
| | - Liping Weng
- Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Yajie Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Hongwen Ma
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, People's Republic of China.
| |
Collapse
|
44
|
Wang D, Dinh QT, Anh Thu TT, Zhou F, Yang W, Wang M, Song W, Liang D. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil. CHEMOSPHERE 2018; 199:417-426. [PMID: 29453068 DOI: 10.1016/j.chemosphere.2018.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/04/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
To exploit the plant byproducts from selenium (Se) biofortification and reduce environmental risk of inorganic Se fertilizer, pot experiment was conducted in this study. The effects of Se-enriched wheat (Triticum aestivum L.) straw (WS + Se) and pak choi (Brassica chinensis L.) (P + Se) amendment on organo-selenium speciation transformation in soil and its bioavailability was evaluated by pak choi uptake. The Se contents of the cultivated pak choi in treatments amended with the same amount of Se-enriched wheat straw and pak choi were 1.7 and 9.7 times in the shoots and 2.3 and 6.3 times in the roots compared with control treatment. Soil respiration rate was significantly increased after all organic material amendment in soil (p < 0.05), which accelerated the mineralization of organic materials and thus resulted in soluble Se (SOL-Se), exchangeable Se (EX-Se), and fulvic acid-bound Se (FA-Se) fraction increasing by 25.2-29.2%, 9-13.8%, and 4.92-8.28%, respectively. In addition, both Pearson correlation and cluster analysis showed that EX-Se and FA-Se were better indicators for soil Se availability in organic material amendment soils. The Marquardt-Levenberg Model well described the dynamic kinetics of FA-Se content after Se-enriched organic material amendment in soil mainly because of the mineralization of organic carbon and organo-selenium. The utilization of Se in P + Se treatment was significantly higher than those in WS + Se treatment because of the different mineralization rates and the amount of FA-Se in soil. Se-enriched organic materials amendment can not only increase the availability of selenium in soil but also avoid the waste of valuable Se source.
Collapse
Affiliation(s)
- Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tran Thi Anh Thu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenxiao Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
45
|
Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:915-934. [PMID: 29253832 DOI: 10.1016/j.envpol.2017.12.019] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 05/06/2023]
Abstract
Selenium (Se) is an essential trace element for humans and animals, although controversial for different plant species. There exists a narrow line between essential, beneficial and toxic levels of Se to living organisms which greatly varies with Se speciation, as well as the type of living organisms. Therefore, it is crucial to monitor its solid- and solution-phase speciation, exposure levels and pathways to living organisms. Consumption of Se-laced food (cereals, vegetables, legumes and pulses) is the prime source of Se exposure to humans. Thus, it is imperative to assess the biogeochemical behavior of Se in soil-plant system with respect to applied levels and speciation, which ultimately affect Se status in humans. Based on available relevant literature, this review traces a plausible link among (i) Se levels, sources, speciation, bioavailability, and effect of soil chemical properties on selenium bioavailability/speciation in soil; (ii) role of different protein transporters in soil-root-shoot transfer of Se; and (iii) speciation, metabolism, phytotoxicity and detoxification of Se inside plants. The toxic and beneficial effects of Se to plants have been discussed with respect to speciation and toxic/deficient concentration of Se. We highlight the significance of various enzymatic (catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, glutathione peroxidase) and non-enzymatic (phytochelatins and glutathione) antioxidants which help combat Se-induced overproduction of reactive oxygen species (ROS). The review also delineates Se accumulation in edible plant parts from soils containing low or high Se levels; elucidates associated health disorders or risks due to the consumption of Se-deficient or Se-rich foods; discusses the potential role of Se in different human disorders/diseases.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen, D-28359, Germany; Southern Cross GeoScience, Southern Cross University, Lismore 2480, NSW, Australia.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; Southern Cross GeoScience, Southern Cross University, Lismore 2480, NSW, Australia
| | - Muhammad Imtiaz Rashid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan; Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
46
|
Dinh QT, Cui Z, Huang J, Tran TAT, Wang D, Yang W, Zhou F, Wang M, Yu D, Liang D. Selenium distribution in the Chinese environment and its relationship with human health: A review. ENVIRONMENT INTERNATIONAL 2018; 112:294-309. [PMID: 29438838 DOI: 10.1016/j.envint.2017.12.035] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 05/07/2023]
Abstract
This paper reviewed the Se in the environment (including total Se in soil, water, plants, and food), the daily Se intake and Se content in human hair were also examined to elucidate Se distribution in the environment and its effects on human health in China. Approximately 51% of China is Se deficiency in soil, compared with 72% in the survey conducted in 1989. Low Se concentrations in soil, water, plants, human diet and thus human hair were found in most areas of China. The only significant difference was observed between Se-rich and Se-excessive areas for Se contents in water, staple cereal, vegetables, fruits, and animal-based food, no remarkable contrast was found among other areas (p>0.05). This study also demonstrated that 39-61% of Chinese residents have lower daily Se intakes according to WHO/FAO recommended value (26-34μg/day). Further studies should focus on thoroughly understanding the concentration, speciation, and distribution of Se in the environment and food chain to successfully utilize Se resources, remediate Se deficiency, and assess the Se states and eco-effects on human health.
Collapse
Affiliation(s)
- Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Faculty of Natural Science, Thu Dau Mot University, Thu Dau Mot city, Binh Duong, Viet Nam
| | - Zewei Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Thi Anh Thu Tran
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Faculty of Natural Science, Thu Dau Mot University, Thu Dau Mot city, Binh Duong, Viet Nam
| | - Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenxiao Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dasong Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
47
|
Shaheen SM, Kwon EE, Biswas JK, Tack FMG, Ok YS, Rinklebe J. Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt. CHEMOSPHERE 2017; 180:553-563. [PMID: 28432892 DOI: 10.1016/j.chemosphere.2017.04.054] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/08/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
The fractionation and potential mobilization of As, Cr, Mo, and Se in four floodplain soil profiles collected along the Nile (Egypt) and Wupper (Germany) Rivers were assessed using the BCR sequential extraction procedure. The concentrations of total and the geochemical fractions (acid soluble (F1), reducible (F2), oxidizable (F3), and residual (F4) fraction) of the elements were determined. The Wupper soils had the highest total concentrations (mg kg-1) of As (378) and Cr (2,797) while the Nile soils contained the highest total Mo (12) and Se (42). The residual fraction of As, Cr, Mo, and Se was dominant in the Nile soils suggesting the geogenic source of the elements in these soils. The residual fraction of As and Mo and the oxidizable fraction of Cr and Se were dominant in the Wupper soils. Among the non-residual fractions (potential mobile fractions; PMF = ∑F1-F3), the oxidizable fraction was dominant for Cr, Mo, and Se in the Nile soils and for Mo in the Wupper soils, while the reducible fraction was dominant for As in both soils. The PMF of As, Cr, and Se was higher in the Wupper than in the Nile soils which might reflect the anthropogenic sources of these elements in the Wupper soils, while the opposite was the case for the PMF of Mo. The high PMF of Se (87%), Cr (87%), and As (21%) in the Wupper soils suggested that a release of these toxic elements may happen which increase the potential environmental risks in the anthropogenically polluted soils.
Collapse
Affiliation(s)
- Sabry M Shaheen
- University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jayanta K Biswas
- International Centre for Ecological Engineering & Department of Ecological Studies, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Filip M G Tack
- Ghent University, Department of Applied Analytical and Physical Chemistry, Ghent 9000, Belgium
| | - Yong Sik Ok
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Korea Biochar Research Center & School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
48
|
Qin HB, Takeichi Y, Nitani H, Terada Y, Takahashi Y. Tellurium Distribution and Speciation in Contaminated Soils from Abandoned Mine Tailings: Comparison with Selenium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6027-6035. [PMID: 28426210 DOI: 10.1021/acs.est.7b00955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The distribution and chemical species of tellurium (Te) in contaminated soil were determined by a combination of microfocused X-ray fluorescence (μ-XRF), X-ray diffraction (μ-XRD), and X-ray absorption fine structure (μ-XAFS) techniques. Results showed that Te was present as a mixture of Te(VI) and Te(IV) species, while selenium (Se) was predominantly present in the form of Se(IV) in the soil contaminated by abandoned mine tailings. In the contaminated soil, Fe(III) hydroxides were the host phases for Se(IV), Te(IV), and Te(VI), but Te(IV) could be also retained by illite. The difference in speciation and solubility of Se and Te in soil can result from different structures of surface complexes for Se and Te onto Fe(III) hydroxides. Furthermore, our results suggest that the retention of Te(IV) in soil could be relatively weaker than that of Te(VI) due to structural incorporation of Te(VI) into Fe(III) hydroxides. These findings are of geochemical and environmental significance for better understanding the solubility, mobility, and bioavailability of Te in the surface environment. To the best of our knowledge, this is the first study reporting the speciation and host phases of Te in field soil by the μ-XRF-XRD-XAFS techniques.
Collapse
Affiliation(s)
- Hai-Bo Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550081, China
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo , Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuo Takeichi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) , 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hiroaki Nitani
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) , 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Yasuko Terada
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8 , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo , Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
49
|
Peng Q, Wang M, Cui Z, Huang J, Chen C, Guo L, Liang D. Assessment of bioavailability of selenium in different plant-soil systems by diffusive gradients in thin-films (DGT). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:637-643. [PMID: 28341328 DOI: 10.1016/j.envpol.2017.03.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/25/2017] [Accepted: 03/16/2017] [Indexed: 05/07/2023]
Abstract
Uptake of selenium (Se) by plants largely depend on the availability of Se in soil. Soils and plants were sampled four times within 8 weeks of plant growth in pot experiments using four plant species. Sequential extraction and diffusive gradients in thin-films (DGT) method were employed to measure Se concentrations in potted soils in selenite- or selenate-amended soils. Results showed that DGT-measured Se concentrations (CDGT-Se) were generally several folds higher for selenate than selenite amended soils, which were obviously affected by the plant species and the duration of their growth. For example, the folds in soil planted with mustard were 1.49-3.47 and those in soils planted with purple cabbage and broccoli, which grew for 3 and 4 weeks after sowing, were 1.06-2.14 and only 0.15-0.62 after 6 weeks of growth. The selenate-amended soil planted with wheat showed an extremely high CDGT-Se compared with selenite-amended soil, except the last harvest. Furthermore, minimal changes in CDGT-Se and soluble Se(IV) were found in selenite-amended soils during plant growth, whereas significant changes were observed in selenate-amended soils (p < 0.05). Additionally, Se distribution in various fractions of soil remarkably changed; the soils planted with purple cabbage and broccoli showed the most obvious change followed by wheat and mustard. Soluble Se(VI) and exchangeable Se(VI) were likely the major sources of CDGT-Se in selenate-amended soils, and soluble Se(IV) was the possible source of CDGT-Se in selenite-amended soils. In selenate-amended soils, soluble Se(VI) and exchangeable Se(VI) were significantly correlated with Se concentrations in purple cabbage, broccoli, and mustard; in wheat, Se concentration was significantly correlated only with soluble Se(VI) but not with exchangeable Se. CDGT-Se eventually became positively correlated with Se concentrations accumulated by different plants, indicating that DGT is a feasible method in predicting plant uptake of selenate but not of selenite.
Collapse
Affiliation(s)
- Qin Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zewei Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Changer Chen
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lu Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
50
|
Qin HB, Zhu JM, Lin ZQ, Xu WP, Tan DC, Zheng LR, Takahashi Y. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:361-369. [PMID: 28314620 DOI: 10.1016/j.envpol.2017.02.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56-81% of the total Se) and lesser Se(IV) (19-44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69-73%) > upland soil (56-63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas.
Collapse
Affiliation(s)
- Hai-Bo Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Jian-Ming Zhu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China.
| | - Zhi-Qing Lin
- Environmental Sciences Program and Department of Biological Sciences, Southern Illinois University, Edwardsville, IL 62026-1099, USA
| | - Wen-Po Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Can Tan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Rong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|