1
|
Sushko V, Dressler M, Wei STS, Neubert T, Kühn L, Cherkouk A, Stumpf T, Matschiavelli N. No signs of microbial-influenced corrosion of cast iron and copper in bentonite microcosms after 400 days. CHEMOSPHERE 2024; 364:143007. [PMID: 39098347 DOI: 10.1016/j.chemosphere.2024.143007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
High-level radioactive waste needs to be safely stored for a long time in a deep geological repository by using a multi-barrier system. In this system, suitable barrier materials are selected that ideally show long-term stability to prevent early radionuclide release into the biosphere. In this study, different container matals (copper and cast iron) and pore water compositions (Opalinus Clay pore water and saline cap rock solution) were combined with Bavarian bentonite in static batch experiments to investigate microbial-influenced corrosion. The increasing concentration of iron and copper in the solution as well as detected corrosion products on the metal surface are indicative of anaerobic corrosion of the respective metals during an incubation of 400 days at 37 °C. However, although the intrinsic microbial bentonite community was stimulated with either lactate or H2, an acceleration of cast iron- and copper corrosion did not occur. Furthermore, neither corrosive bacteria nor conventional bacterial corrosion products, such as metal sulfides, were detected in any of the analyzed samples. The analyses of geochemical parameters (e.g. ferrous iron-, iron-, copper- and potassium concentrations as well as redox potentials) showed significant changes in some cast iron- and copper-containing setups, but these changes did not correlate with the microbial community structure in the respective microcosms, as confirmed by statistical analyses. Hence, the analyzed Bavarian bentonite (type B25) showed no significant contribution to cast iron and copper corrosion under the applied conditions after 400 days of incubation. From this perspective, bentonite B25 could be a suitable candidate as a geotechnical barrier in future repositories.
Collapse
Affiliation(s)
- Vladyslav Sushko
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Magdalena Dressler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sean Ting-Shyang Wei
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Tom Neubert
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Luise Kühn
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Nicole Matschiavelli
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany.
| |
Collapse
|
2
|
Deng J, Zhang W, Zhang L, Qin C, Wang H, Ling W. Micro-interfacial behavior of antibiotic-resistant bacteria and antibiotic resistance genes in the soil environment: A review. ENVIRONMENT INTERNATIONAL 2024; 191:108972. [PMID: 39180776 DOI: 10.1016/j.envint.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Overutilization and misuse of antibiotics in recent decades markedly intensified the rapid proliferation and diffusion of antibiotic resistance genes (ARGs) within the environment, thereby elevating ARGs to the status of a global public health crisis. Recognizing that soil acts as a critical reservoir for ARGs, environmental researchers have made great progress in exploring the sources, distribution, and spread of ARGs in soil. However, the microscopic state and micro-interfacial behavior of ARGs in soil remains inadequately understood. In this study, we reviewed the micro-interfacial behaviors of antibiotic-resistant bacteria (ARB) in soil and porous media, predominantly including migration-deposition, adsorption, and biofilm formation. Meanwhile, adsorption, proliferation, and degradation were identified as the primary micro-interfacial behaviors of ARGs in the soil, with component of soil serving as significant determinant. Our work contributes to the further comprehension of the microstates and processes of ARB and ARGs in the soil environments and offers a theoretical foundation for managing and mitigating the risks associated with ARG contamination.
Collapse
Affiliation(s)
- Jibao Deng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenkang Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingyu Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Cochran JP, Zhang L, Parrott BB, Seaman JC. Plasmid size determines adsorption to clay and breakthrough in a saturated sand column. Heliyon 2024; 10:e29679. [PMID: 38707295 PMCID: PMC11066139 DOI: 10.1016/j.heliyon.2024.e29679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Horizontal gene transfer (HGT) is a major factor in the spread of antibiotic resistant genes (ARG). Transformation, one mode of HGT, involves the acquisition and expression of extracellular DNA (eDNA). eDNA in soils is degraded rapidly by extracellular nucleases. However, if bound to a clay particle, eDNA can persist for long periods of time without losing its transformation ability. To better understand the mechanism of eDNA persistence in soil, this experiment assessed the effects of 1) clay mineralogy, 2) mixed salt solution, 3) plasmid size on DNA adsorption to clay and 4) breakthrough behavior of three differently sized plasmids in an environmentally relevant solution. Batch test methods were used to determine adsorption trends of three differently sized DNA plasmids, pUC19, pBR322, and pTYB21, to several pure clay minerals, goethite (α-FeOOH), illite, and kaolinite, and one environmental soil sample. Results show not all sorbents have equal adsorption capacity based on surface area with adsorption capacities decreasing from goethite > illite = kaolinite > bulk soil, and low ionic strength solutions will likely not significantly alter sorption trends. Additionally, plasmid DNA size (i.e., length) was shown to be a significant predictor of adsorption efficiency and that size affects DNA breakthrough, with breakthroughs occurring later with larger plasmids. Given that DNA persistence is linked to its adsorption to soil constituents and breakthrough, eDNA size is likely an important contributor to the spread of ARG within natural microbial communities.
Collapse
Affiliation(s)
- Jarad P. Cochran
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States
| | - Liyun Zhang
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Crops and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Benjamin B. Parrott
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Odum School of Ecology, University of Georgia, Athens, GA, United States
| | - John C. Seaman
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Crops and Soil Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Bodus B, O'Malley K, Dieter G, Gunawardana C, McDonald W. Review of emerging contaminants in green stormwater infrastructure: Antibiotic resistance genes, microplastics, tire wear particles, PFAS, and temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167195. [PMID: 37777137 DOI: 10.1016/j.scitotenv.2023.167195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Green stormwater infrastructure is a growing management approach to capturing, infiltrating, and treating runoff at the source. However, there are several emerging contaminants for which green stormwater infrastructure has not been explicitly designed to mitigate and for which removal mechanisms are not yet well defined. This is an issue, as there is a growing understanding of the impact of emerging contaminants on human and environmental health. This paper presents a review of five emerging contaminants - antibiotic resistance genes, microplastics, tire wear particles, PFAS, and temperature - and seeks to improve our understanding of how green stormwater infrastructure is impacted by and can be designed to mitigate these emerging contaminants. To do so, we present a review of the source and transport of these contaminants to green stormwater infrastructure, specific treatment mechanisms within green infrastructure, and design considerations of green stormwater infrastructure that could lead to their removal. In addition, common removal mechanisms across these contaminants and limitations of green infrastructure for contaminant mitigation are discussed. Finally, we present future research directions that can help to advance the use of green infrastructure as a first line of defense for downstream water bodies against emerging contaminants of concern.
Collapse
Affiliation(s)
- Benjamin Bodus
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Kassidy O'Malley
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Greg Dieter
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Charitha Gunawardana
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Walter McDonald
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| |
Collapse
|
5
|
Liu G, Guo L, Wang C, Liu J, Hu Z, Dahlke HE, Xie E, Zhao X, Huang G, Niu J, Fa K, Zhang C, Huo Z. Revealing the infiltration process and retention mechanisms of surface applied free DNA tracer through soil under flood irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167378. [PMID: 37758151 DOI: 10.1016/j.scitotenv.2023.167378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
It has been recently demonstrated that free DNA tracers have the potential in tracing water flow and contaminant transport through the vadose zone. However, whether the free DNA tracer can be used in flood irrigation area to track water flow and solute/contaminant transport is still unclear. To reveal the infiltration process and retention mechanisms of surface applied free DNA tracer through soil under flood irrigation, we tested the fate and transport behavior of surface applied free DNA tracers through packed saturated sandy soil columns with a 10 cm water head mimicking flood irrigation. From the experimental breakthrough curves and by fitting a two-site kinetic sorption model (R2 = 0.83-0.91 and NSE = 0.79-0.89), adsorption/desorption rates could be obtained and tracer retention profiles could be simulated. Together these results revealed that 1) the adsorption of free DNA was dominantly to clay particles in the soil, which took up 1.96 % by volume, but took up >97.5 % by surface area and densely cover the surface of sand particles; and 2) at a pore water pH of 8.0, excluding the 4.9 % passing through and 3.1 % degradation amount, the main retention mechanisms in the experimental soil were ligand exchange (42.0 %), Van der Waals interactions (mainly hydrogen bonds), electrostatic forces and straining (together 44.7 %), and cation bridge (5.3 %). To our knowledge, this study is the first to quantify the contribution of each of the main retention mechanisms of free synthetic DNA tracers passing through soil. Our findings could facilitate the application of free DNA tracer to trace vadose zone water flow and solute/contaminant transport under flood irrigation and other infiltration conditions.
Collapse
Affiliation(s)
- Geng Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Linxi Guo
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Chaozi Wang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| | - Jiarong Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zengjie Hu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Helen E Dahlke
- Department of Land, Air, and Water Resources, University of California, Davis, Davis, CA 95616, USA
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Xiao Zhao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Guanhua Huang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Jun Niu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Keyu Fa
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Chenglong Zhang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zailin Huo
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
6
|
Sodnikar K, Kaegi R, Christl I, Schroth MH, Sander M. Transport of double-stranded ribonucleic acids (dsRNA) and deoxyribonucleic acids (DNA) in sand and iron oxide-coated sand columns under varying solution chemistries. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2067-2080. [PMID: 37870439 DOI: 10.1039/d3em00294b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Assessing ecological risks associated with the use of genetically modified RNA interference crops demands an understanding of the fate of crop-released insecticidal double-stranded RNA (dsRNA) molecules in soils. We studied the adsorption of one dsRNA and two double-stranded DNA as model nucleic acids (NAs) during transport through sand- and iron oxide-coated sand (IOCS)-filled columns over a range of solution pH and ionic compositions. Consistent with NA-sand electrostatic repulsion, we observed only slight retention of NAs in sand columns. Conversely, pronounced NA retention in IOCS columns is consistent with strong and irreversible NA adsorption involving electrostatic attraction to and inner-sphere complex formation of NAs with iron oxide coatings. Adsorption of NAs to iron oxides revealed a fast and a slow kinetic adsorption regime, possibly caused by the excluded-area effect. Adsorption of NAs to sand and IOCS increased in the presence of dissolved Mg2+ and with increasing ionic strength, reflecting cation-bridging and screening of repulsive electrostatics, respectively. The co-solute phosphate and a pre-adsorbed dissolved organic matter isolate competitively suppressed dsRNA adsorption to IOCS. Similar adsorption characteristics of dsRNA and similarly sized DNA suggest that existing information on DNA adsorption to soil particles helps in predicting adsorption and fate of dsRNA molecules in soils.
Collapse
Affiliation(s)
- Katharina Sodnikar
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Iso Christl
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| | - Martin Herbert Schroth
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
7
|
Brandão-Dias PFP, Tank JL, Snyder ED, Mahl UH, Peters B, Bolster D, Shogren AJ, Lamberti GA, Bibby K, Egan SP. Suspended Materials Affect Particle Size Distribution and Removal of Environmental DNA in Flowing Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13161-13171. [PMID: 37610829 DOI: 10.1021/acs.est.3c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Environmental DNA (eDNA) in aquatic systems is a complex mixture that includes dissolved DNA, intracellular DNA, and particle-adsorbed DNA. Information about the various components of eDNA and their relative proportions could be used to discern target organism abundance and location. However, a limited knowledge of eDNA adsorption dynamics and interactions with other materials hinders these applications. To address this gap, we used recirculating stream mesocosms to investigate the impact of suspended materials (fine particulate organic matter, plankton, clay, and titanium dioxide) on the eDNA concentration and particle size distribution (PSD) from two fish species in flowing water. Our findings revealed that eDNA rapidly adsorbs to other materials in the water column, affecting its concentration and PSD. Nonetheless, only particulate organic matter affected eDNA removal rate after 30 h. Moreover, we observed that the removal of larger eDNA components (≥10 μm) was more strongly influenced by physical processes, whereas the removal of smaller eDNA components was driven by biological degradation. This disparity in removal mechanisms between larger and smaller eDNA components could explain changes in eDNA composition over time and space, which have implications for modeling the spatial distribution and abundance of target species and optimizing eDNA detection in high turbidity systems.
Collapse
Affiliation(s)
| | - Jennifer L Tank
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Elise D Snyder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ursula H Mahl
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Brett Peters
- Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Diogo Bolster
- Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arial J Shogren
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Gary A Lamberti
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kyle Bibby
- Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Scott P Egan
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Zheng SS, Zhao J, Chen JW, Shen XH, Hong XL, Fu GS, Fu JY. Inhibition of neointimal hyperplasia in balloon-induced vascular injuries in a rat model by miR-22 loading Laponite hydrogels. BIOMATERIALS ADVANCES 2022; 142:213140. [PMID: 36228507 DOI: 10.1016/j.bioadv.2022.213140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
Abstract
Percutaneous coronary intervention (PCI) is the mainstream treatment to widen narrowed or obstructed coronary arteries due to pathological conditions. However, the post-operational neointimal hyperplasia occurs because of endothelium denudation during surgical procedures and the following inflammation. MicroRNAs (miRs) are new therapeutics of great potential for cardiovascular diseases. However, miRs easily degrade in vivo. A vehicle that can maintain their bioactivities and extend their retention at the site of delivery is prerequisite for miRs to play their roles as therapeutic reagents. Here, we reported the use of the Laponite hydrogels to deliver miR-22 that are modulators of phenotypes of smooth muscle cells (SMCs). The Laponite hydrogels allow a homogenous distribution of miR-22 within the gels, which had the capacity to transfect SMCs in vitro. Upon the injection of the miR-22 incorporated in the Laponite hydrogels in vivo, miR-22 could be well retained surrounding arteries for at least 7 days. Moreover, the miR-22 loading Laponite hydrogels inhibited the neointimal formation, reduced the infiltration of the macrophages, and reversed the adverse vascular ECM remodeling after the balloon-induced vascular injuries by upregulation of miR-22 and downregulation of its target genes methyl-CpG binding protein 2 (MECP2). The application of the Laponite hydrogels for miR local delivery may offer a novel strategy to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Si-Si Zheng
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jing Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jia-Wen Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xiao-Hua Shen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xu-Lin Hong
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Guo-Sheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Jia-Yin Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
9
|
Ye M, Zhang Z, Sun M, Shi Y. Dynamics, gene transfer, and ecological function of intracellular and extracellular DNA in environmental microbiome. IMETA 2022; 1:e34. [PMID: 38868707 PMCID: PMC10989830 DOI: 10.1002/imt2.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 06/14/2024]
Abstract
Extracellular DNA (eDNA) and intracellular DNA (iDNA) extensively exist in both terrestrial and aquatic environment systems and have been found to play a significant role in the nutrient cycling and genetic information transmission between the environment and microorganisms. As inert DNA sequences, eDNA is able to present stability in the environment from the ribosome enzyme lysis, therein acting as the historical genetic information archive of the microbiome. As a consequence, both eDNA and iDNA can shed light on the functional gene variety and the corresponding microbial activity. In addition, eDNA is a ubiquitous composition of the cell membrane, which exerts a great impact on the resistance of outer stress from environmental pollutants, such as heavy metals, antibiotics, pesticides, and so on. This study focuses on the environmental dynamics and the ecological functions of the eDNA and iDNA from the perspectives of environmental behavior, genetic information transmission, resistance to the environmental contaminants, and so on. By reviewing the status quo and the future vista of the e/iDNAs research, this article sheds light on exploring the ecological functioning of the e/iDNAs in the environmental microbiome.
Collapse
Affiliation(s)
- Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
10
|
Un Jan Contreras S, Gardner CM. Environmental fate and behaviour of antibiotic resistance genes and small interference RNAs released from genetically modified crops. J Appl Microbiol 2022; 133:2877-2892. [PMID: 35892194 DOI: 10.1111/jam.15741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022]
Abstract
Rising global populations have amplified food scarcity across the world and ushered in the development of genetically modified (GM) crops to overcome these challenges. Cultivation of major crops such as corn and soy has favoured GM crops over conventional varieties to meet crop production and resilience needs. Modern GM crops containing small interference RNA molecules and antibiotic resistance genes have become increasingly common in the United States. However, the use of these crops remains controversial due to the uncertainty regarding the unintended release of its genetic material into the environment and possible downstream effects on human and environmental health. DNA or RNA transgenes may be exuded from crop tissues during cultivation or released during plant decomposition and adsorbed by soil. This can contribute to the persistence and bioavailability in soil or water environment and possible uptake by soil microbial communities and further passing of this information to neighbouring bacteria, disrupting microbial ecosystem services such as nutrient cycling and soil fertility. In this review, transgene mechanisms of action, uses in crops, and knowledge regarding their environmental fate and impact to microbes are evaluated. This aims to encapsulate the current knowledge and promote further research regarding unintended effects transgenes may cause.
Collapse
Affiliation(s)
- Sandra Un Jan Contreras
- Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA
| | - Courtney M Gardner
- Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
11
|
Verdier H, Konecny-Dupre L, Marquette C, Reveron H, Tadier S, Grémillard L, Barthès A, Datry T, Bouchez A, Lefébure T. Passive sampling of environmental DNA in aquatic environments using 3D-printed hydroxyapatite samplers. Mol Ecol Resour 2022; 22:2158-2170. [PMID: 35218316 DOI: 10.1111/1755-0998.13604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
The study of environmental DNA released by aquatic organisms in their habitat offers a fast, non-invasive and sensitive approach to monitor their presence. Common eDNA sampling methods such as water filtration and DNA precipitation are time consuming, require difficult-to-handle equipment and partially integrate eDNA signals. To overcome these limitations, we created the first proof of concept of a passive, 3D-printed and easy-to-use eDNA sampler. We designed the samplers from hydroxyapatite (HAp samplers), a natural mineral with a high DNA adsorption capacity. The porous structure and shape of the samplers were designed to optimise DNA adsorption and facilitate their handling in the laboratory and in the field. Here we show that HAp samplers can efficiently collect genomic DNA in controlled set-ups, but can also collect animal eDNA under controlled and natural conditions with yields similar to conventional methods. However, we also observed large variations in the amount of DNA collected even under controlled conditions. A better understanding of the DNA-hydroxyapatite interactions on the surface of the samplers is now necessary to optimise the eDNA adsorption and to allow the development of a reliable, easy-to-use and reusable eDNA sampling tool.
Collapse
Affiliation(s)
- Héloïse Verdier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France.,Eurofins Hydrobiologie France, Rue Lucien Cuenot, 54521, Maxéville, France.,INRAE, UR-Riverly, Centre de Lyon-Villeurbanne, 5 rue de la Doua CS70077, 69626, VILLEURBANNE Cedex, France
| | - Lara Konecny-Dupre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Christophe Marquette
- 3d.FAB, Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622, Villeurbanne cedex, France
| | - Helen Reveron
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS UMR 5510, 69621, Villeurbanne, France
| | - Solène Tadier
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS UMR 5510, 69621, Villeurbanne, France
| | - Laurent Grémillard
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS UMR 5510, 69621, Villeurbanne, France
| | - Amélie Barthès
- Eurofins Hydrobiologie France, Rue Lucien Cuenot, 54521, Maxéville, France
| | - Thibault Datry
- INRAE, UR-Riverly, Centre de Lyon-Villeurbanne, 5 rue de la Doua CS70077, 69626, VILLEURBANNE Cedex, France
| | - Agnès Bouchez
- INRAE, USMB, UMR CARRTEL, 75bis av. de Corzent, 742000, Thonon les Bains, France
| | - Tristan Lefébure
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| |
Collapse
|
12
|
Murchie TJ, Monteath AJ, Mahony ME, Long GS, Cocker S, Sadoway T, Karpinski E, Zazula G, MacPhee RDE, Froese D, Poinar HN. Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA. Nat Commun 2021; 12:7120. [PMID: 34880234 PMCID: PMC8654998 DOI: 10.1038/s41467-021-27439-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022] Open
Abstract
The temporal and spatial coarseness of megafaunal fossil records complicates attempts to to disentangle the relative impacts of climate change, ecosystem restructuring, and human activities associated with the Late Quaternary extinctions. Advances in the extraction and identification of ancient DNA that was shed into the environment and preserved for millennia in sediment now provides a way to augment discontinuous palaeontological assemblages. Here, we present a 30,000-year sedimentary ancient DNA (sedaDNA) record derived from loessal permafrost silts in the Klondike region of Yukon, Canada. We observe a substantial turnover in ecosystem composition between 13,500 and 10,000 calendar years ago with the rise of woody shrubs and the disappearance of the mammoth-steppe (steppe-tundra) ecosystem. We also identify a lingering signal of Equus sp. (North American horse) and Mammuthus primigenius (woolly mammoth) at multiple sites persisting thousands of years after their supposed extinction from the fossil record.
Collapse
Affiliation(s)
- Tyler J Murchie
- McMaster Ancient DNA Centre, McMaster University, Hamilton, Canada. .,Department of Anthropology, McMaster University, Hamilton, Canada.
| | - Alistair J Monteath
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada.,School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom
| | - Matthew E Mahony
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - George S Long
- McMaster Ancient DNA Centre, McMaster University, Hamilton, Canada.,Department of Biology, McMaster University, Hamilton, Canada
| | - Scott Cocker
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - Tara Sadoway
- McMaster Ancient DNA Centre, McMaster University, Hamilton, Canada.,The Hospital for Sick Children, Toronto, Canada
| | - Emil Karpinski
- McMaster Ancient DNA Centre, McMaster University, Hamilton, Canada.,Department of Biology, McMaster University, Hamilton, Canada
| | - Grant Zazula
- Yukon Government, Palaeontology Program, Department of Tourism and Culture, Whitehorse, Canada.,Collections and Research, Canadian Museum of Nature, Ottawa, Canada
| | - Ross D E MacPhee
- Division of Vertebrate Zoology/Mammalogy, American Museum of Natural History, New York, United States
| | - Duane Froese
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada.
| | - Hendrik N Poinar
- McMaster Ancient DNA Centre, McMaster University, Hamilton, Canada. .,Department of Anthropology, McMaster University, Hamilton, Canada. .,Department of Biochemistry, McMaster University, Hamilton, Canada. .,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada. .,CIFAR Humans and the Microbiome Program, Toronto, Canada.
| |
Collapse
|
13
|
Extracellular DNA in environmental samples: Occurrence, extraction, quantification, and impact on microbial biodiversity assessment. Appl Environ Microbiol 2021; 88:e0184521. [PMID: 34818108 DOI: 10.1128/aem.01845-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental DNA, i.e., DNA directly extracted from environmental samples, has been applied to understand microbial communities in the environments and to monitor contemporary biodiversity in the conservation context. Environmental DNA often contains both intracellular DNA (iDNA) and extracellular DNA (eDNA). eDNA can persist in the environment and complicate environmental DNA sequencing-based analyses of microbial communities and biodiversity. Although several studies acknowledged the impact of eDNA on DNA-based profiling of environmental communities, eDNA is still being neglected or ignored in most studies dealing with environmental samples. In this article, we summarize key findings on eDNA in environmental samples and discuss the methods used to extract and quantify eDNA as well as the importance of eDNA on the interpretation of experimental results. We then suggest several factors to consider when designing experiments and analyzing data to negate or determine the contribution of eDNA to environmental DNA-based community analyses. This field of research will be driven forward by: (i) carefully designing environmental DNA extraction pipelines by taking into consideration technical details in methods for eDNA extraction/removal and membrane-based filtration and concentration; (ii) quantifying eDNA in extracted environmental DNA using multiple methods including qPCR and fluorescent DNA binding dyes; (iii) carefully interpretating effect of eDNA on DNA-based community analyses at different taxonomic levels; and (iv) when possible, removing eDNA from environmental samples for DNA-based community analyses.
Collapse
|
14
|
Linke RB, Zeki S, Mayer R, Keiblinger K, Savio D, Kirschner AKT, Reischer GH, Mach RL, Sommer R, Farnleitner AH. Identifying Inorganic Turbidity in Water Samples as Potential Loss Factor During Nucleic Acid Extraction: Implications for Molecular Fecal Pollution Diagnostics and Source Tracking. Front Microbiol 2021; 12:660566. [PMID: 34745021 PMCID: PMC8565874 DOI: 10.3389/fmicb.2021.660566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular diagnostic methods are increasingly applied for food and environmental analysis. Since several steps are involved in sample processing which can affect the outcome (e.g., adhesion of DNA to the sample matrix, inefficient precipitation of DNA, pipetting errors and (partial) loss of the DNA pellet during DNA isolation), quality control is essential at all processing levels. In soil microbiology, particular attention has been paid to the inorganic component of the sample matrix affecting DNA extractability. In water quality testing, however, this aspect has mostly been neglected so far, although it is conceivable that these mechanisms have a similar impact. The present study was therefore dedicated to investigate possible matrix effects on results of water quality analysis. Field testing in an aquatic environment with pronounced chemo-physical gradients [total suspended solids (TSS), inorganic turbidity, total organic carbon (TOC), and conductivity] indicated a negative association between DNA extractability (using a standard phenol/chloroform extraction procedure) and turbidity (spearman ρ = −0.72, p < 0.001, n = 21). Further detailed laboratory experiments on sediment suspensions confirmed the hypothesis of inorganic turbidity being the main driver for reduced DNA extractability. The observed effects, as known from soil samples, were also indicated to result from competitive effects for free charges on clay minerals, leading to adsorption of DNA to these inorganic particles. A protocol modification by supplementing the extraction buffer with salmon sperm DNA, to coat charged surfaces prior to cell lysis, was then applied on environmental water samples and compared to the standard protocol. At sites characterized by high inorganic turbidity, DNA extractability was significantly improved or made possible in the first place by applying the adapted protocol. This became apparent from intestinal enterococci and microbial source tracking (MST)-marker levels measured by quantitative polymerase chain reaction (qPCR) (100 to 10,000-fold median increase in target concentrations). The present study emphasizes the need to consider inorganic turbidity as a potential loss factor in DNA extraction from water-matrices. Negligence of these effects can lead to a massive bias, by up to several orders of magnitude, in the results of molecular MST and fecal pollution diagnostics.
Collapse
Affiliation(s)
- Rita B Linke
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Sibel Zeki
- Department of Marine Environment, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| | - René Mayer
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Katharina Keiblinger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Domenico Savio
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Alexander K T Kirschner
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria.,Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Georg H Reischer
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Research Area Molecular Diagnostics, Department IFA-Tulln, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Tulln, Austria
| | - Robert L Mach
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Regina Sommer
- Unit of Water Microbiology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Andreas H Farnleitner
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
15
|
Sodnikar K, Parker KM, Stump SR, ThomasArrigo LK, Sander M. Adsorption of double-stranded ribonucleic acids (dsRNA) to iron (oxyhydr-)oxide surfaces: comparative analysis of model dsRNA molecules and deoxyribonucleic acids (DNA). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:605-620. [PMID: 33723564 DOI: 10.1039/d1em00010a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Double-stranded ribonucleic acid (dsRNA) molecules are novel plant-incorporated protectants expressed in genetically modified RNA interference (RNAi) crops. Ecological risk assessment (ERA) of RNAi crops requires a heretofore-missing detailed understanding of dsRNA adsorption in soils, a key fate process. Herein, we systematically study the adsorption of a model dsRNA molecule and of two double-stranded deoxyribonucleic acid (DNA) molecules of varying lengths to three soil iron (oxyhydr-)oxides - goethite, lepidocrocite, and hematite - over a range of solution pH (4.5-10), ionic strength (I = 10-100 mM NaCl) and composition (0.5, 1, and 3 mM MgCl2) and in the absence and presence of phosphate (0.05-5 mM) as co-adsorbate. We hypothesized comparable adsorption characteristics of dsRNA and DNA based on their structural similarities. Consistently, the three nucleic acids (NAs) showed high adsorption affinities to the iron (oxyhydr-)oxides with decreasing adsorption in the order goethite, lepidocrocite, and hematite, likely reflecting a decrease in the hydroxyl group density and positive charges of the oxide surfaces in the same order. NA adsorption also decreased with increasing solution pH, consistent with weakening of NA electrostatic attraction to and inner-sphere complex formation with the iron (oxyhydr-)oxides surfaces as pH increased. Adsorbed NA concentrations increased with increasing I and in the presence of Mg2+, consistent with adsorbed NA molecules adopting more compact conformations. Strong NA-phosphate adsorption competition demonstrates that co-adsorbates need consideration in assessing dsRNA fate in soils. Comparable adsorption characteristics of dsRNA and DNA molecules to iron (oxyhydr-)oxides imply that information on DNA adsorption to soil particle surfaces can inform dsRNA ERA.
Collapse
Affiliation(s)
- Katharina Sodnikar
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, DUSYS, IBP, Universitätsstrasse 16, CHN H50.3, 8092 Zurich, Switzerland.
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Simona R Stump
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, DUSYS, IBP, Universitätsstrasse 16, CHN H50.3, 8092 Zurich, Switzerland.
| | - Laurel K ThomasArrigo
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, DUSYS, IBP, Universitätsstrasse 16, CHN H50.3, 8092 Zurich, Switzerland.
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, DUSYS, IBP, Universitätsstrasse 16, CHN H50.3, 8092 Zurich, Switzerland.
| |
Collapse
|
16
|
Chowdhury NN, Cox AR, Wiesner MR. Nanoparticles as vectors for antibiotic resistance: The association of silica nanoparticles with environmentally relevant extracellular antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143261. [PMID: 33223180 DOI: 10.1016/j.scitotenv.2020.143261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/04/2020] [Accepted: 10/20/2020] [Indexed: 05/09/2023]
Abstract
A relevant but yet unconsidered subset of particles that may alter the fate of extracellular antibiotic resistance genes (eARGs) are nano-scale particles (NPs), which are ubiquitous in natural environments and have unique properties. In this study, sorption isotherms were developed describing the association of linear DNA fragments isolated from widespread eARGs (blaI and nptII) with either micon-sized kaolinite or silica nanoparticles (SNPs), to determine if sorption capacity was enhanced at the nanoscale. For each isotherm, eARG fragments were added at five starting concentrations (5-40 μg/mL) to mixed batch systems with 0.25 g of particles and nuclease-free water. Sorption was quantified by the removal of DNA from solution, as detected by a Qubit fluorimeter. Isotherms were developed for eARGs of various fragment lengths (508, 680 and 861 bp), guanine-cytosine (GC) contents (34%, 47% and 54%) and both double and single stranded eARGs, to assess the impact of DNA properties on particle association. Sorption isotherms were also developed in systems with added humic acid and/or CaCl2, to assess the impact of these environmental parameters on sorption. FTIR analysis was performed to analyze the conformation of sorbed eARGs. Desorption of eARGs was studied by quantifying the removal of eDNA from washed and vortexed post-sorption particles. Statistically significant irreversible sorption of eARGs to environmentally relevant NPs (humic acid functionalized silica nanoparticles) was demonstrated for the first time. Nano-emergent properties did not increase sorption capacity of eARGs, but led to a unique compressed conformation of sorbed eARGs. The addition of humic acid, increased CaCl2 concentration and small DNA fragment size favored sorption. NPs showed a slight preference for the sorption of single-stranded DNA over double-stranded DNA. These findings suggest that NP association with eARGs may be a significant and unique environmental phenomenon that could influence the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Nadratun N Chowdhury
- Department of Civil and Environmental Engineering, Duke Hudson Hall, Box 90287, Durham, NC 27708-0287, USA.
| | - Akylah R Cox
- Department of Civil and Environmental Engineering, Duke Hudson Hall, Box 90287, Durham, NC 27708-0287, USA
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Duke Hudson Hall, Box 90287, Durham, NC 27708-0287, USA
| |
Collapse
|
17
|
Wang Y, Yan Y, Thompson KN, Bae S, Accorsi EK, Zhang Y, Shen J, Vlamakis H, Hartmann EM, Huttenhower C. Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. MICROBIOME 2021; 9:17. [PMID: 33478576 PMCID: PMC7819323 DOI: 10.1186/s40168-020-00961-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/06/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND High-throughput sequencing provides a powerful window into the structural and functional profiling of microbial communities, but it is unable to characterize only the viable portion of microbial communities at scale. There is as yet not one best solution to this problem. Previous studies have established viability assessments using propidium monoazide (PMA) treatment coupled with downstream molecular profiling (e.g., qPCR or sequencing). While these studies have met with moderate success, most of them focused on the resulting "viable" communities without systematic evaluations of the technique. Here, we present our work to rigorously benchmark "PMA-seq" (PMA treatment followed by 16S rRNA gene amplicon sequencing) for viability assessment in synthetic and realistic microbial communities. RESULTS PMA-seq was able to successfully reconstruct simple synthetic communities comprising viable/heat-killed Escherichia coli and Streptococcus sanguinis. However, in realistically complex communities (computer screens, computer mice, soil, and human saliva) with E. coli spike-in controls, PMA-seq did not accurately quantify viability (even relative to variability in amplicon sequencing), with its performance largely affected by community properties such as initial biomass, sample types, and compositional diversity. We then applied this technique to environmental swabs from the Boston subway system. Several taxa differed significantly after PMA treatment, while not all microorganisms responded consistently. To elucidate the "PMA-responsive" microbes, we compared our results with previous PMA-based studies and found that PMA responsiveness varied widely when microbes were sourced from different ecosystems but were reproducible within similar environments across studies. CONCLUSIONS This study provides a comprehensive evaluation of PMA-seq exploring its quantitative potential in synthetic and complex microbial communities, where the technique was effective for semi-quantitative purposes in simple synthetic communities but provided only qualitative assessments in realistically complex community samples. Video abstract.
Collapse
Affiliation(s)
- Ya Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Kelsey N. Thompson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Sena Bae
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Emma K. Accorsi
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
| | - Yancong Zhang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Jiaxian Shen
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
| |
Collapse
|
18
|
Xu Y, Yu X, Xu B, Peng D, Guo X. Sorption of pharmaceuticals and personal care products on soil and soil components: Influencing factors and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141891. [PMID: 32890871 DOI: 10.1016/j.scitotenv.2020.141891] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/01/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The sorption of pharmaceuticals and personal care products (PPCPs) on soil and soil components makes an important contribution to the fate, migration and bioavailability of PPCPs. Previous reviews have mostly focused on the sorption of PPCPs on single soil components (e.g., minerals and soil organic matter). However, the sorption of PPCPs within the whole soil system has not been systematically analyzed. This paper reviews the recent progress on PPCP sorption on soil and soil components. We have evaluated the sorption of a wide range of PPCPs in research fields that are usually considered in isolation (e.g., humic acids (HAs), montmorillonite, kaolinite, and goethite), and established a bridge between PPCPs and sorbent. The sorption mechanisms of PPCPs, e.g., cation exchange, surface complexation, electrostatic interaction and hydrogen bonding, are discussed and critically evaluated. We also assessed the influence of environmental factors (pH, ionic strength, organic matter and temperature) on sorption. This review summarizes the knowledge of PPCPs sorption on soil gained in recent years, which can provide new strategies for solving the problem of antibiotic pollution.
Collapse
Affiliation(s)
- Yibo Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqin Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baile Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Anthony ET, Ojemaye MO, Okoh OO, Okoh AI. A critical review on the occurrence of resistomes in the environment and their removal from wastewater using apposite treatment technologies: Limitations, successes and future improvement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:113791. [PMID: 32224385 DOI: 10.1016/j.envpol.2019.113791] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Recent reports are pointing towards the potential increasing risks of resistomes in human host. With no permissible limit in sight, resistomes are continually multiplying at an alarming rate in the ecosystem, with a disturbing level in drinking water source. The morphology and chemical constituent of resistomes afford them to resist degradation, elude membrane and counter ionic charge, thereby, rendering both conventional and advanced water and wastewater treatment inefficient. Water and wastewater matrix may govern the propagation of individual resistomes sub-type, co-selection and specific interaction towards precise condition may have enhanced the current challenge. This review covers recent reports (2011-2019) on the occurrence of ARB/ARGs and ease of spread of resistance genes in the aquatic ecosystem. The contributions of water matrix to the spread and mitigation, treatment options, via bulk removal or capture, and intracellular and extracellular DNA lysis were discussed. A complete summary of recent occurrences of ARB/ARGs, fate after disinfection and optimum conditions of individual treatment technology or in tandem, including process limitations, with a brief assessment of removal or degradation mechanism were highlighted.
Collapse
Affiliation(s)
- Eric Tobechukwu Anthony
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.
| | - Mike O Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| |
Collapse
|
20
|
Pathan SI, Arfaioli P, Ceccherini MT, Ascher-Jenull J, Pietramellara G. Preliminary evidences of the presence of extracellular DNA single stranded forms in soil. PLoS One 2020; 15:e0227296. [PMID: 31910237 PMCID: PMC6946138 DOI: 10.1371/journal.pone.0227296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
The relevance of extracellular DNA (eDNA) in the soil ecosystem is becoming more and more evident to the scientific community by the progressive discovery of functions accompanying to natural gene transformation. However, despite the increased number of published articles dedicated to eDNA in soil, so far only few are focused on its single stranded form (eDNAss). The present paper is the first to investigate the quantitative relevance of eDNAss in the total soil eDNA pool, discriminating between its linear (eDNAssl) and circular (eDNAssc) forms and the respective weakly (wa) and tightly (ta) adsorbed fractions. The results showed the prevalence of eDNAss and its linear form in both the total soil eDNA pool and its wa and ta fractions. Both of the eDNAss fractions (linear and circular) were characterized by small fragments.
Collapse
Affiliation(s)
- Shamina Imran Pathan
- Department of Agri-food, Environmental, Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine, Florence, Italy
| | - Paola Arfaioli
- Department of Agri-food, Environmental, Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine, Florence, Italy
| | - Maria Teresa Ceccherini
- Department of Agri-food, Environmental, Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine, Florence, Italy
| | | | - Giacomo Pietramellara
- Department of Agri-food, Environmental, Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine, Florence, Italy
- * E-mail:
| |
Collapse
|
21
|
Sheng X, Qin C, Yang B, Hu X, Liu C, Waigi MG, Li X, Ling W. Metal cation saturation on montmorillonites facilitates the adsorption of DNA via cation bridging. CHEMOSPHERE 2019; 235:670-678. [PMID: 31276880 DOI: 10.1016/j.chemosphere.2019.06.159] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/02/2019] [Accepted: 06/21/2019] [Indexed: 05/19/2023]
Abstract
Extracellular DNA (eDNA) is widely present in soil, with potential ecological impacts. Metal cations are naturally present on the surface of soil clay minerals, although the adsorption mechanism of eDNA on clay minerals saturated with metal cations is still not fully understood. The research investigated the adsorption of eDNA, using salmon sperm DNA as a representative, on metal cation (Na+, Ca2+, and Fe3+)-saturated montmorillonites (Mt). Metal cation-saturated Mt have higher adsorption capacities for DNA. Compared with Mt (3500 mg⋅kg-1), the amounts of DNA adsorption on metal cation-saturated Mt (pH = 7.0) were increased by 0.74-5.38 times, and followed the descending order of Fe-Mt > Na-Mt > Ca-Mt > Mt. A temperature of 25 °C was found to be more suitable than 15 and 35 °C for DNA adsorption, while an increasing pH value (3.0-9.0) reduced DNA adsorption on Mt and metal cation-saturated Mt. Microscopic and spectroscopic analyses, together with a model computation technique, confirmed that metal cations saturated on the surface of Mt work like a "cation bridge" linking oxygen atoms in the phosphate groups of DNA and the negatively charged moieties of Mt, which were predominantly bound through electrostatic forces, thus, facilitating DNA adsorption at pH > 5. The results of this investigation provide valuable insight into eDNA adsorption on soil clay minerals and the transport and fate of eDNA in the natural soil environment.
Collapse
Affiliation(s)
- Xue Sheng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210023, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuelin Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
22
|
Redfern LK, Gardner CM, Hodzic E, Ferguson PL, Hsu-Kim H, Gunsch CK. A new framework for approaching precision bioremediation of PAH contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120859. [PMID: 31327574 PMCID: PMC6833951 DOI: 10.1016/j.jhazmat.2019.120859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/05/2019] [Accepted: 07/01/2019] [Indexed: 05/19/2023]
Abstract
Bioremediation is a sustainable treatment strategy which remains challenging to implement especially in heterogeneous environments such as soil and sediment. Herein, we present a novel precision bioremediation framework that integrates amplicon based metagenomic analysis and chemical profiling. We applied this approach to samples obtained at a site contaminated with polycyclic aromatic hydrocarbons (PAHs). Geobacter spp. were identified as biostimulation targets because they were one of the most abundant genera and previously identified to carry relevant degradative genes. Mycobacterium and Sphingomonads spp. were identified as bioaugmentation and genetic bioaugmentation targets, respectively, due to their positive associations with PAHs and their high abundance and species diversity at all sampling locations. Overall, this case study suggests this framework can help identify bacterial targets for precision bioremediation. However, it is imperative that we continue to build our databases as the power of metagenomic based approaches remains limited to microorganisms currently in our databases.
Collapse
Affiliation(s)
- Lauren K Redfern
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States
| | - Courtney M Gardner
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States
| | - Emina Hodzic
- Nicholas School of the Environment, Duke University, Durham, NC 27713, United States
| | - P Lee Ferguson
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States; Nicholas School of the Environment, Duke University, Durham, NC 27713, United States
| | - Helen Hsu-Kim
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States
| | - Claudia K Gunsch
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States.
| |
Collapse
|
23
|
Zhai H, Wang L, Putnis CV. Molecular-Scale Investigations Reveal Noncovalent Bonding Underlying the Adsorption of Environmental DNA on Mica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11251-11259. [PMID: 31478650 DOI: 10.1021/acs.est.9b04064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mineral-soil organic matter (SOM including DNA, proteins, and polysaccharides) associations formed through various interactions, play a key role in regulating long-term SOM preservation. The mechanisms underlying DNA-mineral and DNA-protein/polysaccharide interactions at nanometer and molecular scales in environmentally relevant solutions remain uncertain. Here, we present a model mineral-SOM system consisting of mineral (mica)-nucleic acid (environmental DNA, eDNA)/protein (bovine serum albumin)/polysaccharide (alginate), and combine atomic force microscopy (AFM)-based dynamic force spectroscopy and PeakForce quantitative nanomechanical mapping using DNA-decorated tips. Single-molecule binding and adhesion force of eDNA to mineral and to mineral adsorbed by protein/polysaccharide reveal the noncovalent bonds and that systematically changing ion compositions, ionic strength, and pH result in significant differences in organic-organic and organic-mineral binding energies. Consistent with the bond-strength measurements, protein, rather than polysaccharide, promotes mineral-bound DNA molecules by ex situ AFM deposition observations in relatively high concentrations of divalent cation-containing acidic solutions. These molecular-scale determinations and nanoscale observations should substantially improve our understanding of how environmental factors influence the organic-mineral interfacial interactions through the synergy of collective noncovalent and/or covalent bonds in mineral-organic associations.
Collapse
Affiliation(s)
- Hang Zhai
- College of Resources and Environment , Huazhong Agricultural University , Wuhan 430070 , China
| | - Lijun Wang
- College of Resources and Environment , Huazhong Agricultural University , Wuhan 430070 , China
| | - Christine V Putnis
- Institut für Mineralogie , University of Münster , 48149 Münster , Germany
- Department of Chemistry , Curtin University , Perth 6845 , Australia
| |
Collapse
|
24
|
Gardner CM, Volkoff SJ, Gunsch CK. Examining the behavior of crop‐derived antibiotic resistance genes in anaerobic sludge batch reactors under thermophilic conditions. Biotechnol Bioeng 2019; 116:3063-3071. [DOI: 10.1002/bit.27134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Courtney M. Gardner
- Department of Civil and Environmental Engineering Duke University Durham North Carolina
- Department of Civil and Environmental Engineering Washington State University 405 Spokane Street, P.O. Box 642910 Pullman WA 99164
| | - Savannah J. Volkoff
- Department of Civil and Environmental Engineering Duke University Durham North Carolina
| | - Claudia K. Gunsch
- Department of Civil and Environmental Engineering Duke University Durham North Carolina
| |
Collapse
|
25
|
Sirois SH, Buckley DH. Factors governing extracellular DNA degradation dynamics in soil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:173-184. [PMID: 30507072 DOI: 10.1111/1758-2229.12725] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 05/19/2023]
Abstract
We examined the impacts of soil moisture, temperature, agricultural management and habitat type on the degradation dynamics of eDNA in soils. Synthetic eDNA was added to soil microcosms, and its disappearance over time was measured using both high-throughput sequencing and qPCR. The synthetic eDNA was degraded rapidly, but a small fraction remained detectable throughout the experiments (39-80 days). The eDNA degradation rate was positively correlated with moisture and temperature, but negatively correlated with soil organic carbon content. End-point stabilization of eDNA was highest at low moisture and temperature, but exhibited no relationship with soil organic carbon. Tilled soils had higher rates of degradation and less stabilization than no-till soils. Among different habitats we observed that forest soils had the slowest degradation rate, and meadow soils had the greatest stabilization of eDNA. While eDNA was detectable by qPCR in all treatments across all time-points, it became inconsistently detectable with high-throughput gene sequencing in less than 1 week. We conclude that eDNA degradation and stabilization dynamics vary with moisture, temperature and habitat characteristics, that small amounts of eDNA may persist in soils indefinitely, and that the ability of persistent eDNA to impact microbial community estimates depends on method sensitivity and experimental objectives.
Collapse
Affiliation(s)
- Sara Hope Sirois
- Cornell University, Section of Soil and Crop Sciences, Ithaca, NY, USA
| | - Daniel H Buckley
- Cornell University, Section of Soil and Crop Sciences, Ithaca, NY, USA
| |
Collapse
|
26
|
Gardner CM, Gwin CA, Gunsch CK. A survey of crop-derived transgenes in activated and digester sludges in wastewater treatment plants in the United States. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:1810-1818. [PMID: 29676738 DOI: 10.2166/wst.2018.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of transgenic crops has become increasingly common in the United States over the last several decades. Increasing evidence suggests that DNA may be protected from enzymatic digestion and acid hydrolysis in the digestive tract, suggesting that crop-derived transgenes may enter into wastewater treatment plants (WWTPs) intact. Given the historical use of antibiotic resistance genes as selection markers in transgenic crop development, it is important to consider the fate of these transgenes. Herein we detected and quantified crop-derived transgenes in WWTPs. All viable US WWTP samples were found to contain multiple gene targets (p35, nos, bla and nptII) at significantly higher levels than control samples. Control wastewater samples obtained from France, where transgenic crops are not cultivated, contained significantly fewer copies of the nptII gene than US activated and digester sludges. No significant differences were measured for the bla antibiotic resistance gene (ARG). In addition, a nested PCR (polymerase chain reaction) assay was developed that targeted the bla ARG located in regions flanked by the p35 promoter and nos terminator. Overall this work suggests that transgenic crops may have provided an environmental source of nptII; however, follow-up studies are needed to ascertain the viability of these genes as they exit WWTPs.
Collapse
Affiliation(s)
- Courtney M Gardner
- Civil and Environmental Engineering, Duke University, Durham, NC, USA E-mail: ; Present address: Duke University, Box 90287 Hudson Hall, Durham, NC 27708, USA
| | - Carley A Gwin
- Civil and Environmental Engineering, Duke University, Durham, NC, USA E-mail: ; Present address: Civil and Environmental Engineering, Bucknell University 1 Dent Drive, Lewisburg, PA 17837, USA
| | - Claudia K Gunsch
- Civil and Environmental Engineering, Duke University, Durham, NC, USA E-mail: ; Present address: Duke University, Box 90287 Hudson Hall, Durham, NC 27708, USA
| |
Collapse
|
27
|
Gorovtsov AV, Sazykin IS, Sazykina MA. The influence of heavy metals, polyaromatic hydrocarbons, and polychlorinated biphenyls pollution on the development of antibiotic resistance in soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9283-9292. [PMID: 29453715 DOI: 10.1007/s11356-018-1465-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
The minireview is devoted to the analysis of the influence of soil pollution with heavy metals, polyaromatic hydrocarbons (PAHs), and the polychlorinated biphenyls (PCBs) on the distribution of antibiotics resistance genes (ARGs) in soil microbiomes. It is shown that the best understanding of ARGs distribution process requires studying the influence of pollutants on this process in natural microbiocenoses. Heavy metals promote co-selection of genes determining resistance to them together with ARGs in the same mobile elements of a bacterial genome, but the majority of studies focus on agricultural soils enriched with ARGs originating from manure. Studying nonagricultural soils would clear mechanisms of ARGs transfer in natural and anthropogenically transformed environments and highlight the role of antibiotic-producing bacteria. PAHs make a considerable shift in soil microbiomes leading to an increase in the number of Actinobacteria which are the source of antibiotics formation and bear multiple ARGs. The soils polluted with PAHs can be a selective medium for bacteria resistant to antibiotics, and the level of ARGs expression is much higher. PCBs are accumulated in soils and significantly alter the specific structure of soil microbiocenoses. In such soils, representatives of the genera Acinetobacter, Pseudomonas, and Alcanivorax dominate, and the ability to degrade PCBs is connected to horizontal gene transfer (HGT) and high level of genomic plasticity. The attention is also focused on the need to study the properties of the soil having an impact on the bioavailability of pollutants and, as a result, on resistome of soil microorganisms.
Collapse
|
28
|
Zhang Y, Li A, Dai T, Li F, Xie H, Chen L, Wen D. Cell-free DNA: A Neglected Source for Antibiotic Resistance Genes Spreading from WWTPs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:248-257. [PMID: 29182858 DOI: 10.1021/acs.est.7b04283] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell-associated ARGs in wastewater treatment plants (WWTPs) has been concerned, however, cell-free ARGs in WWTPs was rarely studied. In this study, the abundances of four representative ARGs, sulII, tetC, blaPSE-1, and ermB, in a large municipal WWTP were investigated in both cell-associated and cell-free fractions. Cell-associated ARGs was the dominant ARGs fraction in the raw wastewater. After biological treatment, sludge settling, membrane filtration, and disinfection, cell-associated ARGs were substantially reduced, though the ratios of ARG/16S rRNA gene were increased with disinfection. Cell-free ARGs persisted in the WWTP with a removal of 0.36 log to 2.68 logs, which was much lower than the removal of cell-associated ARGs (3.21 logs to 4.14 logs). Therefore, the abundance ratio of cell-free ARGs to cell-associated ARGs increased from 0.04-1.59% to 2.00-1895.08% along the treatment processes. After 25-day-storage, cell-free ARGs in both biological effluent and disinfection effluent increased by 0.14 log to 1.99 logs and 0.12 log to 1.77 logs respectively, reflecting the persistence and low decay rate of cell-free ARGs in the discharge water. Therefore, cell-free ARGs might be a kind of important but previously neglected pollutant from WWTPs, which added potential risks to the effluent receiving environments.
Collapse
Affiliation(s)
- Yan Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University , Wuxi 214122, China
| | - Aolin Li
- School of Environment, Tsinghua University , Beijing 100084, China
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Feifei Li
- School of Water Resource and Environment, China University of Geosciences , Beijing, 100083, China
| | - Hui Xie
- School of Environment, Tsinghua University , Beijing 100084, China
| | - Lujun Chen
- School of Environment, Tsinghua University , Beijing 100084, China
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environmental Technology and Ecology, Yangtze Delta Region Institute of Tsinghua University , Zhejiang Jiaxing 314050, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
29
|
Uncu AO, Torlak E, Uncu AT. A Cost-Efficient and Simple Plant Oil DNA Extraction Protocol Optimized for DNA-Based Assessment of Product Authenticity. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1070-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|