1
|
Mantilla Á, Guerrero-Araque D, Sierra-Uribe JH, Lartundo-Rojas L, Gómez R, Calderon HA, Zanella R, Ramírez-Ortega D. Highly efficient mobility, separation and charge transfer in black SnO 2-TiO 2 structures with co-catalysts: the key step for the photocatalytic hydrogen evolution. RSC Adv 2024; 14:26259-26271. [PMID: 39161446 PMCID: PMC11332590 DOI: 10.1039/d4ra03731f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
Oxygen vacancies and co-catalysts enhance photocatalytic hydrogen production by improving the charge carrier separation. Herein, the black SnO2-TiO2 structure (BST) was synthesized for the first time by two consecutive methods. First, the sol-gel nucleation method allowed TiO2 to form on the SnO2 nanoparticles, creating a strong interaction and direct contact between them. Subsequently, this structure was reduced by NaBH4 during thermal treatment, generating (Ti3+/Sn2+) states to form the BST. Then, 2 wt% of Co, Cu or Pd was impregnated onto BST. The results showed that the activity raised with the presence of Ti3+/Sn2+ states, reaching a hydrogen generation rate of 147.50 μmol g-1 h-1 with BST in comparison with the rate of 99.50 μmol g-1 h-1 for white SnO2-TiO2. On the other hand, the interaction of the co-catalysts with the BST structure helped to increase the photocatalytic hydrogen production rates: 154.10 μmol g-1 h-1, 384.18 μmol g-1 h-1 and 480.20 μmol g-1 h-1 for cobalt-BST, copper-BST and palladium-BST, respectively. The results can be associated with the creation of Ti3+/Sn2+ at the BST interface that changes the lifetime of the charge carrier, improving the separation of photogenerated electrons and holes and the co-catalysts in the structures move the flat band position and increasing the photocurrent response to having electrons with greater reducing power.
Collapse
Affiliation(s)
- Ángeles Mantilla
- Instituto Politécnico Nacional, Laboratorio de Fotocatálisis, CICATA-Legaria Legaria 694, Col. Irrigación 11500 Mexico City Mexico
| | - Diana Guerrero-Araque
- CONAHCyT-Universidad Autónoma Metropolitana, Departamento de Química Av. San Rafael Atlixco 156 09340 Mexico City Mexico
| | - Jhon Harrison Sierra-Uribe
- Universidad Autónoma Metropolitana, Departamento de Química Av. San Rafael Atlixco 156 09340 Mexico City Mexico
| | - Luis Lartundo-Rojas
- Instituto Politécnico Nacional, Centro de Nanociencias y Micro y Nanotecnología, Zacatenco Mexico City Mexico
| | - Ricardo Gómez
- Universidad Autónoma Metropolitana, Departamento de Química Av. San Rafael Atlixco 156 09340 Mexico City Mexico
| | - Héctor A Calderon
- Instituto Politécnico Nacional, ESFM, Departamento de Física, UPALM Miguel Othon de Mendizabal s/n 07320 Mexico City Mexico
| | - Rodolfo Zanella
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria Circuito Exterior S/N, Coyoacan 04510 Mexico City Mexico
| | - David Ramírez-Ortega
- Instituto Politécnico Nacional, Laboratorio de Fotocatálisis, CICATA-Legaria Legaria 694, Col. Irrigación 11500 Mexico City Mexico
- Instituto Politécnico Nacional-ENCB Edificio 8, Av. Luis Enrique Erro S/N, UPALM 07738 Mexico City Mexico
| |
Collapse
|
2
|
Li C, Zhou Q. Synergistic effect between Ce-doped SnO 2 and bio-carbon for electrocatalytic degradation of tetracycline: Experiment, CFD, and DFT. CHEMOSPHERE 2023; 332:138705. [PMID: 37076085 DOI: 10.1016/j.chemosphere.2023.138705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Carbon-based sandwich-like electrocatalyst with a hierarchical structure, carbon sheet (CS)-loaded Ce-doped SnO2 nanoparticles, were successfully prepared using a simple method, which presented a high-efficiency electrocatalytic performance for tetracycline decomposition. Among them, Sn0.75Ce0.25Oy/CS exhibits superior catalytic activity, such as more than 95% of tetracycline was removed (120 min), and over 90% of total organic carbon was mineralized (480 min). It is found from morphology observation and computational fluid dynamics simulation that the layered structure is conducive to improving the mass transfer efficiency. Through X-Ray powder diffraction, X-ray photoelectron spectroscopy, Raman spectrum, and density functional theory calculation analyze that the structural defect in Sn0.75Ce0.25Oy caused by Ce doping is considered to play the key role. Moreover, electrochemical measurements and degradation experiments further prove that the outstanding catalytic performance is attributable to the initiated synergistic effect established between CS and Sn0.75Ce0.25Oy. These results explain the effectiveness of Sn0.75Ce0.25Oy/CS for the remediation of tetracycline-contaminated water and mitigating the potential risks and imply that the Sn0.75Ce0.25Oy/CS composite has a deeply practical value in tetracycline wastewater degradation and a promise for further application.
Collapse
Affiliation(s)
- Chi Li
- Sate-owned Sida Machinery Manufacturing Company (SSMMC), Yangling, Shaanxi, 712200, China.
| | - Qin Zhou
- Modern Agriculture and the Ecological Environment Academy, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
3
|
Abdullah M, Iqbal J, Ur Rehman MS, Khalid U, Mateen F, Arshad SN, Al-Sehemi AG, Algarni H, Al-Hartomy OA, Fazal T. Removal of ceftriaxone sodium antibiotic from pharmaceutical wastewater using an activated carbon based TiO 2 composite: Adsorption and photocatalytic degradation evaluation. CHEMOSPHERE 2023; 317:137834. [PMID: 36640968 DOI: 10.1016/j.chemosphere.2023.137834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/13/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The water pollution becomes a serious concern for the sustainability of ecosystems due to the existence of pharmaceutical products (ceftriaxone (CEF) antibiotic). Even in low concentration of CEF has lethal effects on ecosystem and human health. To remove CEF, TiO2 is considered as an effective and efficient nanoparticles, however its performance is reduced due to wider energy gap and rapid recombination of charge carriers. In this study, activated carbon based TiO2 (ACT-X) heterogeneous nanocomposites were synthesized to improve the intrinsic properties of TiO2 and their adsorption-photocatalytic performance for the removal of CEF. The characterization results revealed that ACT-X composites have slower recombination of charge carriers, lower energy band gap (3.05 eV), and better light absorption under visible region of light. From ACT-X composites, the ACT-4 photocatalyst has achieved highest photocatalytic degradation (99.6%) and COD removal up (99.2%). The results of radical scavengers showed that photocatalytic degradation of CEF is mainly occurred due to superoxide and hydroxyl radicals. Meanwhile, the reusability of ACT-4 up to five cycles shows more than 80% photocatalytic degradation, which make the process more economical. The highest experimental adsorption capacity is achieved up to 844.8 mg g-1 using ACT-4. The favorable and multilayer heterogeneous adsorption is carried out according to the well-fitted data with pseudo-second-order and Freundlich models, respectively. These results indicate that the carbon-based TiO2 composites can be used as a green, stable, efficient, effective, reusable, renewable, and sustainable photocatalyst to eliminate the pharmaceutical pollutants (antibiotics) via adsorption and photocatalytic degradation processes.
Collapse
Affiliation(s)
- Muneeb Abdullah
- Institute of Chemical and Environmental Engineering (ICEE), Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Javed Iqbal
- Institute of Chemical and Environmental Engineering (ICEE), Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Muhammad Saif Ur Rehman
- Office of Research, Innovation, and Commercialization (ORIC), Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Usman Khalid
- Institute of Chemical and Environmental Engineering (ICEE), Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Fahad Mateen
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Salman Noshear Arshad
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Science (LUMS), Lahore, 54792, Pakistan
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Hamed Algarni
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia; Department of Physics, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Tahir Fazal
- Institute of Chemical and Environmental Engineering (ICEE), Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
| |
Collapse
|
4
|
Sun Z, Ni Y, Wu Y, Yue W, Zhang G, Bai J. Electrocatalytic degradation of methyl orange and 4-nitrophenol on a Ti/TiO 2-NTA/La-PbO 2 electrode: electrode characterization and operating parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6262-6274. [PMID: 35994150 DOI: 10.1007/s11356-022-22610-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The anode material plays a crucial role in the process of electrochemical oxidation. Herein, a TiO2 nanotube arrays (TiO2-NTA) intermediate layer and La-PbO2 catalytic layer were synthesized on a Ti surface by the electrochemical anodic oxidation and electrochemical deposition technology, respectively. The prepared Ti/TiO2-NTA/La-PbO2 electrode was used as an electrocatalytic oxidation anode for pollutant degradation. Scanning electron microscopy (SEM) analysis showed that the TiO2-NTA layer possessed a highly ordered and well-aligned nanotube array morphology, and the La-PbO2 layer with angular cone cluster was uniform and tightly bonded. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the intermediate layer primarily consisted of the anatase crystal structure of TiO2 and the catalyst layer was made of La-PbO2. Electrochemical analysis revealed that Ti/TiO2-NTA/La-PbO2 electrode exhibited higher oxidation peak current, electrochemical active surface area, and oxygen evolution potential (OEP, 1.64 V). Using methyl orange and 4-nitrophenol as model pollutants, electrocatalytic properties of the prepared Ti/TiO2-NTA/La-PbO2 electrode were systematically investigated under different conditions, and the electrochemical degradation fitted well with the pseudo-first-order kinetics model. Efficient anodic oxidation of model pollutants was mainly attributed to the indirect oxidation mediated by hydroxyl radicals (•OH). The total organic carbon (TOC) removal efficiency of methyl orange and 4-nitrophenol was 70.2 and 72.8%, and low energy consumption (2.50 and 1.89 kWh g-1) was achieved after 240 min of electrolysis under the conditions of initial concentration of model pollutant, electrode spacing, and electrolyte concentration were 50 mg L-1, 2 cm, and 0.1 mol L-1, respectively. This work provided a new strategy to develop the high-efficiency electrode for refractory pollutants degradation.
Collapse
Affiliation(s)
- Zepeng Sun
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Yue Ni
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China.
| | - Yuandong Wu
- Shenzhen Institute, Peking University, Shenzhen, 518057, China
| | - Wenqing Yue
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Ge Zhang
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jianmei Bai
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
5
|
Cai T, Teng Z, Wen Y, Zhang H, Wang S, Fu X, Song L, Li M, Lv J, Zeng Q. Single-atom site catalysts for environmental remediation: Recent advances. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129772. [PMID: 35988491 DOI: 10.1016/j.jhazmat.2022.129772] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Single-atom site catalysts (SACs) can maximize the utilization of active metal species and provide an attractive way to regulate the activity and selectivity of catalytic reactions. The adjustable coordination configuration and atomic structure of SACs enable them to be an ideal candidate for revealing reaction mechanisms in various catalytic processes. The minimum use of metals and relatively tight anchoring of the metal atoms significantly reduce leaching and environmental risks. Additionally, the unique physicochemical properties of single atom sites endow SACs with superior activity in various catalytic processes for environmental remediation (ER). Generally, SACs are burgeoning and promising materials in the application of ER. However, a systematic and critical review on the mechanism and broad application of SACs-based ER is lacking. Herein, we review emerging studies applying SACs for different ERs, such as eliminating organic pollutants in water, removing volatile organic compounds, purifying automobile exhaust, and others (hydrodefluorination and disinfection). We have summarized the synthesis, characterization, reaction mechanism and structural-function relationship of SACs in ER. In addition, the perspectives and challenges of SACs for ER are also analyzed. We expect that this review can provide constructive inspiration for discoveries and applications of SACs in environmental catalysis in the future.
Collapse
Affiliation(s)
- Tao Cai
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Zhenzhen Teng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xijun Fu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Lu Song
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Mi Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Junwen Lv
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Chen J, Wan J, Li C, Wei Y, Shi H. Synthesis of novel Fe 0-Fe 3O 4/CeO 2/C composite cathode for efficient heterogeneous electro-Fenton degradation of ceftriaxone sodium. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129393. [PMID: 35728318 DOI: 10.1016/j.jhazmat.2022.129393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Fe0-Fe3O4 nanoparticles and cerium dioxide hollow spheres as efficient heterogeneous electro-Fenton reagents were rationally designed to be embedded in porous carbon derived from skimmed cotton for the electrocatalytic degradation of ceftriaxone sodium. Skimmed cotton porous carbon material has a hollow tubular structure, and cerium dioxide is dispersed on the surface of the carbon material in a hollow sphere structure of uniform size. Fe0-Fe3O4 nanoparticles were wrapped in irregular particle shapes on the surface of cerium dioxide hollow spheres, and the remaining part was laid flat on the surface of porous carbon material. The as-synthesized Fe0-Fe3O4/CeO2/C showed excellent degradation efficiency of 95.59 % for ceftriaxone sodium within 120 mins and obtained a COD removal rate of 95.21 % at 240 mins. The zero-valent iron as a reducing agent effectively accelerated the Fe3+/Fe2+ cycle, allowing the composites to exhibit higher catalytic activity and further reducing the possibility of secondary contamination. Moreover, the existence of cerium dioxide further promoted the redox cycle of Ce4+/Ce3+ and accelerated the electron transfer in the interface of the catalyst. The synergistic effect of iron and cerium greatly facilitated the production of hydroxyl radicals and increased the yield of hydroxyl radicals in the reaction system.
Collapse
Affiliation(s)
- Jie Chen
- School of Chemistry and Material science, Heilongjiang University, Xuefu Road 74, Harbin 150080, China
| | - Jiafeng Wan
- School of Chemistry and Material science, Heilongjiang University, Xuefu Road 74, Harbin 150080, China.
| | - Chi Li
- School of Chemistry and Material science, Heilongjiang University, Xuefu Road 74, Harbin 150080, China
| | - Yuhan Wei
- School of Chemistry and Material science, Heilongjiang University, Xuefu Road 74, Harbin 150080, China
| | - Haolin Shi
- School of Chemistry and Material science, Heilongjiang University, Xuefu Road 74, Harbin 150080, China
| |
Collapse
|
7
|
Ben Ali Hassine C, Güngör Ö, Burç M, Özcan İ, Köytepe S, Titretir Duran S. Electrochemical determination of ceftriaxone using polyurethane-modified electrode containing caffeic acid and chitosan. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2005092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Chedia Ben Ali Hassine
- Electrical and Electronics Engineering Department, Engineering Faculty, Özyeğin University, İstanbul, Turkey
| | - Öznur Güngör
- Chemistry Department, Arts and Sciences Faculty, Inönü University, Malatya, Turkey
| | - Muammer Burç
- Chemistry Department, Arts and Sciences Faculty, Inönü University, Malatya, Turkey
| | - İmren Özcan
- Chemistry Department, Arts and Sciences Faculty, Inönü University, Malatya, Turkey
| | - Süleyman Köytepe
- Chemistry Department, Arts and Sciences Faculty, Inönü University, Malatya, Turkey
| | - Serap Titretir Duran
- Chemistry Department, Arts and Sciences Faculty, Inönü University, Malatya, Turkey
| |
Collapse
|
8
|
Rajput RB, Jamble SN, Kale RB. A review on TiO 2/SnO 2 heterostructures as a photocatalyst for the degradation of dyes and organic pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114533. [PMID: 35121365 DOI: 10.1016/j.jenvman.2022.114533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Industrialization, civilization and human activities have all grown steadily in recent years. As a result, small and large industries discharge many organic pollutants into the environment and contribute to environmental pollution. These compounds are quite stable and challenging to break down over time, posing a long-term risk. The heterogeneous advanced oxidation processes technology has gained tremendous attention. It depends on the light-induced formation of e-/h+ pairs, which combine with water and aqueous oxygen to generate highly reactive hydroxyl radicals that degrade the organic pollutants in a solution and convert them ultimately into non-toxic products. In this paper, the synergetic impact of TiO2-SnO2 coupling with other semiconductor materials and their photodegradation performance on toxic contaminants in an aqueous medium has been reviewed. In addition, multiple approaches for the synthesis of TiO2-SnO2 photocatalysts have been discussed. Among them, hydrothermal, sol-gel, electrospinning, precipitation and even their combination are extensively used to synthesize various forms of nanostructures. These techniques demonstrate better tunability for visible absorption, suppression of e-/h+ pair recombination and enhanced e-/h+ separation to improve photocatalytic performance. This paper also summarises the role of different operating factors such as catalyst loading, pH, pollutants variation concentration, various light sources and oxidizing agents on the photodegradation of organic pollutants.
Collapse
Affiliation(s)
- Rekha B Rajput
- Department of Physics, The Institute of Science, Madam Cama Road, Mumbai, India.
| | - Shweta N Jamble
- Department of Physics, The Institute of Science, Madam Cama Road, Mumbai, India
| | - Rohidas B Kale
- Department of Physics, The Institute of Science, Madam Cama Road, Mumbai, India.
| |
Collapse
|
9
|
Tang M, Xia Y, Yang D, Lu S, Zhu X, Tang R, Zhang W. Ag Decoration and SnO 2 Coupling Modified Anatase/Rutile Mixed Crystal TiO 2 Composite Photocatalyst for Enhancement of Photocatalytic Degradation towards Tetracycline Hydrochloride. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:873. [PMID: 35269361 PMCID: PMC8912704 DOI: 10.3390/nano12050873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023]
Abstract
The anatase/rutile mixed crystal TiO2 was prepared and modified with Ag decoration and SnO2 coupling to construct a Ag@SnO2/anatase/rutile composite photocatalytic material. The crystal structure, morphology, element valence, optical properties and surface area were characterized, and the effects of Ag decoration and SnO2 coupling on the structure and photocatalytic properties of TiO2 were studied. Ag decoration and SnO2 coupling are beneficial to reduce the recombination of photogenerated electrons and holes. When the two modification are combined, a synergistic effect is produced in suppressing the photogenerated charge recombination, making Ag@SnO2/TiO2 exhibits the highest quantum utilization. After 30 min of illumination, the degradation degree of tetracycline hydrochloride (TC) by pure TiO2 increased from 63.3% to 83.1% with Ag@SnO2/TiO2.
Collapse
Affiliation(s)
- Mao Tang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
- Sichuan Province Engineering Technology Research Center of Powder Metallurgy, Chengdu 610106, China
| | - Yangwen Xia
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
| | - Daixiong Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
| | - Shiji Lu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
| | - Xiaodong Zhu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
- Sichuan Province Engineering Technology Research Center of Powder Metallurgy, Chengdu 610106, China
| | - Renyong Tang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Wanming Zhang
- School of Resources and Environment, Xichang University, Xichang 615000, China
| |
Collapse
|
10
|
Wang H, Liu J, Xiao X, Meng H, Wu J, Guo C, Zheng M, Wang X, Guo S, Jiang B. Engineering of SnO2/TiO2 heterojunction compact interface with efficient charge transfer pathway for photocatalytic hydrogen evolution. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Zhang W, Gao M, Miao F, Wu X, Wang S, Wang X. A permeable electrochemical reactive barrier for underground water remediation using TiO 2/graphite composites as heterogeneous electrocatalysts without releasing of chemical substances. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126318. [PMID: 34118548 DOI: 10.1016/j.jhazmat.2021.126318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Permeable reactive barriers (PRBs) are well-studied and widely-applied technologies in underground water remediation. However, the releasing of chemical substances cannot be avoided during the PRBs operation. In this study, a novel permeable electrochemical reactive barrier (PERB) was fabricated for underground water remediation using a TiO2/graphite composite (TiO2/C) as the heterogeneous electrocatalyst. TiO2/C performed an electro-Fenton-like reaction on cathode and an anodic oxidation on anode respectively, along with the variety of the TiO2 lattice. The performance of this PERB system was evaluated using tetracycline hydrochloride (TTC) degradation. TTC could be degraded at a low applied potential and a wide range of pH. The degradation rate of about 60% was obtained at the optimized reaction condition: the interelectrode potential difference of 1.2 V, pH 3.0, the anode 10 cm above cathode. The relative position and spacing of the electrodes effected the mass transfer equilibrium of TTC. During the 25-day persistent degradation of TTC, the PERB system shown a perfect stability with rarely leaching of Ti. This work explored the potential for underground water remediation by the electrocatalysis with the goal of establishing a clean and eco-friendly PERB system.
Collapse
Affiliation(s)
- Wen Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Mingming Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Fei Miao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xiaoyan Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Shuguang Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xinhua Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
12
|
Abramović BF, Uzelac MM, Armaković SJ, Gašić U, Četojević-Simin DD, Armaković S. Experimental and computational study of hydrolysis and photolysis of antibiotic ceftriaxone: Degradation kinetics, pathways, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144991. [PMID: 33736306 DOI: 10.1016/j.scitotenv.2021.144991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/22/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
In this work, we have experimentally and computationally investigated the process of hydrolysis and photolysis of cephalosporin antibiotics with ceftriaxone (CEF) as a model compound. The CEF hydrolysis was investigated in ultrapure and natural water, at 25 ± 1 °C and 4 ± 1 °C in the dark. It was found that CEF after 100 and 900 days at 25 ± 1°C and 4 ± 1 °C, respectively practically completely removed from ultrapure water. The CEF hydrolysis in natural water was five and three times slower at 25 ± 1 °C and 4 ± 1 °C, respectively than in ultrapure water. Further, the efficiency of direct photolysis (solar/UVA-B) and solar/H2O2 treatment of CEF was investigated. Under UVA-B radiation 95.6% of CEF was removed after 60 min, while for the same time of solar radiation degradation was practically not observed (only 3.2%). Also, the effects of different concentrations of H2O2 (0-150 mM) in the presence/absence of solar radiation were studied. The most efficient solar/H2O2 treatment was in the presence of 90 mM H2O2, whereby 66.8% of CEF was removed after 60 min (41.8% by indirect photolysis, 21.8% by H2O2-oxidation, and 3.2% by direct photolysis). Radial distribution functions (RDF) provided information about the distribution of water around the CEF molecule. Aside from the RDF, investigation of intramolecular noncovalent interactions and calculations of bond dissociation energies for hydrogen abstraction enabled understanding of degradation mechanism of CEF. In order to investigate sensitivity of CEF towards the radical attacks, the concept of Fukui functions was used. The structures of intermediates and degradation pathways were suggested by UHPLC-LTQ OrbiTrap MS and density functional theory calculations. Toxicity assessments showed that intermediates formed during hydrolysis exerted only mild cell growth effects in selected cell lines.
Collapse
Affiliation(s)
- Biljana F Abramović
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad, Serbia.
| | - Maria M Uzelac
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad, Serbia
| | - Sanja J Armaković
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | | | - Stevan Armaković
- University of Novi Sad Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| |
Collapse
|
13
|
Duan P, Chen D, Hu X. Tin dioxide decorated on Ni-encapsulated nitrogen-doped carbon nanotubes for anodic electrolysis and persulfate activation to degrade cephalexin: Mineralization and degradation pathway. CHEMOSPHERE 2021; 269:128740. [PMID: 33139044 DOI: 10.1016/j.chemosphere.2020.128740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, bamboo-shaped carbon nanotubes exhibiting high nitrogen content and Ni encapsulation (Ni@NCNT) were effectively synthesized by a simple pyrolysis method. The catalytic peroxydisulfate activation for cephalexin (CPX) degradation was investigated using the prepared material. SnO2 was further decorated and fabricated on the anode material (SnO2/Ni@NCNT) for electrochemical degradation of CPX in an aqueous solution. Transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that the SnO2 nanoparticles were uniformly distributed on the surface of Ni@NCNT. Electrochemical characterization employing cyclic voltammetry and linear sweep voltammetry demonstrated that SnO2/Ni@NCNT displayed higher oxygen evolution potential and electrocatalytic activity than Ni@NCNT. Mineralization of CPX in wastewater was performed using electrolysis coupled with persulfate oxidation. The analysis revealed a synergistic strengthening effect. The electropersulfate oxidation resulted in higher total organic carbon (TOC) removal (70.3%) than the sum of electrooxidation (48.1%) and persulfate oxidation (9.2%) toward CPX. This phenomenon might result from the regeneration of sulfate radicals (SO4•-) on the anode and complementary oxidation by SO4•- and OH. Persulfate oxidation alone was shown to result in low TOC removal, although CPX was mostly degraded. Additionally, the CPX degradation pathway involving electropersulfate oxidation was proposed and it is indicated that CPX molecules were completed decomposed by the examination of short chain acids, mineralized ions, and ecotoxicity evolution indicated that the antibiotic was completely degraded. This study provides a new approach for the design and preparation of novel electrode materials and electrochemical degradation facilities for the removal of pollutants via persulfate activation.
Collapse
Affiliation(s)
- Pingzhou Duan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Dadi Chen
- Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, PR China
| | - Xiang Hu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
14
|
Jiang Y, Zhao H, Liang J, Yue L, Li T, Luo Y, Liu Q, Lu S, Asiri AM, Gong Z, Sun X. Anodic oxidation for the degradation of organic pollutants: Anode materials, operating conditions and mechanisms. A mini review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106912] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
15
|
Zhou P, Wan J, Wang X, Chen J, Gong Y, Xu K, Liu C. Preparation and electrochemical property of TiO2/porous carbon composite cathode derived from waste tea leaves for electrocatalytic degradation of phenol. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01527-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Guo Y, Chen C, Ling L, Wang J, Qi H, Zhang B, Wu M. Visible-light-driven photo-Fenton degradation of ceftriaxone sodium using SnS 2/LaFeO 3 composite photocatalysts. NEW J CHEM 2021. [DOI: 10.1039/d1nj03639d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The LaFeO3-based heterostructure photocatalyst and photo-Fenton process are combined to effectively treat ceftriaxone sodium (CRS) contaminant under visible light.
Collapse
Affiliation(s)
- Yuting Guo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Cong Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Liwei Ling
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Huixiu Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Bingjie Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Min Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
17
|
Arif M, Zhang M, Mao Y, Bu Q, Ali A, Qin Z, Muhmood T, Shahnoor, Liu X, Zhou B, Chen SM. Oxygen vacancy mediated single unit cell Bi2WO6 by Ti doping for ameliorated photocatalytic performance. J Colloid Interface Sci 2021; 581:276-291. [DOI: 10.1016/j.jcis.2020.07.113] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/30/2022]
|
18
|
Shi X, Karachi A, Hosseini M, Yazd MS, Kamyab H, Ebrahimi M, Parsaee Z. Ultrasound wave assisted removal of Ceftriaxone sodium in aqueous media with novel nano composite g-C 3N 4/MWCNT/Bi 2WO 6 based on CCD-RSM model. ULTRASONICS SONOCHEMISTRY 2020; 68:104460. [PMID: 30712851 DOI: 10.1016/j.ultsonch.2019.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/05/2018] [Accepted: 01/16/2019] [Indexed: 05/27/2023]
Abstract
The aim of this study was ultrasound assisted removal of Ceftriaxone sodium (CS) based on CCD model. Using sonochemical synthesized Bi2WO6 implanted on graphitic carbon nitride/Multiwall carbon nanotube (g-C3N4/MWCNT/Bi2WO6). For this purpose g-C3N4/MWCNT/Bi2WO6 was synthesized and characterized using diverse approaches including XRD, FE-SEM, XPS, EDS, HRTEM, FT-IR. Then, the contribution of conventional variables including pH, CS concentration, adsorbent dosage and ultrasound contact time were studied by central composite design (CCD) under response surface methodology (RSM). ANOVA was employed to the variable factors, and the most desirable operational conditions mass provided. Drug adsorption yield of 98.85% obtained under these defined conditions. Through conducting five experiments, the proper prediction of the optimum point were examined. The respective results showed that RSD% was lower than 5% while the t-test confirmed the high quality of fitting. Langmuir isotherm equation fits the experimental data best and the removal followed pseudo-second order kinetics. The estimation of the experimentally obtained maximum adsorption capacities was 19.57 mg.g- of g-C3N4/MWCNT/Bi2WO6 for CS. Boundary layer diffusion explained the mechanism of removal via intraparticle diffusion.
Collapse
Affiliation(s)
- Xiaolong Shi
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
| | - Aida Karachi
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Mojgan Hosseini
- Department of Science, Islamshahr Branch, Islamic Azad University, Sayad Shirazi St., Islamshahr, Tehran, Iran.
| | - Masoud Safari Yazd
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Kamyab
- Engineering Department, Razak Faculty of Technology and Informatics, UniversitiTeknologi Malaysia, Jln Sultan Yahya Petra, 56100 Kuala Lumpur, Malaysia; Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA.
| | - Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zohreh Parsaee
- Young Researchers and Elite Club, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| |
Collapse
|
19
|
Ahmadpour N, Sayadi MH, Sobhani S, Hajiani M. Photocatalytic degradation of model pharmaceutical pollutant by novel magnetic TiO 2@ZnFe 2O 4/Pd nanocomposite with enhanced photocatalytic activity and stability under solar light irradiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110964. [PMID: 32778273 DOI: 10.1016/j.jenvman.2020.110964] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
In the last decades, the use of magnetic nanocomposites as a catalyst was considered for removal of organic pollutants due to its easy separation. Therefore, initially, TiO2@ZnFe2O4/Pd nanocomposite was prepared and then used in the photodegradation of diclofenac under direct solar irradiation in the batch and continuous systems. The structure, morphology and other specifications of produced nanocatalyst were determined via XRD, VSM, FESEM/EDX, FTIR, GTA, UV-Vis, Zeta potential, XPS and ICP-OES. The effective factors on diclofenac removal via nanophotocatalyst viz. pH, catalyst concentration, initial concentration of diclofenac, and flow rate and column length on diclofenac photodegradation were studied. Based on the results, the optimal rate for pH, catalyst concentration, and initial concentration of diclofenac was 4, 0.03 g/l and 10 mg/l respectively. Pd-coated TiO2@ZnFe2O4 magnetic photocatalyst had higher photocatalytic activity in diclofenac photodegradation in relation to ZnFe2O4 and TiO2@ZnFe2O4 under solar light irradiation. The findings showed that after five recycles, the photocatalytic efficiency did not show much reduction i.e. the removal efficiency from 86.1% in the first cycle reduced only to 71.38% in the last cycle. Likewise, in this study, with flow rate reduction and column length increase diclofenac degradation rate increased.
Collapse
Affiliation(s)
- Najmeh Ahmadpour
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| | - Mohammad Hossein Sayadi
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Mahmood Hajiani
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
20
|
Zeng Y, Zhang W. Ameliorative effects of ceftriaxone sodium combined with dexamethasone on infantile purulent meningitis and associated effects on brain-derived neurotrophic factor levels. Exp Ther Med 2020; 20:945-951. [PMID: 32742338 PMCID: PMC7388254 DOI: 10.3892/etm.2020.8769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to evaluate the role of ceftriaxone sodium combined with dexamethasone on the treatment of infant purulent meningitis (PM) and to measure brain-derived neurotrophic factor (BDNF) levels in children with PM. Of the 177 patients enrolled into the present study, 92 patients received ceftriaxone sodium+dexamethasone (combination group) and 85 patients received ceftriaxone sodium alone (monotherapy group). The time taken for the body temperature, peripheral blood (PB) and cerebrospinal fluid (CSF) white blood cell (WBC) counts to recover back to normal levels were compared between the two groups. In addition, changes in the CSF WBC counts, CSF protein and sugar concentrations, BDNF levels, effective treatment rates and incidence of adverse reactions three days before treatment (T1), after one week of treatment (T2) and after two weeks of treatment (T3) were compared between the two groups. In the combination group, the recovery time of body temperature, WBC counts in both PB and CSF were significantly lower compared with those in the monotherapy group. The combination group also exhibited lower CSF protein concentrations and higher CSF sugar concentrations at T2 and T3 compared with those in the monotherapy group (P<0.05). The effective treatment rate of the combination group was significantly higher compared with that of the monotherapy group (P=0.006). CSF protein at T1, T2 T3, and CSF sugar concentrations and BDNF levels at T1 were significantly lower in the combination group than in the monotherapy group (P<0.05) while the CSF sugar concentrations at T2, T3 were higher in the combination group than in the monotherapy group (P<0.05). Taken together, these observations suggest that ceftriaxone combined with dexamethasone was superior compared with that of ceftriaxone alone for the treatment of infantile PM, and that this combination therapy may improve the effective treatment rate and accelerate patient rehabilitation.
Collapse
Affiliation(s)
- Yiwen Zeng
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing 402160, P.R. China
| | - Wei Zhang
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing 402160, P.R. China
| |
Collapse
|
21
|
Duan P, Gao S, Lei J, Li X, Hu X. Electrochemical oxidation of ceftazidime with graphite/CNT-Ce/PbO 2-Ce anode: Parameter optimization, toxicity analysis and degradation pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114436. [PMID: 32259720 DOI: 10.1016/j.envpol.2020.114436] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/11/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
In this work, the electrochemical degradation of antibiotic ceftazidime has been studied using a novel rare earth metal Ce and carbon nanotubes codoped PbO2 electrode. A competitively high oxygen evolution potential (2.4 V) and enhanced catalytic surface area were obtained, evidence by LSV and CV electrochemical characterization. The G/CNT-Ce/PbO2-Ce electrode possessed a more compact structure and a smaller grain size than the other PbO2 and Ce-PbO2 electrodes, exhibiting a prolonged service lifetime, evidence by accelerated lifespan test and recycling degradation experiment. As electrolysis time reached 120 min, the removal efficiency of ceftazidime and TOC arrived at 100.0% and 54.2% respectively in 0.05 M Na2SO4 solution containing 50 mg⋅L-1 ceftazidime. The effect of applied current density, pH value, initial ceftazidime concentration and chloride contents on the degradation performance were systematically evaluated. The results demonstrated that electrochemical oxidation of ceftazidime over the G/CNT-Ce/PbO2-Ce electrode was highly effective, and the mineralization rate was greatly improved, compared with pristine PbO2 electrode. Considering the toxicity was increased after 30 min electrolysis, the intermediates were quantitatively investigated through HPLC-MS, GC-MS and IC technology. According to the identified products, a reaction mechanism has been proposed and pyridine and aminothiazole were detected with concentration from approximately 1 to 3 mg⋅L-1, which were regarded as toxic byproducts during electrooxidation. Further electrocatalyzing by ring cleavage reaction and complete mineralization to CO2, NO3- and NH4+ was proposed, which demonstrated the G/CNT-Ce/PbO2-Ce electrode exhibited high efficiency for ceftazidime removal in mild conditions.
Collapse
Affiliation(s)
- Pingzhou Duan
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shiheng Gao
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiawei Lei
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiang Li
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
22
|
Synthesis and characterization of γ-Fe2O3 encapsulated NaY zeolites as solid adsorbent for degradation of ceftriaxone through heterogeneous catalytic advanced oxidation processes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-019-01809-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Liu H, Qu J, Zhang T, Ren M, Zhang Z, Cheng F, He D, Zhang YN. Insights into degradation pathways and toxicity changes during electro-catalytic degradation of tetracycline hydrochloride. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113702. [PMID: 31818626 DOI: 10.1016/j.envpol.2019.113702] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The removal of antibiotics has attracted much attention due to their extremely high adverse impacts on the environment. However, the potential risks of degradation intermediates are seldom reported. In this work, the influence of different factors on the electro-catalytic degradation efficiency of tetracycline hydrochloride (TCH) by the prepared carbon nanotubes/agarose/indium tin oxide (CNTs/AG/ITO) electrode was investigated. Under optimal conditions (10 wt% CNTs dosage, pH = 7), the maximum degradation efficiency for TCH (10 mg L-1) reached up to 96% within 30 min treatment with 4 V potential. Superoxide anions (•O2-) played an important role in the electro-catalytic degradation. Totally 10 degradation intermediates were identified using HPLC-MS/MS, and the degradation pathway was proposed. Toxicities of the parent antibiotic and the identified intermediates were calculated using the ECOSAR (Ecological Structure Activity Relationship) program in EPISuite, and results showed that more toxic intermediates were generated. The maximal chronic toxicity for green algae of the intermediate increased 1439.92 times. Furthermore, antimicrobial activity was further verified by disk agar biocidal tests with Escherichia coli ATCC25922 and higher biotoxicity intermediates compared with parent compounds were confirmed to be formed. Therefore, more attention should be paid on the potential risk of degradation intermediates in the treatment of wastewater containing antibiotics.
Collapse
Affiliation(s)
- Haiyang Liu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Miao Ren
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Zhaocheng Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Dongyang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China.
| |
Collapse
|
24
|
Zhu L, Kong X, Yang C, Ren B, Tang Q. Fabrication and characterization of the magnetic separation photocatalyst C-TiO 2@Fe 3O 4/AC with enhanced photocatalytic performance under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120910. [PMID: 31352151 DOI: 10.1016/j.jhazmat.2019.120910] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Congo red (CR) is a kind of refractory contaminant. Conventional biological treatment processes are ineffective for the CR degradation. However, photocatalysis technology could be an alternative for the decomposition of CR because of its high efficiency. In this study, we prepared three kinds of photocatalysts, all of which have advanced visible light excitation characteristics. The magnetic catalyst C-TiO2@Fe3O4/AC was produced by loading C-TiO2 and nano-Fe3O4 onto granular activated carbon (AC). C-TiO2@Fe3O4/AC has a band gap of 2.535 eV, stable magnetic characteristics, and stability toward CR removal. C-TiO2@Fe3O4/AC showed the best performance for CR removal under both simulated sunlight (200-800 nm) and visible light (400-800 nm) irradiation compared to the other catalysts. The CR removal rate reached 92.9% after 30 min of simulated sunlight irradiation, and the reaction rate constant was 0.1776 min-1. Under visible light, the CR removal rate reached 65%. The hydroxyl radical (OH) was detected, and its concentration was determined. Furthermore, the spectral analysis results indicated that the azo bonds and aromatic rings in CR were destroyed. The C-TiO2@Fe3O4/AC has a self-cleaning ability to prevent organic contamination. This study provides a new way of thinking and a simple preparation technique for magnetic visible light catalyst synthesis.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, China; College of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin, China.
| | - Xiangquan Kong
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, China; College of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin, China.
| | - Chunwei Yang
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, China; College of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin, China.
| | - Baixiang Ren
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, China; College of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin, China.
| | - Qian Tang
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, China; College of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin, China.
| |
Collapse
|
25
|
Qiao J, Lv M, Qu Z, Zhang M, Cui X, Wang D, Piao C, Liu Z, Wang J, Song Y. Preparation of a novel Z-scheme KTaO 3/FeVO 4/Bi 2O 3 nanocomposite for efficient sonocatalytic degradation of ceftriaxone sodium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:178-192. [PMID: 31279185 DOI: 10.1016/j.scitotenv.2019.06.416] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
In this work, a novel Z-scheme sonocatalyst, KTaO3/FeVO4/Bi2O3, is prepared via ultrasonic-assisted isoelectric point method. The prepared samples are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopy. The catalytic activity of Z-scheme KTaO3/FeVO4/Bi2O3 sonocatalyst is studied in degradation of ceftriaxone sodium under ultrasonic irradiation. In addition, the influences of ultrasonic irradiation time, scavengers and sonocatalyst used times on sonocatalytic degradation of ceftriaxone sodium are examined. Under the experimental conditions of 150 min ultrasonic irradiation time, 1.00 g/L KTaO3/FeVO4/Bi2O3 addition amount and 10.00 mg/L ceftriaxone sodium concentration, the sonocatalytic degradation ratio of ceftriaxone sodium achieves 81.30%. Finally, the possible sonocatalytic degradation mechanism of ceftriaxone sodium caused by Z-scheme KTaO3/FeVO4/Bi2O3 sonocatalyst is proposed. The enhanced sonocatalytic activity may be attributed to the fact that the FeVO4 as a special conductive channel provides a strong driving force to transfer electrons through valence state changes of iron and vanadium, which accelerates electron transfer from conduction band (CB) of Bi2O3 to valence band (VB) of KTaO3. Perhaps, the KTaO3/FeVO4/Bi2O3 composite is an excellent Z-scheme sonocatalyst which can be used to effectively degrade the organic pollutants in wastewater under ultrasonic irradiation.
Collapse
Affiliation(s)
- Jing Qiao
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Mengyao Lv
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Zhihui Qu
- College of Environment, Liaoning University, Shenyang 110036, People's Republic of China
| | - Meng Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Xin Cui
- College of Environment, Liaoning University, Shenyang 110036, People's Republic of China
| | - Di Wang
- College of Environment, Liaoning University, Shenyang 110036, People's Republic of China
| | - Congcong Piao
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Zhiyu Liu
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Jun Wang
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China.
| | - Youtao Song
- College of Environment, Liaoning University, Shenyang 110036, People's Republic of China.
| |
Collapse
|
26
|
Preparation of CeO2-ZrO2 and titanium dioxide coated carbon nanotube electrode for electrochemical degradation of ceftazidime from aqueous solution. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Manoj D, Rajendran S, Qin J, Sundaravadivel E, Yola ML, Atar N, Gracia F, Boukherroub R, Gracia-Pinilla M, Gupta VK. Heterostructures of mesoporous TiO2 and SnO2 nanocatalyst for improved electrochemical oxidation ability of vitamin B6 in pharmaceutical tablets. J Colloid Interface Sci 2019; 542:45-53. [DOI: 10.1016/j.jcis.2019.01.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/29/2022]
|
28
|
Xing X, Ni J, Zhu X, Jiang Y, Xia J. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO 2-Sb/PbO 2, and Ti/SnO 2-Sb anodes. CHEMOSPHERE 2018; 205:361-368. [PMID: 29704843 DOI: 10.1016/j.chemosphere.2018.04.090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/28/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Whereas electrochemical oxidation is noted for its ability to degrade bio-refractory organics, it has also been incorrectly criticized for excessive energy consumption. The present paper rectifies this misunderstanding by demonstrating that the energy actually consumed in the degradation process is much less than that wasted in the side reaction of oxygen evolution. To minimize the side reaction, the possible highest instantaneous current efficiency (PHICE) for electrochemical oxidation of phenol at Boron-doped Diamond (BDD), Ti/SnO2-Sb/PbO2 (PbO2), and Ti/SnO2-Sb (SnO2) anodes has been investigated systematically, and found to reach almost 100% at the BDD anode compared with 23% at the PbO2 anode and 9% at the SnO2 anode. The significant discrepancy between PHICE values at the various anodes is interpreted in terms of different existing forms of hydroxyl radicals. For each anode system, the PHICEs are maintained experimentally using a computer-controlled exponential decay current mode throughout the electrolysis process. For applications, the minimized energy consumption is predicted by response surface methodology, and demonstrated for the BDD anode system. Consequently, almost 100% current efficiency is achieved (for a relatively meagre energy consumption of 17.2 kWh kgCOD-1) along with excellent COD degradation efficiency by optimizing the initial current density, flow rate, electrolysis time, and exponential decay constant. Compared with galvanostatic conditions, over 70% of the energy is saved in the present study, thus demonstrating the great potential of electrochemical oxidation for practical applications.
Collapse
Affiliation(s)
- Xuan Xing
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China.
| | - Jinren Ni
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Xiuping Zhu
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianxin Xia
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| |
Collapse
|
29
|
Degradation and removal of Ceftriaxone sodium in aquatic environment with Bi2WO6/g-C3N4 photocatalyst. J Colloid Interface Sci 2018; 523:7-17. [DOI: 10.1016/j.jcis.2018.03.078] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 11/21/2022]
|
30
|
Li D, Sun T, Wang L, Wang N. Enhanced electro-catalytic generation of hydrogen peroxide and hydroxyl radical for degradation of phenol wastewater using MnO2/Nano-G|Foam-Ni/Pd composite cathode. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.075] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Yegane Badi M, Azari A, Pasalari H, Esrafili A, Farzadkia M. Modification of activated carbon with magnetic Fe 3 O 4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Li D, Guo X, Song H, Sun T, Wan J. Preparation of RuO 2-TiO 2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:250-259. [PMID: 29550559 DOI: 10.1016/j.jhazmat.2018.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO2-TiO2/Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO2-TiO2/Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N2 adsorption-desorption. Results showed that RuO2, TiO2 and Nano-G were composited successfully, and RuO2 and TiO2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO2-TiO2/Nano-G composite was higher than that of TiO2/Nano-G composite and Nano-G. Electrochemical performances of RuO2-TiO2/Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO2-TiO2/Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO2-TiO2/Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO2, TiO2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO2-TiO2/Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Chemistry, Chemical Engineering and Materials, Department of Environmental Science and Engineering, Heilongjiang University, Harbin 150080, China.
| | - Xiaolei Guo
- School of Chemistry, Chemical Engineering and Materials, Department of Environmental Science and Engineering, Heilongjiang University, Harbin 150080, China
| | - Haoran Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiafeng Wan
- School of Chemistry, Chemical Engineering and Materials, Department of Environmental Science and Engineering, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
33
|
Tang B, Du J, Feng Q, Zhang J, Wu D, Jiang X, Dai Y, Zou J. Enhanced generation of hydroxyl radicals on well-crystallized molybdenum trioxide/nano-graphite anode with sesame cake-like structure for degradation of bio-refractory antibiotic. J Colloid Interface Sci 2018; 517:28-39. [DOI: 10.1016/j.jcis.2018.01.098] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
|
34
|
Functionalized metal-organic frameworks for effective removal of rocephin in aqueous solutions. J Colloid Interface Sci 2018; 514:234-239. [DOI: 10.1016/j.jcis.2017.12.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/09/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023]
|
35
|
Fabrication of Ti-doped SnO2/RGO composites as anode materials with high stability for lithium-ion batteries. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2967-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|