1
|
Yan X, Kiki C, Xu Z, Manzi HP, Rashid A, Chen T, Sun Q. Comparative growth inhibition of 6PPD and 6PPD-Q on microalgae Selenastrum capricornutum, with insights into 6PPD-induced phototoxicity and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177627. [PMID: 39579899 DOI: 10.1016/j.scitotenv.2024.177627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Widespread environmental detection of tire additive N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its toxic metabolite 6PPD-Q has raised great concerns for their potential impact on aquatic biota. This study investigated the effects of 6PPD and 6PPD-Q on the model green microalgae (Selenastrum capricornutum). Results showed that 6PPD at the concentrations of 1-5 mg·L-1 stimulated S. capricornutum growth, while higher concentrations (10-50 mg·L-1) inhibited growth with an IC50(96 h) of 8.78 mg·L-1. However, at concentrations up to 10 mg·L-1, no toxicity was observed for S. capricornutum exposed to 6PPD-Q. Under the stress of 6PPD, S. capricornutum exhibited increased cellular membrane permeability and cell wall rupture, indicating structural damage to the algae cell. Microalgal oxidative stress was induced through the accumulation of reactive oxygen species (ROS), reaching levels of 1.65-5.29 times higher than the non-exposure cells, which altered enzymatic activities including superoxide dismutase (SOD) and catalase. Exposure to 6PPD at concentrations of 10-50 mg·L-1 resulted in photosynthetic toxicity as evidenced by decreased Chlorophyll a (Chl a) content and adverse effects on chlorophyll fluorescence parameters, such as maximum photochemical quantum yield (Fv/Fm), PSII (photosystem II) effective quantum yield [Y(II)], and photosynthetic electron transfer rate (ETR). While the concentrations employed may be higher than those typically found in the environment, this study uncovers a significant finding that 6PPD may demonstrate even greater toxicity to microalgae than its derivative, 6PPD-Q. This underscores the need for further investigation into the ecological risks of 6PPD, particularly in the context of primary producers like microalgae.
Collapse
Affiliation(s)
- Xiaopeng Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Zijie Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Habasi Patrick Manzi
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Azhar Rashid
- Department of Environmental Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Tianyuan Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China.
| |
Collapse
|
2
|
Ma J, Xie Y, Lu Z, Ding H, Ge W, Jia J, Xu J. Ocean acidification may alleviate the toxicity of zinc to the macroalga, Ulva lactuca. MARINE POLLUTION BULLETIN 2024; 207:116818. [PMID: 39151327 DOI: 10.1016/j.marpolbul.2024.116818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024]
Abstract
We investigated the toxic effects of different zinc (Zn) concentrations (natural seawater, 25 μg/L, and 100 μg/L) under two CO2 concentrations (410 ppmv, and 1000 ppmv) on Ulva lactuca. A significant decrease in the relative growth rate of U. lactuca was observed with an increase in Zn concentration under the low CO2 treatment condition, and we observed a notable decrease at 100 μg/L Zn under the high CO2 treatment condition. Moreover, the net photosynthetic rate increased when thalli were cultured under 25 and 100 μg/L Zn under the high CO2 treatment condition. The concentrations of chlorophyll a and b were significantly increased under 100 μg/L Zn and the high CO2 treatment conditions. Malondialdehyde content decreased under high CO2 treatment conditions, compared with the low CO2 treatment conditions, regardless of the Zn concentration. These findings suggest that ocean acidification may alleviate the toxic effects of Zn pollution on U. lactuca.
Collapse
Affiliation(s)
- Jing Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuxin Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhouyue Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Houxu Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenjing Ge
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Jia
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China; Jiangsu Provincial Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
3
|
Rana MS, Ariyadasa TU, Prajapati SK. Effect of iron oxide nanoparticles on mixotrophic cultivation of Chlorella spp. for biofuel production. BIORESOURCE TECHNOLOGY 2024; 410:131241. [PMID: 39151571 DOI: 10.1016/j.biortech.2024.131241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
The current study investigated the effect of iron oxide nanoparticles (IONPs) on mixotrophic microalgae cultivation in wastewater for biofuel production. Optimal IONPs doses of 10 and 20 mg L-1 increased Chlorella pyrenoidosa growth by 16% and lipid accumulation by 53 %, respectively, compared with the control group. Conversely, the protein content declined drastically, while carbohydrates remained relatively unchanged. A maximum of 15% rise in biomass growth was observed for Chlorella sorokiniana IITRF at an IONPs dose of 20 mg L-1, with no significant variation in biochemical composition. Microalgae grown under mixotrophic conditions with IONPs in a biofilm reactor were more suitable for biogas production than biodiesel, increasing biogas and methane content by 38 and 48%, respectively. The findings suggest that low doses of IONPs can enhance microalgal biomass, biogas production and methane content. Further, metabolomics studies are warranted to investigate the interaction between microalgae and nanoparticles to achieve high-quality biodiesel.
Collapse
Affiliation(s)
- Mohit Singh Rana
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Thilini U Ariyadasa
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
4
|
Kumar A, Mishra S, Singh NK, Yadav M, Padhiyar H, Christian J, Kumar R. Ensuring carbon neutrality via algae-based wastewater treatment systems: Progress and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121182. [PMID: 38772237 DOI: 10.1016/j.jenvman.2024.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
The emergence of algal biorefineries has garnered considerable attention to researchers owing to their potential to ensure carbon neutrality via mitigation of atmospheric greenhouse gases. Algae-derived biofuels, characterized by their carbon-neutral nature, stand poised to play a pivotal role in advancing sustainable development initiatives aimed at enhancing environmental and societal well-being. In this context, algae-based wastewater treatment systems are greatly appreciated for their efficacy in nutrient removal and simultaneous bioenergy generation. These systems leverage the growth of algae species on wastewater nutrients-including carbon, nitrogen, and phosphorus-alongside carbon dioxide, thus facilitating a multifaceted approach to pollution remediation. This review seeks to delve into the realization of carbon neutrality through algae-mediated wastewater treatment approaches. Through a comprehensive analysis, this review scrutinizes the trajectory of algae-based wastewater treatment via bibliometric analysis. It subsequently examines the case studies and empirical insights pertaining to algae cultivation, treatment performance analysis, cost and life cycle analyses, and the implementation of optimization methodologies rooted in artificial intelligence and machine learning algorithms for algae-based wastewater treatment systems. By synthesizing these diverse perspectives, this study aims to offer valuable insights for the development of future engineering applications predicated on an in-depth understanding of carbon neutrality within the framework of circular economy paradigms.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Saurabh Mishra
- Institute of Water Science and Technology, Hohai University, Nanjing China, 210098, China.
| | - Nitin Kumar Singh
- Department of Chemical Engineering, Marwadi University, Rajkot, Gujarat, India.
| | - Manish Yadav
- Central Mine Planning and Design Institute Limite, Bhubaneswar, India.
| | | | - Johnson Christian
- Environment Audit Cell, R. D. Gardi Educational Campus, Rajkot, Gujarat, India.
| | - Rupesh Kumar
- Jindal Global Business School (JGBS), O P Jindal Global University, Sonipat, 131001, Haryana, India.
| |
Collapse
|
5
|
Amjadi T, Razeghi J, Motafakkerazad R, Zareipour R. Interaction between Haematococcus pluvialis microalgae and lead nitrate: lead adsorption from water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1168-1179. [PMID: 38165083 DOI: 10.1080/15226514.2023.2298773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Our study aims to investigate the response of the unicellular alga, Haematococcus pluvialis, to the toxicity of lead and propose a low-cost, highly efficient biological adsorbent for the purification of wastewater and lead-contaminated water. The first part examines the effects of lead toxicity on certain physiological indicators of this alga. In the second part, the potential of this alga in lead removal and its adsorption capacity was assessed. The alga was cultivated in a BG11 medium and treated with lead nitrate concentrations of 10, 50, and 200 mg/L during its exponential growth. The results showed that with an increase in lead concentration up to 200 mg/L, the growth rate, chlorophyll a, chlorophyll b, carotenoid and total protein content decreased, while malondialdehyde (MDA) content increased. The astaxanthin content slightly increased at the 10 mg/L but decreased at the 200 mg/L treatment. Maximum lead adsorption was observed at 98.69% under optimal conditions, including a pH of 6, an adsorbent dose of 1 g/L, a lead concentration of 25 mg/L, a temperature of 25 °C, and an exposure time of 120 min. The results of this study demonstrate that Haematococcus pluvialis has the potential for effective lead removal from aquatic environments.
Collapse
Affiliation(s)
- Tayebeh Amjadi
- Department of Plant, Cell and Molecular biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Jafar Razeghi
- Department of Plant, Cell and Molecular biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Rouhollah Motafakkerazad
- Department of Plant, Cell and Molecular biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Zareipour
- Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
6
|
Gao M, Ling N, Tian H, Guo C, Wang Q. Toxicity, physiological response, and biosorption mechanism of Dunaliella salina to copper, lead, and cadmium. Front Microbiol 2024; 15:1374275. [PMID: 38605709 PMCID: PMC11007151 DOI: 10.3389/fmicb.2024.1374275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background Heavy metal pollution has become a global problem, which urgently needed to be solved owing to its severe threat to water ecosystems and human health. Thus, the exploration and development of a simple, cost-effective and environmental-friendly technique to remove metal elements from contaminated water is of great importance. Algae are a kind of photosynthetic autotroph and exhibit excellent bioadsorption capacities, making them suitable for wastewater treatment. Methods The effects of heavy metals (copper, lead and cadmium) on the growth, biomolecules accumulation, metabolic responses and antioxidant response of Dunaliella salina were investigated. Moreover, the Box-Behnken design (BBD) in response surface methodology (RSM) was used to optimize the biosorption capacity, and FT-IR was performed to explore the biosorption mechanism of D. salina on multiple heavy metals. Results The growth of D. salina cells was significantly inhibited and the contents of intracellular photosynthetic pigments, polysaccharides and proteins were obviously reduced under different concentrations of Cu2+, Pb2+ and Cd2+, and the EC50 values were 18.14 mg/L, 160.37 mg/L and 3.32 mg/L at 72 h, respectively. Besides, the activities of antioxidant enzyme SOD and CAT in D. salina first increased, and then descended with increasing concentration of three metal ions, while MDA contents elevated continuously. Moreover, D. salina exhibited an excellent removal efficacy on three heavy metals. BBD assay revealed that the maximal removal rates for Cu2+, Pb2+, and Cd2+ were 88.9%, 87.2% and 72.9%, respectively under optimal adsorption conditions of pH 5-6, temperature 20-30°C, and adsorption time 6 h. Both surface biosorption and intracellular bioaccumulation mechanisms are involved in metal ions removal of D. salina. FT-IR spectrum exhibited the main functional groups including carboxyl (-COOH), hydroxyl (-OH), amino (-NH2), phosphate (-P=O) and sulfate (-S=O) are closely associated with the biosorption or removal of heavy metalsions. Discussion Attributing to the brilliant biosorption capacity, Dunaliella salina may be developed to be an excellent adsorbent for heavy metals.
Collapse
Affiliation(s)
- Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Chunqiu Guo
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Qiyao Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
7
|
Liang J, Zhang CM, Zhu CC. Toxic effects and mechanisms of cationic blue SD-GSL on Chlorella vulgaris before and after the biological decolorization process. CHEMOSPHERE 2024; 349:140947. [PMID: 38104738 DOI: 10.1016/j.chemosphere.2023.140947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Biodegradation is regarded as an efficient way to decolorize azo dyes. However, the changes in the algal toxicity of azo dyes during biodecolorization are still unclear. In this study, the physiological responses of Chlorella vulgaris to the hydrophobic and hydrophilic components of cationic blue SD-GSL (a typical monoazo dye) and its biodecolorization products were investigated. The toxicity of each component to Chlorella vulgaris and the sources of the toxicity were analyzed. The cationic blue SD-GSL components inhibited the algal cell division and superoxide dismutase (SOD) activity at all concentrations, and inhibited the synthesis of chlorophyll-a (Chl-a) at concentrations >100 mg/L, whereas increased the malondialdehyde (MDA) content. The hydrophobic and hydrophilic components of its biodecolorization products had enhanced inhibition rates on cell density (10.7% and 15.6%, respectively), Chl-a content (31.2% and 8.4%, respectively), and SOD activity (13.5% and 1.9%, respectively) of Chlorella vulgaris, and further stimulated an increase in MDA content (4.4% and 7.0%, respectively), indicating that the biodecolorization products were more toxic than the pristine dye. Moreover, the toxic effect of hydrophobic components on Chlorella vulgaris was stronger than that of hydrophilic components. The sensitivity sequence of Chlorella vulgaris to the toxicity of cationic blue SD-GSL and its biodecolorization product components was: Chl-a synthesis > SOD activity > cell division. SUVA analysis and 3D-EEM analysis revealed that the enhanced algal toxicity of the biodecolorization products of cationic blue SD-GSL was attributed to the aromatic compounds, which were mainly concentrated in the hydrophobic components. UPLC-Q-TOF-MS was used to verify dye biodecolorization byproducts. The information obtained from this study helps to understand the decolorization products toxicities of the biologically treated azo dyes, thereby providing new insights into the environmental safety of textile wastewater after traditional biological treatment.
Collapse
Affiliation(s)
- Jie Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Cong-Cong Zhu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
8
|
Tsai KP. Toxic effects of thallium (Tl +) on prokaryotic alga Microcystis aeruginosa: Short and long-term influences by potassium and humic acid. CHEMOSPHERE 2024; 346:140618. [PMID: 37949181 DOI: 10.1016/j.chemosphere.2023.140618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Thallium (Tl) is a priority pollutant regulated by the US EPA. It is also a critical element commonly used in high technology industries; with an increasing demand for semiconductors nowadays, wastewater discharges from manufacturing plants or metal mining activities may result in elevated levels of thallium in receiving water harming aquatic organisms. Regarding the impact of thallium on freshwater algae, little attention has been paid to prokaryotic physiology through various exposure periods. In this bench-scale study, prokaryotic alga Microcystis aeruginosa PCC 7806 was cultured in modified BG11 medium and exposed to Tl+ (TlNO3) ranging from 250 to 1250 μg/L for 4 and 14 days. Throughout the experiment using flow cytometry assays, algal population, cell membrane integrity, oxidation stress level, and chlorophyll fluorescence were exacerbated following the exposure to 750 μg Tl/L (approximately 4-day effective concentration of Tl+ for reducing 50% of algal population). Potassium and humic acid (HA) (1-5 mg/L) were added to study their influences on the thallium toxicity. With the additions of potassium, thallium toxicities to algal population and physiology were not significantly changed within 4 days, while they were alleviated within 14 days. With the addition of HA at 1 mg/L, cell membrane integrity was significantly attenuated within 4 days; ameliorating effects on algal population and oxidative stress were not observed until day 14. Thallium toxicities on oxidative stress level and photosynthesis activity were exacerbated in the presence of HA at 3-5 mg/L. The study provides useful information for further studies on the mode of toxic action of Tl+ in prokaryotic algae; it also demonstrates the necessity of considering short and long-term exposure durations while incorporating water chemistry into assessment of thallium toxicity to algae.
Collapse
Affiliation(s)
- Kuo-Pei Tsai
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
9
|
da Luz DS, Guimarães PS, Castro MS, Primel EG, Giroldo D, Martins CDMG. Effects of the Pesticide Carbofuran on Two Species of Chlorophyceae (Desmodesmus communis and Pseudopediastrum boryanum) and Their Pesticide Bioremediation Ability. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38153230 DOI: 10.1002/etc.5818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023]
Abstract
Carbofuran is one of the most toxic broad-spectrum pesticides. We evaluated the effects of carbofuran on two species of microalgae, Pseudopediastrum boryanum and Desmodesmus communis, through measurements of cell viability, biomass, chlorophyll content, and the production of reactive oxygen species (ROS). The ability of these algae to remove carbofuran dissolved in the media was also determined. For the evaluations, both microalgae species were exposed to carbofuran (FURADAN 350 SC®) at concentrations of 100, 1000, and 10,000 µg L-1 for 7 days. Algae cell viability and chlorophyll-a concentration were not affected by the presence of carbofuran. Both species grew when exposed to the pesticide; however, the microalgae D. communis grew less than its respective control when exposed to the highest concentration (10,000 µg L-1 of carbofuran), indicating an adverse effect of the pesticide on this species. A significant increase in ROS production was observed in D. communis and P. boryanum when exposed to the highest concentration tested. The microalgae P. boryanum completely removed carbofuran in the media within 2 days, regardless of the concentration, whereas D. communis achieved the same result only after 5 days of exposure. Growth inhibition was observed only until the disappearance of carbofuran from the media. The present study suggests the use of microalgae, mainly P. boryanum, as potential tools for the remediation of environments contaminated by carbofuran because of their resistance to the insecticide and their ability to remove it rapidly from water. Environ Toxicol Chem 2024;00:1-12. © 2023 SETAC.
Collapse
Affiliation(s)
- Daniéli Saul da Luz
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Pablo Santos Guimarães
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Muryllo Santos Castro
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Ednei Giberto Primel
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Danilo Giroldo
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
10
|
Das S, Lizon F, Gevaert F, Bialais C, Duong G, Ouddane B, Souissi S. Assessing indicators of arsenic toxicity using variable fluorescence in a commercially valuable microalgae: Physiological and toxicological aspects. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131215. [PMID: 37001210 DOI: 10.1016/j.jhazmat.2023.131215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Indicators signaling Arsenic (As) stress through physiology of microalgae using non-destructive methods like variable fluorescence are rare but requisite. This study reports stress markers indicating arsenic (As) toxicity (in two concentrations 11.25 µg/L and 22.5 µg/L compared to a control) exposed to a microalga (Diacronema lutheri), using fast repetition rate fluorometry (FRRf). Growth and physiological parameters such as cell density, chl a and the maximum quantum yield Fv/Fm showed coherence and impeded after the exponential phase (day 9 - day 12) in As treatments compared to the control (p < 0.05). On contrary photo-physiological constants were elevated showing higher optical (aLHII) and functional [Sigma (σPSII)] absorption cross-section for the As treatments (p < 0.05) further implying the lack of biomass production yet an increase in light absorption. In addition, As exposure increased the energy dissipation by heat (NPQ-NSV) showing a strong relationship with the de-epoxidation ratio (DR) involving photoprotective pigments. Total As bioaccumulation by D. lutheri showed a strong affinity with Fe adsorption throughout the algal growth curve. This study suggests some prompt photo-physiological proxies signaling As contamination and endorsing its usefulness in risk assessments, given the high toxicity and ubiquitous presence of As in the ecosystem.
Collapse
Affiliation(s)
- Shagnika Das
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Amity Institute of Marine Science and Technology, Amity Institute of Biotechnology, Amity University, Noida, UP, India.
| | - Fabrice Lizon
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - François Gevaert
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Capucine Bialais
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Gwendoline Duong
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Baghdad Ouddane
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Equipe Physico-chimie de l'Environnement, Bâtiment C8, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| |
Collapse
|
11
|
Optimization Analysis to Evaluate the Relationships between Different Ion Concentrations and Prymnesium parvum Growth Rate. WATER 2022. [DOI: 10.3390/w14060928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to evaluate the optimum environmental condition required for reaching the maximum growth rate of P. parvum. Eight ions (Na+, K+, CO32−, HCO3−, Ca2+, Mg2+, Cl−, and SO42−) were divided into two groups with a uniform design of 4 factors and 10 levels. The results showed a rising trend in growth rate with increasing ion concentrations. However, concentrations that exceeded the threshold led to a slowdown in the growth rate. Therefore, adequate supply of ion concentrations promoted growth of P. parvum, whereas excessively abundant or deficient ion concentrations inhibited its growth rate. Specifically, the order of impact of the first four ion factors on the growth rate was Na+ > HCO3− > K+ > CO32−. The growth rate of P. parvum reached the maximum theoretical 0.999 when the concentrations of Na+, K+, CO32−, and HCO3− ions were 397.98, 11.60, 3.37, and 33.31 mg/L, respectively. This theoretical growth maximum was inferred from the experimental results obtained in this study. For other ion factors, SO42− had the most influence on the growth rate of P. parvum, followed by Mg2+, Ca2+, and Cl− ions. The growth rate of P. parvum reached the maximum theoretical value of 0.945 when the concentrations of Ca2+, Mg2+, Cl−, and SO42− ions were 11.52, 32.95, 326.29, and 377.31 mg/L, respectively. The findings presented in this study add to our understanding of the growth conditions of P. parvum and provide a theoretical basis for dealing with the water bloom it produces in order to control and utilize it.
Collapse
|
12
|
Yang J, Zhu Q, Chai J, Xu F, Ding Y, Zhu Q, Lu Z, Khoo KS, Bian X, Wang S, Show PL. Development of environmentally friendly biological algicide and biochemical analysis of inhibitory effect of diatom Skeletonema costatum. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Chen M, Yin G, Zhao N, Gan T, Feng C, Gu M, Qi P, Ding Z. Rapid and Sensitive Detection of Water Toxicity Based on Photosynthetic Inhibition Effect. TOXICS 2021; 9:toxics9120321. [PMID: 34941755 PMCID: PMC8707688 DOI: 10.3390/toxics9120321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
To achieve rapid and sensitive detection of the toxicity of pollutants in the aquatic environment, a photosynthetic inhibition method with microalgae as the test organism and photosynthetic fluorescence parameters as the test endpoint was proposed. In this study, eight environmental pollutants were selected to act on the tested organism, Chlorella pyrenoidosa, including herbicides (diuron, atrazine), fungicides (fuberidazole), organic chemical raw materials (phenanthrene, phenol, p-benzoquinone), disinfectants (trichloroacetonitrile uric acid), and disinfection by-products (trichloroacetonitrile). The results showed that, in addition to specific PSII inhibitors (diuretic and atrazine), other types of pollutants could also quickly affect the photosynthetic system. The photosynthetic fluorescence parameters (Fv/Fm, Yield, α, and rP) could be used to detect the effects of pollutants on the photosynthetic system. Although the decay rate of the photosynthetic fluorescence parameters corresponding to the different pollutants was different, 1 h could be used as an appropriate toxicity exposure time. Moreover, the lowest respondent concentrations of photosynthetic fluorescence parameters to diuron, atrazine, fuberidazole, phenanthrene, P-benzoquinone, phenol, trichloroacetonitrile uric acid, and trichloroacetonitrile were 2 μg·L−1, 5 μg·L−1, 0.05 mg·L−1, 2 μg·L−1, 1.0 mg·L−1, 0.4 g·L−1, 0.1 mg·L−1, and 2.0 mg·L−1, respectively. Finally, diuron, atrazine, fuberidazole, and phenanthrene were selected for a comparison of their photosynthetic inhibition and growth inhibition. The results suggested that photosynthetic inhibition could overcome the time dependence of growth inhibition and shorten the toxic exposure time from more than 24 h to less than 1 h, or even a few minutes, while, the sensitivity of the toxicity test was not weakened. This study indicates that the photosynthetic inhibition method could be used for rapid detection of the toxicity of water pollutants and that algae fluorescence provides convenient access to toxicity data.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Gaofang Yin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
- Correspondence:
| | - Nanjing Zhao
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Tingting Gan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Chun Feng
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Mengyuan Gu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Peilong Qi
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Zhichao Ding
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| |
Collapse
|
14
|
Li H, Yao J, Duran R, Liu J, Min N, Chen Z, Zhu X, Zhao C, Ma B, Pang W, Li M, Cao Y, Liu B. Toxic response of the freshwater green algae Chlorella pyrenoidosa to combined effect of flotation reagent butyl xanthate and nickel. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117285. [PMID: 33984773 DOI: 10.1016/j.envpol.2021.117285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/03/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Butyl Xanthate (BX) is a typical flotation reagent used to extract non-ferrous nickel ores, discharged into the surrounding environment of mining areas in large quantities. However, few studies have focused on the toxicity of combined pollution of BX and nickel (Ni) on aquatic plants, especially phytoplankton, the main producer of aquatic ecosystems. The toxicity and potential mechanism of single and combined pollution of BX and Ni at different concentrations (0-20 mg L-1) on typical freshwater algae (Chlorella pyrenoidosa) were studied. BX slightly stimulated the growth of C. pyrenoidosa on the first day, but Ni and Ni/BX mixture significantly inhibited it during incubation. Results showed that the inhibition rate (I) of the pollutants on the growth of C. pyrenoidosa followed the order: Ni/BX mixture > Ni > BX. The 96-h 20% effective inhibitory concentrations (96h-EC20) of Ni and BX on C. pyrenoidosa growth were 3.86 mg L-1 and 19.25 mg L-1, respectively, indicating C. pyrenoidosa was sensitive to pollutants. The content of total soluble protein (TSP) and chlorophyll a (Chl-a) changed significantly, which may be caused by the damage of pollutants to cell structures (cell membranes and chloroplasts). In addition, the I of pollutants on C. pyrenoidosa growth was related to dose, superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA). The increasement of reactive oxygen species (ROS), antioxidant enzymes (SOD and CAT), and MDA content, suggested C. pyrenoidosa suffered from oxidative stress, leading to lipid oxidation. These results will help to understand the toxicity mechanism of pollutants in typical mining areas and assess the environmental risks of pollutants to primary producers in aquatic ecosystems.
Collapse
Affiliation(s)
- Hao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Robert Duran
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Jianli Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Ning Min
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Zhihui Chen
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Xiaozhe Zhu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Chenchen Zhao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Wancheng Pang
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Miaomiao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Ying Cao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Bang Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| |
Collapse
|
15
|
Guo H, Li T, Zhao Y, Yu X. Role of copper in the enhancement of astaxanthin and lipid coaccumulation in Haematococcus pluvialis exposed to abiotic stress conditions. BIORESOURCE TECHNOLOGY 2021; 335:125265. [PMID: 34004560 DOI: 10.1016/j.biortech.2021.125265] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the effects of copper (Cu) on astaxanthin and lipid biological synthesis in unicellular alga Haematococcus pluvialis under high-light (HL) and nitrogen-deficiency (ND) conditions. During a 15-day cultivation period, the astaxanthin and lipid contents reached the peak values (3.32% and 47.72%) under 6 μM Cu treatment, which were increased by 66.87% and 34.99% compared to nontreated group, respectively. The application of Cu also increased the transcriptional expression of biosynthesis genes and antioxidant enzyme-related genes, as well as increased the intracellular calcium (Ca2+) level but led to a decrease in reactive oxygen species (ROS) levels. Additionally, Cu treatment induced the activation of calcium-dependent protein kinases (CDPKs) and mitogen-activated protein kinases (MAPKs). This approach simultaneously facilitated astaxanthin and lipid production, and the role of Cu were elucidated on the regulation of signal transduction (e.g., Ca2+, CDPK, MAPK and ROS) in the carotenogenesis and lipogenesis in H. pluvialis.
Collapse
Affiliation(s)
- Hang Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
16
|
Guedes FRCM, Maia CF, Silva BRSD, Batista BL, Alyemeni MN, Ahmad P, Lobato AKDS. Exogenous 24-Epibrassinolide stimulates root protection, and leaf antioxidant enzymes in lead stressed rice plants: Central roles to minimize Pb content and oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116992. [PMID: 33784567 DOI: 10.1016/j.envpol.2021.116992] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/05/2021] [Accepted: 03/19/2021] [Indexed: 05/27/2023]
Abstract
Lead (Pb) is an environmental pollutant that negatively affects rice plants, causing damage to the root system and chloroplast structures, as well as reducing growth. 24-Epibrasnolide (EBR) is a plant growth regulator with a high capacity to modulate antioxidant metabolism. The objective of this research was to investigate whether exogenous EBR application can mitigate oxidative damage in Pb-stressed rice plants, measure anatomical structures and evaluate physiological and biochemical responses connected with redox metabolism. The experiment was randomized with four treatments, including two lead treatments (0 and 200 μM PbCl2, described as - Pb and + Pb, respectively) and two treatments with brassinosteroid (0 and 100 nM EBR, described as - EBR and + EBR, respectively). The results revealed that plants exposed to Pb suffered significant disturbances, but the EBR alleviated the negative interferences, as confirmed by the improvements in the root structures and antioxidant system. This steroid stimulated the root structures, increasing the epidermis thickness (26%) and aerenchyma area (50%), resulting in higher protection of this tissue against Pb2+ ions. Additionally, EBR promoted significant increases in superoxide dismutase (26%), catalase (24%), ascorbate peroxidase (54%) and peroxidase (63%) enzymes, reducing oxidative stress on the photosynthetic machinery in Pb-stressed plants. This research proved that EBR mitigates the toxic effects generated by Pb in rice plants.
Collapse
Affiliation(s)
| | - Camille Ferreira Maia
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia Paragominas, Pará, Brazil
| | | | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC, Santo André, São Paulo, Brazil
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| | | |
Collapse
|
17
|
Saenboonruang K, Poltabtim W, Thumwong A, Pianpanit T, Rattanapongs C. Rare-Earth Oxides as Alternative High-Energy Photon Protective Fillers in HDPE Composites: Theoretical Aspects. Polymers (Basel) 2021; 13:polym13121930. [PMID: 34200711 PMCID: PMC8230413 DOI: 10.3390/polym13121930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
This work theoretically determined the high-energy photon shielding properties of high-density polyethylene (HDPE) composites containing rare-earth oxides, namely samarium oxide (Sm2O3), europium oxide (Eu2O3), and gadolinium oxide (Gd2O3), for potential use as lead-free X-ray-shielding and gamma-shielding materials using the XCOM software package. The considered properties were the mass attenuation coefficient (µm), linear attenuation coefficient (µ), half value layer (HVL), and lead equivalence (Pbeq) that were investigated at varying photon energies (0.001–5 MeV) and filler contents (0–60 wt.%). The results were in good agreement (less than 2% differences) with other available programs (Phy-X/PSD) and Monte Carlo particle transport simulation code, namely PHITS, which showed that the overall high-energy photon shielding abilities of the composites considerably increased with increasing rare-earth oxide contents but reduced with increasing photon energies. In particular, the Gd2O3/HDPE composites had the highest µm values at photon energies of 0.1, 0.5, and 5 MeV, due to having the highest atomic number (Z). Furthermore, the Pbeq determination of the composites within the X-ray energy ranges indicated that the 10 mm thick samples with filler contents of 40 wt.% and 50 wt.% had Pbeq values greater than the minimum requirements for shielding materials used in general diagnostic X-ray rooms and computerized tomography rooms, which required Pbeq values of at least 1.0 and 1.5 mmPb, respectively. In addition, the comparisons of µm, µ, and HVL among the rare-earth oxide/HDPE composites investigated in this work and other lead-free X-ray shielding composites revealed that the materials developed in this work exhibited comparable X-ray shielding properties in comparison with that of the latter, implying great potential to be used as effective X-ray shielding materials in actual applications.
Collapse
Affiliation(s)
- Kiadtisak Saenboonruang
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (W.P.); (A.T.); (T.P.); (C.R.)
- Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-25-625555 (ext. 646219)
| | - Worawat Poltabtim
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (W.P.); (A.T.); (T.P.); (C.R.)
| | - Arkarapol Thumwong
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (W.P.); (A.T.); (T.P.); (C.R.)
| | - Theerasarn Pianpanit
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (W.P.); (A.T.); (T.P.); (C.R.)
| | - Chanis Rattanapongs
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (W.P.); (A.T.); (T.P.); (C.R.)
| |
Collapse
|
18
|
Membrane filtration of manganese (II) remediated-microalgae: Manganese (II) removal, extracellular organic matter, and membrane fouling. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Chia MA, Lorenzi AS, Ameh I, Dauda S, Cordeiro-Araújo MK, Agee JT, Okpanachi IY, Adesalu AT. Susceptibility of phytoplankton to the increasing presence of active pharmaceutical ingredients (APIs) in the aquatic environment: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105809. [PMID: 33780670 DOI: 10.1016/j.aquatox.2021.105809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Human and veterinary pharmaceuticals either in the form of un-metabolized, incompletely metabolized, and metabolized drugs are increasingly present in aquatic ecosystems. These active pharmaceutical ingredients from pharmaceutical industries, hospitals, agricultural, and domestic discharges find their way into water systems - where they adversely affect non-target organisms like phytoplankton. Different aspects of phytoplankton life; ranging from growth, reproduction, morphology, physiology, biochemical composition, oxidative response, proteomics, and transcriptomics are altered by pharmaceuticals. This review discusses the currently available information on the susceptibility of phytoplankton to the ever-increasing presence of pharmaceutical products in the aquatic environment by focusing on the effect of APIs on the physiology, metabolome, and proteome profiles of phytoplankton. We also highlight gaps in literature concerning the salient underlining biochemical interactions between phytoplankton communities and pharmaceuticals that require an in-depth investigation. This is all in a bid to understand the imminent dangers of the contamination of water bodies with pharmaceutical products and how this process unfavorably affects aquatic food webs.
Collapse
Affiliation(s)
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, DF, Brazil
| | - Ilu Ameh
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Suleiman Dauda
- Department of Botany, Ahmadu Bello University, Zaria, Nigeria; Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235. Zip Code 13.565-905, São Carlos, SP, Brazil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Zip Code 13.418-900, Piracicaba, SP, Brazil
| | - Jerry Tersoo Agee
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | | | | |
Collapse
|
20
|
Combined Citric Acid and Glutathione Augments Lead (Pb) Stress Tolerance and Phytoremediation of Castorbean through Antioxidant Machinery and Pb Uptake. SUSTAINABILITY 2021. [DOI: 10.3390/su13074073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lead (Pb) is one of the most toxic elements on earth. The main origins of Pb pollution are automobiles, paint and electroplating industries. Pb-induced stress has very toxic effects on plant growth and biomass. The concentration of reactive oxygen species (ROS) in plant cells significantly increases under Pb stress, which interrupts the biochemical cycles in cells and leads to cell death. Therefore, it is essential to clean up the Pb-polluted soils. Among all techniques that are used to clean soil that is metal-contaminated, the best technique is phytoremediation. The present study intends to determine the role of citric acid (CA) and glutathione (GSH) in the phytoremediation of Pb by using castor bean plants. Plant biomass was significantly reduced due to Pb stress. Lead toxicity was also harmful to the photosynthetic pigments and antioxidant enzymes activities. In reverse, the content of malondialdehyde (MDA), H2O2 concentration and electrolyte leakage (EL) were increased under Pb stress. The combined application of GSH and CA enhanced photosynthetic pigments, antioxidant enzyme activities and plant biomass and minimized MDA, H2O2 and EL under Pb stress. The amount of Pb in roots and leaves remarkably increased by the joint application of CA and GSH. The combined application of CA and GSH (5 mM + 25 mM, respectively) was proven to be beneficial compared to the control. From the present results, we can conclude that the combined application of CA and GSH promoted the phytoremediation of Pb and helped the host plant to combat Pb toxicity.
Collapse
|
21
|
Schiavo S, Oliviero M, Chiavarini S, Dumontet S, Manzo S. Polyethylene, Polystyrene, and Polypropylene leachate impact upon marine microalgae Dunaliella tertiolecta. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:249-260. [PMID: 33357043 DOI: 10.1080/15287394.2020.1860173] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the aquatic environment, plastics may release several hazardous substances of severe ecotoxicological concern not covalently bound to the polymers. The aim of this study was to examine the adverse effects of leachates of different virgin polymers, polypropylene (PP), polyethylene (PE), and polystyrene (PS) on marine microalgae Dunaliella tertiolecta. The tests carried out on D. tertiolecta included: growth inhibition, oxidative stress (DCFH-DA), and DNA damage (COMET assay). Polypropylene and PS leachates produced growth inhibition at the lowest concentration (3.1% of leachate). In contrast, a hormesis phenomenon was observed with PE leachates. An algae inhibition growth ranking (PP>PS>PE) was noted, based upon EC50 values. Reactive oxygen species (ROS) generated were increased with leachates concentrations with PS exhibiting the highest ROS levels, while a marked genotoxic effect (30%) was found only with PP. All leachates were free from detectable quantities of organic compounds (GC/MS) but showed the presence of transition, post-transition and alkaline earth metals, metalloids, and nonmetals (<limit of quantification (LOQ) to 83.5 µg/L). Therefore, the observed toxic action might reasonably be attributable to the presence of metals and in conjunction with polymeric actions. This investigation underlines the need to better characterize the potential impact of virgin polymers.
Collapse
Affiliation(s)
- Simona Schiavo
- ENEA CR Portici, SSPT-PROTER Division, Portici, Italy
- International PhD Programme "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | | | | | - Stefano Dumontet
- International PhD Programme "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - Sonia Manzo
- ENEA CR Portici, SSPT-PROTER Division, Portici, Italy
| |
Collapse
|
22
|
Hernández-Garnica M, García-García JD, Moreno-Sánchez R, Sánchez-Thomas R. Lead accumulation in photosynthetic Euglena gracilis depends on polyphosphates and calcium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116007. [PMID: 33246766 DOI: 10.1016/j.envpol.2020.116007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Worldwide increasing levels of lead in water systems require the search for efficient ecologically friendly strategies to remove it. Hence, lead accumulation by the free-living algae-like Euglena gracilis and its effects on cellular growth, respiration, photosynthesis, chlorophyll, calcium, and levels of thiol- and phosphate-molecules were analyzed. Photosynthetic cells were able to accumulate 4627 mg lead/kgDW after 5 days of culture with 200 μM Pb2+. Nevertheless, exposure to 50, 100 and 200 μM Pb2+ for up to 8 days did not modify growth, viability, chlorophyll content and oxygen consumption/production. Enhanced biosynthesis of thiol molecules and polyphosphates, i.e. the two canonical metal ion chelation mechanisms in E. gracilis, was not induced under such conditions. However, in cells cultured in the absence of phosphate, lead accumulation and polyphosphate content markedly decreased, while culturing in the absence of sulfate did not modify the accumulation of this metal. In turn, the total amount of intracellular calcium slightly increased as the amount of intracellular lead increased, whereas under Ca2+ deficiency lead accumulation doubled. Therefore, the results indicated that E. gracilis is highly resistant to lead through mechanisms mediated by polyphosphates and Ca2+ and can in fact be classified as a lead hyperaccumulator microorganism.
Collapse
Affiliation(s)
- M Hernández-Garnica
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., 14080, Mexico
| | - J D García-García
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., 14080, Mexico
| | - R Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., 14080, Mexico
| | - R Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., 14080, Mexico.
| |
Collapse
|
23
|
Eom H, Park M, Jang A, Kim S, Oh SE. A simple and rapid algal assay kit to assess toxicity of heavy metal-contaminated water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116135. [PMID: 33290954 DOI: 10.1016/j.envpol.2020.116135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
This study presents a novel algal-based toxicity test suitable for simple and rapid assessment of heavy metal (Hg2+, Cr6+, Cd2+, Pb2+, or As3+)-contaminated water. A closed-system kit-type algal assay was developed using Chlorella vulgaris. Toxicity was assessed by oxygen evolution in the gaseous phase of the assay kits, which was measured via a needle-type oxygen sensor. Initial cell density, light intensity, and exposure time that enabled favorable test performance for the algal assay kits were 103 cells/mL, 250 μmol m-2s-1, and 18 h, respectively. Results from the heavy metal toxicity tests demonstrate that Hg2+, Cr6+, Cd2+, and Pb2+ are more toxic in inhibiting algal photosynthetic activity than As3+. The 18 h half-maximum effective concentrations (EC50) for Hg2+, Cr6+, Cd2+, Pb2+, and As3+ were determined to be 31.3 ± 0.5, 179.6 ± 7.5, 301.3 ± 6.1, 476.1 ± 10.5, and 2184.1 ± 31.1 μg/L, respectively. A strong correlation between oxygen concentrations in the headspace of the assay kits and chlorophyll a production indicates that oxygen evolution in the gaseous phase is able to represent algal photosynthetic activity and serve as the end-point in algal toxicity tests. High test sensitivity and reproducibility as well as an easy test protocol and rapid processing time make the algal assay kit a suitable tool for simple and rapid toxicity testing of heavy metal-contaminated water.
Collapse
Affiliation(s)
- Heonseop Eom
- Department of Biological Environment, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Minseung Park
- EH R&C Co. Ltd, 410 Jeongseojin-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Seunggyu Kim
- Department of Biological Environment, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
24
|
Zhang X, Chen H, Wang H, Wang Q. Time-course effects of Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) on Chlorella pyrenoidosa: Growth inhibition and adaptability mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123784. [PMID: 33254794 DOI: 10.1016/j.jhazmat.2020.123784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP), a widely used chlorinated organophosphorus flame retardant, is an increasingly widespread contaminant of aquatic environment. In this study, time-dependent effect of TDCPP on the freshwater green-algae Chlorella pyrenoidosa was investigated and its underlying mechanisms were explored. We show that TDCPP lower than 10 ppm caused a reversible inhibition of algal growth, with complete inhibition occurring at 15 ppm. This inhibition was not caused by damage from reactive oxygen species, but rather resulted from the impairment of photosynthetic function, with PSII reaction center as the primary target, as indicated by Chl a fluorescence induction, QA- reoxidation, S-state distribution and immunoblot analysis. The reversal of damage caused by TDCPP concentrations under 10 ppm might be attributable to the repair of photosynthetic function by de novo protein biosynthesis in the chloroplast, with the most likely explanation being the replacement of the damaged PSII D1 protein. The results provide novel insights into mechanisms of TDCPP toxicity toward freshwater microalgae and better understanding of ecological consequences of TDCPP in the environment.
Collapse
Affiliation(s)
- Xin Zhang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Haiying Wang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, 430074, China.
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China; Innovation Academy for Seed Design, CAS, China.
| |
Collapse
|
25
|
Du H, Zheng C, Aslam M, Xie X, Wang W, Yang Y, Liu X. Endoplasmic Reticulum-Mediated Protein Quality Control and Endoplasmic Reticulum-Associated Degradation Pathway Explain the Reduction of N-glycoprotein Level Under the Lead Stress. FRONTIERS IN PLANT SCIENCE 2021; 11:598552. [PMID: 33519851 PMCID: PMC7838096 DOI: 10.3389/fpls.2020.598552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/04/2020] [Indexed: 05/06/2023]
Abstract
Different anthropogenic activities result in the continuous increase of metal lead (Pb) in the environment and adversely affect living organisms. Therefore, it is important to investigate the tolerance mechanism in a model organism. Chlamydomonas reinhardtii is an important green eukaryotic model microalga for studying different kinds of biological questions. In this study, the responses of C. reinhardtii were revealed via a comprehensive approach, including physiological, genomic, transcriptomic, glycomic, and bioinformatic techniques. Physiological results showed that the growth rate and soluble protein content were significantly reduced under the high lead stress. Also, the results obtained from the genomic and transcriptomic analyses presented that the endoplasmic reticulum-mediated protein quality control (ERQC) system and endoplasmic reticulum-associated degradation (ERAD) pathway were activated under the third day of high lead stress. The unique upregulated protein disulfide isomerase genes on the ERQC system were proposed to be important for the protein level and protein quality control. The accumulation of specific N-glycans indicated that specific N-glycosylation of proteins might alter the biological functions of proteins to alleviate the Pb stress in alga and/or lead to the degradation of incomplete/misfolded proteins. At the same time, it was observed that genes involved in each process of ERAD were upregulated, suggesting that the ERAD pathway was activated to assist the degradation of incomplete/misfolded proteins. Therefore, it is reasonable to speculate that the reduction of protein level under the high lead stress was related to the activated ERQC system and QRAD pathway. Our findings will provide a solid and reliable foundation and a proposed ERAD working model for further in-depth study of the ERQC system and ERAD pathway under the Pb stress and even other biotic and abiotic stresses.
Collapse
Affiliation(s)
- Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Canqi Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Muhmmad Aslam
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water & Marine Sciences, Uthal, Pakistan
| | - Xihui Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Wanna Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Yingquan Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
26
|
Gallego-Cartagena E, Morillas H, Carrero JA, Madariaga JM, Maguregui M. Naturally growing grimmiaceae family mosses as passive biomonitors of heavy metals pollution in urban-industrial atmospheres from the Bilbao Metropolitan area. CHEMOSPHERE 2021; 263:128190. [PMID: 33297155 DOI: 10.1016/j.chemosphere.2020.128190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
In analytical chemistry, biomonitoring is known as the methodology, which consider the use of living organisms to monitor and assess the impact of different contaminants in a known area. This type of monitoring is a relatively inexpensive method and easy to implement, being a viable alternative to be developed in sites where there is no infrastructure/instruments for a convenctional air quality monitoring. These organisms, having the capability to monitor the pollution, are also known as passive biomonitors (PBs), since they are able to identify possible contamination sources without the need of any additional tool. In this work, a multianalytical methodology was applied to verify the usefulness of naturally growing Grimmia genus mosses as PBs of atmospheric heavy metals pollution. Once mosses were identified according to their morphology and taxonomy, thei ability to accumulate particulate matter (PM) was determined by SEM. EDS coupled to SEM also allowed to identify the main metallic particles deposited and finally, an acid digestion of the mosses and a subsequent ICP-MS study define more precisely the levels of metals accumulated on each collected moss. The study was focused on six sampling locations from the Bilbao Metropolitan area (Biscay, Basque Country, north of Spain). The experimental evidences obtained allowed to propose naturally growing Grimmia genus as PB of atmospheric heavy metals pollution and to identify the anthropogenic sources that contribute to the emission of the airborne particulate matter rich in metals, evaluating in this sense the atmospheric heavy metals pollution of the selected locations.
Collapse
Affiliation(s)
- Euler Gallego-Cartagena
- Department of Civil and Environmental, Universidad de La Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain.
| | - Héctor Morillas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Department of Didactic of Mathematics and Experimental Sciences, Faculty of Education and Sport, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | - José Antonio Carrero
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080, Vitoria-Gasteiz, Basque Country, Spain
| |
Collapse
|
27
|
Alamer KH, Fayez KA. Impact of salicylic acid on the growth and physiological activities of parsley plants under lead toxicity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1361-1373. [PMID: 32647454 PMCID: PMC7326881 DOI: 10.1007/s12298-020-00830-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 05/07/2023]
Abstract
Impact of spraying 50 µM salicylic acid (SA), lead nitrate soil treatments [1 and 2 mM Pb (NO3)2] and their combinations on parsley leaves (Petroselinum crispum L.) for 3 weeks was studied to evaluate leaf symptoms, photosynthetic pigments, anthocyanin, ultrastructure, malondialdehyde (MDA), soluble proteins, phenolic compounds, and guaiacol peroxidase activity (GPOX). Under Pb effect, parsley leaves showed chlorosis and decline in the content of photosynthetic pigments chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoid (Car) with increasing Pb treatments compared to the control. SA spraying helped to reduce chlorosis and increase photosynthetic pigments of Pb-treated plants compared to that of Pb treatment alone. Leaf anthocyanin content of SA-sprayed plants significantly increased compared to the control. On contrast, the anthocyanin content of Pb-treated plants with or without SA treatment decreased compared to the control. Parsley leaf chloroplasts were characterized by many and large starch grains. Deformations of chloroplast shape, increasing formation of plastoglobules and degeneration of chloroplast grana thylakoids were observed in Pb-treated plants. MDA and total phenolic compound contents increased in Pb-treated plants compared to the control. In contrast, soluble protein content decreased in Pb-treated plants. The decrease in leaf photosynthetic pigments and increase MDA contents was Pb-concentration dependent. The results as indicated by increasing lipid peroxidation confirmed Pb treatments generated reactive oxygen species (ROS) which caused oxidative stress. In contrast, SA application declined the extent of detrimental and harmful influence of Pb toxicity as indicated by the decrease MDA content, and increase in photosynthetic pigments, anthocyanin and phenolic compound contents of parsley leaves.
Collapse
Affiliation(s)
- Khalid Hasan Alamer
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
- Biology Department, Science and Arts College–Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalaf Ali Fayez
- Botany and Microbiology Department, Faculty of Science, Sohag University Sohag, Sohag, Egypt
| |
Collapse
|
28
|
Zheng C, Aslam M, Liu X, Du H, Xie X, Jia H, Huang N, Tang K, Yang Y, Li P. Impact of Pb on Chlamydomonas reinhardtii at Physiological and Transcriptional Levels. Front Microbiol 2020; 11:1443. [PMID: 32676066 PMCID: PMC7333365 DOI: 10.3389/fmicb.2020.01443] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Trace elements stress is one of the most damaging abiotic stresses in environment. Nevertheless, the defense mechanism in microalgae remains poorly understood. In this study, physiological and molecular methods were performed to analyze the defense responses in green alga Chlamydomonas reinhardtii. It was speculated that the defense responses might mainly be due to the regulation of hormone signaling, indicating its potential role in alleviating the Pb toxicity besides other physiological and molecular defense responses like decrease in growth rate, chlorophyll content and photosynthesis efficiency, intensification of antioxidative mechanisms, regulation of transcription factors, trace elements chelation, and sequestration into vacuole via trace elements transporters. The sole differentially expressed ATP-binding cassette (ABC) transporters indicated that ABC transporters might play a very important role in the transport and relocation of Pb in C. reinhardtii. Additionally, our data provide the required knowledge for future investigations regarding Pb toxicity and defense mechanisms in algae, and detection of trace elements pollution in environment.
Collapse
Affiliation(s)
- Canqi Zheng
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Muhammad Aslam
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xiaojuan Liu
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Hong Du
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xihui Xie
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Haojie Jia
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Nan Huang
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Kaiming Tang
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Yingquan Yang
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Ping Li
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
29
|
Lin S, Yu X, Fang J, Fan J. Influences of the micropollutant erythromycin on cyanobacteria treatment with potassium permanganate. WATER RESEARCH 2020; 177:115786. [PMID: 32305701 DOI: 10.1016/j.watres.2020.115786] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacteria blooms and micropollutants (e.g., antibiotics) in source waters are two increasing environmental issues worldwide. This study hypothesized that the coexisting antibiotics may possibly alter the efficiency of water treatment processes through affecting the physiological and biochemical characteristics of cyanobacterial cells. A toxic strain of Microcystis aeruginosa was exposed to the common antibiotic erythromycin (ERY) at environmentally relevant concentrations; then, samples were collected on days 1, 4 and 6 to assess the efficiency of potassium permanganate (KMnO4) in cyanobacteria oxidation. The percentage of intact cells remained constant after treatment with 2 mg L-1 KMnO4 in M. aeruginosa samples dosed with 0-5.0 μg L-1 ERY. Although 6 mg L-1 KMnO4 could damage cyanobacterial cells, its ability was considerably reduced as the concentrations of ERY increased. KMnO4 oxidation degraded the intracellular microcystins (MCs) in all of the cyanobacterial samples, even the samples with intact cells, possibly resulting from the stimulation of intracellular reactive oxygen species (ROS). The highest amounts of total MCs remained after oxidation with 2 and 6 mg L-1 KMnO4 in 0.2 μg L-1 ERY-treated cyanobacterial samples, which may be due to large amounts of MC production. The 5.0 μg L-1 ERY inhibited the growth of cyanobacterial cells and downregulated the expression of the MC synthesis gene (mcyB), which resulted in the lowest amounts of total MCs. However, it led to the highest concentration (4.6 μg L-1) of extracellular MCs after treatment with 2 mg L-1 KMnO4 for 300 min. Generally, this study indicates that the effectiveness of KMnO4 oxidation in cyanobacteria treatment decreased when the concentration of ERY increased. Hence, the possible risks caused by the coexistence of cyanobacteria and antibiotics, such as reduced efficiency of water treatment processes in cyanobacteria inactivation and degradation of the dissolved MCs, need to be taken into account.
Collapse
Affiliation(s)
- Shiyuan Lin
- Ocean College, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jingyun Fang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiajia Fan
- Ocean College, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
30
|
Chi Z, Hong B, Tan S, Wu Y, Li H, Lu CH, Li W. Impact Assessment of heavy metal cations to the characteristics of photosynthetic phycocyanin. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122225. [PMID: 32062539 DOI: 10.1016/j.jhazmat.2020.122225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/19/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
This work has assessed the impact of typical heavy metal cations on C-phycocyanin in vitro and in silico. At low concentrations (<2×10-6 mol/L), the influence of Pb2+ is the highest on the light absorption of C-phycocyanin trimer. At higher concentrations, however, a new order of influence on the light absorption has been observed with Cd2+ < Cu2+ < Pb2+ < Zn2+. The fluorescence polarization has changed from the order of Cd2+ < Pb2+≈Cu2+ < Zn2+ to Cd2+ < Cu2+ < Pb2+ < Zn2+, when the metal concentrations reaches 2×10-6 mol/L. The mechanisms for these findings have been studied using FTIR, hydrophobic probe, isothermal titration calorimetry and molecular docking for the analysis of structure disorder of C-phycocyanin. It has been suggested that the secondary structure of C-phycocyanin affects more to the light absorbance while the fluorescence characteristics relies more on the tertiary structure. The interaction between Pb2+ and C-phycocyanin is both enthalpically and entropically favoured, whereas the interactions for Cd2+, Cu2+ and Zn2+ are entropically driven. The ion-molecular docking suggests that the structure disorder of C-phycocyanin relies on the molecular interactions with metal ions. The in silico study also showed that the binding cites of Zn2+ are closer to chromophores.
Collapse
Affiliation(s)
- Zhenxing Chi
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong, 264209, China.
| | - Bowen Hong
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong, 264209, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China.
| | - Yanchao Wu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong, 264209, China
| | - Huijing Li
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong, 264209, China
| | - Chih-Hao Lu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, 40402
| | - Weiguo Li
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong, 264209, China
| |
Collapse
|
31
|
Cai H, Liang J, Ning XA, Lai X, Li Y. Algal toxicity induced by effluents from textile-dyeing wastewater treatment plants. J Environ Sci (China) 2020; 91:199-208. [PMID: 32172968 DOI: 10.1016/j.jes.2020.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
This research aimed to evaluate the alga Scenedesmus obliquus toxicity induced by textile-dyeing effluents (TDE). The toxicity indicator of TDE in alga at the physiological (algal growth), biochemical (chlorophyll-a (Chl-a) synthesis and superoxide dismutase (SOD) activity) and structural (cell membrane integrity) level were investigated. Then we further study the relationship among toxicity indicators at physiological and biochemical level, and supplemented by research on algal biomacromolecules. According to the analysis of various endpoints of the alga, the general sensitivity sequence of toxicity endpoints of Scenedesmus obliquus was: SOD activity > Chl-a synthesis > algal growth. The stimulation rate of SOD activity increased from day 3 (57.25%~83.02%) to day 6 (57.25%~103.81%), and then decreased on day 15 (-4.23%~-32.96%), which indicated that the antioxidant balance system of the algal cells was destroyed. The rate of Chl-a synthesis inhibition increased gradually, reaching 19.70%~79.39% on day 15, while the rate of growth inhibition increased from day 3 (-12.90%~10.16%) to day 15 (-21.27%~72.46%). Moreover, the algal growth inhibition rate was positively correlated with the inhibition rate of SOD activity or Chl-a synthesis, with the correlation coefficients were 0.6713 and 0.5217, respectively. Algal cells would be stimulating to produce excessive reactive oxygen species, which would cause peroxidation in the cells, thereby destroying chloroplasts, inhibiting chlorophyll synthesis and reducing photosynthesis. With increasing exposure time, irreversible damage to algae can lead to death. This study is expected to enhance our understanding of the ecological risks through algal tests caused by TDE.
Collapse
Affiliation(s)
- Hualing Cai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jieying Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Xun-An Ning
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiaojun Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
Deng J, Fu D, Hu W, Lu X, Wu Y, Bryan H. Physiological responses and accumulation ability of Microcystis aeruginosa to zinc and cadmium: Implications for bioremediation of heavy metal pollution. BIORESOURCE TECHNOLOGY 2020; 303:122963. [PMID: 32050124 DOI: 10.1016/j.biortech.2020.122963] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Algae has potential to remediate heavy metals. However, the physiological responses of live algae to heavy metals are not well studied. In this study, the physiological responses of Microcystis aeruginosa to zinc (Zn) and cadmium (Cd) ions and its ability to accumulate ions were investigated. Low concentrations (<0.1 mg/l) of Zn and Cd had little influence on algal growth and physiological processes, whereas concentrations above 0.1 mg/l increased the esterase activity (from 42.5% to 621.9%), superoxide dismutase activity (from 12.8% to 45.4%), and malondialdehyde content (from 18.2% to 103.9%), and dramatically inhibited the cell division (from 12.6% to 70.0%) and photosynthetic performance (from 7.1% to 53.1%) of M. aeruginosa. The accumulation of Zn or Cd ions by M. aeruginosa increased exponentially with the initial concentration of metallic ions. Collectively, these findings reveal that M. aeruginosa has considerable potential in the remediation of freshwater lakes with heavy metal contamination during cyanobacterial blooms, where metallic ions are lower than 0.1 mg/l.
Collapse
Affiliation(s)
- Jiancai Deng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Dongwang Fu
- Nanjing Water Planning and Designing Institute Corp., Ltd., Nanjing 210022, China
| | - Weiping Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Lu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yonghong Wu
- Zigui Ecological Station for Three Gorges Dam Project, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Heather Bryan
- Ecosystem Science and Management Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada
| |
Collapse
|
33
|
Angel BM, Figuiere R, Simpson SL. Predicting chronic algal toxicity from 1- to 48-h pulsed exposures to mine site waters using time-averaged concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110263. [PMID: 32036098 DOI: 10.1016/j.ecoenv.2020.110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Despite concentrations often fluctuating in aquatic systems that receive contaminant inputs, there has only been a relatively small number of studies investigating the toxicity of intermittent exposures. This is particularly the case for industrial and mine effluents that may contain complex mixtures of contaminants and other stressors. The lack of information is impeding the regulation of such contaminant exposures, whose risk is often assessed by comparison to continuous exposures in whole effluent toxicity (direct toxicity assessment) testing. The current study compared the toxicity from continuous (72-h) and pulsed (1- to 48-h) exposures of two neutralised mine waters (NMWs) to the freshwater algae, Chlorella sp. When the algal toxicity of the different exposures was related to the time-averaged concentration (TAC) of contaminants, it was found that the TAC was a good predictor of toxicity in any given test, with variability in toxicity between tests mainly related to differences in contaminant concentrations from the neutralisation of the acidic mine waters. When the data from tests on two samples were combined on a whole-effluent TAC basis, the EC50 values (95% confidence intervals) for the continuous and pulsed exposures were 0.68% (0.36-1.3) and 0.63% (0.38-1.1) respectively, for NMW sample one, while the corresponding EC50 values for NMW sample two were 1.3% (1.0-1.7) and 1.9% (1.6-2.2), respectively. The toxicity of the second water was strongly influenced by the zinc, and probably copper, concentrations, while the toxicity of the first appeared to be related to additive or synergistic toxicity from Al, Cd, Mn and Pb. The findings are discussed in relation to using a contaminant TAC-approach to revise water quality guideline values derived for continuous exposures for application to pulsed exposures, where higher concentrations may be permissible for short durations.
Collapse
Affiliation(s)
- Brad M Angel
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW, 2232, Australia.
| | - Romain Figuiere
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW, 2232, Australia
| | - Stuart L Simpson
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW, 2232, Australia
| |
Collapse
|
34
|
Wang H, Jin M, Mao W, Chen C, Fu L, Li Z, Du S, Liu H. Photosynthetic toxicity of non-steroidal anti-inflammatory drugs (NSAIDs) on green algae Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136176. [PMID: 31972914 DOI: 10.1016/j.scitotenv.2019.136176] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
The widespread use of pharmaceuticals and personal care products (PPCPs) has raised serious concerns regarding their potential ecotoxicological effects. We examined the photosynthetic toxicity of four non-steroidal anti-inflammatory drugs (NSAIDs), i.e. ibuprofen (rac-IBU and S-(+)-IBU), aspirin (ASA) and ketoprofen (KEP) on the green alga Scenedesmus obliquus. Our results showed that NSAIDs exerted inhibitory effects on algal growth; the IC50-24h of S-(+)-IBU, rac-IBU, ASA, and KEP was 123.29, 107.91, 103.05, and 4.03 mg/L, respectively. KEP was the most toxic, ASA was slightly more toxic than rac-IBU, and S-(+)-IBU was the least toxic. NSAIDs adversely affected the cellular ultrastructure, as evident from plasmolysis, chloroplast deformation and disintegration. NSAID treatments decreased the chlorophyll and carotenoid content, and chlorophyll fluorescence parameters such as minimum fluorescence yield (F0), maximum fluorescence yield (Fm), maximum photochemical quantum yield (Fv/Fm), PSII (photosystem II) effective quantum yield [Y(II)], photosynthetic electron transfer rate (ETR), and the photochemical quenching (qP), were also adversely affected. Algal photosynthetic and respiratory rates decreased following NSAID treatments, and the expression of genes involved in photosynthetic electron transport (psaA, psaB, psbB, psbD, and rbcL) was down-regulated. Furthermore, the functioning of the photosynthetic electron transport chain from PSI (photosystem I) to PSII, carbon assimilation, and photorespiration were affected. Our results suggest that NSAIDs can exert considerable toxic effects on the photosynthetic system of S. obliquus. These results provide a basis for evaluating the environmental safety of NSAIDs.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenfeng Mao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Cijia Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Linya Fu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhe Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
35
|
Malerba ME, Marshall DJ. Testing the drivers of the temperature-size covariance using artificial selection. Evolution 2019; 74:169-178. [PMID: 31815291 DOI: 10.1111/evo.13896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
Body size often declines with increasing temperature. Although there is ample evidence for this effect to be adaptive, it remains unclear whether size shrinking at warmer temperatures is driven by specific properties of being smaller (e.g., surface to volume ratio) or by traits that are correlated with size (e.g., metabolism, growth). We used 290 generations (22 months) of artificial selection on a unicellular phytoplankton species to evolve a 13-fold difference in volume between small-selected and large-selected cells and tested their performance at 22°C (usual temperature), 18°C (-4), and 26°C (+4). Warmer temperatures increased fitness in small-selected individuals and reduced fitness in large-selected ones, indicating changes in size alone are sufficient to mediate temperature-dependent performance. Our results are incompatible with the often-cited geometric argument of warmer temperature intensifying resource limitation. Instead, we find evidence that is consistent with larger cells being more vulnerable to reactive oxygen species. By engineering cells of different sizes, our results suggest that smaller-celled species are pre-adapted for higher temperatures. We discuss the potential repercussions for global carbon cycles and the biological pump under climate warming.
Collapse
Affiliation(s)
- Martino E Malerba
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Dustin J Marshall
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
36
|
Gan T, Zhao N, Yin G, Chen M, Wang X, Liu J, Liu W. Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia closterium based on chlorophyll fluorescence technology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111551. [DOI: 10.1016/j.jphotobiol.2019.111551] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/11/2019] [Accepted: 07/04/2019] [Indexed: 11/28/2022]
|
37
|
Physiological and metabolic responses of Scenedesmus quadricauda (Chlorophyceae) to nickel toxicity and warming. 3 Biotech 2019; 9:315. [PMID: 31406637 DOI: 10.1007/s13205-019-1848-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/20/2019] [Indexed: 12/13/2022] Open
Abstract
An ecologically important tropical freshwater microalga, Scenedesmus quadricauda, was exposed to Ni toxicity under two temperature regimes, 25 and 35 °C to investigate the interactive effects of warming and different Ni concentrations (0.1, 1.0 and 10.0 ppm). The stress responses were assessed from the growth, photosynthesis, reactive oxygen species (ROS) generation and metabolomics aspects to understand the effects at both the physiological and biochemical levels. The results showed that the cell densities of the cultures were higher at 35 °C compared to 25 °C, but decreased with increasing Ni concentrations at 35 °C. In terms of photosynthetic efficiency, the maximum quantum yield of photosystem II (F v/F m) of S. quadricauda remained consistent across different conditions. Nickel concentration at 10.0 ppm affected the maximum rate of relative electron transport (rETRm) and saturation irradiance for electron transport (E k) in photosynthesis. At 25 °C, the increase of non-photochemical quenching (NPQ) values in cells exposed to 10.0 ppm Ni might indicate the onset of thermal dissipation process as a self-protection mechanism against Ni toxicity. The combination of warming and Ni toxicity induced a strong oxidative stress response in the cells. The ROS level increased significantly by 40% after exposure to 10.0 ppm of Ni at 35 °C. The amount of Ni accumulated in the biomass was higher at 25 °C compared to 35 °C. Based on the metabolic profile, temperature contributed the most significant differentiation among the samples compared to Ni treatment and the interaction between the two factors. Amino acids, sugars and organic acids were significantly regulated by the combined factors to restore homeostasis. The most affected pathways include sulphur, amino acids, and nitrogen metabolisms. Overall, the results suggest that the inhibitory effect of Ni was lower at 35 °C compared to 25 °C probably due to lower metal uptake and primary metabolism restructuring. The ability of S. quadricauda to accumulate substantial amount of Ni and thrive at 35 °C suggests the potential use of this strain for phycoremediation and outdoor wastewater treatment.
Collapse
|
38
|
Salama ES, Roh HS, Dev S, Khan MA, Abou-Shanab RAI, Chang SW, Jeon BH. Algae as a green technology for heavy metals removal from various wastewater. World J Microbiol Biotechnol 2019; 35:75. [DOI: 10.1007/s11274-019-2648-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/24/2019] [Indexed: 12/21/2022]
|
39
|
Shi X, Wang S, Wang D, Sun H, Chen Y, Liu J, Jiang Z. Woody species Rhus chinensis Mill. seedlings tolerance to Pb: Physiological and biochemical response. J Environ Sci (China) 2019; 78:63-73. [PMID: 30665657 DOI: 10.1016/j.jes.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 06/09/2023]
Abstract
Screening potential plant species is a crucial consideration in phytoremediation technology. Our previous study demonstrated that Rhus chinensis Mill. seedlings had potentials for phytoremediation of Pb contaminated soil. However, its bioaccumulation and tolerance characteristics remain unclear. Seedling growth, LMWOAs secreted by roots, Pb subcellular distribution and chemical forms, and mineral elements in R. chinensis tissues were evaluated under different Pb concentrations (0, 25, 50, 100, 200 and 400 mg/L) in culture solution at 14 days after planting. R. chinensis did not show visual symptoms of Pb toxicity under lower Pb treatments; however, Pb significantly declined the growth of seedlings under higher Pb treatments. Higher Pb stress also decreased the concentrations of nitrogen in leaves, but increased the concentrations of P and K in roots. Pb stress also decreased Mn concentrations in leaves. A great quantity of Pb was uptake and mostly retained in R. chinensis roots. Nonetheless, R. chinensis can still concentrate 459.3 and 1102.7 mg/kg Pb in leaves and stems, respectively. Most of Pb in R. chinensis tissues was stored in the cell wall with HAc-, HCl-, and NaCl-extractable form. LMWOAs secreted by R. chinensis roots showed a strong positive correlation with Pb concentrations in all plant tissues and with P in roots. Our results suggested that Pb deposited in the cell wall and integration with phosphate or oxalate might be responsible for the tolerance of R. chinensis under Pb stress in short period.
Collapse
Affiliation(s)
- Xiang Shi
- Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry, Hangzhou 311400, China; Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shufeng Wang
- Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Dongxue Wang
- Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry, Hangzhou 311400, China; Forestry College of Inner Mongolia Agricultural University, Huhehot 010019, China
| | - Haijing Sun
- Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yitai Chen
- Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jianfeng Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zeping Jiang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
40
|
Pikula K, Zakharenko A, Aruoja V, Golokhvast K, Tsatsakis A. Oxidative stress and its biomarkers in microalgal ecotoxicology. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2018.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Zheng M, Han Y, Xu C, Han H, Zhang Z. Discrimination of typical cyclic compounds and selection of toxicity evaluation bioassays for coal gasification wastewater (CGW) based on toxicity mechanism of actions (MOAs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:324-334. [PMID: 29981980 DOI: 10.1016/j.scitotenv.2018.06.295] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/27/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
This paper originally investigated toxicity discrimination of typical cyclic compounds and bioassays selection on toxicity evaluation for coal gasification wastewater (CGW) effluent with mechanism-oriented investigation. Initially, representative cyclic toxicants were selected and classified with quantitative structure-toxicity relationship (QSTR). Nitrogen heterocyclic compounds (NHCs) and polycyclic aromatic hydrocarbons (PAHs) were basically discriminated as nonpolar narcotics with significant correlation to hydrophobicity (p < 0.05, R2 = 0.8668-0.9635), while phenols were regarded as polar narcotics and reactive compounds due to slight correlation to hydrophobicity (p > 0.05, R2 < 0.5). Furthermore, specific mechanism of actions (MOAs) to various organisms revealed that phenols were discriminated as critical source of acute toxicity in CGW, with short-term visible and irreversible damage. However, NHCs and PAHs, which exerted accumulation toxicity rather than acute toxicity, might result in potential mutagenicity and unpredictable risk along the food chain. Afterwards, based on species sensitivity to typical toxicants and application in real CGW effluent, non-applicability of Chlorella vulgaris (C. vulgaris) was validated in toxicity evaluation. While Daphnia magna (D. magna) was suggested as a toxicity bioassay in entire effluent due to the highest sensitivity and applicability. Tetrahymena thermophile (T. pyriformis) might be applicable in effluent with low biodegradability due to similar evaluation results (TU = 8.90) to D. magna (TU = 6.67) in aerobic effluent. Finally, the relationship between toxicity and bioavailability based on typical pollutants and model species illustrated necessity for dualism toxicity-biodegradability investigation on CGW.
Collapse
Affiliation(s)
- Mengqi Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China
| | - Chunyan Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhengwen Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
42
|
Meng Y, Wang S, Wang Z, Ye N, Fang H. Algal toxicity of binary mixtures of zinc oxide nanoparticles and tetrabromobisphenol A: Roles of dissolved organic matters. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:78-85. [PMID: 30308412 DOI: 10.1016/j.etap.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated the impacts of dissolved organic matters (DOM) on joint toxicity involved in zinc oxide nanoparticles (ZnO NPs) and tetrabromobisphenol A (TBBPA) at relevant low-exposure concentrations (<1 mg/L). It was found that ZnO NPs in single and combined systems exhibited severe inhibition effects on a freshwater microalgae Scenedesmus obliquus. However, the presence of DOM slightly alleviated the growth inhibition toxicity induced by the binary mixtures of ZnO NPs and TBBPA. Ultrastructure analysis revealed that ZnO NPs caused structural damage to cells, including plasmolysis, membrane destruction, and the disruption of thylakoid in the chloroplast, regardless of the presence of coexisting substances. Oxidative stress biomarker quantitative analysis and in situ observations indicated that the massive accumulation of reactive oxygen species in the binary mixtures of ZnO NPs and TBBPA caused severe oxidative damage, but the presence of DOM significantly mitigated the damage.
Collapse
Affiliation(s)
- Yue Meng
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Se Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Zhuang Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China.
| | - Nan Ye
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Hao Fang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| |
Collapse
|
43
|
Huang Y, Luo L, Ma XY, Wang XC. Effect of elevated benzophenone-4 (BP4) concentration on Chlorella vulgaris growth and cellular metabolisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32549-32561. [PMID: 30238265 DOI: 10.1007/s11356-018-3171-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Benzophenone-4 (BP4), as the raw material of common sunscreen products, usually shows strong eco-toxicity and endocrine-disrupting activity in aquatic animals. However, the potential adverse effect of BP4 on aquatic vegetation is still unclear. In order to evaluate the inhibitory effect of BP4 on phytoplankton, wild and acclimated Chlorella vulgaris was used as representative aquatic plant cells and experimental studies were conducted on the characteristics of its growth and cellular metabolisms upon exposure to elevated BP4 concentrations (1, 5, 10, 20, 50, and 100 mg L-1). C. vulgaris basically appeared low sensitivity to BP4 exposure because the 96-h EC50 was measured as 65.16 mg L-1 for its wild type. The 96-h EC50 of the acclimated type, which was pre-exposed to 10 mg L-1 of BP4 and transferred twice, was 140.76 mg L-1. By cellular response tests regarding non-enzymatic antioxidants carotenoid content, malondialdehyde (MDA), enzyme antioxidant superoxide dismutase (SOD) activity, and the photosynthetic efficiency, it was clarified that increasing exposure concentration elevated the hindrance to cellular metabolism. However, the rate of BP4 utilization as substrates for C. vulgaris growth showed a trend of decreasing with increasing BP4 concentration. The higher 96-h EC50 value of the acclimated C. vulgaris to BP4 inhibition than the wild C. vulgaris showed the enhanced tolerance capability; however, the continuous stress response of acclimated type should be taken into account when using microalgae species for toxicity assessment.
Collapse
Affiliation(s)
- Yue Huang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Engineering Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
| | - Li Luo
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Engineering Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
| | - Xiaoyan Y Ma
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Engineering Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
| | - Xiaochang C Wang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China.
- Engineering Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China.
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China.
| |
Collapse
|
44
|
Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka-Szelewa E, Bralska M. Exogenously applied auxins and cytokinins ameliorate lead toxicity by inducing antioxidant defence system in green alga Acutodesmus obliquus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:535-546. [PMID: 30316163 DOI: 10.1016/j.plaphy.2018.09.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
The effects of auxins (IAA, IBA, PAA) and cytokinins (tZ, Kin, DPU) on the growth, oxidative damage, level of antioxidants and the activity of antioxidant enzymes as well as the contents of proteins and photosynthetic pigments in green alga Acutodesmus obliquus were investigated under 100 μM lead (Pb) stress. Heavy metal induced oxidative damage as evidenced by a decrease in cell number and reduction in the contents of proteins and chlorophylls as a consequence of an increase in reactive oxygen species (ROS) formation and lipid peroxidation. The application of exogenous auxins and cytokinins modulated biosorption of Pb by algal cells significantly alleviated the growth inhibition and stimulated the accumulation of proteins, chlorophylls and carotenes. Phytohormones also activated the xanthophyll cycle which is extensively involved in the protection of the photosynthetic apparatus in adverse environmental conditions. The reduction in oxidative stress caused by the presence of toxic Pb was observed in algal cultures treated with phytohormones. Cytokinins were more effective in lowering hydrogen peroxide and lipid peroxidation levels in comparison with auxins. This improving effect of cytokinins seems to be mediated by a decrease in Pb accumulation by algal cells, whereas auxins promoted metal uptake. Importantly, auxins and cytokinins enhanced the redox status of algal cells inducing the increase in the content of antioxidants (ascorbate, glutathione, and proline) and in the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) involved in ROS scavenging. The results of the present study strongly suggest that exogenous auxins and cytokinins enhanced the resistance of microalga A. obliquus against Pb toxicity through the activation of the antioxidant defence system.
Collapse
Affiliation(s)
- Alicja Piotrowska-Niczyporuk
- University of Bialystok, Faculty of Biology and Chemistry, Institute of Biology, Department of Plant Biochemistry and Toxicology, Ciolkowskiego 1J, 15-245 Bialystok, Poland.
| | - Andrzej Bajguz
- University of Bialystok, Faculty of Biology and Chemistry, Institute of Biology, Department of Plant Biochemistry and Toxicology, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Elżbieta Zambrzycka-Szelewa
- University of Bialystok, Faculty of Biology and Chemistry, Institute of Chemistry, Department of Analytical Chemistry, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Monika Bralska
- University of Bialystok, Faculty of Biology and Chemistry, Institute of Biology, Department of Plant Biochemistry and Toxicology, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| |
Collapse
|
45
|
Grzesiuk M, Spijkerman E, Lachmann SC, Wacker A. Environmental concentrations of pharmaceuticals directly affect phytoplankton and effects propagate through trophic interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:271-278. [PMID: 29554612 DOI: 10.1016/j.ecoenv.2018.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals are found in freshwater ecosystems where even low concentrations in the range of ng L-1 may affect aquatic organisms. In the current study, we investigated the effects of chronic exposure to three pharmaceuticals on two microalgae, a potential modulation of the effects by additional inorganic phosphorus (Pi) limitation, and a potential propagation of the pharmaceuticals' effect across a trophic interaction. The latter considers that pharmaceuticals are bioaccumulated by algae, potentially metabolized into more (or less) toxic derivates and consequently consumed by zooplankton. We cultured Acutodesmus obliquus and Nannochloropsis limnetica in Pi-replete and Pi-limited medium contaminated with one of three commonly human used pharmaceuticals: fluoxetine, ibuprofen, and propranolol. Secondly, we tested to what extent first level consumers (Daphnia magna) were affected when fed with pharmaceutical-grown algae. Chronic exposure, covering 30 generations, led to (i) decreased cell numbers of A. obliquus in the presence of fluoxetine (under Pi-replete conditions) (ii) increased carotenoid to chlorophyll ratios in N. limnetica (under Pi-limited conditions), and (iii) increased photosynthetic yields in A. obliquus (in both Pi-conditions). In addition, ibuprofen affected both algae and their consumer: Feeding ibuprofen-contaminated algae to Pi-stressed D. magna improved their survival. We demonstrate, that even very low concentrations of pharmaceuticals present in freshwater ecosystems can significantly affect aquatic organisms when chronically exposed. Our study indicates that pharmaceutical effects can cross trophic levels and travel up the food chain.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warsaw, Poland; Department of Ecology and Ecosystem Modelling, Institute for Biochemistry and Biology University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany; Department of Theoretical Aquatic Ecology and Ecophysiology, Institute for Biochemistry and Biology, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany.
| | - Elly Spijkerman
- Department of Ecology and Ecosystem Modelling, Institute for Biochemistry and Biology University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Sabrina C Lachmann
- Department of Ecology and Ecosystem Modelling, Institute for Biochemistry and Biology University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Alexander Wacker
- Department of Theoretical Aquatic Ecology and Ecophysiology, Institute for Biochemistry and Biology, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
| |
Collapse
|
46
|
Rashid N, Park WK, Selvaratnam T. Binary culture of microalgae as an integrated approach for enhanced biomass and metabolites productivity, wastewater treatment, and bioflocculation. CHEMOSPHERE 2018; 194:67-75. [PMID: 29197817 DOI: 10.1016/j.chemosphere.2017.11.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/25/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Ecological studies of microalgae have revealed their potential to co-exist in the natural environment. It provides an evidence of the symbiotic relationship of microalgae with other microorganisms. The symbiosis potential of microalgae is inherited with distinct advantages, providing a venue for their scale-up applications. The deployment of large-scale microalgae applications is limited due to the technical challenges such as slow growth rate, low metabolites yield, and high risk of biomass contamination by unwanted bacteria. However, these challenges can be overcome by exploring symbiotic potential of microalgae. In a symbiotic system, photosynthetic microalgae co-exist with bacteria, fungi, as well as heterotrophic microalgae. In this consortium, they can exchange nutrients and metabolites, transfer gene, and interact with each other through complex metabolic mechanism. Microalgae in this system, termed as a binary culture, are reported to exhibit high growth rate, enhanced bio-flocculation, and biochemical productivity without experiencing contamination. Binary culture also offers interesting applications in other biotechnological processes including bioremediation, wastewater treatment, and production of high-value metabolites. The focus of the study is to provide a perspective to enhance the understanding about microalgae binary culture. In this review, the mechanism of binary culture, its potential, and limitations are briefly discussed. A number of queries are evolved through this study, which needs to be answered by executing future research to assess the real potential of binary culture.
Collapse
Affiliation(s)
- Naim Rashid
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA; Department of Chemical Engineering, COMSATS Institute of Information Technology, Defence Road, Lahore 54000, Pakistan; Advanced Biomass R&D Center, 291- Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | - Won-Kun Park
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Thinesh Selvaratnam
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA; Civil and Environmental Engineering Department, Lamar University, Beaumont, TX 77710, USA
| |
Collapse
|
47
|
Mu W, Jia K, Liu Y, Pan X, Fan Y. Response of the freshwater diatom Halamphora veneta (Kützing) Levkov to copper and mercury and its potential for bioassessment of heavy metal toxicity in aquatic habitats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26375-26386. [PMID: 28944446 DOI: 10.1007/s11356-017-0225-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
This study investigates the effects of copper and mercury on growth rate, chlorophyll a content, superoxide dismutase (SOD) activity, SOD mRNA gene expression, and frustule morphology of the benthic freshwater diatom Halamphora veneta (Kützing) Levkov and the potential utility of each for toxicity assessment in aquatic habitats. Results showed the following: (1) Compared to mercury, exposure to copper resulted in greater growth inhibition of H. veneta even at low concentrations and after short durations of exposure; (2) high accumulation of chlorophyll a in H. veneta is a stress response to the presence of heavy metals; (3) SOD activity and SOD gene expression varied in H. veneta according to the concentration, exposure time, and type of heavy metal; and (4) exposure to mercury resulted in deformity in the shape and an increase in size of the frustule of H. veneta. Growth rate, chlorophyll a content, SOD activity and gene expression, and frustule morphology of H. veneta are all potential candidates for the toxicological assessment of copper and mercury in aquatic habitats.
Collapse
Affiliation(s)
- Weijie Mu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Kun Jia
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yan Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Xuming Pan
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yawen Fan
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
48
|
Ishika T, Moheimani NR, Bahri PA, Laird DW, Blair S, Parlevliet D. Halo-adapted microalgae for fucoxanthin production: Effect of incremental increase in salinity. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Gu S, Zheng H, Xu Q, Sun C, Shi M, Wang Z, Li F. Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:122-130. [PMID: 28822891 DOI: 10.1016/j.aquatox.2017.08.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 05/25/2023]
Abstract
Phthalate esters (PAEs), a family of emerging environmental contaminants, have been frequently detected in soils and water. However, intensive studies on the toxicity of PAEs have focused on growth response of terrestrial and aquatic animals, while only limited attention has been paid to aquatic plants, especially phytoplankton, the primary producer in aquatic ecosystems. Therefore, the acute toxic effects and underlying mechanisms of dibutyl phthalate (DBP) at different concentrations (0-20mgL-1) on two typical freshwater algae (Scenedesmus obliquus and Chlorella pyrenoidosa) were investigated. The growth of S. obliquus and C. pyrenoidosa was conspicuously inhibited by DBP exposure at 2-20mgL-1. The 96-h median effective concentration values (96h-EC50) were 15.3mgL-1 and 3.14mgL-1 for S. obliquus and C. pyrenoidosa, respectively, implying that the spherical C. pyrenoidosa is more sensitive to DBP than the spindle-shaped S. obliquus. As expected from the damage done to cell organelles (i.e. cell membranes, chloroplasts, and protein rings), cell densities and chlorophyll content conspicuously decreased under DBP treatments. Moreover, the algal growth inhibition was closely linked to the increased production of intracellular reactive oxygen species and malondialdehyde content, indicating oxidative stress and lipid peroxidation in both algae. This was proved by the increased activity of antioxidant enzymes such as superoxide dismutase and catalase. Our findings will contribute to the understanding of toxic mechanisms in PAEs and the evaluation of environmental risks for primary producers in aquatic ecosystems.
Collapse
Affiliation(s)
- Shurui Gu
- Institute of Coastal Environmental Pollution Control, Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Qingqing Xu
- Institute of Coastal Environmental Pollution Control, Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Cuizhu Sun
- Institute of Coastal Environmental Pollution Control, Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mei Shi
- Institute of Coastal Environmental Pollution Control, Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
50
|
Dao L, Beardall J, Heraud P. Characterisation of Pb-induced changes and prediction of Pb exposure in microalgae using infrared spectroscopy. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:33-42. [PMID: 28445789 DOI: 10.1016/j.aquatox.2017.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
Macromolecular changes in Chlorella sp. FleB1 and Scenedesmus acutus YaA6 exposed to Pb were characterised by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. Spectra were collected in the mid-infrared spectral region and a chemometric approach was used to analyse the spectra. Principal Component Analysis showed that under Pb treatment, carbohydrates and lipids increased while proteins and phosphorylated molecules decreased in both the isolates. These conclusions were corroborated by conventional measurements of photosynthesis and neutral lipids. In the two strains, Pb inhibited photosynthesis, which directly affects the synthesis of polysaccharides and other macromolecules. Neutral lipids as measured by Nile Red were increased in lead-treated samples. Modelling of spectral data against Pb exposure levels allowed Pb-exposed samples to be readily discriminated from unexposed controls and the level of Pb exposure could be predicted with good accuracy in independent validation testing. This study demonstrates the utility of the spectroscopic approach as a rapid, inexpensive, non-destructive method to understand changes in cellular composition induced by Pb and allowing detection and quantification of Pb levels in metal-contaminated cells in a "snapshot".
Collapse
Affiliation(s)
- Ly Dao
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia; Faculty of Biology, Hanoi National University of Education, Hanoi, Viet Nam
| | - John Beardall
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Monash University, Melbourne, VIC 3800, Australia; Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|