1
|
Wang X, Dürr V, Guenne A, Mazéas L, Chapleur O. Generic role of zeolite in enhancing anaerobic digestion and mitigating diverse inhibitions: Insights from degradation performance and microbial characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120676. [PMID: 38520850 DOI: 10.1016/j.jenvman.2024.120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Zeolite was shown to mitigate anaerobic digestion (AD) inhibition caused by several inhibitors such as long-chain fatty acids, ammonia, and phenolic compounds. In this paper, we verified the genericity of zeolite's mitigating effect against other types of inhibitors found in AD such as salts, antibiotics, and pesticides. The impacts of inhibitors and zeolite were assessed on AD performance and microbial dynamics. While sodium chloride and erythromycin reduced methane production rates by 34% and 32%, zeolite mitigated the inhibition and increased methane production rates by 72% and 75%, respectively, compared to conditions without zeolite in the presence of these two inhibitors. Noticeably, zeolite also enhanced methane production rate by 51% in the uninhibited control condition. Microbial community structure was analyzed at two representative dates corresponding to the hydrolysis/fermentation and methanogenesis stages through 16S rRNA gene sequencing. The microbial characteristics were further evidenced with common components analysis. Results revealed that sodium chloride and erythromycin inhibited AD by targeting distinct microbial populations, with more pronounced inhibitory effects during hydrolysis and VFAs degradation phases, respectively. Zeolite exhibited a generic effect on microbial populations in different degradation stages across all experimental conditions, ultimately contributing to the enhanced AD performance and mitigation of different inhibitions. Typically, hydrolytic and fermentative bacteria such as Cellulosilyticum, Sedimentibacter, and Clostridium sensu stricto 17, VFAs degraders such as Mesotoga, Syntrophomonas, and Syntrophobacter, and methanogens including Methanobacterium, Methanoculleus, and Methanosarcina were strongly favored by the presence of zeolite. These findings highlighted the promising use of zeolite in AD processes for inhibition mitigation in general.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Vincent Dürr
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Angéline Guenne
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Laurent Mazéas
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France.
| |
Collapse
|
2
|
Kelbert M, Daronch NA, Pereira CS, Cesca K, Michels C, Soares HM. Inhibitory impact of the anticancer drug doxorubicin on anaerobic microbial community. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106706. [PMID: 37837867 DOI: 10.1016/j.aquatox.2023.106706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
The inhibitory effect of the anticancer drug doxorubicin (DOX) on biogas production was evaluated in short-term and long-term exposure assays. The short-term assays reached the DOX IC50 value on 648 ± 50 µg·L-1. In addition, it was found that inhibition caused by the exposure of 10×103 µg·L-1 was reversible after removing DOX from the feeding synthetic medium. Furthermore, DOX can be rapidly sorbed by the biomass (despite the low Kow), which might contribute to the inhibitory effect. The results of long-term exposure assays, when the DOX volumetric loading rate was increased from 100 µgDOX·L-1·day-1 to 200 µgDOX·L-1·day-1, showed that biogas production and COD removal decreased rapidly. However, the methanogenic Archaeas could recover from this exposure, corroborating the results on short-term exposure assays. In conclusion, DOX can play a key role in inhibiting biological wastewater treatment processes if its concentration in hospital wastewater treatment plants increases abruptly.
Collapse
Affiliation(s)
- Maikon Kelbert
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Naionara Ariete Daronch
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Camila Senna Pereira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Karina Cesca
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Camila Michels
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Hugo Moreira Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
3
|
Ni Z, Zhou L, Lin Z, Kuang B, Zhu G, Jia J, Wang T. Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131314. [PMID: 37030222 DOI: 10.1016/j.jhazmat.2023.131314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/26/2023] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
The accumulation of volatile fatty acids (VFAs) caused by antibiotic inhibition significantly reduces the treatment efficiency of sulfamethoxazole (SMX) wastewater. Few studies have been conducted to study the VFAs gradient metabolism of extracellular respiratory bacteria (ERB) and hydrogenotrophic methanogen (HM) under high-concentration sulfonamide antibiotics (SAs). And the effects of iron-modified biochar on antibiotics are unknown. Here, the iron-modified biochar was added to an anaerobic baffled reactor (ABR) to intensify the anaerobic digestion of SMX pharmaceutical wastewater. The results demonstrated that ERB and HM were developed after adding iron-modified biochar, promoting the degradation of butyric, propionic and acetic acids. The content of VFAs reduced from 1166.0 mg L-1 to 291.5 mg L-1. Therefore, chemical oxygen demand (COD) and SMX removal efficiency were improved by 22.76% and 36.51%, and methane production was enhanced by 6.19 times. Furthermore, the antibiotic resistance genes (ARGs) such as sul1, sul2, intl1 in effluent were decreased by 39.31%, 43.33%, 44.11%. AUTHM297 (18.07%), Methanobacterium (16.05%), Geobacter (6.05%) were enriched after enhancement. The net energy after enhancement was 0.7122 kWh m-3. These results confirmed that ERB and HM were enriched via iron-modified biochar to achieve high efficiency of SMX wastewater treatment.
Collapse
Affiliation(s)
- Zhili Ni
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Lilin Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Ziyang Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Bin Kuang
- Jiangmen Polytechnic, Jiangmen 529020, PR China; Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianbo Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Tao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
4
|
Lee C, Ju M, Lee J, Kim S, Kim JY. Long-term inhibition of chlortetracycline antibiotics on anaerobic digestion of swine manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116802. [PMID: 36442333 DOI: 10.1016/j.jenvman.2022.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to identify whether chronic effects are present in the anaerobic digestion (AD) of swine manure (SM) containing chlortetracycline (CTC), which is one of the major broad-spectrum veterinary antibiotics, and to elucidate the long-term inhibitory effects and recovery from the inhibition based on AD performance and microbial community. Two continuous-stirred tank reactors treating SM with and without CTC spiking (3 mg/L) were operated for 900 days. Due to the degradation and transformation, the total concentration including CTC's epimer and isomer in the test reactor was 1.5 mg/L. The exposure level was determined according to probabilistically estimated concentrations with uncertainties in field conditions. Until the cessation of CTC exposure on day 585, the methane generation of test reactor continuously decreased to 55 ± 17 mL/g-VS/day, 53% that of control. The methane generation and organic removal were not recovered within 300 days after the CTC exposure was stopped. During the experiment, stability parameters such as pH, total ammonium nitrogen, the composition of methane and alkalinity were the same for both reactors. The concentration and composition of VFAs in the test reactor were different with those of control but not in inhibition level. Microbial profiles revealed that reduction in bacterial diversity and changed balance in microbial species resulted in the performance downgrade under the long-term antibiotic pressure. Since it is hard to recover from the inhibition and difficult to predict the inhibition using physicochemical indicators, continuous exposure to CTC needs to be avoided for the sustainable management of AD plants treating SM.
Collapse
Affiliation(s)
- Changmin Lee
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Munsol Ju
- Department of Living Environment Research, Korea Environment Institute, 370 Sicheong-daero, Sejong, Republic of Korea
| | - Jongkeun Lee
- Department of Environmental and Energy Engineering, College of Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do, Republic of Korea
| | - Seunghwan Kim
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jae Young Kim
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Li J, Li J, Zhang Y, Lu H. The responses of marine anammox bacteria-based microbiome to multi-antibiotic stress in mariculture wastewater treatment. WATER RESEARCH 2022; 224:119050. [PMID: 36084441 DOI: 10.1016/j.watres.2022.119050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Saline mariculture wastewater containing multi-antibiotics poses a challenge to anaerobic ammonia oxidation (anammox) process. Herein, the halophilic marine anammox bacteria (MAB)-based microbiome was used for treating mariculture wastewater (35‰ salinity) under multi-antibiotics (enrofloxacin + oxytetracycline + sulfamethoxazole, EOS) stress. And the main focus of this study lies in the response of MAB-based microbiome against multi-antibiotics stress. It is found that MAB-based microbiome shows stable community structure and contributes high nitrogen removal efficiency (>90%) even under high stress of EOS (up to 4 mg·L-1). The relative abundance of main functional genus Candidatus Scalindua, responsible for anammox, had little change while controlling the influent EOS concentration within 4 mg·L-1, whereas, significantly decreased to 2.23% at EOS concentration of as high as 24 mg·L-1. As an alternative, antibiotic resistance bacteria (ARB) species Rheinheimera dominated the microbial community of MAB-based biological reactor under extremely high EOS stress (e.g. 24 mg·L-1 in influent). The response mechanism of MAB-based microbiome consists of extracellular and intracellular defenses with dependence of EOS concentration. For example, while EOS within 4 mg·L-1 in this study, most of the antibiotics were retained by extracellular polymeric substances (EPS) via adsorption; If increasing the EOS concentration to 8 and even 24 mg·L-1, part of antibiotics could intrude into the cells and cause the intracellular accumulation of antibiotic resistance genes (ARGs) (total abundance up to 2.44 × 10-1 copies/16S rRNA) for EOS response. These new understandings will facilitate the practical implementation of MAB-based bioprocess for saline nitrogen- and antibiotics-laden wastewater treatment.
Collapse
Affiliation(s)
- Jialu Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yulong Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Atasoy M, Cetecioglu Z. The effects of pH on the production of volatile fatty acids and microbial dynamics in long-term reactor operation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115700. [PMID: 35982552 DOI: 10.1016/j.jenvman.2022.115700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Volatile fatty acids, intermediate products of anaerobic digestion, are one of the most promising biobased products. In this study, the effects of acidic (pH 5), neutral (without pH adjustment) and alkali (pH 10) pH on production efficiency and composition of volatile fatty acids (VFAs) and bacterial community profile were analyzed. The anaerobic sequencing batch reactors were fed cheese production wastewater as substrate and inoculated by anaerobic granular seed sludge. The results showed that acidic pH improved VFA production yield (0.92 at pH 5; 0.42 at pH 10 and 0.21 gCOD/gVS at neutral pH). Furthermore, propionic acid was dominant under both pH 10 (64 ± 20%) and neutral pH (72 ± 8%), whereas, acetic acid (23 ± 20%4), propionic acid (22 ± 3%), butyric acid (21 ± 4%) and valeric acid (15 ± 8%) were almost equally distributed under pH 5. Adaptation of bacterial community to different pH conditions might steer the acid profile: Bacteroidetes (50.07 ± 2%) under pH 10, Proteobacteria (40.74 ± 7%) under neutral pH and Firmicutes (47.64 ± 9%) under pH 5 were the most dominant phylum, respectively. Results indicated pH plays a significant role in VFA production, acid composition, and bacterial community structure. However, in order to gain a concrete understanding effects of pH, characterization of intracellular and extracellular metabolites with dynamics of the microbial community is required.
Collapse
Affiliation(s)
- Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden; UNLOCK, Wageningen University and Research, 6708 PB, the Netherlands.
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden; Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, 11421, Stockholm, Sweden
| |
Collapse
|
7
|
Yin F, Dong H, Zhang W, Wang S, Cao Q, Lian T. Antibiotic removal potential for low greenhouse gas emission process of anaerobic digestion (AD) producing volatile fatty acids (VFAs). BIORESOURCE TECHNOLOGY 2022; 360:127540. [PMID: 35777636 DOI: 10.1016/j.biortech.2022.127540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the antibiotic of sulfachloropyridazine (SCP) reduction and its effects on volatile fatty acids (VFAs) accumulation and microbial community structures during the process of anaerobic digestion (AD) producing VFA. Results showed that initial SCP concentrations have a positive correlation with reduction of SCP and accumulation of VFAs. The removal rates of SCP were 22.21%, 30.00%, 39.31% and 42.59% and the maximum production of VFAs were 3947, 6180, 6462 and 6032 mg/L for initial SCP concentrations of 25, 50, 75 and 100 mg/kg·TS, respectively. SCP only altered bacterial composition by hastening growth of specific bacterial taxa, but didn't increase bacterial α-diversity.
Collapse
Affiliation(s)
- Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 12 Southern Street of Zhongguancun, Beijing 100081, PR China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 12 Southern Street of Zhongguancun, Beijing 100081, PR China.
| | - Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 12 Southern Street of Zhongguancun, Beijing 100081, PR China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 12 Southern Street of Zhongguancun, Beijing 100081, PR China
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 12 Southern Street of Zhongguancun, Beijing 100081, PR China
| | - Tianjing Lian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 12 Southern Street of Zhongguancun, Beijing 100081, PR China
| |
Collapse
|
8
|
Perruchon C, Katsivelou E, Karas PA, Vassilakis S, Lithourgidis AA, Kotsopoulos TA, Sotiraki S, Vasileiadis S, Karpouzas DG. Following the route of veterinary antibiotics tiamulin and tilmicosin from livestock farms to agricultural soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128293. [PMID: 35066227 DOI: 10.1016/j.jhazmat.2022.128293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Veterinary antibiotics (VAs) are not completely metabolized in the animal body. Hence, when animal excretes are used as soil manures, VA residues are dispersed with potential implications for environmental quality and human health. We studied the persistence of tiamulin (TIA) and tilmicosin (TLM) along their route from pig administration to fecal excretion and to agricultural soils. TLM was detected in feces at levels folds higher (4.27-749.6 μg g-1) than TIA (0.55-5.99 μg g-1). Different administration regimes (feed or water) showed different excretion patterns and residual levels for TIA and TLM, respectively. TIA and TLM (0.5, 5 and 50 μg g-1) dissipated gradually from feces when stored at ambient conditions (DT50 5.85-35.9 and 23.5-49.8 days respectively), while they persisted longer during anaerobic digestion (DT90 >365 days) with biomethanation being adversely affected at VA levels > 5 μg g-1. When applied directly in soils, TLM was more persistent than TIA with soil fumigation extending their persistence suggesting microbial degradation, while soil application through feces increased their persistence, probably due to increased sorption to the fecal organic matter. The use of TIA- and TLM-contaminated feces as manures is expected to lead to VAs dispersal with unexplored consequences for the environment and human health.
Collapse
Affiliation(s)
- C Perruchon
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | - E Katsivelou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | - P A Karas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | - S Vassilakis
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece; University of Patras, Department of Pharmacy, Laboratory of Molecular Biology and Immunology, Patras, Greece
| | - A A Lithourgidis
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - T A Kotsopoulos
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - S Sotiraki
- Hellenic Agricultural Organization - Demeter, Veterinary Research Institute, Group of Parasitology, Thermi, 57100 Thessaloniki, Greece
| | - S Vasileiadis
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | - D G Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece.
| |
Collapse
|
9
|
Kong L, Shi X. Effect of antibiotic mixtures on the characteristics of soluble microbial products and microbial communities in upflow anaerobic sludge blanket. CHEMOSPHERE 2022; 292:133531. [PMID: 34995635 DOI: 10.1016/j.chemosphere.2022.133531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Two upflow anaerobic sludge blanket reactors (UASBs) were used to investigate the effects of three antibiotic mixtures (erythromycin, sulfamethoxazole, and tetracycline) on reactor performance, soluble microbial products (SMPs) composition and microbial community. One reactor (UASBantibiotics) was fed with antibiotic mixtures, whereas another reactor (UASBcontrol) was used as a control without the addition of antibiotic mixtures. Compared with those in UASBcontrol, UASBantibiotics show lower chemical oxygen demand removal efficiency and biogas content. A higher removal efficiency of antibiotic mixtures was obtained in first few stages in UASBantibiotics. The SMPs composition of effluent from the two reactors did not differ significantly, and the main components were protein-like substances, which produced higher fluorescence intensity in UASBantibiotics. Gas chromatography-mass spectrometry analysis revealed that the main compounds identified as SMPs (<580 Da) were alkanes, aromatics and esters, with only 20% similarity of SMPs between UASBantibiotics and UASBcontrol. Antibiotics had a significant effect on the microbial community structure. Notably, in UASBcontrol, hydrogenotrophic methanogens, key microorganisms in anaerobic digestion, had an obvious advantage at all stages compared with UASBantibiotics, whereas acetoclastic methanogen exhibited the opposite pattern. The above results demonstrated that antibiotic mixtures influenced the effluent quality during anaerobic treatment of synthetic wastewater, resulting in changes in the microbial community structure. This study clarified the effect of antibiotic mixtures on the operation of UASBs. It could contribute to identifying potential strategies for improving effluent quality in anaerobic treatment.
Collapse
Affiliation(s)
- Lingjiao Kong
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Xianyang Shi
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|
10
|
Metagenomic Analysis of the Long-Term Synergistic Effects of Antibiotics on the Anaerobic Digestion of Cattle Manure. ENERGIES 2022. [DOI: 10.3390/en15051920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The conversion of cattle manure into biogas in anaerobic digestion (AD) processes has been gaining attention in recent years. However, antibiotic consumption continues to increase worldwide, which is why antimicrobial concentrations can be expected to rise in cattle manure and in digestate. This study examined the long-term synergistic effects of antimicrobials on the anaerobic digestion of cattle manure. The prevalence of antibiotic resistance genes (ARGs) and changes in microbial biodiversity under exposure to the tested drugs was investigated using a metagenomic approach. Methane production was analyzed in lab-scale anaerobic bioreactors. Bacteroidetes, Firmicutes, and Actinobacteria were the most abundant bacteria in the samples. The domain Archaea was represented mainly by methanogenic genera Methanothrix and Methanosarcina and the order Methanomassiliicoccales. Exposure to antibiotics inhibited the growth and development of methanogenic microorganisms in the substrate. Antibiotics also influenced the abundance and prevalence of ARGs in samples. Seventeen types of ARGs were identified and classified. Genes encoding resistance to tetracyclines, macrolide–lincosamide–streptogramin antibiotics, and aminoglycosides, as well as multi-drug resistance genes, were most abundant. Antibiotics affected homoacetogenic bacteria and methanogens, and decreased the production of CH4. However, the antibiotic-induced decrease in CH4 production was minimized in the presence of highly drug-resistant microorganisms in AD bioreactors.
Collapse
|
11
|
Fu JJ, Huang DQ, Bai YH, Shen YY, Lin XZ, Huang Y, Ling YR, Fan NS, Jin RC. How anammox process resists the multi-antibiotic stress: Resistance gene accumulation and microbial community evolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150784. [PMID: 34624282 DOI: 10.1016/j.scitotenv.2021.150784] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The effects of multiple antibiotics on the anaerobic ammonia oxidation (anammox) process were investigated. The resistance of the anammox system to high-concentration antibiotics was also demonstrated through gradual acclimation experiments. Inhibition of the anammox process (R1) occurred when the concentrations of erythromycin (ERY), sulfamethoxazole (SMX) and tetracycline (TC) were 0.1, 5.0 and 0.1 mg L-1, respectively. The nitrogen removal efficiency (NRE) of R1 was reduced from 97.2% to 60.7% within 12 days and then recovered to 88.9 ± 9.5% when the nitrogen loading declined from 4.52 ± 0.69 to 2.11 ± 0.58 kg N m-3 d-1. Even when the concentrations of ERY, SMX and TC were as high as 1.0, 15.0 and 1.0 mg L-1, respectively, R1 maintained stable operation. The increases in the abundance of antibiotic resistance genes (ARGs) and in extracellular polymeric substances (EPS) content showed that the anammox process alleviated stress from multiple antibiotics mainly by producing ARGs and secreting EPS. The molecular docking simulation results illustrated the potential binding sites between ammonium transporter and different antibiotics. The upregulation of functional gene expression and the stable abundance of Candidatus Kuenenia in R1 compared with that in the control suggested that the R1 reactor generally maintained more stable long-term operation. This work provides a new understanding of the application of the anammox process to treat wastewater containing multiple antibiotics.
Collapse
Affiliation(s)
- Jin-Jin Fu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Dong-Qi Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu-Hui Bai
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang-Yang Shen
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia-Zhen Lin
- Teaching Center, Zhejiang Open University, Hangzhou 310012, China
| | - Yong Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Rong Ling
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
12
|
Bollinger E, Zubrod JP, Lai FY, Ahrens L, Filker S, Lorke A, Bundschuh M. Antibiotics as a silent driver of climate change? A case study investigating methane production in freshwater sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113025. [PMID: 34847437 DOI: 10.1016/j.ecoenv.2021.113025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2) and is inter alia produced in natural freshwater ecosystems. Given the rise in CH4 emissions from natural sources, researchers are investigating environmental factors and climate change feedbacks to explain this increment. Despite being omnipresent in freshwaters, knowledge on the influence of chemical stressors of anthropogenic origin (e.g., antibiotics) on methanogenesis is lacking. To address this knowledge gap, we incubated freshwater sediment under anaerobic conditions with a mixture of five antibiotics at four levels (from 0 to 5000 µg/L) for 42 days. Weekly measurements of CH4 and CO2 in the headspace, as well as their compound-specific δ13C, showed that the CH4 production rate was increased by up to 94% at 5000 µg/L and up to 29% at field-relevant concentrations (i.e., 50 µg/L). Metabarcoding of the archaeal and eubacterial 16S rRNA gene showed that effects of antibiotics on bacterial community level (i.e., species composition) may partially explain the observed differences in CH4 production rates. Despite the complications of transferring experimental CH4 production rates to realistic field conditions, the study indicated that chemical stressors contribute to the emissions of greenhouse gases by affecting the methanogenesis in freshwaters.
Collapse
Affiliation(s)
- E Bollinger
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Germany; Eusserthal Ecosystem Research Station, University of Koblenz-Landau, Germany
| | - J P Zubrod
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Germany; Eusserthal Ecosystem Research Station, University of Koblenz-Landau, Germany
| | - F Y Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Sweden
| | - L Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Sweden
| | - S Filker
- Department of Molecular Ecology, University of Technology Kaiserslautern, Germany
| | - A Lorke
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Germany
| | - M Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Germany; Eusserthal Ecosystem Research Station, University of Koblenz-Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Sweden.
| |
Collapse
|
13
|
Liu Y, Li X, Tan Z, Yang C. Inhibition of tetracycline on anaerobic digestion of swine wastewater. BIORESOURCE TECHNOLOGY 2021; 334:125253. [PMID: 33975141 DOI: 10.1016/j.biortech.2021.125253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 05/22/2023]
Abstract
The inhibition of tetracycline on anaerobic digestion of synthetic swine wastewater was examined with a semi-continuous operation for 103 days at a dosage ranging 2-8 mg/L. COD concentrations, VFA compositions in effluents and methane production were measured. The negative effects of tetracycline on the four individual steps of anaerobic digestion and its toxicity on anaerobic microorganisms were also evaluated. Results showed that continuous addition of 8 mg/L tetracycline in the bioreactor resulted in 73.28% reduction of daily methane production and made anaerobic digestion upset. Besides, methanogenesis was particularly inhibited compared to other three steps and the corresponding enzyme activities decreased by 66%. Furthermore, the polysaccharide contents in EPS increased after exposure to tetracycline, which could inhibit direct connections among microorganism. At last, long-term exposure to tetracycline inhibit anaerobic microbial activities and caused liberation of lactate dehydrogenase. The results would provide novel insights for anaerobic digestion of swine wastewater.
Collapse
Affiliation(s)
- Yiwei Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Zhao Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Maoming Engineering Research Center for Organic Pollution Control, Academy of Environmental and Resource Sciences, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| |
Collapse
|
14
|
Zhu W, Bu F, Xu J, Wang Y, Xie L. Influence of lincomycin on anaerobic digestion: Sludge type, biogas generation, methanogenic pathway and resistance mechanism. BIORESOURCE TECHNOLOGY 2021; 329:124913. [PMID: 33711716 DOI: 10.1016/j.biortech.2021.124913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the tolerance, defensive response and methanogenic pathways of anaerobic granular slugde and anaerobic suspended sludge (AGS and ASS) exposed to different LCM concentrations. AGS presented a higher tolerance to LCM stress, accompanied with 20.8 ± 2.6% enhancement in methane production at 1000 mg/L LCM, which was likely attributed to the less cell deaths and extracellular polymeric substances (EPSs) protection. In the acidification stage, acetate accumulation was stimulated and the activity of acetate kinase was promoted by LCM. In the methanogenesis stage, propionate and butyrate utilization for methane production were impaired after LCM addition. LCM also improved the activity of pyruvate-ferredoxin oxidoreductase and strengthened the process of hydrogenotrophic methanogenesis, likely by accelerating interspecies electron transfer mediated by hydrogen. ErmB and ermF were the dominate LCM resistance genes in AGS under LCM pressure conferring the resistance mechanism of ribosomal protection.
Collapse
Affiliation(s)
- Wenzhe Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Fan Bu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jun Xu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yipeng Wang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
15
|
The Effect of Antibiotics on Mesophilic Anaerobic Digestion Process of Cattle Manure. ENERGIES 2021. [DOI: 10.3390/en14041125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study explored the effect of eight antimicrobials on the efficiency of biogas production in the anaerobic digestion (AD) process of cattle manure. The microbiome involved in AD, presence and number of genes mcrA, MSC and MST specific for Archaea, and antibiotic resistance genes (ARGs) concentration in digestate (D) were examined. Supplementation of antibiotics to substrate significantly lowered biogas production. Amoxicillin caused a 75% decrease in CH4 production in comparison with the control samples. Enrofloxacin, tetracycline, oxytetracycline, and chlortetracycline reduced the amount of biogas produced by 36, 39, 45 and 53%, respectively. High-throughput sequencing of 16S rRNA results revealed that bacteria dominated the Archaea microorganisms in all samples. Moreover, antibiotics led to a decrease in the abundance of the genes mcrA, MSC, MST, and induced an increase in the number of tetracyclines resistance genes. Antibiotics decreased the efficiency of the AD process and lowered the quantity of CH4 obtained, while stimulating an increase in the number of ARGs in D. This work reveals how antimicrobials affect the cattle manure AD process and changes in microbial biodiversity, number of functional genes and ARGs in the digestate due to drugs exposure. It also, provides useful, practical information about the AD process.
Collapse
|
16
|
Xiao L, Wang Y, Lichtfouse E, Li Z, Kumar PS, Liu J, Feng D, Yang Q, Liu F. Effect of Antibiotics on the Microbial Efficiency of Anaerobic Digestion of Wastewater: A Review. Front Microbiol 2021; 11:611613. [PMID: 33584577 PMCID: PMC7875893 DOI: 10.3389/fmicb.2020.611613] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Recycling waste into new materials and energy is becoming a major challenge in the context of the future circular economy, calling for advanced methods of waste treatment. For instance, microbially-mediated anaerobic digestion is widely used for conversion of sewage sludge into biomethane, fertilizers and other products, yet the efficiency of microbial digestion is limited by the occurrence of antibiotics in sludges, originating from drug consumption for human and animal health. Here we present antibiotic levels in Chinese wastewater, then we review the effects of antibiotics on hydrolysis, acidogenesis and methanogenesis, with focus on macrolides, tetracyclines, β-lactams and antibiotic mixtures. We detail effects of antibiotics on fermentative bacteria and methanogenic archaea. Most results display adverse effects of antibiotics on anaerobic digestion, yet some antibiotics promote hydrolysis, acidogenesis and methanogenesis.
Collapse
Affiliation(s)
- Leilei Xiao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, China
| | - Yiping Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France.,State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhenkai Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Dawei Feng
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, China
| |
Collapse
|
17
|
Panja S, Sarkar D, Datta R. Removal of tetracycline and ciprofloxacin from wastewater by vetiver grass (Chrysopogon zizanioides (L.) Roberty) as a function of nutrient concentrations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34951-34965. [PMID: 32583104 DOI: 10.1007/s11356-020-09762-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics have been widely used not only for the treatment and prevention of human infectious diseases but also to promote growth and prevent infections in farm animals. These antibiotics enter the environment via wastewater treatment plants, most of which cannot remove them. In addition to antibiotics, nutrients such as nitrogen (N) and phosphorus (P) also create major environmental pollution problems in surface water. Previously, we reported that vetiver grass [Chrysopogon zizanioides (L.) Roberty] successfully removed antibiotics from secondary wastewater effluent. In this study, our objective was to evaluate the potential of vetiver grass to remove two antibiotics, ciprofloxacin (CIP) and tetracycline (TTC), from wastewater in the presence of high N and P. Our results show that vetiver grass significantly (p < 0.05) removed antibiotics (60-94% CIP and 89-100% TTC) and nutrients (78-89% N and 71-97% P) from the secondary wastewater effluent. The removal of antibiotics dropped with increasing nutrient concentrations. The removal efficiency was mainly affected by the presence of N rather than P in the secondary wastewater effluent. The presence of CIP induced more stress on vetiver grass compared to TTC. Vetiver also removed total organic carbon (48-73%) and chemical oxygen demand (73-82%), but their removal was also affected by the nutrient content in the secondary wastewater effluent.
Collapse
Affiliation(s)
- Saumik Panja
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
18
|
Lee C, Jeong S, Ju M, Kim JY. Fate of chlortetracycline antibiotics during anaerobic degradation of cattle manure. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121894. [PMID: 31896000 DOI: 10.1016/j.jhazmat.2019.121894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
As veterinary antibiotics (VAs) cause adverse effects on nature, anaerobic digestion (AD) of livestock manure has been receiving attention as an exposure route of VAs. This research evaluated the anaerobic degradation and phase distribution of chlortetracycline (CTC) with its epimer (4-epi-CTC, ECTC) and isomer (Iso-CTC, ICTC). In addition, whether CTC can inhibit not only AD of a substrate but also the degradation of CTC was assessed. Anaerobic batch assays were performed with cattle manure for 30 days by varying the initial concentration of CTC; 0, 10, 25, 50, and 100 mg/L. Approximately 25-43 % (w/w) of CTC was primarily degraded while 18-25 % and 20-26 % of CTC was transformed into ECTC and ICTC, respectively. Up to 88 % (w/w) of the remaining CTC, ECTC, and ICTC was present in the solid phase. In addition, CTC inhibited not only the mineralization of the cattle manure but also the degradation of CTC due to co-metabolism. In conclusion, significant quantities of CTC, ECTC, and ICTC can be exposed to nature by solid phase of anaerobic digestate. The inhibition on AD can reduce the degradation of CTC, ECTC, and ICTC during the AD.
Collapse
Affiliation(s)
- Changmin Lee
- Department of Civil and Environmental Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Sangjae Jeong
- Research Center for Climate Change and Energy, Hallym University, 1, Hallimdaehak-gil, Chuncheon, Republic of Korea
| | - Munsol Ju
- Department of Living Environment Research, Korea Environment Institute, 370, Sicheong-daero, Sejong, Republic of Korea
| | - Jae Young Kim
- Department of Civil and Environmental Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Gou M, Wang H, Li J, Sun Z, Nie Y, Nobu MK, Tang Y. Different inhibitory mechanisms of chlortetracycline and enrofloxacin on mesophilic anaerobic degradation of propionate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1406-1416. [PMID: 31745805 DOI: 10.1007/s11356-019-06705-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
In anaerobic digestion, propionate is a key intermediate whose degradation is thermodynamically challenging and accumulation is detrimental to the process. Many wastewater streams contain antibiotics due to its globally increasing use, and these compounds can inhibit methane production. However, the effect of antibiotics on propionate degradation in anaerobic digestion remains unclear. In this study, the influence of two antibiotics (chlortetracycline [CTC] and enrofloxacin [EFX]) on biogas production and mesophilic propionate-degrading microbial community was investigated. CTC strongly repressed propionate oxidation, acetate utilization, and methane production, while EFX only inhibited propionate oxidation and methane production to a lesser extent. Microbial community analyses showed that syntrophic propionate-oxidizing bacteria (SPOB) Syntrophobacter had strong tolerance to both CTC and EFX. CTC inhibition mainly acted on the activity of acetate-oxidizing bacteria (Mesotoga, Geovibrio, Tepidanaerobacter, unclassified Bacteroidetes, and unclassified Clostridia) and acetoclastic methanogen, while EFX inhibition applied to the SPOB Smithella and acetoclastic methanogen. Network analysis further indicated that more complicated correlation among bacterial genera occurred in CTC treatments. These results suggested that CTC and EFX inhibited propionate degradation via different mechanisms, which was the result of joint action by antibiotics and microbial interactions.
Collapse
Affiliation(s)
- Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - HuiZhong Wang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Jie Li
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - ZhaoYong Sun
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Yong Nie
- College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Masaru Konishi Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - YueQin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
20
|
Yang G, Wang J, Zhang H, Jia H, Zhang Y, Fang H, Gao F, Li J. Fluctuation of electrode potential based on molecular regulation induced diversity of electrogenesis behavior in multiple equilibrium microbial fuel cell. CHEMOSPHERE 2019; 237:124453. [PMID: 31394439 DOI: 10.1016/j.chemosphere.2019.124453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
In this study, the electrogenesis behaviors and mechanisms in multiple equilibrium microbial fuel cells (MEMFCs) which volatile fatty acids as multiple electron donors are investigated. The electrochemical property and energy recovery can be enhanced in propionic acid dominant systems (HPr-D-MEMFCs) which compares to butyric acid dominant systems (HBu-D-MEMFCs), increase power density from 0.04 to 0.43 W/m2 and energy recovery efficiency from 2.07 to 5.44%, respectively. With isotope experiment analysis, the fluctuation of electrode potentials induce diverse electrogenesis pathways that high utilization efficiencies and bioconversion efficiency of hybrid acids observed in HPr-D-MEMFCs which different with HAc-D-MEMFCs and HBu-D-MEMFCs. In addition, the electrochemical and microbial community variation of MEMFCs reveal that the direct interspecies electron transfer stimulated with higher electric double layer capacitance, and activities of exoelectrogens enhanced with high relative abundance in HPr-D-MEMFCs. The findings present an intensive study in electrogenesis, providing a promising way to promote energy recovery and further extend its application value.
Collapse
Affiliation(s)
- Guang Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Hongwei Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Yang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Hongyan Fang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Fei Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Juan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| |
Collapse
|
21
|
Reyes-Contreras C, Leiva AM, Vidal G. Evaluation of triclosan toxic effects on the methanogenic activity. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
22
|
Zhang X, Gu J, Wang X, Zhang K, Yin Y, Zhang R, Zhang S. Effects of tylosin, ciprofloxacin, and sulfadimidine on mcrA gene abundance and the methanogen community during anaerobic digestion of cattle manure. CHEMOSPHERE 2019; 221:81-88. [PMID: 30634152 DOI: 10.1016/j.chemosphere.2018.12.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
This study evaluated how tylosin (TYL), ciprofloxacin (CIP), and sulfadimidine (SM2) affected biogas and CH4 production during anaerobic digestion (AD) via their effects on the key genes related to methane production and the methanogenic community. The results showed that TYL, CIP, and SM2 reduced the production of methane during AD by 7.5%, 21.9%, and 16.0%, respectively. After AD for five days, CIP strongly inhibited the mcrA gene, where its abundance was 49% less than that in the control. TYL and SM2 decreased the abundances of Spirochaeta and Fibrobacteres during AD. High-throughput sequencing identified 10 methanogen genera, where Methanocorpusculum, Methanobrevibacter, and Methanosarcina accounted for 99.1% of the total archaeal reads. TYL and SM2 increased the efficiency of the acetoclastic methanogen pathway (Methanosarcina) by 29.04% and 52.79%, respectively. Redundancy analysis showed that Spirochaeta, Fibrobacteres, and Methanosarcina had positive correlations with CH4 and mcrA. We found that 30 mg kg-1 CIP had a strong inhibitory effect on methane production by influencing the abundances of Methanobrevibacter and Methanosarcina during AD.
Collapse
Affiliation(s)
- Xin Zhang
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Kaiyu Zhang
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yanan Yin
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ranran Zhang
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sheqi Zhang
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
Cheng DL, Ngo HH, Guo WS, Chang SW, Nguyen DD, Kumar SM, Du B, Wei Q, Wei D. Problematic effects of antibiotics on anaerobic treatment of swine wastewater. BIORESOURCE TECHNOLOGY 2018; 263:642-653. [PMID: 29759819 DOI: 10.1016/j.biortech.2018.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Swine wastewaters with high levels of organic pollutants and antibiotics have become serious environmental concerns. Anaerobic technology is a feasible option for swine wastewater treatment due to its advantage in low costs and bioenergy production. However, antibiotics in swine wastewater have problematic effects on micro-organisms, and the stability and performance of anaerobic processes. Thus, this paper critically reviews impacts of antibiotics on pH, COD removal efficiencies, biogas and methane productions as well as the accumulation of volatile fatty acids (VFAs) in the anaerobic processes. Meanwhile, impacts on the structure of bacteria and methanogens in anaerobic processes are also discussed comprehensively. Furthermore, to better understand the effect of antibiotics on anaerobic processes, detailed information about antimicrobial mechanisms of antibiotics and microbial functions in anaerobic processes is also summarized. Future research on deeper knowledge of the effect of antibiotics on anaerobic processes are suggested to reduce their adverse environmental impacts.
Collapse
Affiliation(s)
- D L Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - H H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| | - W S Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - S W Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - D D Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - S Mathava Kumar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600036, India
| | - B Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Q Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - D Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
24
|
Hong B, Ba Y, Niu L, Lou F, Zhang Z, Liu H, Pan Y, Zhao Y. A Comprehensive Research on Antibiotic Resistance Genes in Microbiota of Aquatic Animals. Front Microbiol 2018; 9:1617. [PMID: 30093887 PMCID: PMC6070771 DOI: 10.3389/fmicb.2018.01617] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 11/13/2022] Open
Abstract
The occurrence of antibiotic resistance genes (ARGs) as emerging contaminants is of continued concern for human health. Antibiotics used in aquaculture have promoted the evolution and spread of ARGs. This study aimed to investigate the occurrence of 37 ARGs conferring resistance to six classes of antibiotics in 94 aquatic animals from five cities in southeast coast of China. The results showed that floR, sulII, sulI, strB, strA, aadA, and tetS were identified as the prominent ARGs with the high detection frequencies ranging from 30.9 to 51.1% in total samples. Then relative expression amount of seven prominent ARGs quantified by qPCR, ranging from 0.003 to 0.065. The tetS was the most abundant ARG among the seven ARGs. Though aadA was the second highest detection frequency of ARGs, it was the lowest expression amount ARG. The occurrences and abundances of ARGs in freshwater aquatic animals were greater than those in marine, reflecting the discrepancy of cultivation pattern between the freshwater and marine aquaculture. Shanghai was considered as the most prevalent site with 16 ARGs, and Ningbo merely contained 9 ARGs without of β-lactam ARGs and quinolone ARGs, showing variations of ARGs with geographical location. Eight kinds of sulfonamides and one chloramphenicol residues were further measured in samples from Shanghai. Interestingly, no target antibiotics were found, but sulfonamides resistance genes (sulI, sulII) and chloramphenicol resistance genes (floR) persisted at aquatic animals in the absence of selection pressure. Our research firstly shows comprehensive information on the ARGs in skin microbiota of aquatic animals, which could provide useful information and a new insight for better understanding on the ARGs dissemination in aquatic animals.
Collapse
Affiliation(s)
- Bin Hong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongbing Ba
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Li Niu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Fei Lou
- Agri-Products Quality and Safety Testing Center of Shanghai, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
25
|
Dynamics of Archaeal and Bacterial Communities in Response to Variations of Hydraulic Retention Time in an Integrated Anaerobic Fluidized-Bed Membrane Bioreactor Treating Benzothiazole Wastewater. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2018; 2018:9210534. [PMID: 29853797 PMCID: PMC5949192 DOI: 10.1155/2018/9210534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/05/2018] [Indexed: 11/28/2022]
Abstract
An integrated anaerobic fluidized-bed membrane bioreactor (IAFMBR) was investigated to treat synthetic high-strength benzothiazole wastewater (50 mg/L) at a hydraulic retention time (HRT) of 24, 18, and 12 h. The chemical oxygen demand (COD) removal efficiency (from 93.6% to 90.9%), the methane percentage (from 70.9% to 69.27%), and the methane yield (from 0.309 m3 CH4/kg·CODremoved to 0.316 m3 CH4/kg·CODremoved) were not affected by decreasing HRTs. However, it had an adverse effect on membrane fouling (decreasing service period from 5.3 d to 3.2 d) and benzothiazole removal efficiency (reducing it from 97.5% to 82.3%). Three sludge samples that were collected on day 185, day 240, and day 297 were analyzed using an Illumina® MiSeq platform. It is striking that the dominant genus of archaea was always Methanosaeta despite of HRTs. The proportions of Methanosaeta were 80.6% (HRT 24), 91.9% (HRT 18), and 91.2% (HRT 12). The dominant bacterial genera were Clostridium in proportions of 23.9% (HRT 24), 16.4% (HRT 18), and 15.3% (HRT 12), respectively.
Collapse
|
26
|
Abstract
Broad and increasing interest in sustainable wastewater treatment has led a paradigm shift towards more efficient means of treatment system operation. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. Anaerobic membrane bioreactors (AnMBRs) have been identified as an attractive option for producing high quality and nutrient-rich effluents during the treatment of municipal wastewaters. The introduction of direct effluent reuse does, however, raise several safety concerns related to its application. Among those concerns are the microbial threats associated with pathogenic bacteria as well as the emerging issues associated with antibiotic-resistant bacteria and the potential for proliferation of antibiotic resistance genes. Although there is substantial research evaluating these topics from the perspectives of anaerobic digestion and membrane bioreactors separately, little is known regarding how AnMBR systems can contribute to pathogen and antibiotic resistance removal and propagation in wastewater effluents. The aim of this review is to provide a current assessment of existing literature on anaerobic and membrane-based treatment systems as they relate to these microbial safety issues and utilize this assessment to identify areas of potential future research to evaluate the suitability of AnMBRs for direct effluent reuse.
Collapse
|
27
|
Li Y, Hu Q, Chen CH, Wang XL, Gao DW. Performance and microbial community structure in an integrated anaerobic fluidized-bed membrane bioreactor treating synthetic benzothiazole contaminated wastewater. BIORESOURCE TECHNOLOGY 2017; 236:1-10. [PMID: 28390271 DOI: 10.1016/j.biortech.2017.03.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the impact of benzothiazole on the performance and microbial community structures in an integrated anaerobic fluidized-bed membrane bioreactor fed with synthetic benzothiazole wastewater (with gradually increasing doses of benzothiazole (1-50mg/L)). The addition of benzothiazole had an adverse effect on volatile fatty acids accumulation (from 10.86mg/L to 57.83mg/L), and membrane fouling (service period from 5.9d to 5.3d). The removal efficiency of benzothiazole was 96.0%. Biodegradation was the major benzothiazole removal route and the biodegradation efficiency obviously improved from 25.7% to 98.3% after adaptation. Sludge 1 (collected on day 58 without benzothiazole) and sludge 2 (collected on day 185 with 50mg/L benzothiazole) were analyzed using the Illumina®MiSeq platform. The most abundant genera were Trichococcus (43.1% in sludge 1) and Clostridium sensu stricto (23.9% in sludge 2). The dominant genus of archaea was Methanosaeta (90.3% in sludge 1 and 80.8% in sludge 2).
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qi Hu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun-Hong Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-Long Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Da-Wen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
28
|
Hu Z, Sun P, Hu Z, Han J, Wang R, Jiao L, Yang P. Short-term performance of enhanced biological phosphorus removal (EBPR) system exposed to erythromycin (ERY) and oxytetracycline (OTC). BIORESOURCE TECHNOLOGY 2016; 221:15-25. [PMID: 27631889 DOI: 10.1016/j.biortech.2016.08.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/21/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
The effects of Erythromycin (ERY) and oxytetracycline (OTC), including individual and combinative effect, on enhanced biological phosphorus removal (EBPR) system within a short-term (24h) were evaluated in this study. Results showed that the P-removal efficiency decreased to 34.6% and 0.0% under the effect of ERY (10mg/L) and OTC (10mg/L) for 24h. OTC concentration higher than 5mg/L was sufficient to cause serious adverse impact on the EBPR performance. While the performance of EBPR system will be impacted by ERY above 10mg/L. OTC, due to its special antibacterial action to the gram-negative bacteria which most PAOs belong to, has more serious negative effect on the EBPR performance than ERY does. Moreover, in the combined antibiotics test, neither synergistic nor antagonistic effect was detected between ERY and OTC. Finally, ERY (10mg/L) and OTC (10mg/L) could inhibit the microorganisms' activity, while couldn't induce serious microorganisms death within 24h.
Collapse
Affiliation(s)
- Zhetai Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Peide Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Zhirong Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; GL Environment Inc, Hamilton, Canada
| | - Jingyi Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ruyi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Liang Jiao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | | |
Collapse
|
29
|
Carey DE, McNamara PJ. Altered antibiotic tolerance in anaerobic digesters acclimated to triclosan or triclocarban. CHEMOSPHERE 2016; 163:22-26. [PMID: 27517129 DOI: 10.1016/j.chemosphere.2016.07.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/14/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Bench-scale anaerobic digesters were amended to elevated steady-state concentrations of triclosan (850 mg/kg) and triclocarban (150 mg/kg) using a synthetic feed. After more than 9 solids retention time (SRT) values of acclimatization, biomass from each digester (and a control digester that received no antimicrobials) was used to assess the toxicity of three antibiotics. Methane production rate was measured as a surrogate for activity in microcosms that received doses of antibiotics ranging from no-antibiotic to inhibitory concentrations. Biomass amended with triclocarban was more sensitive to tetracycline compared to the control indicating synergistic inhibitory effects between this antibiotic and triclocarban. In contrast, biomass amended with triclosan was able to tolerate statistically higher levels of ciprofloxacin indicating that triclosan can induce functional resistance to ciprofloxacin in an anaerobic digester community.
Collapse
Affiliation(s)
- Daniel E Carey
- Department of Civil, Construction and Environmental Engineering, P.O. Box 1881, Marquette University, Milwaukee, WI, USA
| | - Patrick J McNamara
- Department of Civil, Construction and Environmental Engineering, P.O. Box 1881, Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
30
|
Hou G, Hao X, Zhang R, Wang J, Liu R, Liu C. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation. BIORESOURCE TECHNOLOGY 2016; 212:20-25. [PMID: 27070285 DOI: 10.1016/j.biortech.2016.03.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
Many research indicate antibiotics show adverse effect on methane fermentation, while few research focus on their effect on hydrogen fermentation. The present study aimed to gain insight of the effect of antibiotics on hydrogen fermentation with waste sludge and corn straw as substrate. For this purpose, tetracycline, as a model, was investigated with regard to tetracycline removal, hydrogen production, interaction with extracellular polymeric substances (EPSs) of substrate and volatile fatty acids (VFAs) on concentration and composition. Results show that tetracycline could be removed efficiently by hydrogen fermentation, and relative low-dose tetracycline (200mg/l) exposure affects little on hydrogen production. While tetracycline exposure could change hydrogen fermentation from butyric acid-type to propionic acid-type depending on tetracycline level. Based upon three-dimensional excitation-emission matrix fluorescence spectroscopy and UV-vis tetracycline changed the component and content of EPSs, and static quenching was the main mechanism between EPSs with tetracycline.
Collapse
Affiliation(s)
- Guangying Hou
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xiaoyan Hao
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Rui Zhang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Jing Wang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
31
|
Biogas generation in anaerobic wastewater treatment under tetracycline antibiotic pressure. Sci Rep 2016; 6:28336. [PMID: 27341657 PMCID: PMC4920035 DOI: 10.1038/srep28336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/01/2016] [Indexed: 11/22/2022] Open
Abstract
The effect of tetracycline (TC) antibiotic on biogas generation in anaerobic wastewater treatment was studied. A lab-scale Anaerobic Baffled Reactor (ABR) with three compartments was used. The reactor was operated with synthetic wastewater in the absence of TC and in the presence of 250 μg/L TC for 90 days, respectively. The removal rate of TC, volatile fatty acids (VFAs), biogas compositions (hydrogen (H2), methane (CH4), carbon dioxide (CO2)), and total biogas production in each compartment were monitored in the two operational conditions. Results showed that the removal rate of TC was 14.97–67.97% in the reactor. The presence of TC had a large negative effect on CH4 and CO2 generation, but appeared to have a positive effect on H2 production and VFAs accumulation. This response indicated that the methanogenesis process was sensitive to TC presence, but the acidogenesis process was insensitive. This suggested that the presence of TC had less influence on the degradation of organic matter but had a strong influence on biogas generation. Additionally, the decrease of CH4 and CO2 generation and the increase of H2 and VFAs accumulation suggest a promising strategy to help alleviate global warming and improve resource recovery in an environmentally friendly approach.
Collapse
|
32
|
Aydin S, Ince B, Ince O. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2016; 207:332-338. [PMID: 26897411 DOI: 10.1016/j.biortech.2016.01.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
This study evaluated the link between anaerobic bacterial diversity and, the biodegradation of antibiotic combinations and assessed how amending antibiotic combination and increasing concentration of antibiotics in a stepwise fashion influences the development of resistance genes in anaerobic reactors. The biodegradation, sorption and occurrence of the known antibiotic resistance genes (ARGs) of erythromycin and tetracycline were investigated using the processes of UV-HPLC and qPCR analysis respectively. Ion Torrent sequencing was used to detect microbial community changes in response to the addition of antibiotics. The overall results indicated that changes in the structure of a microbial community lead to changes in biodegradation capacity, sorption of antibiotics combinations and occurrence of ARGs. The enhanced biodegradation efficiency appeared to generate variations in the structure of the bacterial community. The results suggested that controlling the ultimate Gram-negative bacterial community, especially Acinetobacter-related populations, may promote the successful biodegradation of antibiotic combinations and reduce the occurrence of ARGs.
Collapse
Affiliation(s)
- Sevcan Aydin
- Istanbul Technical University, Environmental Engineering Department, Maslak, Istanbul, Turkey.
| | - Bahar Ince
- Bogazici University, Institute of Environmental Sciences, Bebek, Istanbul, Turkey
| | - Orhan Ince
- Istanbul Technical University, Environmental Engineering Department, Maslak, Istanbul, Turkey
| |
Collapse
|
33
|
Popp D, Harms H, Sträuber H. The alkaloid gramine in the anaerobic digestion process-inhibition and adaptation of the methanogenic community. Appl Microbiol Biotechnol 2016; 100:7311-22. [PMID: 27138201 DOI: 10.1007/s00253-016-7571-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 01/04/2023]
Abstract
As many plant secondary metabolites have antimicrobial activity, microorganisms of the anaerobic digestion process might be affected when plant material rich in these compounds is digested. Hitherto, the effects of plant secondary metabolites on the anaerobic digestion process are poorly investigated. In this study, the alkaloid gramine, a constituent of reed canary grass, was added daily to a continuous co-digestion of grass silage and cow manure. A transient decrease of the methane yield by 17 % and a subsequent recovery was observed, but no effect on other process parameters. When gramine was infrequently spiked in higher amounts, the observed inhibitory effect was even more pronounced including a 53 % decrease of the methane yield and an increase of acetic acid concentrations up to 96 mM. However, the process recovered and the process parameters were finally at initial values (methane yield around 255 LN CH4 per gram volatile solids of substrate and acetic acid concentration lower than 2 mM). The bacterial communities of the reactors remained stable upon gramine addition. In contrast, the methanogenic community changed from a well-balanced mixture of five phylotypes towards a strong dominance of Methanosarcina (more than two thirds of the methanogenic community) while Methanosaeta disappeared. Batch inhibition assays revealed that acetic acid was only converted to methane via acetoclastic methanogenesis which was more strongly affected by gramine than hydrogenotrophic methanogenesis and acetogenesis. Hence, when acetoclastic methanogenesis is the dominant pathway, a shift of the methanogenic community is necessary to digest gramine-rich plant material.
Collapse
Affiliation(s)
- Denny Popp
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Hauke Harms
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
34
|
Degradation of oxytetracycline and its impacts on biogas-producing microbial community structure. Bioprocess Biosyst Eng 2016; 39:1051-60. [DOI: 10.1007/s00449-016-1583-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
|
35
|
Taşkan E. Effect of Tetracycline Antibiotics on Performance and Microbial Community of Algal Photo-Bioreactor. Appl Biochem Biotechnol 2016; 179:947-58. [DOI: 10.1007/s12010-016-2042-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
|
36
|
Çelebi H, Gök O, Sponza DT. Removals of non-analogous OTC and BaP in AMCBR with and without primary substrate. ENVIRONMENTAL TECHNOLOGY 2016; 37:1768-1781. [PMID: 26670775 DOI: 10.1080/09593330.2015.1131752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Anaerobic biodegradation of mixed non-analogous two substrates was studied in a binary system with and without the primary substrate using an anaerobic multichamber bed (AMCBR). In the binary mixture, the biodegradation of less-degradable oxytetracycline (OTC) was restarted in the presence of more degradable benzo[a]pyrene (BaP) in the initial runs of the AMCBR, but enhanced biodegradation of the more recalcitrant OTC occurs in the later runs of the AMCBR due to enhanced biomass growth on dual substrates without the primary carbon source. The biodegradation yields of the OTC, BaP were discussed with sole-substrate systems and with the dual substrate system in the presence of the primary substrate. The maximum OTC and BaP yields were 93% in Run 3 with the primary substrate, while the maximum BaP and OTC yields were 95%, 98% in Run 3 without the primary substrate. A dual form of the Monod was found to adequately predict the substrate interactions in the binary mixture of OTC and BaP using only the parameters derived from batch experiments. At low BaP (4 mg L(-1)) and OTC (40 mg L(-1)) concentrations, a non-competitive inhibition does not affect the binding of the substrate and so the K(s) were was not affected while the µ(max) was lowered. At high BaP (10 mg L(-1)) and OTC (100 mg L(-1)) concentrations, the BaP and OTC were biodegraded according to competitive inhibition with increased K(s) while µ(max) was not affected. BaP and OTC were biodegraded according to Haldane at high concentrations (>10 mg L(-1) for BaP, 100 mg L(-1) OTC) where they were used as the sole substrate.
Collapse
Affiliation(s)
- Hakan Çelebi
- a Department of Environmental Engineering , Aksaray University , Aksaray , Turkey
| | - Oğuzhan Gök
- a Department of Environmental Engineering , Aksaray University , Aksaray , Turkey
| | - Delia Teresa Sponza
- b Department of Environmental Engineering , Dokuz Eylul University , Izmir , Turkey
| |
Collapse
|
37
|
Aydin S, Ince B, Ince O. Development of antibiotic resistance genes in microbial communities during long-term operation of anaerobic reactors in the treatment of pharmaceutical wastewater. WATER RESEARCH 2015; 83:337-44. [PMID: 26188597 DOI: 10.1016/j.watres.2015.07.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 05/22/2023]
Abstract
Biological treatment processes offer the ideal conditions in which a high diversity of microorganisms can grow and develop. The wastewater produced during these processes is contaminated with antibiotics and, as such, they provide the ideal setting for the acquisition and proliferation of antibiotic resistance genes (ARGs). This research investigated the occurrence and variation in the ARGs found during the one-year operation of the anaerobic sequencing batch reactors (SBRs) used to treat pharmaceutical wastewater that contained combinations of sulfamethoxazole-tetracycline-erythromycin (STE) and sulfamethoxazole-tetracycline (ST). The existence of eighteen ARGs encoding resistance to sulfamethoxazole (sul1, sul2, sul3), erythromycin (ermA, ermF, ermB, msrA, ereA), tetracycline (tetA, tetB, tetC, tetD, tetE, tetM, tetS, tetQ, tetW, tetX) and class Ι integron gene (intΙ 1) in the STE and ST reactors was investigated by quantitative real-time PCR. Due to the limited availability of primers to detect ARGs, Illumina sequencing was also performed on the sludge and effluent of the STE and ST reactors. Although there was good reactor performance in the SBRs, which corresponds to min 80% COD removal efficiency, tetA, tetB, sul1, sul2 and ermB genes were among those ARGs detected in the effluent from STE and ST reactors. A comparison of the ARGs acquired from the STE and ST reactors revealed that the effluent from the STE reactor had a higher number of ARGs than that from the ST reactor; this could be due to the synergistic effects of erythromycin. According to the expression of genes results, microorganisms achieve tetracycline and erythromycin resistance through a combination of three mechanisms: efflux pumping protein, modification of the antibiotic target and modifying enzymes. There was also a significant association between the presence of the class 1 integron and sulfamethoxazole resistance genes.
Collapse
Affiliation(s)
- Sevcan Aydin
- Istanbul Technical University, Environmental Engineering Department, Maslak, Istanbul, Turkey.
| | - Bahar Ince
- Bogazici University, Institutes of Environmental Sciences, Bebek, Istanbul, Turkey
| | - Orhan Ince
- Istanbul Technical University, Environmental Engineering Department, Maslak, Istanbul, Turkey
| |
Collapse
|
38
|
Aydin S, Shahi A, Ozbayram EG, Ince B, Ince O. Use of PCR-DGGE based molecular methods to assessment of microbial diversity during anaerobic treatment of antibiotic combinations. BIORESOURCE TECHNOLOGY 2015; 192:735-740. [PMID: 26101963 DOI: 10.1016/j.biortech.2015.05.086] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/22/2015] [Accepted: 05/24/2015] [Indexed: 06/04/2023]
Abstract
As it is currently often not know how anaerobic bioreactors, e.g. for biogas production, react if the substrate is contaminated by toxic compounds like antibiotics. This study evaluated how anaerobic sequencing batch reactors were affected by amendments of different antibiotics and stepwise increasing concentrations. The compositions of microbial community were determined in the seed sludge using 16S rRNA gene clone libraries and PCR-DGGE analyses were used for the detection of microbial community changes upon antibiotics additions. According to PCR-DGGE results, the syntrophic interaction of acetogens and methanogens is critical to the performance of the reactors. Failure to maintain the stability of these microorganisms resulted in a decrease in the performance and stability of the anaerobic reactors. Assessment of DGGE data is also useful for suggesting the potential to control ultimate microbial community structure, especially derived from Gram-negative bacteria, through bioaugmentation to successful for antibiotic biodegradation.
Collapse
Affiliation(s)
- Sevcan Aydin
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey.
| | - Aiyoub Shahi
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - E Gozde Ozbayram
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Bahar Ince
- Institutes of Environmental Sciences, Bogazici University, Bebek, Istanbul, Turkey
| | - Orhan Ince
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
39
|
Aydin S, Ince B, Ince O. Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors. WATER RESEARCH 2015; 76:88-98. [PMID: 25792437 DOI: 10.1016/j.watres.2015.02.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
This study evaluated the long-term effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotic combinations on the microbial community and examined the ways in which these antimicrobials impact the performance of anaerobic reactors. Quantitative real-time PCR was used to determine the effect that different antibiotic combinations had on the total and active Bacteria, Archae and Methanogenic Archae. Three primer sets that targeted metabolic genes encoding formylterahydrofolate synthetase, methyl-coenzyme M reductase and acetyl-coA synthetase were also used to determine the inhibition level on the mRNA expression of the homoacetogens, methanogens and specifically acetoclastic methanogens, respectively. These microorganisms play a vital role in the anaerobic degradation of organic waste and targeting these gene expressions offers operators or someone at a treatment plant the potential to control and the improve the anaerobic system. The results of the investigation revealed that acetogens have a competitive advantage over Archaea in the presence of ETS and ST combinations. Although the efficiency with which methane production takes place and the quantification of microbial populations in both the ETS and ST reactors decreased as antibiotic concentrations increased, the ETS batch reactor performed better than the ST batch reactor. According to the expression of genes results, the syntrophic interaction of acetogens and methanogens is critical to the performance of the ETS and ST reactors. Failure to maintain the stability of these microorganisms resulted in a decrease in the performance and stability of the anaerobic reactors.
Collapse
Affiliation(s)
- Sevcan Aydin
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey.
| | - Bahar Ince
- Institutes of Environmental Sciences, Bogazici University, Bebek, Istanbul, Turkey
| | - Orhan Ince
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
40
|
Aydin S, Ince B, Cetecioglu Z, Arikan O, Ozbayram EG, Shahi A, Ince O. Combined effect of erythromycin, tetracycline and sulfamethoxazole on performance of anaerobic sequencing batch reactors. BIORESOURCE TECHNOLOGY 2015; 186:207-214. [PMID: 25817031 DOI: 10.1016/j.biortech.2015.03.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/03/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
The combined effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotics on the performance of anaerobic sequencing batch reactors were studied. A control reactor was fed with wastewater that was free of antibiotics, while two additional reactors were fed with ETS and ST. The way in which the ETS and ST mixtures impact COD removal, VFA production, antibiotic degradation, biogas production and composition were investigated. The effects of the ETS mixtures were different from the ST mixtures, erythromycin can have an antagonistic effect on sulfamethoxazole and tetracycline. The anaerobic pre-treatment of these antibiotics can represent a suitable alternative to the use of chemical treatments for concentrations at 10 mg/L of S and 1 mg/L of T; 2 mg/L of E, 2 mg/L of T and 20 mg/L of S for the ST and ETS reactors respectively, which corresponds to min 70% COD removal efficiency.
Collapse
Affiliation(s)
- Sevcan Aydin
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey.
| | - Bahar Ince
- Institutes of Environmental Sciences, Bogazici University, Bebek, Istanbul, Turkey
| | - Zeynep Cetecioglu
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Osman Arikan
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - E Gozde Ozbayram
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Aiyoub Shahi
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Orhan Ince
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
41
|
Wang S, Gao M, Wang Z, She Z, Jin C, Zhao Y, Guo L, Chang Q. Effect of oxytetracycline on performance and microbial community of an anoxic–aerobic sequencing batch reactor treating mariculture wastewater. RSC Adv 2015. [DOI: 10.1039/c5ra06302g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The DGGE profile illustrates that the microbial communities of activated sludge exhibit obvious variations under OTC stress.
Collapse
Affiliation(s)
- Sen Wang
- Key Lab of Marine Environment and Ecology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Zhe Wang
- Key Lab of Marine Environment and Ecology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Qingbo Chang
- College of Environmental Science and Engineering
- Ocean University of China
- Qingdao 266100
- China
| |
Collapse
|
42
|
Aydın S, Ince B, Ince O. The joint acute effect of tetracycline, erythromycin and sulfamethoxazole on acetoclastic methanogens. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:1128-1135. [PMID: 25909721 DOI: 10.2166/wst.2015.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we aimed to develop an understanding of the triple effects of sulfamethoxazole-erythromycin-tetracycline (ETS) and the dual effects of sulfamethoxazole-tetracycline (ST), erythromycin-sulfamethoxazole (ES) and erythromycin-tetracycline (ET) on the anaerobic treatment of pharmaceutical industry wastewater throughout a year of operation. Concentrations of the antibiotics in the influent were gradually increased until the metabolic collapse of the anaerobic sequencing batch reactors (SBRs), which corresponded to ETS (40 + 3 + 3 mg/L) and ST (25 + 2.5 mg/L), ET (4 + 4 mg/L) and ES (3 + 40 mg/L). Acetate accumulation in the anaerobic SBRs, acetoclastic activity of the anaerobic sludge taken from different antibiotic feeding stages and also expression of acetyl-coA synthetase from the acetoclastic methanogenic pathway on the mRNA level were assessed. The results indicated that, while acetate accumulation and decrease of acetoclastic activity were observed after stage 3 in the ST and ES reactors, and stage 7 in the ETS and ET reactors, the expression of acetyl-coA synthetase was mostly decreased in the last stages in all SBRs, in which antibiotic mixture feeding was terminated. It might be speculated that acetoclastic methanogens have an important role in acetate degradation by expressing acetyl-coA synthetase.
Collapse
Affiliation(s)
- Sevcan Aydın
- Environmental Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey E-mail:
| | - Bahar Ince
- Institute of Environmental Sciences, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Orhan Ince
- Environmental Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey E-mail:
| |
Collapse
|
43
|
Aydın S, Ince B, Ince O. Inhibitory effect of erythromycin, tetracycline and sulfamethoxazole antibiotics on anaerobic treatment of a pharmaceutical wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:1620-1628. [PMID: 26038926 DOI: 10.2166/wst.2015.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pharmaceuticals enter ecosystems, which causes changes to microbial community structure and development of resistant genes. Anaerobic treatments can be an alternative application for treatment of pharmaceutical wastewaters, which has high organic content. This study aims to develop an understanding of the effects of sulfamethoxazole-erythromycin-tetracycline (ETS), sulfamethoxazole-tetracycline (ST), erythromycin-sulfamethoxazole (ES) and erythromycin-tetracycline (ET) combinations on the anaerobic treatment of pharmaceutical industry wastewater. The results of this investigation revealed that bacteria have a competitive advantage over archaea under all antibiotic combinations. The ET reactor showed a better performance compared to other reactors; this could be due to antagonistic effects of sulfamethoxazole. Acute inhibition in the microbial community was also strongly affected by antibiotics concentrations. This indicated that the composition of the microbial community changed in association with anaerobic sequencing batch reactor performances. The results of this research support the idea that an acute test could be used to control and improve the anaerobic treatment system.
Collapse
Affiliation(s)
- Sevcan Aydın
- Department of Environmental Engineering, Civil Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey E-mail: ; ; Catalan Institute for Water Research (ICRA), Science and Technology Park of the University of Girona, H2O Building, Girona, Spain
| | - Bahar Ince
- Bogazici University, Institute of Environmental Sciences, Rumelihisarustu - Bebek, 34342 Istanbul, Turkey
| | - Orhan Ince
- Department of Environmental Engineering, Civil Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey E-mail: ;
| |
Collapse
|