1
|
Kamenická B, Kuchtová G. Critical review on electrooxidation and chemical reduction of azo dyes: Economic approach. CHEMOSPHERE 2024; 363:142799. [PMID: 38986779 DOI: 10.1016/j.chemosphere.2024.142799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Effective degradation technologies have been extensively investigated and used to remove azo dyes from wastewater for decades. However, no review dealing with both electrooxidation and chemical reduction of azo dyes from an economic and, therefore, application-relevant perspective has been found in the current literature. A novelty of this review article consists not only in the brief summarization and comparison of both methods but mainly in the evaluation of their economic side. Based on the literature survey of the last 15 years, the costs of treatment approaches published in individual research articles have been summarized, and the missing data have been calculated. A broad spectrum of advanced electrode materials and catalysts have been developed and tested for the treatment, specifically aiming to enhance the degradation performance. An outline of the global prices of electrode materials, reducing agents, and basic chemicals is involved. All additional costs are described in depth in this review. The advantages and disadvantages of respective methods are discussed. It was revealed that effective and cheap treatment approaches can be found even in advanced degradation methods. Based on the collected data, electrooxidation methods offer, on average, 30 times cheaper treatment of aqueous solutions. Concerning chemical reduction, only ZVI provided high removal of azo dyes at prices <100 $ per kg of azo dye. The factors affecting total prices should also be considered. Therefore, the basic diagram of the decision-making process is proposed. In the conclusion, challenges, future perspectives, and critical findings are described.
Collapse
Affiliation(s)
- Barbora Kamenická
- Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Gabriela Kuchtová
- Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
2
|
Jawaduddin M, Su Z, Siddique MS, Rashid S, Yu W. Purifying surface water contaminated with azo dyes using nanofiltration: Interactions between dyes and dissolved organic matter. CHEMOSPHERE 2024; 361:142438. [PMID: 38797203 DOI: 10.1016/j.chemosphere.2024.142438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
In this research, the interactions of two azo dyes, Methyl Orange (MO) and Eriochrome Black T (EBT), with dissolved organic matter (DOM) in surface water were studied, emphasizing their removal using nano-filtration membranes (NF-270 and NF-90). High-Performance Size Exclusion Chromatography (HPSEC) findings indicated that the dyes' molecular weight in deionized (DI) water ranged from 500 to 15k Dalton (Da), adjusting peak intensities with Jingmi River (JM) water Beijing. Notably, when dyes were diluted in JM water, ultraviolet (UV533 & 466, and UV254), together with total organic carbon (TOC) parameters, revealed color removal rates of 99.49% (EBT), 94.2% (MO), 87.6% DOM removal, and 86% TOC removal for NF-90. The NF-90 membrane demonstrated a 75% flux decline for 50 mL permeate volume due to its finer pore structure and higher rejection effectiveness. In contrast, the NF-270 membrane showed a 60% decline in flux under the same conditions. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) analysis of dye-treated membranes in JM water revealed that the NF-270 showed a CC bond peak at 1660 cm-1 across various samples, while analyzing NF-90, the peaks at 1400 cm-1, 1040 cm-1, 750 cm-1, and 620 cm-1 disappeared for composite sample removal. The hydrophobicity of each membrane is measured by the contact angle (CA), which identified that initial CAs for NF-270 and NF-90 were 460 and 700, respectively, that were rapidly declined but stabilized after a few seconds of processing. Overall, this investigation shows that azo dyes interact with DOM in surface waters and enhance the removal efficiency of NF membranes.
Collapse
Affiliation(s)
- Mian Jawaduddin
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Sajid Rashid
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
3
|
Wang G, Wang X, Yang W, Zhao L, Qi Y. A Zn-Ca-Based Metallic Glass Composite Material for Rapid Degradation of Azo Dyes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3356. [PMID: 38998436 PMCID: PMC11243730 DOI: 10.3390/ma17133356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
The catalytic capabilities of metals in degrading azo dyes have garnered extensive interest; however, selecting highly efficient metals remains a significant challenge. We have developed a Zn-Ca-based metallic glass composite which shows outstanding degradation efficiency for Direct Blue 6. This alloy comprises a Zn2Ca crystalline phase and an amorphous matrix, allowing for the degradation of azo dyes within minutes in a wide temperature range of 0-60 °C. Kinetic calculations reveal an exceptionally low activation energy of 8.99 kJ/mol. The rapid degradation is attributed to the active element Ca and the unique amorphous structure of the matrix, which not only facilitates abundant redox conditions but also minimizes the hydrolysis of the active element. The newly developed metallic glass composite exhibits a notably higher azo dye degradation rate compared to those of general metallic glasses, offering a new avenue for the rapid degradation of azo dyes. This paper holds significant importance for the development of novel azo dye wastewater treatment agents.
Collapse
Affiliation(s)
- Gaojiong Wang
- Hebei Key Laboratory of New Functional Materials, School of Material Science and Engineering, Hebei University of Technology, No. 5340, Xiping Road, Tianjin 300401, China
| | - Xin Wang
- Hebei Key Laboratory of New Functional Materials, School of Material Science and Engineering, Hebei University of Technology, No. 5340, Xiping Road, Tianjin 300401, China
| | - Wei Yang
- Hebei Key Laboratory of New Functional Materials, School of Material Science and Engineering, Hebei University of Technology, No. 5340, Xiping Road, Tianjin 300401, China
| | - Lichen Zhao
- Hebei Key Laboratory of New Functional Materials, School of Material Science and Engineering, Hebei University of Technology, No. 5340, Xiping Road, Tianjin 300401, China
| | - Yumin Qi
- Hebei Key Laboratory of New Functional Materials, School of Material Science and Engineering, Hebei University of Technology, No. 5340, Xiping Road, Tianjin 300401, China
| |
Collapse
|
4
|
Feyie E, Zereffa EA, Tadesse A, Goddati M, Noh D, Oh E, Tufa LT, Lee J. An Efficient p-n Heterojunction Copper Tin Sulfide/g-C 3N 4 Nanocomposite for Methyl Orange Photodegradation. ACS OMEGA 2024; 9:28463-28475. [PMID: 38973891 PMCID: PMC11223204 DOI: 10.1021/acsomega.4c02414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024]
Abstract
The discharge of toxic dye effluents from industry is a major concern for environmental pollution and toxicity. These toxic dyes can be efficiently removed from waste streams using a photocatalysis process involving visible light. Due to its simple synthesis procedure, inexpensive precursor, and robust stability, graphitic carbon nitride (g-C3N4, or CN) has been used as a visible light responsive catalyst for the degradation of dyes with mediocre performance because it is limited by its low visible light harvesting capability due to its wide bandgap and fast carrier recombination rate. To overcome these limitations and enhance the performance of g-C3N4, it was coupled with a narrow bandgap copper tin sulfide (CTS) semiconductor to form a p-n heterojunction. CTS and g-C3N4 were selected due to their good stability, low toxicity, ease of synthesis, layered sheet/plate-like morphology, and relatively abundant precursors. Accordingly, a series of copper tin sulfide/graphitic carbon nitride nanocomposites (CTS/g-C3N4) with varying CTS contents were successfully synthesized via a simple two-step process involving thermal pyrolysis and coprecipitation for visible-light-induced photocatalytic degradation of methyl orange (MO) dye. The photocatalytic activity results showed that the 50%(wt/wt) CTS/g-C3N4 composite displayed a remarkable degradation efficiency of 95.6% for MO dye under visible light illumination for 120 min, which is higher than that of either pristine CTS or g-C3N4. The improved performance is attributed to the extended light absorption range (due to the optimized bandgap), effective suppression of photoinduced electron-hole recombination, and improved charge transfer that arose from the formation of a p-n heterojunction, as evidenced by electrochemical impedance spectroscopy (EIS), photocurrent, and photoluminescence results. Moreover, the results of the reusability study showed that the composite has excellent stability, indicating its potential for the degradation of MO and other toxic organic dyes from waste streams.
Collapse
Affiliation(s)
- Endale
Kebede Feyie
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
| | - Enyew Amare Zereffa
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
| | - Aschalew Tadesse
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
| | - Mahendra Goddati
- Department
of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Daegwon Noh
- Department
of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute
of Quantum Systems (IQS), Chungnam National
University,99 Daehak-ro Yuseong-gu, Daejeon 34134, Korea
| | - Eunsoon Oh
- Department
of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute
of Quantum Systems (IQS), Chungnam National
University,99 Daehak-ro Yuseong-gu, Daejeon 34134, Korea
| | - Lemma Teshome Tufa
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
- Research
Institute of Materials Chemistry, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Jaebeom Lee
- Department
of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
- Research
Institute of Materials Chemistry, Chungnam
National University, Daejeon 34134, Republic
of Korea
| |
Collapse
|
5
|
Edebali Ö, Krupčíková S, Goellner A, Vrana B, Muz M, Melymuk L. Tracking Aromatic Amines from Sources to Surface Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:397-409. [PMID: 38765463 PMCID: PMC11097632 DOI: 10.1021/acs.estlett.4c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/12/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 05/22/2024]
Abstract
This review examines the environmental occurrence and fate of aromatic amines (AAs), a group of environmental contaminants with possible carcinogenic and mutagenic effects. AAs are known to be partially responsible for the genotoxic traits of industrial wastewater (WW), and AA antioxidants are acutely toxic to some aquatic organisms. Still, there are gaps in the available data on sources, occurrence, transport, and fate in domestic WW and indoor environments, which complicate the prevention of adverse effects in aquatic ecosystems. We review key domestic sources of these compounds, including cigarette smoke and grilled protein-rich foods, and their presence indoors and in aquatic matrices. This provides a basis to evaluate the importance of nonindustrial sources to the overall environmental burden of AAs. Appropriate sampling techniques for AAs are described, including copper-phthalocyanine trisulfonate materials, XAD resins in solid-phase extraction, and solid-phase microextraction methods, which can offer insights into AA sources, transport, and fate. Further discussion is provided on potential progress in the research of AAs and their behavior in an aim to support the development of a more comprehensive understanding of their effects and potential environmental risks.
Collapse
Affiliation(s)
- Özge Edebali
- RECETOX,
Masaryk University, Faculty of Science, Kotlářská 2, 611 37 Brno, Czechia
| | - Simona Krupčíková
- RECETOX,
Masaryk University, Faculty of Science, Kotlářská 2, 611 37 Brno, Czechia
| | - Anna Goellner
- UFZ
Helmholtz Centre for Environmental Research, Department of Effect Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Branislav Vrana
- RECETOX,
Masaryk University, Faculty of Science, Kotlářská 2, 611 37 Brno, Czechia
| | - Melis Muz
- UFZ
Helmholtz Centre for Environmental Research, Department of Effect Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Lisa Melymuk
- RECETOX,
Masaryk University, Faculty of Science, Kotlářská 2, 611 37 Brno, Czechia
| |
Collapse
|
6
|
Chen B, Xu J, Zhu L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J Environ Sci (China) 2024; 139:428-445. [PMID: 38105066 DOI: 10.1016/j.jes.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 12/19/2023]
Abstract
Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Agriculture & Forest University, Lin'an 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Ma Y, Yang C, Yao Q, Li F, Mao L, Zhou X, Meng X, Chen L. Nontarget screening analysis of organic compounds in river sediments: a case study in the Taipu River of the Yangtze River Delta Region in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24547-24558. [PMID: 38446294 DOI: 10.1007/s11356-024-32761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/13/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Sediments are the vital fate of organic compounds, and the recognition of organic compounds in sediments is constructive in providing comprehensive and long-term information. In this study, a three-step nontarget screening (NTS) analysis workflow using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) revealed the extensive existence of organic compounds in the Taipu River sediment. Organic compounds (705) were detected and divided into four structure-related groups or eight use-related classes. In the Taipu River's mainstream, a significant difference was found in the composition profiles of the identified organic compounds among various sites, demonstrating the organic compounds were more abundant in the midstream and downstream than in the upstream. Meanwhile, the hydrodynamic force was recognized as a potential factor influencing organic compounds' occurrence. Based on multiple statistical analyses, the shipping and textile printing industries were considered the significant contributors to the identified organic compounds. Considering the principles of the priority substances and the current status of the substances, two traditional pollutants and ten emerging organic compounds were recognized as the priority organic compounds for the Taipu River. Conclusively, this study established a workflow for NTS analysis of sediment samples and demonstrated the necessity of NTS analysis to evaluate the impact of terrestrial emissions of organic compounds on the aquatic environment.
Collapse
Affiliation(s)
- Yu Ma
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chao Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
| | - Qinglu Yao
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Feipeng Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lingchen Mao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xiangzhou Meng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Ling Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| |
Collapse
|
8
|
Overdahl KE, Kassotis CD, Hoffman K, Getzinger GJ, Phillips A, Hammel S, Stapleton HM, Ferguson PL. Characterizing azobenzene disperse dyes and related compounds in house dust and their correlations with other organic contaminant classes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122491. [PMID: 37709124 PMCID: PMC10655148 DOI: 10.1016/j.envpol.2023.122491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Azobenzene disperse dyes are the fastest-growing category of commercial dyestuffs and are implicated in the literature as potentially allergenic. In the indoor environment, these dyes may be shed from various textiles, including clothing and upholstery and accumulate in dust particles potentially leading to exposure in young children who have higher exposure to chemicals associated with dust due to their crawling and mouthing behaviors. Children may be more vulnerable to dye exposure due to their developing immune systems, and therefore, it is critical to characterize azobenzene disperse dyes in children's home environments. Here, we investigate azobenzene disperse dyes and related compounds in house dust samples (n = 124) that were previously analyzed for flame retardants, phthalates, pesticides and per- and polyfluoroalkyl substances (PFAS). High-resolution mass spectrometry was used to support both targeted and suspect screening of dyes in dust. Statistical analyses were conducted to determine if dye concentrations were related to demographic information. Detection frequencies for 12 target dyes ranged from 11% to 89%; of the dyes that were detected in at least 50% of the samples, geometric mean levels ranged from 32.4 to 360 ng/g. Suspect screening analysis identified eight additional high-abundance azobenzene compounds in dust. Some dyes were correlated to numerous flame retardants and several antimicrobials, and statistically higher levels of some dyes were observed in homes of non-Hispanic Black mothers than in homes of non-Hispanic white mothers. To our knowledge, this is the most comprehensive study of azobenzene disperse dyes in house dust to date. Future studies are needed to quantify additional dyes in dust and to examine exposure pathways of dyes in indoor environments where children are concerned.
Collapse
Affiliation(s)
- Kirsten E Overdahl
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Christopher D Kassotis
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States; Institute of Environmental Health Sciences and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202. United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Gordon J Getzinger
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708. United States
| | - Allison Phillips
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Stephanie Hammel
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States.
| | - P Lee Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States; Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708. United States.
| |
Collapse
|
9
|
Jan S, Mishra AK, Bhat MA, Bhat MA, Jan AT. Pollutants in aquatic system: a frontier perspective of emerging threat and strategies to solve the crisis for safe drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113242-113279. [PMID: 37864686 DOI: 10.1007/s11356-023-30302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/02/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
Water is an indispensable natural resource and is the most vital substance for the existence of life on earth. However, due to anthropogenic activities, it is being polluted at an alarming rate which has led to serious concern about water shortage across the world. Moreover, toxic contaminants released into water bodies from various industrial and domestic activities negatively affect aquatic and terrestrial organisms and cause serious diseases such as cancer, renal problems, gastroenteritis, diarrhea, and nausea in humans. Therefore, water treatments that can eliminate toxins are very crucial. Unfortunately, pollution treatment remains a difficulty when four broad considerations are taken into account: effectiveness, reusability, environmental friendliness, and affordability. In this situation, protecting water from contamination or creating affordable remedial techniques has become a serious issue. Although traditional wastewater treatment technologies have existed since antiquity, they are both expensive and inefficient. Nowadays, advanced sustainable technical approaches are being created to replace traditional wastewater treatment processes. The present study reviews the sources, toxicity, and possible remediation techniques of the water contaminants.
Collapse
Affiliation(s)
- Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | | | - Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India.
| |
Collapse
|
10
|
Kasbaji M, Mennani M, Oubenali M, Ait Benhamou A, Boussetta A, Ablouh EH, Mbarki M, Grimi N, El Achaby M, Moubarik A. Bio-based functionalized adsorptive polymers for sustainable water decontamination: A systematic review of challenges and real-world implementation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122349. [PMID: 37562526 DOI: 10.1016/j.envpol.2023.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The overwhelming concerns of water pollution, industrial discharges and environmental deterioration by various organic and inorganic substances, including dyes, heavy metals, pesticides, pharmaceuticals, and detergents, intrinsically drive the search for urgent and efficacious decontamination techniques. This review illustrates the various approaches to remediation, their fundamentals, characteristics and demerits. In this manner, the advantageous implementation of nature-based adsorbents has been outlined and discussed. Different types of lignocellulosic compounds (cellulose, lignin, chitin, chitosan, starch) have been introduced, and the most used biopolymeric materials in bioremediation have been highlighted; their merits, synthesis methods, properties and performances in aqueous medium decontamination have been described. The literature assessment reveals the genuine interest and dependence of academic and industrial fields to valorize biopolymers in the adsorption of various hazardous substances. Yet, the full potential of this approach is still confined by certain constraints, such as the lack of reliable, substantial, and efficient extraction of biopolymers, as well as their modest and inconsistent physicochemical properties. The futuristic reliance on such biomaterials in all fields, rather than adsorption, is inherently reliable on in-depth investigations and understanding of their features and mechanisms, which can guarantee a real-world application and green technologies.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mehdi Mennani
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mustapha Oubenali
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Anass Ait Benhamou
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco; Materials Sciences and Process Optimization Laboratory, Faculty of Science Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Abdelghani Boussetta
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mohamed Mbarki
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Nabil Grimi
- Sorbonne Université, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherches Royallieu, CS 60 319, 60 203s, Compiègne Cedex, France
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco.
| |
Collapse
|
11
|
Patil DJ, Behera SN. Synthesizing nanoparticles of zinc and copper ferrites and examining their potential to remove various organic dyes through comparative studies of kinetics, isotherms, and thermodynamics. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:591. [PMID: 37079140 DOI: 10.1007/s10661-023-11177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/30/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Nanoparticles of zinc ferrite (ZnFe2O4) and copper ferrite (CuFe2O4) were synthesized, and characterized, and these materials were applied for removal of organic dyes of alizarin yellow R (AYR), thiazole yellow G (TYG), Congo red (CR), and methyl orange (MO) from industrial wastewater through adsorption technique. Synthesis of ZnFe2O4 and CuFe2O4 was achieved through chemical co-precipitation method. These nanomaterials were characterized for physicochemical properties using XRD, FTIR, BET, VSM, DLS, Zeta-potential, and FESEM-EDX analytical instruments. BET surface areas of ZnFe2O4 and CuFe2O4 were 85.88 m2/g and 41.81 m2/g, respectively. Adsorption-influencing parameters including effect of solution pH, adsorbent quantity, initial concentration of dye pollutant, and contact time were examined. Acidic medium of the solution favored higher percentage of removal of dyes in wastewater. Out of different isotherms, Langmuir equilibrium isotherm showed the best fit with experimental data, indicating monolayer adsorption in the treatment process. The maximum monolayer adsorption capacities were found as 54.58, 37.01, 29.81, and 26.83 mg/g with ZnFe2O4, and 46.38, 30.06, 21.94, and 20.83 mg/g with CuFe2O4 for AYR, TYG, CR, and MO dyes, respectively. From kinetics analysis of the results, it was inferred that pseudo-second-order kinetics were fitting well with better values of coefficient of determination (R2). The removal of four organic dyes from wastewater through adsorption technique using nanoparticles of ZnFe2O4 and CuFe2O4 was observed to be spontaneous and exothermic. From this experimental investigation, it has been inferred that magnetically separable ZnFe2O4 and CuFe2O4 could be a viable option in removal of organic dyes from industrial wastewater.
Collapse
Affiliation(s)
- Dharmaraj J Patil
- Department of Civil Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Delhi-NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Sailesh N Behera
- Department of Civil Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Delhi-NCR, Greater Noida, Uttar Pradesh, 201314, India.
| |
Collapse
|
12
|
Wang T, Jiang M, Yu X, Niu N, Chen L. Application of lignin adsorbent in wastewater Treatment: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
|
13
|
Biodegradation of diazo dye Evans blue by four strains of Streptomyces isolated from soils of Algeria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
14
|
Guo XX, Hou SC, Chen J, Liao C, He WD. Transpiration-prompted Photocatalytic Degradation of Dye Pollutant with AuNPs/PANI Based Cryogels. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
|
15
|
Ou SF, Yang DS, Liao JW, Chen ST. Treating High COD Dyeing Wastewater via a Regenerative Sorption-Oxidation Process Using a Nano-Pored Activated Carbon. Int J Mol Sci 2022; 23:ijms23094752. [PMID: 35563142 PMCID: PMC9104435 DOI: 10.3390/ijms23094752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Nowadays, the structural complexity of dyes used in the textile industry and the widely adopted water-saving strategy in the dyeing processes often fail plants’ biological wastewater treatment units due to chemical oxygen demand (COD) overload. To alleviate this problems, this study investigated a regenerable adsorption–oxidation process to treat dyeing wastewater with COD around 10,000 mg/dm3 using a highly nano-pored activated carbon (AC) as a COD adsorbent, followed by its regeneration using hydrogen peroxide as an oxidizing reagent. In addition to studying AC’s COD adsorption and oxidation performance, its operational treatment conditions in terms of temperature and pH were assessed. The results firstly demonstrated that about 50–60% of the COD was consistently adsorbed during the repeated adsorption operation before reaching AC’s maximum adsorption capacity (qmax) of 0.165 g-COD/g-AC. The optimal pH and temperature during adsorption were 4.7 and 25 °C, respectively. Secondly, AC regeneration was accomplished by using an initial peroxide concentration of 2.5% (by wt %) and EDTA-Fe of 2.12 mmole/dm3. The reuse of the regenerated ACs was doable. Surprisingly, after the first AC regeneration, the COD adsorption capacity of the regenerated AC even increased by ~7% with respect to the virgin AC. Thirdly, the results of a five-consecutive adsorption–regeneration operation showed that a total of 0.3625 g COD was removed by the 5 g AC used, which was equivalent to an adsorption capacity (q) of 0.0725 (= 0.3625/5) g-COD/g-AC during each adsorption stage. Based on the obtained results, a regenerable COD adsorption–oxidation process using a nano-pored AC to treat the high-textile-COD wastewater looks promising. Thus, a conceptual treatment unit was proposed, and its potential benefits and limitations were addressed.
Collapse
Affiliation(s)
- Shih-Fu Ou
- Department of Mold and Die Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 80778, Taiwan;
| | - Dun-Sheng Yang
- Ph.D. Program in Engineering Science and Technology, College of Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan;
| | - Jia-Wei Liao
- Innolux Corporation, No. 3, Section 1, Huanxi Road, Xinshi District, Tainan City 74147, Taiwan;
| | - Shyi-Tien Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan
- Correspondence: ; Tel.: +886-7-601-1000 (ext. 32327); Fax: +886-7-601-1061
| |
Collapse
|
16
|
Qu T, Yao X, Owens G, Gao L, Zhang H. A sustainable natural clam shell derived photocatalyst for the effective adsorption and photodegradation of organic dyes. Sci Rep 2022; 12:2988. [PMID: 35194104 PMCID: PMC8863817 DOI: 10.1038/s41598-022-06981-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
In response to an increasing desire for modern industries to be both green and sustainable, there has been increasing research focus on the reutilization of natural waste materials to effectively remove and degrade toxic wastewater effluents. One interesting food industry waste product is clam shell. Here a new photocatalytic nanomaterial derived from marine clam shells was successfully prepared and characterized. Thereafter the material was applied for the removal of two target dyes from aqueous solution, where the effect of both catalyst dose and initial dye concentration on adsorption and photocatalysis was investigated. The maximum adsorption capacities of methylene blue (100 mg/L) and Congo red (500 mg/L) were 123.45 mg/g and 679.91 mg/g, respectively, where adsorption followed pseudo second order kinetics predominantly via a chemical adsorption process. The photodegradation removal efficiencies of the two dye solutions under visible light irradiation were 99.6% and 83.3% for MB and CR, respectively. The excellent degradation performance in a mixed dye solution, with strong degradation capability and low cost, demonstrated that the clam shell catalyst material was a good candidate for practical field remediation of dye contaminated wastewater.
Collapse
Affiliation(s)
- Ting Qu
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Xinxin Yao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China.,College of Naval Architecture and Mechanical-Electrical Engineering, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, 5095, Australia
| | - Liangjun Gao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Hailong Zhang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China. .,Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China.
| |
Collapse
|
17
|
Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113160. [PMID: 35026583 DOI: 10.1016/j.ecoenv.2021.113160] [Citation(s) in RCA: 507] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 05/21/2023]
Abstract
The synthetic dyes used in the textile industry pollute a large amount of water. Textile dyes do not bind tightly to the fabric and are discharged as effluent into the aquatic environment. As a result, the continuous discharge of wastewater from a large number of textile industries without prior treatment has significant negative consequences on the environment and human health. Textile dyes contaminate aquatic habitats and have the potential to be toxic to aquatic organisms, which may enter the food chain. This review will discuss the effects of textile dyes on water bodies, aquatic flora, and human health. Textile dyes degrade the esthetic quality of bodies of water by increasing biochemical and chemical oxygen demand, impairing photosynthesis, inhibiting plant growth, entering the food chain, providing recalcitrance and bioaccumulation, and potentially promoting toxicity, mutagenicity, and carcinogenicity. Therefore, dye-containing wastewater should be effectively treated using eco-friendly technologies to avoid negative effects on the environment, human health, and natural water resources. This review compares the most recent technologies which are commonly used to remove dye from textile wastewater, with a focus on the advantages and drawbacks of these various approaches. This review is expected to spark great interest among the research community who wish to combat the widespread risk of toxic organic pollutants generated by the textile industries.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Kamal M Okasha
- Internal Medicine and Nephrology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of the Environment and Agrifood, Cranfield University, MK43 0AL, UK
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
18
|
Zhou W, Yu B, Zhu J, Li K, Tian S. Enhanced photocatalytic activities of a hierarchical ZnO/V 2C MXene hybrid with a close coupling heterojunction for the degradation of methyl orange, phenol and methylene blue dye. NEW J CHEM 2022. [DOI: 10.1039/d2nj02658a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
A hierarchical ZnO/V2C MXene hybrid exhibited enhanced photocatalytic performance due to its close coupling heterojunction facilitating photo-generated carrier transfer.
Collapse
Affiliation(s)
- Weibing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Bo Yu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jiaoqun Zhu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Kang Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Shouqin Tian
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China
| |
Collapse
|
19
|
Feng M, Wu L, Wang X, Wang J, Wang D, Li C. A strategy of designed anionic metal–organic framework adsorbent based on reticular chemistry for rapid selective capture of carcinogenic dyes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Affiliation(s)
- Meng Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University Jinhua China
| | - Liang Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University Jinhua China
| | - Xirong Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University Jinhua China
| | - Jingyu Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University Jinhua China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University Jinhua China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering Shandong University Qingdao China
| |
Collapse
|
20
|
Overdahl KE, Gooden D, Bobay B, Getzinger GJ, Stapleton HM, Ferguson PL. Characterizing azobenzene disperse dyes in commercial mixtures and children's polyester clothing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117299. [PMID: 34023658 PMCID: PMC8434964 DOI: 10.1016/j.envpol.2021.117299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/05/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 05/12/2023]
Abstract
Azobenzene disperse dyes are the fastest-growing class of dyestuffs, yet little is known about dye occurrences, sources, and transformations; azo dyes are also underrepresented in chemical standard catalogs, molecular databases, and mass spectral libraries. Many azo dyes are known to have sensitization, mutagenic, and carcinogenic properties. To fill these knowledge gaps, azo dyes were purified from dyestuffs by Soxhlet extraction and flash chromatography and characterized using ultra-high-performance liquid chromatography (UHPLC) coupled to a high resolution Orbitrap Fusion Lumos mass spectrometer operated in positive electrospray ionization mode, as well as by 1H and 13C NMR. Data were analyzed to identify likely chemical formulas and structures using a weight-of-evidence approach with multiple open-source, in silico computational mass spectrometry tools. Nineteen total azobenzene dyes were detected in dyestuffs via a non-targeted analysis approach; the azobenzene dyes Disperse Blue 79:1, Disperse Blue 183:1, Disperse Orange 44, Disperse Orange 73, Disperse Red 50, Disperse Red 73, and Disperse Red 354 were purified from raw dyestuffs. Samples of children's polyester clothing were then analyzed likewise. In clothing, 21 azobenzene disperse dyes were detected, 12 of which were confirmed and quantified via reference standards. Individual dyes in apparel were quantified at concentrations up to 9230 μg dye/g shirt, with geometric means ranging 7.91-300 μg dye/g shirt. Total dye load in apparel was quantified at up to 11,430 μg dye/g shirt. This research supported the development of reference standards and library mass spectra for azobenzene disperse dyes previously absent from standard and spectral libraries. By analyzing the scope and quantities of azo dyes in children's polyester apparel, this study will facilitate a more robust understanding of sources of these potentially allergenic and mutagenic compounds.
Collapse
Affiliation(s)
- Kirsten E Overdahl
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, United States
| | - David Gooden
- Duke University NMR Center, Duke University Medical Center, Durham, NC, 27710, United States
| | - Benjamin Bobay
- Duke University NMR Center, Duke University Medical Center, Durham, NC, 27710, United States
| | - Gordon J Getzinger
- Department of Civil and Environmental Engineering, Box 90287, 121 Hudson Hall, Duke University, Durham, NC, 27708, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, United States
| | - P Lee Ferguson
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, United States; Department of Civil and Environmental Engineering, Box 90287, 121 Hudson Hall, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
21
|
Su L, Zhang H, Oh K, Liu N, Luo Y, Cheng H, Zhang G, He X. Activated biochar derived from spent Auricularia auricula substrate for the efficient adsorption of cationic azo dyes from single and binary adsorptive systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:101-121. [PMID: 34280158 DOI: 10.2166/wst.2021.222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
In this study, spent Auricularia auricula substrate (AS)-derived biochar (ASBCs) and activated biochar with NaOH (A-ASBC) were evaluated for the adsorption of cationic azo dyes, including methylene blue (MB), rhodamine B (RB), and crystal violet (CV), from single and binary adsorptive systems. A-ASBC showed a higher maximum adsorption capacity for these dyes (MB: 53.62 mg·g-1, RB: 32.33 mg·g-1, CV: 735.73 mg·g-1) than ASBCs in a single system because it had a greater specific surface area and more oxygen containing-functional groups on the surface. The adsorption process of the three dyes onto the adsorbents was in good agreement with the Freundlich adsorption isotherm and fit the pseudo-second-order kinetic model, which revealed sorbate polymolecular layer formation over the adsorbent surface and the involvement of chemisorption. The adsorption mechanism showed that the adsorption of three dyes on adsorbents could be postulated as a multistep process with extraordinary affinity-induced adsorption in terms of both physisorption and chemisorption. In the binary adsorptive system, the results showed that all MB, RB, and CV had antagonistic/competitive effects on each other's adsorption (QBinary/QSingle < 1). Furthermore, a phytotoxic assay affirmed the effectiveness of the adsorbent in adsorbing dye species from aqueous solutions using Brassica pekinensis L. seeds as the model. Therefore, activated biochar prepared from AS can be used as a potentially economical and effective adsorbent for treating printing and dyeing wastewater.
Collapse
Affiliation(s)
- Long Su
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| | - Kokyo Oh
- Center for Environmental Science in Saitama, Kazo City, Saitama 347-0115, Japan
| | - Na Liu
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| | - Yuan Luo
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| | - Hongyan Cheng
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| | - Guosheng Zhang
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| | - Xiaofang He
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| |
Collapse
|
22
|
Mahana A, Mehta SK. Potential of Scenedesmus-fabricated ZnO nanorods in photocatalytic reduction of methylene blue under direct sunlight: kinetics and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28234-28250. [PMID: 33533000 DOI: 10.1007/s11356-021-12682-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/07/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Organic synthetic dyes are widely used in several industries; however, their inherent resistance to biodegradation necessitates to investigate alternative methods for the remediation of this class of hazardous substances. In the present study, a green synthesis of ZnO nanorods was achieved in a fast, environment-friendly, and safe microwave process employing algal extract. Different metabolites like sugars, proteins, fatty acids, amino acids, and vitamins present in the algal extract reduced the Zn2+ into ZnO. The XRD analysis showed that the nanostructure was a crystalline hexagonal nanorod having a crystalline size of 27.37 nm. The XPS spectra of ZnO nanorod showed characteristic peaks at binding energy 1043, 1020, 496, 137, 87, and 8 eV corresponding to Zn2p1/2, Zn2p3/2, ZnLMM, Zn3s, Zn3p, Zn3d, respectively. The synthesized ZnO nanorods were in-situ functionalized and showed strong catalytic activity in photoreduction of a model organic dye methylene blue (MB) under direct sunlight irradiation. Synthesized ZnO nanorods showed a complete (100%) reduction of model dye MB from its 10 mg/L aqueous solution. The photocatalytic degradation of MB followed the Michaelis-Menten kinetics. The rate of ZnO-catalyzed photocatalytic degradation depends on the concentrations of ZnO, pH, and sunlight irradiation. The ZnO nanorod-catalyzed photoreduction of MB involves hydroxyl radicals. Algal-mediated and microwave-assisted synthesis provides a scalable source of metal oxide nanoparticles for the remediation of dye-containing wastewaters under natural sunlight. Apart from application in the removal of dyes, ZnO nanorods are excellent material for applications in semiconductors, electronics, optics, bio-imaging, and drug delivery.
Collapse
Affiliation(s)
- Abhijeet Mahana
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Surya Kant Mehta
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Botany, Mizoram University, Aizawl, 796004, India.
| |
Collapse
|
23
|
Peerakiatkhajohn P, Butburee T, Sul JH, Thaweesak S, Yun JH. Efficient and Rapid Photocatalytic Degradation of Methyl Orange Dye Using Al/ZnO Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1059. [PMID: 33924202 PMCID: PMC8074614 DOI: 10.3390/nano11041059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
ZnO and Aluminum doped ZnO nanoparticles (Al/ZnO NPs) were successfully synthesized by the sol-gel method. Together with the effect of calcination temperatures (200, 300 and 400 °C) and Al dosage (1%, 3%, 5% and 10%) on structural, morphological and optical properties of Al/ZnO NPs, their photocatalytic degradation of methyl orange (MO) dye was investigated. The calcination temperatures at 200, 300 and 400 °C in forming structure of ZnO NPs led to spherical nanoparticle, nanorod and nanoflake structures with a well-crystalline hexagonal wurtzite, respectively. The ZnO NPs calcined at 200 °C exhibited the highest specific surface area and light absorption property, leading to the MO removal efficiency of 80% after 4 h under the Ultraviolet (UV) light irradiation. The MO removal efficiency was approximately two times higher than the nanoparticles calcined at 400 °C. Furthermore, the 5% Al/ZnO NPs exhibited superior MO removal efficiency of 99% in only 40 min which was approximately 20 times enhancement in photocatalytic activity compared to pristine ZnO under the visible light irradiation. This high degradation performance was attributed to the extended light absorption, narrowed band gap and effective suppression of electron-hole recombination through an addition of Al metal.
Collapse
Affiliation(s)
| | - Teera Butburee
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani 12120, Thailand;
| | - Jung-Hoon Sul
- School of Engineering and Technology, Central Queensland University, Mackay, QLD 4740, Australia;
| | - Supphasin Thaweesak
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chon Buri 20131, Thailand
| | - Jung-Ho Yun
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4123, Australia
| |
Collapse
|
24
|
Köktürk M, Altindağ F, Ozhan G, Çalimli MH, Nas MS. Textile dyes Maxilon blue 5G and Reactive blue 203 induce acute toxicity and DNA damage during embryonic development of Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108947. [PMID: 33285322 DOI: 10.1016/j.cbpc.2020.108947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
Common textile dyes used in various industrial sectors are organic compounds and considered for the aquatic environment as pollutants. The textile dye industry is one of the main sectors that have serious impacts on the environment due to a large amount of wastewater released into the ecosystem. Maxilon blue 5G (MB-5G) and Reactive Blue 203 (RB-203) are widely used textile dyes. However, their potential toxicity on living organisms remains to be elucidated. Here, we investigate the acute toxicity and genotoxicity of MB-5G and RB-203 dyes using the zebrafish embryos/larvae. Embryos treated with each dye for 96 h revealed LC50 values of acute toxicity as 166.04 mg L-1 and 278.32 mg L-1 for MB-5G and RB 203, respectively. When exposed to MB-5G and RB-203 at different concentrations (1, 10, and 100 mg L-1) for 96 h, the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, significantly increased in brain tissues as compared to control. MB-5G and RB-203 resulted in common developmental abnormalities including tail malformation, microphthalmia, pericardial edema, curved body axis, and yolk sac/pericardial edemas. Moreover, at its highest dose (100 mg L-1), RB-203 caused premature hatching after 48 h, while MG-5G did not. Our results collectively reveal that the textile dyes MB-5G and RB-203 cause genotoxicity and teratogenicity during embryonic and larval development of zebrafish. Thus, it is necessary to eliminate these compounds from wastewater or reduce their concentrations to safe levels before discharging the textile industry wastewater into the environment.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Farming, College of Applied Sciences, Igdir University, Igdir, Turkey
| | - Fikret Altindağ
- Department of Histology and Embryology, Medical School, Van Yüzüncü Yıl University, Van, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Mehmet Harbi Çalimli
- Department of Medical Services and Techniques, Tuzluca Vocational School, Igdır University, Igdir, Turkey.
| | - Mehmet Salih Nas
- Department of Environmental Engineering, Faculty of Engineering, Igdır University, Igdir, Turkey
| |
Collapse
|
25
|
Mahto A, Mishra S. The removal of textile industrial Dye-RB-19 using Guar gum-based adsorbent with thermodynamic and kinetic evaluation parameters. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
|
26
|
Manogaran M, Yasid NA, Othman AR, Gunasekaran B, Halmi MIE, Shukor MYA. Biodecolourisation of Reactive Red 120 as a Sole Carbon Source by a Bacterial Consortium-Toxicity Assessment and Statistical Optimisation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2424. [PMID: 33801387 PMCID: PMC7967567 DOI: 10.3390/ijerph18052424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022]
Abstract
The application of microorganisms in azo dye remediation has gained significant attention, leading to various published studies reporting different methods for obtaining the best dye decolouriser. This paper investigates and compares the role of methods and media used in obtaining a bacterial consortium capable of decolourising azo dye as the sole carbon source, which is extremely rare to find. It was demonstrated that a prolonged acclimation under low substrate availability successfully isolated a novel consortium capable of utilising Reactive Red 120 dye as a sole carbon source in aerobic conditions. This consortium, known as JR3, consists of Pseudomonas aeruginosa strain MM01, Enterobacter sp. strain MM05 and Serratia marcescens strain MM06. Decolourised metabolites of consortium JR3 showed an improvement in mung bean's seed germination and shoot and root length. One-factor-at-time optimisation characterisation showed maximal of 82.9% decolourisation at 0.7 g/L ammonium sulphate, pH 8, 35 °C, and RR120 concentrations of 200 ppm. Decolourisation modelling utilising response surface methodology (RSM) successfully improved decolourisation even more. RSM resulted in maximal decolourisation of 92.79% using 0.645 g/L ammonium sulphate, pH 8.29, 34.5 °C and 200 ppm RR120.
Collapse
Affiliation(s)
- Motharasan Manogaran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Malaysia; (M.M.); (N.A.Y.)
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Malaysia; (M.M.); (N.A.Y.)
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Malaysia;
| | | | - Mohd Izuan Effendi Halmi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Malaysia;
| | - Mohd Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Malaysia; (M.M.); (N.A.Y.)
| |
Collapse
|
27
|
Vendemiatti JAS, Camparotto NG, Vidal C, Cristale J, Agapito EVDM, Oliveira ÁC, Rodrigues EA, Montagner CC, Umbuzeiro GA, Prediger P. New benzotriazoles generated during textile dyeing process: Synthesis, hazard, water occurrence and aquatic risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123732. [PMID: 32846262 DOI: 10.1016/j.jhazmat.2020.123732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Phenylbenzotriazoles (PBTA) can be generated unintentionally during textile dyeing factories by reduction of dinitrophenylazo dyes and their subsequent chlorination in disinfection process. Eight non-chlorinated PBTAs (non-Cl PBTA) and their related chlorinated PBTAs have been found in rivers and presented mutagenic activity. No data on their aquatic toxicity are available. In this work, two new phenylbenzotriazoles, non-Cl PBTA-9 and PBTA-9, derived from the dye C.I. Disperse Violet 93 (DV93) were synthesized and chemically/toxicologically characterized. Both compounds were more mutagenic than the parental dye in the Salmonella/microsome assay in the presence of metabolic activation (S9). Mutagenicity studies in vivo with mammals would confirm their potential hazard to humans. The two compounds were acutely toxic to Daphnia similis. We developed an analytical method to simultaneously quantify non-Cl PBTA-9, PBTA-9 and DV93 in river waters. Non-Cl PBTA-9 was found in sites under influence of textile effluents but at concentrations that do not pose risk to the aquatic life according to the P-PNEC calculated based on the acute toxicity tests. PBTA-9 was not detected in any samples analyzed. More studies on the aquatic toxicity and water occurrence of PBTAs should be conducted to verify the relevance of this class of compounds as aquatic contaminants.
Collapse
Affiliation(s)
| | | | - Cristiane Vidal
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Joyce Cristale
- School of Technology, University of Campinas, Limeira, SP, Brazil
| | | | | | | | | | - Gisela A Umbuzeiro
- School of Technology, University of Campinas, Limeira, SP, Brazil; Wilson College of Textiles, North Carolina State University, Raleigh, NC, USA; Biology Institute, UNICAMP, Campinas, SP, Brazil
| | | |
Collapse
|
28
|
Xue ZZ, Wang AN, Wei Q, Wei L, Han SD, Pan J. Template syntheses of diverse haloargentates with reversible photochromism behaviors and efficient photocatalytic properties. CrystEngComm 2021. [DOI: 10.1039/d0ce01642j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
A series of haloargentates have been prepared exhibiting a reversible photochromic phenomenon and efficient photocatalytic properties.
Collapse
Affiliation(s)
- Zhen-Zhen Xue
- College of Chemistry and Chemical Engineering
- Qingdao University
- P.R. China
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
| | - A-Ni Wang
- College of Chemistry and Chemical Engineering
- Qingdao University
- P.R. China
| | - Qi Wei
- College of Chemistry and Chemical Engineering
- Qingdao University
- P.R. China
| | - Li Wei
- College of Chemistry and Chemical Engineering
- Qingdao University
- P.R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering
- Qingdao University
- P.R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering
- Qingdao University
- P.R. China
| |
Collapse
|
29
|
Yao X, Ji L, Guo J, Ge S, Lu W, Chen Y, Cai L, Wang Y, Song W. An abundant porous biochar material derived from wakame (Undaria pinnatifida) with high adsorption performance for three organic dyes. BIORESOURCE TECHNOLOGY 2020; 318:124082. [PMID: 32932115 DOI: 10.1016/j.biortech.2020.124082] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/06/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 05/22/2023]
Abstract
In this study, an activated wakame biochar material (AWBM) was prepared by a one-step calcination and activation method, whose adsorption performances for methylene blue (MB), Rhodamine B (RB) and malachite green (MG) were also analyzed. The results showed AWBM was a mesoporous fluffy structure material with a higher specific surface (1156.25 m2/g), exhibiting superior adsorption capacities for MB (841.64 mg/g), RB (533.77 mg/g) and MG (4066.96 mg/g), respectively. In addition, FT-IR analysis showed that AWBM possessed abundant active groups (such as -OH, -CO and -CH), further enhancing the adsorption efficiencies. The Langmuir model could better fit the three dyes adsorption isotherms process using AWBM, and the Pseudo-second-order model could better describe the adsorption kinetic experimental data. The thermodynamic analysis showed that the three dyes adsorption using AWBM was spontaneous endothermic reaction. This study suggests AWBM has enormous potential in the application of removing organic dyes from wastewater.
Collapse
Affiliation(s)
- Xinxin Yao
- College of Naval Architecture and Mechanical-Electrical Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Lili Ji
- Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Jian Guo
- College of Food and Medical, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Shaoliang Ge
- College of Port and Transportation Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Wencheng Lu
- College of Naval Architecture and Mechanical-Electrical Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yingna Chen
- College of Food and Medical, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Lu Cai
- Donghai Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yaning Wang
- Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Wendong Song
- College of Petrochemical and Energy Engineering College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| |
Collapse
|
30
|
Zhang Z, Wang G, Li W, Zhang L, Chen T, Ding L. Degradation of methyl orange through hydroxyl radical generated by optically excited biochar: Performance and mechanism. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
|
31
|
Gupta NK, Ghaffari Y, Bae J, Kim KS. Synthesis of coral-like α-Fe2O3 nanoparticles for dye degradation at neutral pH. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112473] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
|
32
|
Liu B, Ren B, Xia Y, Yang Y, Yao Y. Electrochemical degradation of safranine T in aqueous solution by Ti/PbO2 electrodes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
The electrochemical degradation of safranine T (ST) in aqueous solution was studied. The effects of current density, initial concentration of ST, initial pH values, and Na2SO4 concentration on electrocatalytic degradation of ST in the aqueous solution by Ti/PbO2 electrode were analyzed. The experimental results showed that the electrochemical oxidization reaction of ST fitted a pseudo first order kinetics model. By using the Ti/ PbO2 electrode as the anode, 99.96% of ST can be eliminated at 120 min. It means that the electrochemical degradation of ST in aqueous solution by the Ti/PbO2 electrode was very effective. The optimal reaction conditions were as follows: current density, 40 mA cm−2; initial ST concentration, 100 mg L−1; Na2SO4 concentration, 0.20 mol L−1; initial pH, 6. It can be known from the test of UV–vis and HPLC in the reaction process that the intermediates will be generated, and the possible intermediate structure was studied by HPLC–MS test. However, with the progress of degradation reaction, the intermediates will eventually be oxidized into CO2 and H2O. Cyclic voltammetry and fluorescence experiments proved that ST was indirectly oxidized through the generation of hydroxyl radicals. Under the optimal reaction conditions, the energy required to completely remove ST was 17.92 kWh/m3.
Collapse
Affiliation(s)
- Baichen Liu
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| | - Bingli Ren
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| | - Yun Xia
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| | - Yang Yang
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| | - Yingwu Yao
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| |
Collapse
|
33
|
Gukowsky JC, Xie T, Gao S, Qu Y, He L. Rapid identification of artificial and natural food colorants with surface enhanced Raman spectroscopy. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/17/2022]
|
34
|
Wu J, Zhang T, Chen C, Feng L, Su X, Zhou L, Chen Y, Xia A, Wang X. Spent substrate of Ganodorma lucidum as a new bio-adsorbent for adsorption of three typical dyes. BIORESOURCE TECHNOLOGY 2018; 266:134-138. [PMID: 29960243 DOI: 10.1016/j.biortech.2018.06.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/07/2018] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
Spent substrate of Ganodorma lucidum (SSGL), waste from cultivation of Ganoderma lucidum, was firstly used as a bio-adsorbent to adsorb three typical dyes malachite green, safranine T and methylene blue, and the adsorption thermodynamics and dynamics were also studied. SSGL was rich of hydroxyl group and carbonyl group, which had the potential to be an efficient bio-adsorbent for the three dyes removal from water and wastewater, and the treatment model should be eco-friendly. The experimental data fit well with the Langmuir and Freundlich isotherm, and the adsorption of dyes took place mainly on monolayer surface of SSGL. The experimental data fit also well with the adsorption thermodynamics, the adsorption were spontaneous and mainly a chemical adsorption. SSGL could adsorb the dyes rapidly and achieve an equilibrium in a short time, and the experimental data fit well with the second-order kinetics model.
Collapse
Affiliation(s)
- Jianguo Wu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Key Construction Laboratory for Food Safe and Nutritional Function, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Changjiang West Road 111, Huai'an 223300, China.
| | - Tong Zhang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Key Construction Laboratory for Food Safe and Nutritional Function, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Changjiang West Road 111, Huai'an 223300, China
| | - Chunyan Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Key Construction Laboratory for Food Safe and Nutritional Function, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an 223300, China
| | - Liuyin Feng
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Key Construction Laboratory for Food Safe and Nutritional Function, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an 223300, China
| | - Xiaohui Su
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Key Construction Laboratory for Food Safe and Nutritional Function, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an 223300, China
| | - Linxin Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Key Construction Laboratory for Food Safe and Nutritional Function, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an 223300, China
| | - Yuanyuan Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Key Construction Laboratory for Food Safe and Nutritional Function, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an 223300, China
| | - Aiqiang Xia
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Key Construction Laboratory for Food Safe and Nutritional Function, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an 223300, China
| | - Xinfeng Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Key Construction Laboratory for Food Safe and Nutritional Function, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Changjiang West Road 111, Huai'an 223300, China
| |
Collapse
|
35
|
Vastag G, Apostolov S, Matijević B, Assaleh F. Multivariate assessment of azo dyes' biological activity parameters. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1084:141-149. [PMID: 29604612 DOI: 10.1016/j.jchromb.2018.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2017] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 11/29/2022]
Abstract
Lipophilicity as key molecular descriptor of potential biological activity for selected derivatives of azo dyes was determined mathematically, by using relevant software packages and by reversed-phase thin-layer chromatography (RPTLC) on C18 and cyano modified carriers in mixtures of water/n-propanol and water/acetone. The obtained chromatographic parameters, RM0 and m, of the examined azo dyes were correlated with the standard measure of lipophilicity, log P, important pharmacokinetic predictors and selected toxicity parameters applying linear regression analysis. Thereby, good correlations for each applied system were obtained (average correlation coefficient, r, 0.944, 0.885 and 0.919). Also, the correlations between the studied parameters of azo dyes were examined applying two multivariate methods (Cluster Analysis and Principal Component Analysis). It was shown that the polarity of the substituent, and to a lesser extent its electronic effects has the greatest influence on the studied parameters of the azo dyes derivatives. Multivariate methods pointed out the similarity of the chromatographic retention constant, RM0, with the parameters of lipophilicity, unlike the chromatographic parameter m, which exhibits better agreement with the toxicity parameters.
Collapse
Affiliation(s)
- Gyöngyi Vastag
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Suzana Apostolov
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Borko Matijević
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Fathi Assaleh
- University of Zawia, Faculty of Science, P.O. Box 16168, Zawia, Libya
| |
Collapse
|
36
|
Milani D, Bartlett AJ, de Solla SR, Parrott JL, Intini KD, Legault D, Unsworth J, Balakrishnan VK. Comparative toxicity of azo dyes to two infaunal organisms (Hexagenia spp. and Tubifex tubifex) in spiked-sediment exposures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6937-6950. [PMID: 29273984 DOI: 10.1007/s11356-017-0993-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/12/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
Azo dyes are synthetic compounds used as industrial colorants, and some are predicted to be inherently toxic, bioaccumulative, and/or persistent based upon their chemical composition. This study addresses data gaps in current research which include the need to evaluate the toxicity of hydrophobic azo dyes to benthic invertebrates. The toxicity of a solvent dye, Sudan Red G (SRG), and two disperse dyes, Disperse Yellow 7 (DY7) and Disperse Orange 13 (DO13), to Hexagenia spp. and Tubifex tubifex was assessed in spiked-sediment exposures. The dye compounds appeared to degrade readily in the equilibrium and exposure periods, suggesting a limited persistence of the parent compounds in the environment under test conditions. Although azo dye degradation products could not be reliably quantified, one was detected in DY7 sediment samples that elicited toxic effects to Hexagenia and Tubifex, providing evidence that DY7 degrades. Hexagenia survival and growth endpoints responded with similar sensitivity to the dyes, but DY7 was the most toxic, with a 21-day IC25 (concentration associated with 25% inhibition) for growth of 9.6 μg/g. Comparatively, Tubifex reproduction was the most sensitive endpoint for all dyes with 28-day IC25s for young production ranging from 1.3 to 11.8 μg/g. At sublethal concentrations, toxic effects to Tubifex differed between dyes: the solvent dye exerted an effect primarily on gametogenesis (cocoon production), while disperse dyes, most notably DY7, caused effects on embryogenesis (development of worm inside the cocoon). This study indicates that there could be potential hazard to oligochaetes based on the observed effect concentrations, but given the lack of environmental measurements, the risk of these compounds is unknown. Further research is required to determine if degradation products were formed in all dye samples and whether toxicity was caused by the parent molecules, which have limited persistence under test conditions, or by their degradation products. To avoid underestimating toxicity, this study stresses the need to use an infaunal deposit feeder such as the oligochaete Tubifex in sediment toxicity assessments where highly hydrophobic compounds are present.
Collapse
Affiliation(s)
- Danielle Milani
- Watershed Hydrology and Ecology Research Division, Water Science and Technology, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada.
| | - Adrienne J Bartlett
- Aquatic Contaminants Research Division, Water Science and Technology, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, Canada
| | - Shane R de Solla
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, Canada
| | - Joanne L Parrott
- Aquatic Contaminants Research Division, Water Science and Technology, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, Canada
| | - Kyna D Intini
- Watershed Hydrology and Ecology Research Division, Water Science and Technology, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada
| | - David Legault
- Watershed Hydrology and Ecology Research Division, Water Science and Technology, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada
| | - Jennifer Unsworth
- Watershed Hydrology and Ecology Research Division, Water Science and Technology, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada
| | - Vimal K Balakrishnan
- Aquatic Contaminants Research Division, Water Science and Technology, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, Canada
| |
Collapse
|
37
|
Maganha de Almeida AC, Backhaus J, Corso CR. Recycling food waste to clean water: the use of a biodigester's residual liquid inoculum (RLI) to decolourise textile azo dyes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:398-408. [PMID: 29377824 DOI: 10.2166/wst.2017.546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2023]
Abstract
A residual liquid inoculum (RLI) was used to decolourise solutions of Acid Yellow 25 (AY25) and Direct Violet 51 (DV51) azo dyes. The RLI was obtained through anaerobic digestion of food waste from a university restaurant. The concentration of bacteria in the RLI was 8.45 × 107 CFU mL-1. Dye solutions (50 μg mL-1) were inoculated with the RLI (20% v/v) and incubated at room temperature. The decolourisation studies took place at microaerophilic and in-batch conditions and at pH = 2.50. Initially, the dyes were taken up from solution by biosorption; maximum colour removal was achieved after 3 hours of incubation, with 88.66% for AY25 and 77.65% of DV51. At prolonged incubation times (3-96 hours) decolourisation was mainly attributed to biodegradation of the azo solutions, with breakage of the azo bond, as detected by UV-VIS spectroscopy and Fourier transform infrared (FT-IR) analysis. Analysis of UV-VIS absorption rates of dyes showed, however, that AY25 was more readily biodegradable whereas DV51 was more recalcitrant to the action of the RLI.
Collapse
Affiliation(s)
- A C Maganha de Almeida
- Biochemistry and Microbiology Department, Biological Sciences Institute, São Paulo State University - UNESP - Av 24A, 1515 CEP 13.506-900, Rio Claro, São Paulo, Brazil E-mail:
| | - J Backhaus
- Institute for Instrumental Analysis and Bioanalysis, Mannheim University of Applied Sciences, Windeckstraße 110, Mannheim 68163, Germany
| | - C R Corso
- Biochemistry and Microbiology Department, Biological Sciences Institute, São Paulo State University - UNESP - Av 24A, 1515 CEP 13.506-900, Rio Claro, São Paulo, Brazil E-mail:
| |
Collapse
|
38
|
Gorza FD, Pedro GC, da Silva RJ, Medina-Llamas JC, Alcaraz-Espinoza JJ, Chávez-Guajardo AE, de Melo CP. Electrospun polystyrene-(emeraldine base) mats as high-performance materials for dye removal from aqueous media. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.10.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
|
39
|
Liu J, Yu H, Liang Q, Liu Y, Shen J, Bai Q. Preparation of polyhedral oligomeric silsesquioxane based cross-linked inorganic-organic nanohybrid as adsorbent for selective removal of acidic dyes from aqueous solution. J Colloid Interface Sci 2017; 497:402-412. [DOI: 10.1016/j.jcis.2017.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2016] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 01/22/2023]
|
40
|
Li Y, Yuan HH, Li CP, Li J. A 2D Zn(II) metal-organic framework to show selective removal of Neutral Red (NR) from water. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
|
41
|
Li CP, Zhou H, Wang S, Yuan HH, Zhang SZ, Du M. A nanoporous Ag(i) coordination polymer for selective adsorption of carcinogenic dye Acid Red 26. Chem Commun (Camb) 2017; 53:4767-4770. [DOI: 10.1039/c7cc02005h] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
This work presents a unique Ag(i) nanoporous coordination polymer, showing selective and complete removal of carcinogenic dye Acid Red 26 from aqueous solution upon the size-exclusion and charge-matching effect.
Collapse
Affiliation(s)
- Cheng-Peng Li
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Hang Zhou
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Si Wang
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Hong-Han Yuan
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Su-Zhen Zhang
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Miao Du
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|