1
|
Liu L, Han X, Hu J, Chen H, Zhai Y. Jointly considering multi-medium and full-cycle to better reveal distribution and removal of antibiotic resistance genes in long-term constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177276. [PMID: 39477107 DOI: 10.1016/j.scitotenv.2024.177276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024]
Abstract
Constructed wetlands (CWs) have been proven to effectively remove antibiotic resistance genes (ARGs) at different experimental scales; however, there is still a lack of researches on the removal and monitoring of ARGs during the actual operation of full-scale CWs. To fill this gap, this study selected the Annan constructed wetland in Beijing as a case study and utilized quantitative sequencing, metagenomic analysis, and other technical methods to determine characteristics of ARGs in CWs during different operating periods. Furthermore, we analysed the overall removal characteristics of ARGs in the CW during different operating periods and differences of ARG distribution in three media. The dominant ARGs in the CW were quinolone, β-lactam and tetracycline, with subtypes of tufA and fusA. ARG distributions are significantly influenced by anthropic activities and seasonal changes. Three periods of the CW had good removal effects on special ARGs, but there were differences in the removal characteristics of different types and subtypes of ARGs. The CW had removal effects on four types of ARGs (such as multidrugs), 16 types of fusidic acid, and nine types of ARGs (such as bleomycin) during the dormancy, start-up, and operation periods, respectively. Among ARG subtypes, the CW had removal effects on 37, 53, and 51 subtypes during the dormancy, start-up, and operation periods, respectively. The subtypes that were removed mainly included those containing tetracycline, efflux pump, and β-lactam, mcr-1, and mcr-5 (colistin ARGs). For individual parts of CWs, the removal effects on the total abundance of ARGs were as follows: forebay > surface flow wetland > subsurface flow wetland. These findings provide insights for optimizing the purification efficiency of CWs for ARGs.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xu Han
- Department of Ecology and Environment of Heilongjiang Province, Harbin 150090, China
| | - Jingdan Hu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Neyrot S, Acha D, Morales-Belpaire I. The fate of sulfamethoxazole in microcosms of the macrophyte Schoenoplectus californicus and its impact on microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124947. [PMID: 39278559 DOI: 10.1016/j.envpol.2024.124947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Sulfamethoxazole is a widely used antibiotic frequently found as an environmental pollutant. It can alter microbial communities and increase antibiotic resistance, becoming a public health risk. Constructed wetlands have the potential for removing sulfamethoxazole from polluted waters, but the role of different macrophytes in this process is not well understood. We investigated the fate of sulfamethoxazole and its effect on bacterial communities in microcosms containing Schoenoplectus californicus, an altitude-tolerant macrophyte. Within the first 10 h after introducing sulfamethoxazole (initial concentration 5 mg/L) to the microcosms, the concentration in the liquid phase significantly differed between microcosms with and without S. californicus. However, over the long term (15 and 30 days post-addition), the removal percentage (around 75%) in the liquid phase was not significantly influenced by S. californicus, indicating that sediments might be primarily responsible for removing the antibiotic. The presence of S. californicus promoted algae growth in the microcosms, and we determined that algae contributed to sulfamethoxazole removal from the liquid phase, likely through adsorption. Additionally, we characterized bacterial communities in the microcosm sediments via nanopore sequencing to identify changes following sulfamethoxazole addition. The relative abundance of Proteobacteria increased from 37-46% to 48-99% with the addition of the antibiotic. Conversely, the relative abundance of cyanobacteria decreased significantly after sulfamethoxazole was added (from 17 to 35% to less than 2%), suggesting it may serve as a biological marker for sulfamethoxazole pollution. In addition, the functional profile of the community was estimated from taxonomic diversity using PICRUST.
Collapse
Affiliation(s)
- Sara Neyrot
- Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, La Paz, Bolivia.
| | - Dario Acha
- Unidad de Ecología Acuática, Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, La Paz, Bolivia.
| | - Isabel Morales-Belpaire
- Instituto de Biología Molecular y Biotecnología, Carrera de Biología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, Bolivia.
| |
Collapse
|
3
|
Li H, Liu B, Li M, Shen M. Livestock and poultry breeding farms as a fixed and underestimated source of antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49916-49931. [PMID: 39052112 DOI: 10.1007/s11356-024-34413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
The excessive use of antibiotics, disinfectants, and drugs in livestock and poultry breeding has resulted in a rise in the presence of antibiotic resistance genes (ARGs). Antibiotic-resistant bacteria (ARB) and ARGs have been widely found in animal feces, farm wastewater, and farm air. ARGs can not only spread across media through adsorption and migration, but also transfer resistance across bacterial genera through horizontal gene transfer. Livestock breeding has become a fixed and unavoidable source of ARGs in the environment. Existing technologies for controlling ARGs, such as composting, disinfection, and sewage treatment, are not efficient in removing ARB and ARGs from waste. Furthermore, the remaining ARGs still possess a strong capacity for dissemination. At present, antibiotics used in animal husbandry are difficult to replace in a short period of time. The growth and potential risks of resistance genes in livestock and poultry breeding sources in the receiving environment are not yet clear. In this paper, we summarize the current situation of ARGs in the livestock and poultry breeding environment. We also explain the key environmental processes, main influencing factors, and corresponding ecological risks associated with ARGs in this environment. The advantages and disadvantages of current technologies for the removal of ARGs are primarily discussed. There is a particular emphasis on clarifying the spatiotemporal evolution patterns and environmental process mechanisms of ARGs, as well as highlighting the importance and urgency of developing efficient pollution control technologies.
Collapse
Affiliation(s)
- Haokai Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Bohao Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Mingyu Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China.
| |
Collapse
|
4
|
Riva V, Vergani L, Rashed AA, El Saadi A, Sabatino R, Di Cesare A, Crotti E, Mapelli F, Borin S. Plant species influences the composition of root system microbiome and its antibiotic resistance profile in a constructed wetland receiving primary treated wastewater. Front Microbiol 2024; 15:1436122. [PMID: 39113842 PMCID: PMC11303162 DOI: 10.3389/fmicb.2024.1436122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Constructed wetlands (CWs) are nature-based solutions for wastewater treatment where the root system microbiome plays a key role in terms of nutrient and pollutant removal. Nonetheless, little is known on plant-microbe interactions and bacterial population selection in CWs, which are mostly characterized in terms of engineering aspects. Methods Here, cultivation-independent and cultivation-based analyses were applied to study the bacterial communities associated to the root systems of Phragmites australis and Typha domingensis co-occurring in the same cell of a CW receiving primary treated wastewaters. Results and discussion Two endophytic bacteria collections (n = 156) were established aiming to find novel strains for microbial-assisted phytodepuration, however basing on their taxonomy the possible use of these strains was limited by their low degrading potential and/or for risks related to the One-Health concept. A sharp differentiation arose between the P. australis and T. domingensis collections, mainly represented by lactic acid bacteria (98%) and Enterobacteriaceae (69%), respectively. Hence, 16S rRNA amplicon sequencing was used to disentangle the microbiome composition in the root system fractions collected at increasing distance from the root surface. Both the fraction type and the plant species were recognized as drivers of the bacterial community structure. Moreover, differential abundance analysis revealed that, in all fractions, several bacteria families were significantly and differentially enriched in P. australis or in T. domingensis. CWs have been also reported as interesting options for the removal of emerging contaminants (e.g, antibiotic resistance genes, ARGs). In this study, ARGs were mostly present in the rhizosphere of both plant species, compared to the other analyzed fractions. Notably, qPCR data showed that ARGs (i.e., ermB, bla TEM, tetA) and intl1 gene (integrase gene of the class 1 integrons) were significantly higher in Phragmites than Typha rhizospheres, suggesting that macrophyte species growing in CWs can display a different ability to remove ARGs from wastewater. Overall, the results suggest the importance to consider the plant-microbiome interactions, besides engineering aspects, to select the most suitable species when designing phytodepuration systems.
Collapse
Affiliation(s)
- Valentina Riva
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Lorenzo Vergani
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Ahmed Ali Rashed
- National Water Management and Irrigation Systems Research Institute, National Water Research Center, Shoubra meuip El-Kheima, Egypt
| | - Aiman El Saadi
- National Water Management and Irrigation Systems Research Institute, National Water Research Center, Shoubra meuip El-Kheima, Egypt
| | - Raffaella Sabatino
- National Research Council of Italy – Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Andrea Di Cesare
- National Research Council of Italy – Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Elena Crotti
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
5
|
Pourrostami Niavol K, Bordoloi A, Suri R. An overview of the occurrence, impact of process parameters, and the fate of antibiotic resistance genes during anaerobic digestion processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41745-41774. [PMID: 38853230 PMCID: PMC11219439 DOI: 10.1007/s11356-024-33844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Antibiotic resistance genes (ARGs) have emerged as a significant global health threat, contributing to fatalities worldwide. Wastewater treatment plants (WWTPs) and livestock farms serve as primary reservoirs for these genes due to the limited efficacy of existing treatment methods and microbial adaptation to environmental stressors. Anaerobic digestion (AD) stands as a prevalent biological treatment for managing sewage sludge and manure in these settings. Given the agricultural utility of AD digestate as biofertilizers, understanding ARGs' fate within AD processes is essential to devise effective mitigation strategies. However, understanding the impact of various factors on ARGs occurrence, dissemination, and fate remains limited. This review article explores various AD treatment parameters and correlates to various resistance mechanisms and hotspots of ARGs in the environment. It further evaluates the dissemination and occurrence of ARGs in AD feedstocks and provides a comprehensive understanding of the fate of ARGs in AD systems. This review explores the influence of key AD parameters such as feedstock properties, pretreatments, additives, and operational strategies on ARGs. Results show that properties such as high solid content and optimum co-digestion ratios can enhance ARG removal, while the presence of heavy metals, microplastics, and antibiotics could elevate ARG abundance. Also, operational enhancements, such as employing two-stage digestion, have shown promise in improving ARG removal. However, certain pretreatment methods, like thermal hydrolysis, may exhibit a rebounding effect on ARG levels. Overall, this review systematically addresses current challenges and offers future perspectives associated with the fate of ARGs in AD systems.
Collapse
Affiliation(s)
- Kasra Pourrostami Niavol
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Achinta Bordoloi
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Rominder Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
6
|
Xu Y, Gao H, Li R, Lou Y, Li B, Cheng G, Na G. Occurrence and distribution of antibiotics and antibiotic resistance genes from the land to ocean in Daliao River-Liaodong Bay, China. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106470. [PMID: 38574497 DOI: 10.1016/j.marenvres.2024.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
In this study, the pollution status of antibiotics and ARGs in sediments from the land-sea intersection of Liaodong Bay was analyzed. The results showed that the level of antibiotic pollution ranged from ND to 433.27 ng/kg, with quinolones and tetracycline as the dominant antibiotics. The relative abundance of ARGs ranged from 3.62 × 10-3 to 1.32 × 10-1 copies/16SrRNA copies, with aminoglycoside and MLSB resistance genes being dominant. Regarding spatial distribution, the land and estuary areas showed higher antibiotic pollution levels than the offshore areas. Similarly, the land and estuary areas exhibited higher antibiotic diversity than the offshore areas. The ARGs were widely distributed on land, and their abundance gradually decreased to the downstream estuary area. Land and coastal areas exhibited higher ARG diversity than estuary areas. Analysis of environmental factors revealed a significant correlation between ARGs and non-corresponding antibiotics, and some ARGs were affected by heavy metals Cu and Pb.
Collapse
Affiliation(s)
- Yunfeng Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Hui Gao
- National Marine Environmental Monitoring Center, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China.
| | - Ruijing Li
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yingbin Lou
- Dalian Ecological Environment Monitoring Center, Liaoning Province, Dalian, 116023, China
| | - Bing Li
- National Marine Environmental Monitoring Center, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Guanjie Cheng
- National Marine Environmental Monitoring Center, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Guangshui Na
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; National Marine Environmental Monitoring Center, Dalian, 116023, China; Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/Yazhou Bay Innovation Institute/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China.
| |
Collapse
|
7
|
Bydalek F, Webster G, Barden R, Weightman AJ, Kasprzyk-Hordern B, Wenk J. Microbial community and antimicrobial resistance niche differentiation in a multistage, surface flow constructed wetland. WATER RESEARCH 2024; 254:121408. [PMID: 38442607 DOI: 10.1016/j.watres.2024.121408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Free-living (FL) and particulate-associated (PA) communities are distinct bacterioplankton lifestyles with different mobility and dissemination routes. Understanding spatio-temporal dynamics of PA and FL fractions will allow improvement to wastewater treatment processes including pathogen and AMR bacteria removal. In this study, PA, FL and sediment community composition and antimicrobial resistance gene (ARG; tetW, ermB, sul1, intI1) dynamics were investigated in a full-scale municipal wastewater free-water surface polishing constructed wetland. Taxonomic composition of PA and FL microbial communities shifted towards less diverse communities (Shannon, Chao1) at the CW effluent but retained a distinct fraction-specific composition. Wastewater treatment plant derived PA communities introduced the bulk of AMR load (70 %) into the CW. However, the FL fraction was responsible for exporting over 60 % of the effluent AMR load given its high mobility and the effective immobilization (1-3 log removal) of PA communities. Strong correlations (r2>0.8, p < 0.05) were observed between the FL fraction, tetW and emrB dynamics, and amplicon sequence variants (ASVs) of potentially pathogenic taxa, including Bacteroides, Enterobacteriaceae, Aeromonadaceae, and Lachnospiraceae. This study reveals niche differentiation of microbial communities and associated AMR in CWs and shows that free-living bacteria are a primary escape route of pathogenic and ARG load from CWs under low-flow hydraulic conditions.
Collapse
Affiliation(s)
- Franciszek Bydalek
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; GW4 NERC CDT in Freshwater Biosciences and Sustainability, Cardiff University, Cardiff CF10 3AX, UK; Organisms and Environment Division, School of Biosciences, Microbiomes, Microbes and Informatics Group, Cardiff University, Cardiff CF10 3AX, UK
| | - Gordon Webster
- Organisms and Environment Division, School of Biosciences, Microbiomes, Microbes and Informatics Group, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Andrew J Weightman
- Organisms and Environment Division, School of Biosciences, Microbiomes, Microbes and Informatics Group, Cardiff University, Cardiff CF10 3AX, UK
| | - Barbara Kasprzyk-Hordern
- Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
8
|
Zhao Y, Jin R, Chen Y, Zhang J, Tao S, Liu S, Shen M. Constructed wetlands as neglected fixed source of microplastics and antibiotic resistance genes in natural water bodies? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166474. [PMID: 37625720 DOI: 10.1016/j.scitotenv.2023.166474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
The pollution status and the harm caused by microplastics and antibiotic resistance genes (ARGs) in aquatic ecosystems have been a growing concern. The presence of microplastics could accelerate the transfer and spread of ARGs. Before sewage reaches natural water bodies, microplastics and ARGs need to be eliminated through specific processes. Constructed wetlands are currently an effective and environmentally friendly wastewater treatment process. Research has shown significant effectiveness in removing microplastics and ARGs. Microplastics and ARGs can be removed through processes such as adsorption, capture, adhesion, and biodegradation. However, long-term continuous operation could lead to constructed wetlands becoming significant reservoirs of microplastics and ARGs. Inflow loads and seasonal variations in constructed wetlands may result in the reintroduction of persistent microplastics and ARGs into the receiving water body, establishing the constructed wetland as a continuous source of these pollutants in the receiving water body. The key to the widespread application of constructed wetlands lies in solving this challenging problem. Therefore, although constructed wetlands serve as a green strategy for removing microplastics and ARGs, there are still many gaps in our knowledge. Based on the current accumulation of microplastics and ARGs in constructed wetlands, this paper summarizes the removal of microplastics and ARGs in existing constructed wetlands and explores the interaction between them. Additionally, it proposes suggestions for optimizing the process and improving the reliability of monitoring microplastics and ARGs in sewage.
Collapse
Affiliation(s)
- Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Ruixin Jin
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Yihua Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Jiahao Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
9
|
Zhang L, Wang J, Gong X, Song Y, Li D, Huang H, Yu C, Liang X, Fang H. Removal characteristics of microplastics in sewage flowing through a long-term operation surface flow wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165714. [PMID: 37487891 DOI: 10.1016/j.scitotenv.2023.165714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Microplastics (MPs) in sewage pose significant threats to aquatic system. Surface flow wetland (SFW) is a common natural wetland type, and is also used as a cheap and easy-to-build sewage treatment system for small and scattered settlements. However, seasonal variation patterns of MPs in sewage removed by SFW are still limited. Therefore, a field investigation was conducted in an SFW that has been operated for 17 years. The concentration of microplastics in the influent of the SFW (CMPs, in) ranged from 56 ± 6 to 250 ± 14 items L-1. The dominant plastic types were fibers and polyethylene terephthalate (PET). CMPs, in were high in summer and winter, significantly related to the seasonal dressing habits. The removal efficiencies of MPs in SFW were 48.03-92.32 % in different seasons, and the mechanisms of MP removal were different with traditional pollutants. Before flowing out occasionally or by heavy precipitation, MPs were primarily trapped in the SFW and underwent certain oxidation. Simulation experiments demonstrated that 47.5-92.9 % of MPs would be trapped in the SFW, and plants would significantly enhance the trapping capacities. This study sheds light on the seasonal variation characteristics and patterns of MPs in actual sewage, and clarifies the fate of MPs in a long-term operation SFW.
Collapse
Affiliation(s)
- Le Zhang
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jingxin Wang
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Xia Gong
- College of Chemistry and Material, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yaohua Song
- School of Electrical Engineering, Jiujiang Vocational and Technical College, Jiujiang 332007, China
| | - Danping Li
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huajun Huang
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chenglong Yu
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ximei Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Hansun Fang
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
10
|
Li H, Tan L, Xu Y, Zheng X. Metagenomics insights into the performance and mechanism of soil infiltration systems on removing antibiotic resistance genes in rural sewage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118981. [PMID: 37742563 DOI: 10.1016/j.jenvman.2023.118981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
The removal of antibiotic resistance genes (ARGs) in sewage is of great concern, but advanced sewage treatment technologies are not suitable for rural areas, so the multi-layer soil infiltration system (MSL) has been developed for rural sewage treatment. However, little is known about the performance and function of MSL in the treatment of ARGs in rural sewage. Here, we optimized the matrix composition and structure of MSL and explored the efficacy and mechanism of MSL systems for ARG removal under different hydraulic conditions. The ARGs removal rate of MSL ranged from 41.51% to 99.67%, in which MSL with the middle hydraulic load, high pollution load, and continuous inflowing conditions showed the best removal performance. In addition, this system can operate stably and resist the temperature fluctuation, which showed an equivalent removal rate of ARGs in warm and cold seasons, amounting to 69.0%. The structural equation model revealed that microorganisms in sewage could significantly affect ARG removal (path coefficient = 0.91), probably owing to their interspecies competition. As for the internal system, the reduction of ARGs was mainly driven by microorganisms in the system matrix (path coefficient = 0.685), especially soil-mixture-block (SMB) microorganisms. The physicochemical factors of the matrix indirectly reduce ARGs by affecting the microorganisms that adhere to the matrices. Note that the pairwise alignment of nucleotide analysis demonstrated that the system matrix, especially biochar in the SMB, adsorbed ARGs and their hosts from the sewage, and in turn eliminated them by inhibiting the spread and colonization of hosts, thereby reducing the abundance of ARGs. Collectively, this study provides a deeper insight into the removal of ARGs from rural sewage by MSL, which can help improve sewage treatment technologies.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Xiangqun Zheng
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China.
| |
Collapse
|
11
|
K S, Vasanthrao R, Chattopadhyay I. Impact of environment on transmission of antibiotic-resistant superbugs in humans and strategies to lower dissemination of antibiotic resistance. Folia Microbiol (Praha) 2023; 68:657-675. [PMID: 37589876 DOI: 10.1007/s12223-023-01083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Antibiotics are the most efficient type of therapy developed in the twentieth century. From the early 1960s to the present, the rate of discovery of new and therapeutically useful classes of antibiotics has significantly decreased. As a result of antibiotic use, novel strains emerge that limit the efficiency of therapies in patients, resulting in serious consequences such as morbidity or mortality, as well as clinical difficulties. Antibiotic resistance has created major concern and has a greater impact on global health. Horizontal and vertical gene transfers are two mechanisms involved in the spread of antibiotic resistance genes (ARGs) through environmental sources such as wastewater treatment plants, agriculture, soil, manure, and hospital-associated area discharges. Mobile genetic elements have an important part in microbe selection pressure and in spreading their genes into new microbial communities; additionally, it establishes a loop between the environment, animals, and humans. This review contains antibiotics and their resistance mechanisms, diffusion of ARGs, prevention of ARG transmission, tactics involved in microbiome identification, and therapies that aid to minimize infection, which are explored further below. The emergence of ARGs and antibiotic-resistant bacteria (ARB) is an unavoidable threat to global health. The discovery of novel antimicrobial agents derived from natural products shifts the focus from chemical modification of existing antibiotic chemical composition. In the future, metagenomic research could aid in the identification of antimicrobial resistance genes in the environment. Novel therapeutics may reduce infection and the transmission of ARGs.
Collapse
Affiliation(s)
- Suganya K
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India
| | - Ramavath Vasanthrao
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India
| | - Indranil Chattopadhyay
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India.
| |
Collapse
|
12
|
Chen P, Yu K, He Y. The dynamics and transmission of antibiotic resistance associated with plant microbiomes. ENVIRONMENT INTERNATIONAL 2023; 176:107986. [PMID: 37257204 DOI: 10.1016/j.envint.2023.107986] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Antibiotic resistance genes (ARGs) have been widely found and studied in soil and water environments. However, the propagation of ARGs in plant microbiomes has attracted insufficient attention. Plant microbiomes, especially the rhizosphere microorganisms, are closely connected with water, soil, and air, which allows ARGs to spread widely in ecosystems and pose a threat to human health after entering the human body with bacteria. Therefore, it is necessary to deeply understand and explore the dynamics and the transmission of ARGs in rhizosphere microorganisms and endophytes of plants. In this review, the transmission and influencing factors of ARGs in the microorganisms associated with plants, especially the influence of root exudates on plant microbiomes, are analyzed. Notably, the role of intrinsic genes of plants in determining root exudates and their potential effects on ARGs are proposed and analyzed. The important role of phyllosphere microorganisms and endophytes in the transmission of ARGs and co-resistance of antibiotics and other substances are also emphasized. The proliferation and transmission of ARGs associated with plant microbiomes addressed in this review is conducive to revealing the fate of ARGs in plant microorganisms and alleviating ARG pollution.
Collapse
Affiliation(s)
- Ping Chen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
13
|
McCorquodale-Bauer K, Grosshans R, Zvomuya F, Cicek N. Critical review of phytoremediation for the removal of antibiotics and antibiotic resistance genes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161876. [PMID: 36716878 DOI: 10.1016/j.scitotenv.2023.161876] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics in wastewater are a growing environmental concern. Increased prescription and consumption rates have resulted in higher antibiotic wastewater concentration. Conventional wastewater treatment methods are often ineffective at antibiotic removal. Given the environmental risk of antibiotics and associated antibiotic resistant genes (ARGs), finding methods of improving antibiotic removal from wastewater is of great importance. Phytoremediation of antibiotics in wastewater, facilitated through constructed wetlands, has been explored in a growing number of studies. To assess the removal efficiency and treatment mechanisms of plants and microorganisms within constructed wetlands for specific antibiotics of major antibiotic classes, the present review paper considered and evaluated data from the most recent published research on the topics of bench scale hydroponic, lab and pilot scale constructed wetland, and full scale constructed wetland antibiotic remediation. Additionally, microbial and enzymatic antibiotic degradation, antibiotic-ARG correlation, and plant effect on ARGs were considered. It is concluded from the present review that plants readily uptake sulfonamide, macrolide, tetracycline, and fluoroquinolone antibiotics and that constructed wetlands are an effective applied phytoremediation strategy for the removal of antibiotics from wastewater through the mechanisms of microbial biodegradation, root sorption, plant uptake, translocation, and metabolization. More research is needed to better understand the effect of plants on microbial community and ARGs. This paper serves as a synthesis of information that will help guide future research and applied use of constructed wetlands in the field antibiotic phytoremediation and wastewater treatment.
Collapse
Affiliation(s)
- Kenton McCorquodale-Bauer
- Department of Biosystems Engineering, University of Manitoba, E2-376 Engineering and Information Technology Complex (EITC), 75A Chancellor's Circle, Winnipeg, MB R3T 5V6, Canada.
| | - Richard Grosshans
- International Institute for Sustainable Development (IISD), 111 Lombard Avenue, Suite 325, Winnipeg, MB R3B 0T4, Canada
| | - Francis Zvomuya
- Department of Soil Science, University of Manitoba, 362 Ellis Building, Winnipeg, MB R3T 2N2, Canada
| | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, E2-376 Engineering and Information Technology Complex (EITC), 75A Chancellor's Circle, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
14
|
Wang W, Weng Y, Luo T, Wang Q, Yang G, Jin Y. Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. TOXICS 2023; 11:185. [PMID: 36851059 PMCID: PMC9965714 DOI: 10.3390/toxics11020185] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.
Collapse
Affiliation(s)
- Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
15
|
Cui E, Zhou Z, Gao F, Chen H, Li J. Roles of substrates in removing antibiotics and antibiotic resistance genes in constructed wetlands: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160257. [PMID: 36402338 DOI: 10.1016/j.scitotenv.2022.160257] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics and corresponding antibiotic resistance genes (ARGs) are emerging pollutants in wastewater that pose a significant threat to the environment and human health. Constructed wetlands (CWs) are a cost-effective technology for eliminating these pollutants through substrates, plants, and microorganisms. Detailed reviews of the roles of CW substrates on antibiotic and ARG removal and recent progress in the field are lacking. This paper reviews the mechanisms influencing antibiotic and ARG (intracellular and extracellular) removal in CWs, and natural, biomass, chemical, modified, industrial, novel, and combined substrates on their removal efficiencies. Generally, substrates remove antibiotics and ARGs mainly through adsorption, biodegradation, chemical oxidation, and filtration. Other mechanisms, such as photolysis, may also contribute to removal. Natural substrates (e.g., gravel, zeolite) are more frequently employed than other types of substrates. The removal performance of antibiotics and intracellular ARGs by zeolite was better than that of gravel through enhanced substrate adsorption, filtration, and biodegradation processes. Moreover, Mn ore showed promising high capability to remove high concentration of antibiotics through various removal pathways. In addition, combined substrates of soil/sand/gravel and other substrates further facilitate antibiotic removal. Future research is suggested to explore the mechanisms of competitive adsorption and redox-controlled biodegradation, investigate the effect of Fe/Mn oxides on the removal of antibiotics and ARGs via chemical oxidation, evaluate the removal of extracellular ARGs by CWs with different substrates, and investigate the effect of substrates on removal of antibiotics and ARGs in full-scale CWs.
Collapse
Affiliation(s)
- Erping Cui
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenchao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Gao
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| |
Collapse
|
16
|
Zhang F, Mao X, Song X, Yu H, Yan J, Kong D, Liu Y, Yao N, Yang S, Xie S, Ji H, Zhou H. Ecological Risks of Antibiotics in Urban Wetlands on the Qinghai-Tibet Plateau, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1735. [PMID: 36767103 PMCID: PMC9914113 DOI: 10.3390/ijerph20031735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Although the ecological risks of antibiotics have been extensively researched globally, fewer studies have been conducted in sensitive and fragile plateau wetland ecosystems. To evaluate the ecological risk of antibiotics in plateau urban wetlands, 18 water samples, 10 plant samples, and 8 sediment samples were collected in March 2022 in the Xining urban wetlands on the Qinghai-Tibet Plateau. The liquid chromatography-electrospray ionization tandem mass spectrometry method was utilized to measure the concentrations of 15 antibiotics in three categories in three types of environmental media. Risk quotients were adopted to assess the ecological risk of antibiotics, and the principal component analysis-multiple linear regression model was used to analyze the source of antibiotics. The results showed that (1) the maximum concentrations of antibiotics in water samples, plants, and sediments reached 1220.86 ng/L, 78.30 ng/g, and 5.64 ng/g, respectively; (2) Tylosin (TYL), norfloxacin (NFX), ofloxacin (OFX), and ciprofloxacin (CFX) in water were at medium and high-risk levels, and OFX had the highest risk value, of 108.04; and (3) the results of source apportionment indicate that 58.94% of the antibiotics came from the Huangshui river and wastewater treatment plant (WWTP) near the wetlands. The current study may provide a reference for the risks and management of antibiotics in plateau urban wetlands.
Collapse
Affiliation(s)
- Fengjiao Zhang
- MOE Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Qinghai Normal University, Xining 810008, China
- Key Laboratory of Qinghai Province Physical Geography and Environmental Process, School of Geographical Science, Qinghai Normal University, Xining 810008, China
| | - Xufeng Mao
- MOE Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Qinghai Normal University, Xining 810008, China
- Key Laboratory of Qinghai Province Physical Geography and Environmental Process, School of Geographical Science, Qinghai Normal University, Xining 810008, China
| | - Xiuhua Song
- Management and Service Center for Huangshui National Wetland Park, Xining 810016, China
| | - Hongyan Yu
- Management and Service Center of Qilian Mountain National Park, Xining 810008, China
| | - Jinlu Yan
- Qinghai Forestry Engineering Consulting Co., Ltd., Xining 810008, China
| | - Dongsheng Kong
- Qinghai Forestry Engineering Consulting Co., Ltd., Xining 810008, China
| | - Yinlong Liu
- Qinghai Forestry Engineering Consulting Co., Ltd., Xining 810008, China
| | - Naixin Yao
- Qinghai Forestry Engineering Supervision Co., Ltd., Xining 810008, China
| | - Shilin Yang
- Qinghai Forestry Engineering Consulting Co., Ltd., Xining 810008, China
| | - Shunbang Xie
- Management and Service Center for Huangshui National Wetland Park, Xining 810016, China
| | - Haichuan Ji
- Qinghai Wetland Protection Center, Xining 810008, China
| | - Huakun Zhou
- Key Laboratory of Cold Regions and Restoration Ecology, Xining 810008, China
| |
Collapse
|
17
|
Chen P, Yu X, Zhang J, Wang Y. New and traditional methods for antibiotic resistance genes removal: Constructed wetland technology and photocatalysis technology. Front Microbiol 2023; 13:1110793. [PMID: 36687588 PMCID: PMC9845729 DOI: 10.3389/fmicb.2022.1110793] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance genes (ARGs) are a new environmental contaminant that poses a major hazard to humans and the environment. This research discusses the methods and drawbacks of two ARG removal approaches, constructed wetlands (CWs) and photocatalysis. CWs primarily rely on the synergistic effects of substrate adsorption, plant uptake, and microbial processes to remove ARGs. The removal of ARGs can be influenced by wetland plants, substrate type, wetland type, and hydraulic conditions. The absolute abundance of ARGs in effluent decreased, but their relative abundance increased. Photocatalysis deactivates ARGs predominantly through reactive oxygen species, with removal effectiveness determined by catalyst type, radiation type, and radiation intensity. The drawback is that it exposes intracellular resistance genes, perhaps increasing the risk of ARG spread. To address the current shortcomings, this paper proposes the feasibility of combining a constructed wetland with photocatalysis technology, which provides a novel strategy for ARG removal.
Collapse
|
18
|
Liu L, Teng Y, Chen H, Hu J. Characteristics of resistome and bacterial community structure in constructed wetland during dormant period: A fullscale study from Annan wetland. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114347. [PMID: 36455350 DOI: 10.1016/j.ecoenv.2022.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
As a green technology, constructed wetlands (CWs) can provide a low-cost solution for wastewater treatment. Either as a standalone treatment or integrated with conventional treatment, nutrients, antibiotic resistant bacteria (ARB)/antibiotic resistance genes (ARGs) can be removed by CW efficiently. While, few studies have focused on characteristics of resistome and bacterial community (BC) structure in CW during dormant period. Therefore, in this study, Annan CW (a full-scale hybrid CW) was selected to characterize resistome and BC during dormant period. The profiles of bacteria / ARGs were monitored in combination of shotgun sequencing and metagenomic assembly analysis. And multidrug ARGs are the most abundant in Annan CW, and surface flow wetland had the relatively high ARG diversity and abundance compared with subsurface flow wetland and the front pond. The most dominant phylum in CW is Proteobacteria, while the other dominant phylum in three parts have different order. COD, TP, TN, ARGs, and mobile genetic genes (MGEs) were removed by subsurface flow CW with better performance, but virulent factors (VFs) were removed by surface flow CW with better performance. Based on the spatiotemporal distribution of ARGs, the internal mechanism of ARGs dynamic variation was explored by the redundancy analysis (RDA) and variation partitioning analysis (VPA). BCs, MGEs and environmental factors (EFs) were responsible for 45.6 %, 28.3 % and 15.4 % of the ARGs variations. Among these factors, BCs and MGEs were the major co-drivers impacting the ARG profile, and EFs indirectly influence the ARG profile. This study illustrates the specific functions of ARG risk elimination in different CW components, promotes a better understanding of the efficiency of CWs for the reduction of ARG and ARB, contributing to improve the removal performance of constructed wetlands. And provide management advice to further optimize the operation of CWs during dormant period.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jingdan Hu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
19
|
Simultaneous antibiotic resistance genes reduction and membrane fouling mitigation by a hybrid process of magnetic activated carbon adsorption and ultrafiltration for wastewater reuse. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Tertiary Wastewater Treatment Technologies: A Review of Technical, Economic, and Life Cycle Aspects. Processes (Basel) 2022. [DOI: 10.3390/pr10112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The activated sludge process is the most widespread sewage treatment method. It typically consists of a pretreatment step, followed by a primary settling tank, an aerobic degradation process, and, finally, a secondary settling tank. The secondary effluent is then usually chlorinated and discharged to a water body. Tertiary treatment aims at improving the characteristics of the secondary effluent to facilitate its reuse. In this work, through a literature review of the most prominent tertiary treatment methods, a benchmarking of their technical efficiency, economic feasibility, and environmental impact was carried out. The photo-Fenton method proved to be the most technically efficient process, significantly reducing the microbial load and pharmaceutical content (by 4.9 log and 84%, respectively) of the secondary effluent. Chlorination and UV irradiation exhibited the lowest treatment costs (0.004 EUR/m−3) and the lowest global warming potential (0.04 and 0.09 kg CO2eq. m−3, respectively). After all the data were aggregated, a decision-making tool was constructed in the form of a ternary diagram, which indicates the most appropriate tertiary treatment method according to the weight-per-process aspect (technical, economic, and environmental) selected by the user, with chlorination, UV irradiation, ozonation, microalgae cultivation, and constructed wetlands prevailing in the final results.
Collapse
|
21
|
Ogunlaja A, Ogunlaja OO, Olukanni OD, Taylor GO, Olorunnisola CG, Dougnon VT, Mousse W, Fatta-Kassinos D, Msagati TAM, Unuabonah EI. Antibiotic resistomes and their chemical residues in aquatic environments in Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119783. [PMID: 35863703 DOI: 10.1016/j.envpol.2022.119783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The aquatic environment is a hotspot for the transfer of antibiotic resistance to humans and animals. Several reviews have put together research efforts on the presence and distribution of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic chemical residue (ACRs) in food, hospital wastewater, and even in other aquatic environments. However, these reports are largely focused on data from developed countries, while data from developing countries and especially those in Africa, are only marginally discussed. This review is the first effort that distills information on the presence and distribution of ARGs and ACRs in the African aquatic environments (2012-2021). This review provides critical information on efforts put into the study of ARB, ARGs, and ACRs in aquatic environments in Africa through the lens of the different sub-regions in the continent. The picture provided is compared with those from some other continents in the world. It turns out that the large economies in Africa (South Africa, Nigeria, Tunisia, Kenya) all have a few reports of ARB and ARGs in their aquatic environment while smaller economies in the continent could barely provide reports of these in their aquatic environment (in most cases no report was found) even though they have some reports on resistomes from clinical studies. Interestingly, the frequency of these reports of ARB and ARGs in aquatic environments in Africa suggests that the continent is ahead of the South American continent but behind Europe and Asia in relation to providing information on these contaminants. Common ARGs found in African aquatic environment encode resistance to sulfonamide, tetracycline, β-lactam, and macrolide classes of antibiotics. The efforts and studies from African scientists in eliminating ARB and ARGs from the aquatic environment in Africa are also highlighted. Overall, this document is a ready source of credible information for scientists, policy makers, governments, and regional bodies on ARB, ARGs, and ACRs in aquatic environments in Africa. Hopefully, the information provided in this review will inspire some necessary responses from all stakeholders in the water quality sector in Africa to put in more effort into providing more scientific evidence of the presence of ARB, ARGs, and ACRs in their aquatic environment and seek more efficient ways to handle them to curtail the spread of antibiotic resistance among the population in the continent. This will in turn, put the continent on the right path to meeting the United Nations Sustainable Development Goals #3 and #6, which at the moment, appears to be largely missed by most countries in the continent.
Collapse
Affiliation(s)
- Aemere Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria.
| | - Olumuyiwa O Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olumide D Olukanni
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, P.M.B. 230, Ede, Nigeria
| | - Gloria O Taylor
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Chidinma G Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Victorien T Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Wassiyath Mousse
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, PO Box 20537, 1678 Nicosia, Cyprus
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, South Africa
| | - Emmanuel I Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| |
Collapse
|
22
|
Liu L, Zhang Y, Chen H, Teng Y. Fate of resistome components and characteristics of microbial communities in constructed wetlands and their receiving river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157226. [PMID: 35809723 DOI: 10.1016/j.scitotenv.2022.157226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Currently, most researches focus on that constructed wetlands (CWs) achieve desirable removal of antibiotics, antibiotic resistance genes (ARGs) and human pathogens. However, few studies have assessed the fate of resistome components, especially the behavior and cooccurrence of ARGs, mobile genetic elements (MGEs) and virulence factors (VFs). Therefore, characteristics of microbial communities (MCs) in CWs and their receiving rivers also deserve attention. These factors are critical to water ecological security. This study used two CWs to explore the fate of resistome components and characteristics of MCs in the CWs and their receiving river. Eleven samples were collected from the two CWs and their receiving river. High-throughput profiles of ARGs and microbial taxa in the samples were characterized. 31 ARG types consisting of 400 subtypes with total relative abundance 42.63-84.94× /Gb of sequence were detected in CWs, and 62.07-88.08× /Gb of sequence in river, evidencing that ARG pollution covered CWs and the river, and implying huge potential risks from ARGs. MGEs and VFs were detected, and tnpA, IS91 and intI1 were the three dominant MGEs, while Flagella. Type IV pili and peritrichous flagella were main VFs. Both CWs can remove ARGs, MGEs and VFs efficiently. However, some ARGs were difficult to remove, such as sul1 and sul2, and certain ARGs remained in the effluent of the CWs. The co-occurrence of ARGs, MGEs, and VFs implies the risk of antibiotic resistance and dissemination of ARGs. Eighty-five types of human pathogen were detected in the river samples, particularly Pseudomonas aeruginosa, Bordetella bronchiseptica, Aeromonas hydrophila and Helicobacter pylori. Correlation analysis indicated that MCs had significant effects on the profiles of ARGs in the water environment. This study reveals potential risks of the reuse of reclaimed water, and illustrates the removal ability of ARGs and related elements by CWs. This study will be helpful for monitoring and managing resistomes in water environments.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuxin Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
23
|
Fu J, Zhao Y, Yao Q, Addo-Bankas O, Ji B, Yuan Y, Wei T, Esteve-Núñez A. A review on antibiotics removal: Leveraging the combination of grey and green techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156427. [PMID: 35660594 DOI: 10.1016/j.scitotenv.2022.156427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 05/27/2023]
Abstract
Antibiotics are currently a major source of concern around the world due to the serious risks posed to human health and the environment. The performance of the secondary wastewater treatment processes/technologies (representing grey process) and constructed wetlands (CWs) (typical green process) in removing antibiotics and antibiotic resistance genes (ARG) was reviewed. The result showed that the grey process mainly removes antibiotics, but does not significantly remove ARG, and some processes may even cause ARG enrichment. The overall treatment in CWs is better than WWTPs, especially for ARG. Vertical subsurface flow CWs (VFCWs) are more conductive to antibiotics removal, while horizontal subsurface flow CWs (HFCWs) have a better ARG removal. More importantly, this review admits and suggests that the combination of grey process with green process is an effective strategy to remove antibiotics and ARG. The most advantage of the combination lies in realizing complementary advantages, i.e. the grey process as the primary treatment while CWs as the polishing stage. The efficiency of such the hybrid system is much higher than either single treatment process.
Collapse
Affiliation(s)
- Jingmiao Fu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Qi Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Olivia Addo-Bankas
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Bin Ji
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yujie Yuan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Abraham Esteve-Núñez
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain; Bioelectrogenesis Group, IMDEA WATER, Madrid, Spain.
| |
Collapse
|
24
|
Parashar V, Singh S, Purohit MR, Tamhankar AJ, Singh D, Kalyanasundaram M, Lundborg CS, Diwan V. Utility of constructed wetlands for treatment of hospital effluent and antibiotic resistant bacteria in resource limited settings: A case study in Ujjain, India. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10783. [PMID: 36073662 PMCID: PMC9544608 DOI: 10.1002/wer.10783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Increasing generation of wastewater and its indiscriminate disposal is detrimental to human and animal health. Resource-limited settings often struggle for efficient wastewater treatment systems owing to lack of funds and operational difficulties. Therefore, alternative treatment systems involving low expenditure and simplistic operations are need of the hour. Constructed wetlands are one such alternative that can efficiently remove variety of pollutants from wastewater. In this study, we have assessed the utility of constructed wetlands for treatment of hospital wastewater in Ujjain. An in-house wetland system was designed and constructed using Typha latifolia and Phragmites karka. Results showed that wetland was efficient for removal of various physico-chemical and biological contaminants, namely, biochemical-oxygen-demand (77.1%), chemical-oxygen-demand (64.9%), turbidity (68.3%), suspended-solids (63%), total-phosphorus (58.7%), nitrate-nitrogen (33%), fecal coliforms (96.8%), and total coliforms (95.6%). Paired t test revealed that removal efficiencies for various parameters were significantly different among Phragmites, Typha, and control cells (p ≤ 0.05). Study also depicted that most of the bacterial isolates in inlet wastewater were selectively resistant to antibiotics (ciprofloxacin and sulphamethaxazole) as well and these isolates were also removed. Precisely, Typha was fairly suitable for antibiotic resistant bacteria removal. Thus, constructed wetlands were found to be one of the suitable options for wastewater treatment in resource-limited settings. PRACTITIONER POINTS: Constructed wetlands are one of the suitable options for wastewater treatment in resource limited settings. These systems involve wetland vegetation, soil, and associated microbial assemblages to improve the water quality. Typha and Phragmites were found to be efficient for treating the hospital wastewater. Experiments showed that antibiotic resistant bacteria may also be removed through constructed wetland systems. Easy operation, cost effectiveness, and efficiency are important attributes.
Collapse
Affiliation(s)
| | - Surya Singh
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil)ICMR – National Institute for Research in Environmental HealthBhopalIndia
| | - Manju R. Purohit
- R.D. Gardi Medical CollegeUjjainIndia
- Department of Global Public HealthKarolinska InstitutetStockholmSweden
| | - Ashok J. Tamhankar
- R.D. Gardi Medical CollegeUjjainIndia
- Department of Global Public HealthKarolinska InstitutetStockholmSweden
| | | | | | | | - Vishal Diwan
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil)ICMR – National Institute for Research in Environmental HealthBhopalIndia
- Department of Global Public HealthKarolinska InstitutetStockholmSweden
| |
Collapse
|
25
|
Hazra M, Joshi H, Williams JB, Watts JEM. Antibiotics and antibiotic resistant bacteria/genes in urban wastewater: A comparison of their fate in conventional treatment systems and constructed wetlands. CHEMOSPHERE 2022; 303:135148. [PMID: 35640694 DOI: 10.1016/j.chemosphere.2022.135148] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
There is a growing concern that the use and misuse of antibiotics can increase the detection of antibiotic resistant genes (ARGs) in wastewater. Conventional wastewater treatment plants provide a pathway for ARGs and antibiotic resistant bacteria (ARB) to be released into natural water bodies. Research has indicated that conventional primary and secondary treatment systems can reduce ARGs/ARB to varying degrees. However, in developing/low-income countries, only 8-28% of wastewater is treated via conventional treatment processes, resulting in the environment being exposed to high levels of ARGs, ARB and pharmaceuticals in raw sewage. The use of constructed wetlands (CWs) has the potential to provide a low-cost solution for wastewater treatment, with respect to removal of nutrients, pathogens, ARB/ARGs either as a standalone treatment process or when integrated with conventional treatment systems. Recently, CWs have also been employed for the reduction of antibiotic residues, pharmaceuticals, and emerging contaminants. Given the benefits of ARG removal, low cost of construction, maintenance, energy requirement, and performance efficiencies, CWs offer a promising solution for developing/low-income countries. This review promotes a better understanding of the performance efficiency of treatment technologies (both conventional systems and CWs) for the reduction of antibiotics and ARGs/ARB from wastewater and explores workable alternatives.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - John B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, United Kingdom
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, United Kingdom
| |
Collapse
|
26
|
Antibiotic-Resistant Gene Behavior in Constructed Wetlands Treating Sewage: A Critical Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14148524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The main objective of this review is to evaluate the performance of constructed wetlands (CWs) used to reduce antibiotic-resistant genes (ARGs) during sewage treatment. To accomplish this objective, statistical and correlation analyses were performed using published data to determine the influence of operational and design parameters on ARG reduction in CWs. The effects of design and operational parameters, such as different CW configurations, seasonality, monoculture and polyculture, support medium, and hydraulic retention time (HRT), on ARG removals, were analyzed. A comparison of ARG reduction under different CW configurations showed that the hybrid configuration of surface flow (SF)–vertical subsurface flow (VSSF) achieved the highest reductions, with values of 1.55 ulog. In this case, aeration is considered an important factor to reduce ARGs in CWs, and it should be considered in future studies. However, statistical analyses showed that the ARG reductions under different CW configurations were not significant (p > 0.05). The same behavior was observed when the effects of operational factors on ARG reductions were analyzed (p > 0.05). The results of this study show that CWs are not optimal technologies to reduce ARGs in sewage. The combination of CWs with advanced wastewater technologies can be a solution for enhancing ARG reduction and reducing the spread of antibiotic resistance.
Collapse
|
27
|
Manoharan RK, Ishaque F, Ahn YH. Fate of antibiotic resistant genes in wastewater environments and treatment strategies - A review. CHEMOSPHERE 2022; 298:134671. [PMID: 35460672 DOI: 10.1016/j.chemosphere.2022.134671] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) have emerged in aquatic environments through the discharge of large amounts of antibiotics into wastewater. Well-designed wastewater treatment plants (WWTPs) with effective treatment processes are essential to prevent the release of ARGs directly into the environment. Although some systematic sequential treatment methods are used to remove ARGs, considerable gaps in removal mechanisms will be discussed. Therefore, deep analysis and discussion of various treatment methods are required to understand the ARGs removal mechanisms. In this manuscript, the role of antibiotics and the resistance mechanism of ARB are discussed in depth. In addition, the fate of ARGs in an aquatic environment and detection methods are compared comprehensively and discussed. In particular, the advantages and disadvantages of various methods are summarized and reviewed critically. Finally, combined technologies, such as advanced oxidation process (AOP) with biochemical systems, membrane separation with electrochemical AOP, ultrafiltration (UF) membrane coupled with photocatalytic treatment, and UF membrane separation coupled with sonication, are introduced. Overall, low-energy anaerobic treatment reactors with any of the above combined treatments might reduce the discharge of large quantities of ARGs into the environment. Finally, this review provides valuable insights for better ARG removal technologies by introducing combined effective treatment strategies used in real WWTPs.
Collapse
Affiliation(s)
| | - Fahmida Ishaque
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
28
|
|
29
|
Prendergast DM, O'Doherty Á, Burgess CM, Howe N, McMahon F, Murphy D, Leonard F, Morris D, Harrington C, Carty A, Moriarty J, Gutierrez M. Critically important antimicrobial resistant Enterobacteriaceae in Irish farm effluent and their removal in integrated constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151269. [PMID: 34710415 DOI: 10.1016/j.scitotenv.2021.151269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the ability of Integrated Constructed Wetlands (ICWs) to remove critically important antimicrobial resistant organisms (AROs) from farm wastewater. Influent samples from the untreated farm waste and effluent samples taken at the end of the ICW system were collected monthly from four ICWs, serving four different farm types (suckler, dairy, dairy & poultry and pig). Using selective media to screen for the presence of carbapenemase resistant organisms, plasmid mediated and AmpC β-Lactamase producing organisms (ESBL/pAmpC) and fluoroquinolone resistant organisms, a total of 82 AROs were obtained with the majority being E. coli (n = 79). Statistically significant were the differences on the number of AROs isolated from influent (higher) compared to effluent, as well as a seasonal effect, with less AROs recovered during winter in comparison to other seasons (P < 0.05). On the other hand, there was no significant differences in the recovery of AROs on different farms. The majority of isolates from each of the farms (99%) were multi drug resistant, with 65% resistant to seven or more antimicrobials. A high incidence of tetracycline, trimethoprim/sulfamethoxazole, and ampicillin resistance was common to the isolates from all four farms but there were differences in ESBL levels with 63% of the isolates recovered from Farm 4 (piggery) being ESBLs compared to 18%, 36% and 4.5% recovered from Farms 1 (suckler), 2 (dairy) and 3 (dairy & poultry), respectively. No carbapenemase producing organisms were isolated. Our results showed that ICWs are effective in removing critically important AROs from farm wastewater on all four farm types.
Collapse
Affiliation(s)
- Deirdre M Prendergast
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland.
| | - Áine O'Doherty
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland
| | | | - Nicole Howe
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland
| | - Frederick McMahon
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland
| | - Declan Murphy
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland
| | - Finola Leonard
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, NUI Galway, Ireland
| | | | - Aila Carty
- VESI Environmental Ltd., Little Island, Cork, Ireland
| | - John Moriarty
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland
| | - Montserrat Gutierrez
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland
| |
Collapse
|
30
|
Hazra M, Durso LM. Performance Efficiency of Conventional Treatment Plants and Constructed Wetlands towards Reduction of Antibiotic Resistance. Antibiotics (Basel) 2022; 11:114. [PMID: 35052991 PMCID: PMC8773441 DOI: 10.3390/antibiotics11010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022] Open
Abstract
Domestic and industrial wastewater discharges harbor rich bacterial communities, including both pathogenic and commensal organisms that are antibiotic-resistant (AR). AR pathogens pose a potential threat to human and animal health. In wastewater treatment plants (WWTP), bacteria encounter environments suitable for horizontal gene transfer, providing an opportunity for bacterial cells to acquire new antibiotic-resistant genes. With many entry points to environmental components, especially water and soil, WWTPs are considered a critical control point for antibiotic resistance. The primary and secondary units of conventional WWTPs are not designed for the reduction of resistant microbes. Constructed wetlands (CWs) are viable wastewater treatment options with the potential for mitigating AR bacteria, their genes, pathogens, and general pollutants. Encouraging performance for the removal of AR (2-4 logs) has highlighted the applicability of CW on fields. Their low cost of construction, operation and maintenance makes them well suited for applications across the globe, especially in developing and low-income countries. The present review highlights a better understanding of the performance efficiency of conventional treatment plants and CWs for the elimination/reduction of AR from wastewater. They are viable alternatives that can be used for secondary/tertiary treatment or effluent polishing in combination with WWTP or in a decentralized manner.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Lisa M. Durso
- Agroecosystem Management Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE 68583, USA;
| |
Collapse
|
31
|
Ohore OE, Qin Z, Sanganyado E, Wang Y, Jiao X, Liu W, Wang Z. Ecological impact of antibiotics on bioremediation performance of constructed wetlands: Microbial and plant dynamics, and potential antibiotic resistance genes hotspots. JOURNAL OF HAZARDOUS MATERIALS 2021; 424:127495. [PMID: 34673400 DOI: 10.1016/j.jhazmat.2021.127495] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/05/2023]
Abstract
Constructed wetlands (CWs) are nature-based solutions for treating domestic and livestock wastewater which may contain residual antibiotics concentration. Antibiotics may exert selection pressure on wetland's microbes, thereby increasing the global antibiotics resistance problems. This review critically examined the chemodynamics of antibiotics and antibiotics resistance genes (ARGs) in CWs. Antibiotics affected the biogeochemical cycling function of microbial communities in CWs and directly disrupted the removal efficiency of total nitrogen, total phosphorus, and chemical oxygen demand by 22%, 9.3%, and 24%, respectively. Since changes in microbial function and structure are linked to the emergence and propagation of antibiotic resistance, antibiotics could adversely affect microbial diversity in CWs. The cyanobacteria community seemed to be particularly vulnerable, while Proteobacteria could resist and persist in antibiotics contaminated wetlands. Antibiotics triggered excitation responses in plants and increased the root activities and exudates. Microbes, plants, and substrates play crucial roles in antibiotic removal. High removal efficiency was exhibited for triclosan (100%) > enrofloxacin (99.8%) > metronidazole (99%) > tetracycline (98.8%) > chlortetracycline (98.4%) > levofloxacin (96.69%) > sulfamethoxazole (91.9%) by the CWs. This review showed that CWs exhibited high antibiotics removal capacity, but the absolute abundance of ARGs increased, suggesting CWs are potential hotspots for ARGs. Future research should focus on specific bacterial response and impact on microbial interactions.
Collapse
Affiliation(s)
- Okugbe Ebiotubo Ohore
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Edmond Sanganyado
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Organization of African Academic Doctors, Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | - Yuwen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Wenhua Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Zhen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
32
|
Uluseker C, Kaster KM, Thorsen K, Basiry D, Shobana S, Jain M, Kumar G, Kommedal R, Pala-Ozkok I. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front Microbiol 2021; 12:717809. [PMID: 34707579 PMCID: PMC8542863 DOI: 10.3389/fmicb.2021.717809] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022] Open
Abstract
This paper reviews current knowledge on sources, spread and removal mechanisms of antibiotic resistance genes (ARGs) in microbial communities of wastewaters, treatment plants and downstream recipients. Antibiotic is the most important tool to cure bacterial infections in humans and animals. The over- and misuse of antibiotics have played a major role in the development, spread, and prevalence of antibiotic resistance (AR) in the microbiomes of humans and animals, and microbial ecosystems worldwide. AR can be transferred and spread amongst bacteria via intra- and interspecies horizontal gene transfer (HGT). Wastewater treatment plants (WWTPs) receive wastewater containing an enormous variety of pollutants, including antibiotics, and chemicals from different sources. They contain large and diverse communities of microorganisms and provide a favorable environment for the spread and reproduction of AR. Existing WWTPs are not designed to remove micropollutants, antibiotic resistant bacteria (ARB) and ARGs, which therefore remain present in the effluent. Studies have shown that raw and treated wastewaters carry a higher amount of ARB in comparison to surface water, and such reports have led to further studies on more advanced treatment processes. This review summarizes what is known about AR removal efficiencies of different wastewater treatment methods, and it shows the variations among different methods. Results vary, but the trend is that conventional activated sludge treatment, with aerobic and/or anaerobic reactors alone or in series, followed by advanced post treatment methods like UV, ozonation, and oxidation removes considerably more ARGs and ARB than activated sludge treatment alone. In addition to AR levels in treated wastewater, it examines AR levels in biosolids, settled by-product from wastewater treatment, and discusses AR removal efficiency of different biosolids treatment procedures. Finally, it puts forward key-points and suggestions for dealing with and preventing further increase of AR in WWTPs and other aquatic environments, together with a discussion on the use of mathematical models to quantify and simulate the spread of ARGs in WWTPs. Mathematical models already play a role in the analysis and development of WWTPs, but they do not consider AR and challenges remain before models can be used to reliably study the dynamics and reduction of AR in such systems.
Collapse
Affiliation(s)
- Cansu Uluseker
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Krista Michelle Kaster
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Kristian Thorsen
- Department of Electrical Engineering and Computer Science, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Daniel Basiry
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Sutha Shobana
- Department of Chemistry and Research Centre, Aditanar College of Arts and Science, Tiruchendur, India
| | - Monika Jain
- Department of Natural Resource Management, College of Forestry, Banda University of Agricultural and Technology, Banda, India
| | - Gopalakrishnan Kumar
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Kommedal
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ilke Pala-Ozkok
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
33
|
Na G, Zhang K, Gao H, Li R, Jin S, Zhao F, Zhang H, Li S. Occurrence and distribution characteristics of antibiotic resistance genes in sediments between urban and rural of the Liaohe River Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54002-54014. [PMID: 34043168 DOI: 10.1007/s11356-021-13560-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic resistance genes (ARGs) are considered to be emerging pollutants related to human activities. The rapid development of global urbanization has expanded human activities, thereby exacerbating the global human health risks caused by antibiotic resistance genes. The effects of urban and rural environments are multifarious, which makes the source and distribution of ARGs in the environment diversification. Understanding the distribution and spread of ARGs is essential for studying the environmental behavior of ARGs. In this study, the occurrence 296 genes were detected by the high-throughput qPCR technology, and FC value was used to analyze the diversity of ARGs and mobile genetic elements (MGEs) in sediments between urban and rural areas of the Liaohe River Basin, China. The co-occurrence of MGEs and ARGs was analyzed using network to decipher core genes. A total of 187 ARGs and 10 MGEs were detected in all sediment samples. The average number of genes detected in urban sites is 89 higher than that in rural sites. The high abundance and various types of ARGs and MGEs detected in urban river sediments indicate that the occurrence of urban ARGs is more complex. MGEs were detected high levels and were significantly correlated with the abundance and diversity of ARGs in river sediments providing evidence that MGEs were related to the occurrence and distribution of ARGs and tnpA (tnpA-07, tnpA-01, and tnpA-03) gene were at the key position of co-occurrence of various types of ARGs.
Collapse
Affiliation(s)
- Guangshui Na
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
- National Marine Environmental Monitoring Center, Dalian, 116023, China.
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China.
| | - Keyu Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Hui Gao
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Ruijing Li
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Shuaichen Jin
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Fuqiang Zhao
- National Marine Environmental Monitoring Center, Dalian, 116023, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Haibo Zhang
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Shisheng Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| |
Collapse
|
34
|
Huang L, Ahmed S, Gu Y, Huang J, An B, Wu C, Zhou Y, Cheng G. The Effects of Natural Products and Environmental Conditions on Antimicrobial Resistance. Molecules 2021; 26:molecules26144277. [PMID: 34299552 PMCID: PMC8303546 DOI: 10.3390/molecules26144277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the extensive application of antibiotics in medical and farming practices, the continued diversification and development of antimicrobial resistance (AMR) has attracted serious public concern. With the emergence of AMR and the failure to treat bacterial infections, it has led to an increased interest in searching for novel antibacterial substances such as natural antimicrobial substances, including microbial volatile compounds (MVCs), plant-derived compounds, and antimicrobial peptides. However, increasing observations have revealed that AMR is associated not only with the use of antibacterial substances but also with tolerance to heavy metals existing in nature and being used in agriculture practice. Additionally, bacteria respond to environmental stresses, e.g., nutrients, oxidative stress, envelope stress, by employing various adaptive strategies that contribute to the development of AMR and the survival of bacteria. Therefore, we need to elucidate thoroughly the factors and conditions affecting AMR to take comprehensive measures to control the development of AMR.
Collapse
Affiliation(s)
- Lulu Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Yufeng Gu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Junhong Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Boyu An
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Cuirong Wu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Yujie Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
- Correspondence:
| |
Collapse
|
35
|
Bombaywala S, Mandpe A, Paliya S, Kumar S. Antibiotic resistance in the environment: a critical insight on its occurrence, fate, and eco-toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24889-24916. [PMID: 33765260 DOI: 10.1007/s11356-021-13143-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The overuse, misuse, and underuse of antibiotics tend to increase the antibiotic burden in the environment resulting into the evolution in microbial community to possess resistance that renders antibiotics ineffective against them. The current review recapitulates the present state of knowledge about the occurrence and fate of antibiotics in various environmental matrices. Also, the prevalence of antibiotic-resistant bacteria/antibiotic-resistant genes (ARB/ARGs) in various biological and non-biological systems, eco-toxicity of antibiotics on non-target organisms, and remediation methods for antibiotics and ARB/ARGs removal were critically reviewed. Furthermore, a comparison of various technologies for their efficiency to eliminate antibiotic residues and ARB/ARGs is made. The study identified gaps in the investigation of toxic effects of low concentration of antibiotics and the mixture of multiple antibiotics on non-target organisms. The study of antibiotics' phytotoxicity and toxicity towards sediment and soil-dwelling organisms are also recognized as a knowledge gap. The review also details policies implemented across the globe to fight against antibiotic resistance, and the scarcity of data on lab to land transferred remediation technology was identified. The present study entails a critical review of literature providing guidelines for the articulation of policies for prudent use of antibiotics, limits on the amount of antibiotics in pharmaceutical formulations, and regular surveillance in the Indian context.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Ashootosh Mandpe
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Sonam Paliya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India.
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
36
|
Investigation of the Factors Affecting the Treatment Performance of a Stormwater Horizontal Subsurface Flow Constructed Wetland Treating Road and Parking Lot Runoff. WATER 2021. [DOI: 10.3390/w13091242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study assessed the factors affecting the growth and survival of microorganisms in a small horizontal subsurface flow constructed wetland (HSSF CW) treating stormwater runoff from highly impervious road and parking lot through long-term monitoring from 2010 until present. The HSSF CW facility consisted of sedimentation or pre-treatment zone, vegetation zone, and effluent zone, and employed filter media including bio-ceramics, sand, gravel, and wood chips. Results showed that flow reduction in the wetland through filtration and sedimentation played an important part in the overall performance of the HSSF CW. In addition, vegetation growth was found to be affected by pollutant and stormwater inflow in the HSSF CW. Vegetation near the outflow port exhibited greater growth rates by about 6.5% to 64.2% compared to the vegetation near the inflow port due to the less stormwater pollutant concentrations via filtration mechanism in the plant or media zone of the HSSF CW. The pollutant inflow from road and parking lot played an important role in providing good environment for microbial growth especially for the dominant microbial phyla including Proteobacteria, Actinobacteria and Acidobacteria in the HSSF CW. The findings of this research are useful in understanding treatment mechanisms and identifying appropriate design considerations for HSSF CW.
Collapse
|
37
|
He Y, Zhang L, Jiang L, Wagner T, Sutton NB, Ji R, Langenhoff AAM. Improving removal of antibiotics in constructed wetland treatment systems based on key design and operational parameters: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124386. [PMID: 33144002 DOI: 10.1016/j.jhazmat.2020.124386] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 05/12/2023]
Abstract
While removal of antibiotics in constructed wetland treatment systems (CWTS) has been described previously, few studies examined the synergistic effect of multiple design and operational parameters for improving antibiotic removal. This review describes the removal of 35 widely used antibiotics in CWTS covering the most common design parameters (flow configuration, substrate, plants) and operational parameters (hydraulic retention time/hydraulic loading rates, feeding mode, aeration, influent quality), and discusses how to tailor those parameters for improving antibiotic removal based on complex removal mechanisms. To achieve an overall efficient removal of antibiotics in CWTS, our principal component analysis indicated that optimization of flow configuration, selection of plant species, and compensation for low microbial activity at low temperature is the priority strategy. For instance, a hybrid-CWTS that integrates the advantages of horizontal and vertical subsurface flow CWTS may provide a sufficient removal performance at reasonable cost and footprint. To target removal of specific antibiotics, future research should focus on elucidating key mechanisms for their removal to guide optimization of the design and operational parameters. More efficient experimental designs (e.g., the Box-Behnken design) are recommended to determine the settings of the key parameters. These improvements would promote development of this environmentally friendly and cost-efficient technology for antibiotic removal.
Collapse
Affiliation(s)
- Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023 Nanjing, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou China
| | - Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023 Nanjing, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou China
| | - Longxue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023 Nanjing, China
| | - Thomas Wagner
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Nora B Sutton
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023 Nanjing, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou China.
| | - Alette A M Langenhoff
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
38
|
The Effect of the Effluent from a Small-Scale Conventional Wastewater Treatment Plant Treating Municipal Wastewater on the Composition and Abundance of the Microbial Community, Antibiotic Resistome, and Pathogens in the Sediment and Water of a Receiving Stream. WATER 2021. [DOI: 10.3390/w13060865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effluents of wastewater treatment plants (WWTPs) are major contributors of nutrients, microbes—including those carrying antibiotic resistance genes (ARGs)—and pathogens to receiving waterbodies. The effect of the effluent of a small-scale activated sludge WWTP treating municipal wastewater on the composition and abundance of the microbial community as well as the antibiotic resistome and pathogens in the sediment and water of the receiving stream and river was studied using metagenome sequencing and a quantitative approach. Elevated Bacteroidetes proportions in the prokaryotic community, heightened sulfonamide and aminoglycoside resistance determinants proportions, and an increase of up to three orders of magnitude of sul1–sul2–aadA–blaOXA2 gene cluster abundances were recorded in stream water and sediments 0.3 km downstream of a WWTP discharge point. Further downstream, a gradual recovery of affected microbial communities along a distance gradient from WWTP was recorded, culminating in the mostly comparable state of river water and sediment parameters 3.7 km downstream of WWTP and stream water and sediments upstream of the WWTP discharge point. Archaea, especially Methanosarcina, Methanothrix, and Methanoregula, formed a substantial proportion of the microbial community of WWTP effluent as well as receiving stream water and sediment, and were linked to the spread of ARGs. Opportunistic environmental-origin pathogens were predominant in WWTP effluent and receiving stream bacterial communities, with Citrobacter freundii proportion being especially elevated in the close vicinity downstream of the WWTP discharge point.
Collapse
|
39
|
Abou-Kandil A, Shibli A, Azaizeh H, Wolff D, Wick A, Jadoun J. Fate and removal of bacteria and antibiotic resistance genes in horizontal subsurface constructed wetlands: Effect of mixed vegetation and substrate type. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:144193. [PMID: 33338689 DOI: 10.1016/j.scitotenv.2020.144193] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the influence of cropping method and substrate type on the fate and the removal of bacterial and antibiotic resistance genes (ARGs) indicators from primary wastewater by constructed wetlands (CWs) during startup and maturation stages. Four small-scale CWs differing in their plantation pattern (monoculture vs. polyculture) and substrate type were constructed and operated under field conditions. While for bacteria, the greatest impact of the cropping method and substrate type on removal was during the startup stage rather than the maturation stage, for ARGs, such impact was significant at both stages. During startup, the removal efficiencies of heterotrophic bacteria, fecal coliforms, E. coli, 16S rRNA genes and lacZ increased with the operation time. At maturation, the removal efficiencies were constant and were within the range of 89.2-99.4%, 93.7-98.9%, 89-98.8%, 94.1-99.6% and 92.9-98.7%, respectively. The removal efficiencies of intl1, tetM, intl1, sul1, ermB and total ARGs were also increased with the operation time. However, they were ARG type and configuration-dependent; at maturation they ranged between 50.7%-89.4%, 85.9%-97%, 49.6%-92.9%, 58.2%-96.7% and 79.9-94.3%, respectively. The tuff-filled serially planted CW was also the only one capable of removing these genes at similar high efficiency. Metagenomic analysis showed that none of the ARGs was among the most common ARGs in water and biofilm samples; rather most ARGs belonged to bacterial efflux transporter superfamilies. Although ARGs were removed, they were still detected in substrate biofilm and their relative concentrations were increased in the effluents. While the removal of both bacteria and ARGs was higher during summer compared to winter, the season had no effect on the removal pattern of ARGs. Hence, combination of the serial plantation with substrate having high surface area is a potential strategy that can be used to improve the performance of CWs.
Collapse
Affiliation(s)
- Ammar Abou-Kandil
- The Galilee Society Institute of Applied Research, Shefa-Amr 20200, Israel
| | - Areen Shibli
- The Galilee Society Institute of Applied Research, Shefa-Amr 20200, Israel
| | - Hassan Azaizeh
- The Galilee Society Institute of Applied Research, Shefa-Amr 20200, Israel; Department of Natural Resources & Environmental Management, University of Haifa, Haifa 3498838, Israel; Department of Environmental Science, Tel Hai College, Upper Galilee, 12208, Israel
| | - David Wolff
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Arne Wick
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Jeries Jadoun
- The Galilee Society Institute of Applied Research, Shefa-Amr 20200, Israel; Institute of Evolution, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
40
|
Wang H, Chang H, Zhang C, Feng C, Wu F. Occurrence of Chlorinated Paraffins in a Wetland Ecosystem: Removal and Distribution in Plants and Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:994-1003. [PMID: 33415977 DOI: 10.1021/acs.est.0c05694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CWs) are of great socioeconomic significance because they can remove anthropogenic compounds from aquatic environments. However, no information is available about the removal of persistent chlorinated paraffins by CWs. This study investigates the occurrences, fates, and mass balances of short-chain chlorinated paraffins (SCCPs), medium-chain chlorinated paraffins (MCCPs), and long-chain chlorinated paraffins (LCCPs) in a CW ecosystem. MCCPs were the predominant compounds in water, sediments, and plants within the system. The amounts of SCCPs, MCCPs, and LCCPs entering the wetland were 3.3, 6.8, and 3.4 g/day, respectively. Overall removal efficiencies were 51-78%, 76-86%, and 76-91% for SCCPs, MCCPs, and LCCPs, respectively, and the greatest reduction in CPs was observed in the subsurface flow wetland unit. CPs were predominantly adsorbed onto the sediment and bioaccumulated in the plants, and their organic carbon-water partitioning and plant-water accumulation increased as the carbon and chlorine numbers increased. Sediment sorption (12-38%) and degradation (12-50%) contributed the most to the removal of CPs, but bioaccumulation of CPs in plants (3.8-12%) should not be neglected. Wetlands can economically remove large amounts of CPs, but sediment in the wetland systems could be a sink for CP pollutants.
Collapse
Affiliation(s)
- Hongping Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hong Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Cunxu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
41
|
Ojemaye MO, Adefisoye MA, Okoh AI. Nanotechnology as a viable alternative for the removal of antimicrobial resistance determinants from discharged municipal effluents and associated watersheds: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111234. [PMID: 32866924 DOI: 10.1016/j.jenvman.2020.111234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/25/2020] [Accepted: 08/12/2020] [Indexed: 05/20/2023]
Abstract
Effective and efficient utilization of antimicrobial drugs has been one of the important cornerstone of modern medicine. However, since antibiotics were first discovered by Alexander Fleming about a century ago, the time clock of antimicrobial resistance (AMR) started ticking somewhat leading to a global fear of a possible "post-antimicrobial era". Antibiotic resistance (AR) remains a serious challenge causing global outcry in both the clinical setting and the environment. The huge influence of municipal wastewater effluent discharges on the aquatic environment has made the niche a hotspot of research interest in the study of emergence and spread of AMR microbes and their resistance determinants/genes. The current review adopted a holistic approach in studying the proliferation of antibiotic resistance determinants (ARDs) as well as their impacts and fate in municipal wastewater effluents and the receiving aquatic environments. The various strategies deployed hitherto for the removal of resistance determinants in municipal effluents were carefully reviewed, while the potential for the use of nanotechnology as a viable alternative is explicitly explored. Also, highlighted in this review are the knowledge gaps to be filled in order to curtail the spread of AMR in aquatic environment and lastly, suggestions on the applicability of nanotechnology in eliminating AMR determinants in municipal wastewater treatment facilities are proffered.
Collapse
Affiliation(s)
- Mike O Ojemaye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| | - Martins A Adefisoye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| |
Collapse
|
42
|
Bairán G, Rebollar-Pérez G, Chávez-Bravo E, Torres E. Treatment Processes for Microbial Resistance Mitigation: The Technological Contribution to Tackle the Problem of Antibiotic Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8866. [PMID: 33260585 PMCID: PMC7730199 DOI: 10.3390/ijerph17238866] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Advances generated in medicine, science, and technology have contributed to a better quality of life in recent years; however, antimicrobial resistance has also benefited from these advances, creating various environmental and health problems. Several determinants may explain the problem of antimicrobial resistance, such as wastewater treatment plants that represent a powerful agent for the promotion of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG), and are an important factor in mitigating the problem. This article focuses on reviewing current technologies for ARB and ARG removal treatments, which include disinfection, constructed wetlands, advanced oxidation processes (AOP), anaerobic, aerobic, or combined treatments, and nanomaterial-based treatments. Some of these technologies are highly intensive, such as AOP; however, other technologies require long treatment times or high doses of oxidizing agents. From this review, it can be concluded that treatment technologies must be significantly enhanced before the environmental and heath problems associated with antimicrobial resistance can be effectively solved. In either case, it is necessary to achieve total removal of bacteria and genes to avoid the possibility of regrowth given by the favorable environmental conditions at treatment plant facilities.
Collapse
Affiliation(s)
- Gabriela Bairán
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Georgette Rebollar-Pérez
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Edith Chávez-Bravo
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Eduardo Torres
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| |
Collapse
|
43
|
Ma J, Cui Y, Li A, Zhang W, Ma C, Chen Z. Occurrence and distribution of five antibiotic resistance genes during the loading period in sludge treatment wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111190. [PMID: 32771773 DOI: 10.1016/j.jenvman.2020.111190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
The objectives of this study were to clarify the distribution as well as the removal mechanism of antibiotic resistance genes (ARGs) within three sludge treatment wetlands (STWs) during a loading period of two years. Three STW units were constructed and run during the loading period: Unit 1 (U1) built with aeration tubes, Unit 2 (U2) built with aeration tubes and reeds, and Unit 3 (U3) built with reeds only. All targeted ARGs, intI1, and 16S rRNA were detected in residual sludge in the order of magnitude: 16S rRNA>sul1>intI1>sul2>tetC>tetA>ermB. The abundance of the five targeted ARGs, intI1, and 16S rRNA increased in residual sludge, during the loading period, which may be due to the increase in bacteria caused by the continuous import of exogenous nutrients. However, STWs can also remove ARGs from sewage during the loading period and the mean removal efficiency of five resistance genes was 73.0%. The removal rates of intI1 and 16S rRNA were 73.5% and 78.6%, respectively. Positive correlations were detected in abundance of most ARGs and intI1, as well as 16S rRNA (P < 0.05), indicating intI1 plays a vital part in the propagation of ARGs. The removal of bacteria harboring these genes also occurs in the STW units.
Collapse
Affiliation(s)
- Junwen Ma
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, China; School of Environment Science & Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China.
| | - Aimin Li
- School of Environment Science & Technology, Dalian University of Technology, Dalian, 116024, China
| | - Wanjun Zhang
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Chengdong Ma
- Department of Marine Ecological Environment Information, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
44
|
Ni BJ, Yan X, Dai X, Liu Z, Wei W, Wu SL, Xu Q, Sun J. Ferrate effectively removes antibiotic resistance genes from wastewater through combined effect of microbial DNA damage and coagulation. WATER RESEARCH 2020; 185:116273. [PMID: 32805664 DOI: 10.1016/j.watres.2020.116273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
The widespread of antibiotic resistance genes (ARGs) in the environment can pose severe threats to public health. The wastewater treatment plant (WWTP) is regarded as an important hotspot of ARGs in the urban environment, but the removal of ARGs through conventional treatment techniques has been proven not sufficient. In this study, ferrate (Fe(VI)) was applied for the first time to remove intracellular ARGs from the secondary effluent of the WWTP. The results showed that Fe(VI) treatment could effectively remove 15 ARGs covering eight different types as well as intI1, the most common integron important to ARGs horizontal transfer. The removal efficiencies of tested genes could reach 1.10-4.37 log at the Fe(VI) dosage of 10 mg-Fe/L, which is significantly higher than those achieved through traditional disinfection methods. The DNA gel electrophoresis suggested that Fe(VI) could induce microbial DNA damage and consequently resulted in ARGs elimination. The presence of ARGs in settled residues indicated that coagulation initiated by Fe(VI) reduction products also contributed to ARGs removal from wastewater. In addition, the viability and relative abundances of potential ARGs hosts in the wastewater were decreased after Fe(VI) treatment. This study suggested a promising prospect for applying Fe(VI) to efficiently remove ARGs from wastewater, and consequently to control their proliferation and transfer in the environment.
Collapse
Affiliation(s)
- Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiaofang Yan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhihan Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shu-Lin Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
45
|
Xia J, Sun H, Ma X, Huang K, Ye L. Ozone pretreatment of wastewater containing aromatics reduces antibiotic resistance genes in bioreactors: The example of p-aminophenol. ENVIRONMENT INTERNATIONAL 2020; 142:105864. [PMID: 32563772 DOI: 10.1016/j.envint.2020.105864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Aromatic matters are widely present in wastewater, especially industrial wastewater, and may lead to a high abundance of antibiotic resistance genes (ARGs) in wastewater treatment bioreactors and stimulate horizontal transfers of ARGs. Here, we investigated a practical approach that applying ozone pretreatment to mitigate ARGs in bioreactors treating wastewater containing a typical aromatic pollutant, p-aminophenol (PAP). The results showed that ozone pretreatment could effectively reduce the aromaticity of wastewater, and the relative abundance of ARGs in the bioreactor fed with ozone treated wastewater decreased by over 70% compared to the control reactor. Multidrug, quinolone, mupirocin, polymyxin, aminoglycoside, glycopeptide, beta-lactam, and trimethoprim resistance genes were all reduced in the bioreactors receiving wastewater pretreated by ozone. Metagenomic analysis suggested that the reduction of ARGs could be attributed to the co-occurrence of ARGs and aromatic degradation genes in bacteria. Furthermore, we expanded our analysis to investigate 71 metagenomes from different environments, and the results indicated that the impact of aromatics on ARG abundance widely occurs in various ecosystems and confirmed that high levels of aromatics could lead to high abundance of ARGs. Taken together, our work confirmed that the aromatics played critical roles in selecting ARGs and proposed a feasible approach to reduce ARGs in wastewater treatment bioreactors.
Collapse
Affiliation(s)
- Juntao Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xueyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
46
|
Anthony ET, Ojemaye MO, Okoh OO, Okoh AI. A critical review on the occurrence of resistomes in the environment and their removal from wastewater using apposite treatment technologies: Limitations, successes and future improvement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:113791. [PMID: 32224385 DOI: 10.1016/j.envpol.2019.113791] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Recent reports are pointing towards the potential increasing risks of resistomes in human host. With no permissible limit in sight, resistomes are continually multiplying at an alarming rate in the ecosystem, with a disturbing level in drinking water source. The morphology and chemical constituent of resistomes afford them to resist degradation, elude membrane and counter ionic charge, thereby, rendering both conventional and advanced water and wastewater treatment inefficient. Water and wastewater matrix may govern the propagation of individual resistomes sub-type, co-selection and specific interaction towards precise condition may have enhanced the current challenge. This review covers recent reports (2011-2019) on the occurrence of ARB/ARGs and ease of spread of resistance genes in the aquatic ecosystem. The contributions of water matrix to the spread and mitigation, treatment options, via bulk removal or capture, and intracellular and extracellular DNA lysis were discussed. A complete summary of recent occurrences of ARB/ARGs, fate after disinfection and optimum conditions of individual treatment technology or in tandem, including process limitations, with a brief assessment of removal or degradation mechanism were highlighted.
Collapse
Affiliation(s)
- Eric Tobechukwu Anthony
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.
| | - Mike O Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| |
Collapse
|
47
|
García J, García-Galán MJ, Day JW, Boopathy R, White JR, Wallace S, Hunter RG. A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. BIORESOURCE TECHNOLOGY 2020; 307:123228. [PMID: 32247686 DOI: 10.1016/j.biortech.2020.123228] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Emerging organic contaminants (EOCs) include a diverse group of chemical compounds, such as pharmaceuticals and personal care products (PPCPs), pesticides, hormones, surfactants, flame retardants and plasticizers. Many of these compounds are not significantly removed in conventional wastewater treatment plants and are discharged to the environment, presenting an increasing threat to both humans and natural ecosystems. Recently, antibiotics have received considerable attention due to growing microbial antibiotic-resistance in the environment. Constructed wetlands (CWs) have proven effective in removing many EOCs, including different antibiotics, before discharge of treated wastewater into the environment. Wastewater treatment systems that couple conventional treatment plants with constructed and natural wetlands offer a strategy to remove EOCs and reduce antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) far more efficiently than conventional treatment alone. This review presents as overview of the current knowledge on the efficiency of different wetland systems in reducing EOCs and antibiotic resistance.
Collapse
Affiliation(s)
- Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - María Jesús García-Galán
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - John W Day
- Dept. of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Raj Boopathy
- Dept. of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA.
| | - John R White
- Dept. of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Scott Wallace
- Naturally Wallace Consulting, P.O. Box 37, Stillwater, MN 55082, USA
| | - Rachael G Hunter
- Comite Resources Inc, P.O. Box 66596, Baton Rouge, LA 70896, USA
| |
Collapse
|
48
|
Liang X, Guan F, Chen B, Luo P, Guo C, Wu G, Ye Y, Zhou Q, Fang H. Spatial and seasonal variations of antibiotic resistance genes and antibiotics in the surface waters of Poyang Lake in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110543. [PMID: 32278139 DOI: 10.1016/j.ecoenv.2020.110543] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance genes (ARGs) and antibiotics in the aquatic environment raise health concerns particularly on the dispersal and persistence of antibiotic resistance. Large lakes, which serve as catch basins of anthropogenic inputs provide an ideal environment for understanding the occurrence and accumulation of ARGs and antibiotics in freshwater environments. Here, the largest freshwater lake in China, Poyang Lake, located in the developing district of Yangtze valley was used to study the characterization of the spatial and seasonal variation of both ARGs and antibiotics. Results showed that twelve tested ARGs (sul1, sul2, sul3, tetA, tetB, tetC, tetH, tetW, tetO, tetM, qnrS, and qnrB) were detected in the surface waters of Poyang Lake, with a detection frequency ranging from 19.2% to 100%, and sul2 and tetA genes were identified as potential indicators of ARG pollution in this region. Among the 11 analyzed antibiotics, sulfonamides were the predominant antibiotics with a contribution of more than 50% to the total concentrations of tested antibiotics. The total concentrations of both ARGs and antibiotics were higher in the dry season than those in the wet season. Furthermore, ARGs and antibiotics in the surface waters also varied with sampling locations, being consistently at riverine tributaries. Positive correlations were also observed between the concentrations of ARGs and antibiotics, as well as the integron gene (intI1), indicating that antibiotics and intI1 may be playing important roles in the occurrence and dispersal of ARGs in the surface waters. Lastly, our results suggest that intensive anthropogenic activities related to antibiotic usage have substantially contributed to the occurrence and persistence of ARGs and antibiotics in Poyang Lake.
Collapse
Affiliation(s)
- Ximei Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fangling Guan
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Pinyi Luo
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chengfei Guo
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guoqiang Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yu Ye
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qiubai Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hansun Fang
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
49
|
Du L, Zhao Y, Wang C, Zhang H, Chen Q, Zhang X, Zhang L, Wu J, Wu Z, Zhou Q. Removal performance of antibiotics and antibiotic resistance genes in swine wastewater by integrated vertical-flow constructed wetlands with zeolite substrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137765. [PMID: 32172121 DOI: 10.1016/j.scitotenv.2020.137765] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) in swine wastewater have an irreversible impact on the surrounding water and soil ecosystems. Herein, integrated vertical-flow constructed wetlands (IVCWs) were constructed to assess the effects of zeolite and plants on the removal of sulfonamides (SMs), tetracyclines (TCs), and related ARGs (tetW, tetO, tetM, sul I, sul II, and sul III) from digested swine wastewater. The microorganism community structure was also investigated. Results showed that IVCWs with a zeolite substrate and plant system (ZP) exhibited a favorable removal performance for N, antibiotics, and ARGs at 97.9%, 95.0%, and 95.1%, respectively. Moreover, zeolite systems showed higher adsorption of SMs, lower adsorption of TCs. The higher removal rate of antibiotics in ZP systems might be due to the enhanced microbial degradation with the enrichment of Pseudomonas, Acinetobacter, and Bacillus in zeolite. Furthermore, Arundo donax had limited impact on antibiotics removal and was not conducive to the removal of ARGs. The absolute abundances of sul(I), sul(II), sul(III), tet(M), and tet(O) were significantly positively correlated with the absolute abundance of 16S rDNA. However, no significant correlation was found between the concentration of antibiotics and the abundance of related ARGs in the effluent.
Collapse
Affiliation(s)
- Lu Du
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yuqing Zhao
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Chuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Hongpei Zhang
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qianru Chen
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Xia Zhang
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Liping Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Junmei Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
50
|
Kokkinos P, Mantzavinos D, Venieri D. Current Trends in the Application of Nanomaterials for the Removal of Emerging Micropollutants and Pathogens from Water. Molecules 2020; 25:molecules25092016. [PMID: 32357416 PMCID: PMC7248945 DOI: 10.3390/molecules25092016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Water resources contamination has a worldwide impact and is a cause of global concern. The need for provision of clean water is becoming more and more demanding. Nanotechnology may support effective strategies for the treatment, use and reuse of water and the development of next-generation water supply systems. The excellent properties and effectiveness of nanomaterials make them particularly suitable for water/wastewater treatment. This review provides a comprehensive overview of the main categories of nanomaterials used in catalytic processes (carbon nanotubes/graphitic carbon nitride (CNT/g-C3N4) composites/graphene-based composites, metal oxides and composites, metal–organic framework and commercially available nanomaterials). These materials have found application in the removal of different categories of pollutants, including pharmaceutically active compounds, personal care products, organic micropollutants, as well as for the disinfection of bacterial, viral and protozoa microbial targets, in water and wastewater matrices. Apart from reviewing the characteristics and efficacy of the aforementioned nanoengineered materials for the removal of different pollutants, we have also recorded performance limitations issues (e.g., toxicity, operating conditions and reuse) for their practical application in water and wastewater treatment on large scale. Research efforts and continuous production are expected to support the development of eco-friendly, economic and efficient nanomaterials for real life applications in the near future.
Collapse
Affiliation(s)
- Petros Kokkinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
- Correspondence: ; Tel.: +30-6972025932
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Danae Venieri
- School of Environmental Engineering, Technical University of Crete, GR-73100 Chania, Greece
| |
Collapse
|