1
|
Zhang S, Li X, Geng T, Zhang Y, Zhang W, Zheng X, Sheng H, Jiang Y, Jin P, Kui X, Liu H, Ma G, Yun J, Yan X, Zhang X, Galindo-Prieto B, Kelly FJ, Mudway I. Using machine learning to predict soil lead relative bioavailability. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136515. [PMID: 39591930 DOI: 10.1016/j.jhazmat.2024.136515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Although the relative bioavailability (RBA) can be applied to assess the effects of Pb on human health, there is no definition and no specific data of Pb-RBA to different soil sources and endpoints in vivo. In this study, we estimated the Pb-RBA from different soil sources and endpoints based on machine learning. The Pb-BAc and Pb-RBA in soils were found to be mostly in the range of 20-80 %, which is different from the USEPA Pb-RBA of 60 % in soils. The mean Pb-RBA for different biological endpoints in vivo predicted using the RF model were 49.94 ± 18.65 % for blood; 60.15 ± 26.62 %, kidney; 60.90 ± 21.51 %, liver; 50.70 ± 17.56 %, femur; and 62.89 ± 16.64 % as a combined measure. Pb-RBA of shooting range soils was 88.21 ± 16.92 % (mean), spiked/aged soils 77.11 ± 14.05 % and certified reference materials 73.70 ± 20.31 %; agricultural soil 68.28 ± 18.93 %, urban soil 64.36 ± 21.82 %, mining/smelting soils 53.99 ± 17.66 %, and industrial soils 47.71 ± 20.35 %. This study is first to define the Pb-RBA according to various soil sources and endpoints in vivo with the objective of providing more accurate Pb-RBA data for soil lead risk assessment.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Tunyang Geng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Weixi Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xueming Zheng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - He Sheng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yueheng Jiang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Pengyuan Jin
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xuelian Kui
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Huimin Liu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Ge Ma
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Jiang Yun
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiangyang Yan
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Beatriz Galindo-Prieto
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| | - Frank J Kelly
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| | - Ian Mudway
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| |
Collapse
|
2
|
Zhou S, Zhang D, Kong Y, Zhang Q, Cui X. In Vivo Bioavailability and In Vitro Bioaccessibility of Iodine in Edible Seaweeds: Method Development and Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22553-22562. [PMID: 39666388 DOI: 10.1021/acs.est.4c08990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Both iodine (I) deficiency and I excess can adversely affect human health. Seaweed consumption is one of the most important natural sources for I. This study assessed I relative bioavailability (RBA) in seaweed using an in vivo mouse model and compared it with I bioaccessibility measured by three in vitro methods (Physiologically Based Extraction Test (PBET), the Solubility Bioaccessibility Research Consortium (SBRC), and the Unified Bioaccessibility Research Group of Europe Method (UBM)). Total I concentrations in 26 seaweed samples from four species ranged from 52.4 to 1322 mg/kg of dry weight. The I RBA varied from 18.5% to 89.0%, significantly influenced by inorganic I percentage (r = 0.50, p < 0.01) and total dietary fiber contents (r = -0.28, p < 0.05) in seaweeds. The I bioaccessibility varied among species and methods and were affected by the pH of gastric solution, as well as the structural changes in seaweed during in vitro extraction. Correlation analysis demonstrated that PBET was the best predictor for I RBA (R2 = 0.64). These results developed an appropriate in vitro method for predicting I bioavailability in seaweeds, which is highly beneficial for the accurate assessment for I dietary intake.
Collapse
Affiliation(s)
- Shuo Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dengke Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Santoro N, Singer DM, Mulvey BK, Halasa K, Teutsch N, Shedleski A, Wood M. Neighborhood-scale lead (Pb) speciation in Akron, Ohio (USA) soils: primary sources, post-deposition diagenesis, and high concentrations of labile Pb. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:164. [PMID: 38592563 PMCID: PMC11003916 DOI: 10.1007/s10653-024-01954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Lead (Pb) poses a significant risk to infants and children through exposure to contaminated soil and dust. However, there is a lack of information on Pb speciation and distribution at the neighborhood-scale. This work aimed to determine: (1) the distribution of acid-extractable (labile) Pb and other metals ([M]AE) in two neighborhoods in Akron, Ohio (USA) (Summit Lake and West Akron; n = 82 samples); and (2) Pb speciation and potential sources. Total metal concentration ([M]T) and [M]AE was strongly correlated for Pb and Zn (R2 of 0.66 and 0.55, respectively), corresponding to 35% and 33% acid-extractability. Lead and Zn exhibited a strong positive correlation with each other (R2 = 0.56 for MT and 0.68 for MAE). Three types of Pb-bearing phases were observed by electron microscopy: (1) galena (PbS)-like (5-10 μm); (2) paint chip residuals (10-20 μm); and (3) Pb-bearing Fe-oxides (20 μm). Isotope ratio values for PbAE were 1.159 to 1.245 for 206Pb/207Pb, and 1.999 to 2.098 for 208Pb/206Pb, and there was a statistically significant difference between the two neighborhoods (p = 0.010 for 206Pb/207Pb and p = 0.009 for 208Pb/206Pb). Paint and petrol are the dominant sources of Pb, with some from coal and fly ash. Lead speciation and distribution is variable and reflects a complex relationship between the input of primary sources and post-deposition transformations. This work highlights the importance of community science collaborations to expand the reach of soil sampling and establish areas most at risk based on neighborhood-dependent Pb speciation and distribution for targeted remediation.
Collapse
Affiliation(s)
- Nicholas Santoro
- Department of Earth Sciences, Kent State University, Kent, OH, 44242, USA
| | - David M Singer
- Department of Earth Sciences, Kent State University, Kent, OH, 44242, USA.
| | - Bridget K Mulvey
- School of Teaching, Learning and Curriculum Studies, Kent State University, Kent, OH, 44242, USA
| | | | - Nadya Teutsch
- Geochemistry and Environmental Geology Division, Geological Survey of Israel, 9692100, Jerusalem, Israel
| | - Allie Shedleski
- Department of Earth Sciences, Kent State University, Kent, OH, 44242, USA
| | - Madison Wood
- Department of Earth Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
4
|
Lu X, Yang Q, Wang H, Zhu Y. A global meta-analysis of the correlation between soil physicochemical properties and lead bioaccessibility. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131440. [PMID: 37086667 DOI: 10.1016/j.jhazmat.2023.131440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/15/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Soil physiochemical properties play a vital role in bioaccessibility-based health risk assessment as it can determine the bioaccessibility and the true risk of potentially toxic elements in soil. However, the effects of soil properties on bioaccessibility still remains unclear. In this paper, 17 of the 1454 literatures with 474 samples were identified, screened and reviewed for exploring the correlation between soil physicochemical properties and lead bioaccessibility (BAcPb) through a meta-analysis approach. Five soil physicochemical parameters including pH, SOM, Clay, CEC and T-Pb were systematically analyzed using Principal component analysis, Pearson correlation analysis and survival analysis. The results showed that pH of simulated gastric juice is a major source of heterogeneity of the correlation between soil pH and BAcPb. In the gastric phase, the effect of alkaline soil on high BAcPb (BAc >50%) is more sensitive, and the effect of acidic soil on low BAcPb (BAc <50%) is more sensitive. However, in the small intestinal phase, soil pH displays little impacts on BAcPb in acidic, alkaline and neutral soils. Although three principal components explained 66.2% and 64.9% of the total variance of the urban, agricultural, and mining soils in gastric and small intestinal phases, respectively, there was no strong evidence that soil type can influence the BAcPb. The results of present study provide insights into the correlation between soil properties and BAcPb, and prediction of the bioaccessibility and bioavailability of Pb in different types of soil.
Collapse
Affiliation(s)
- Xingyu Lu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Groundwater Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Qingchun Yang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Groundwater Resources and Environment, Jilin University, Changchun 130021, PR China.
| | - Hao Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Groundwater Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Yiwen Zhu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Groundwater Resources and Environment, Jilin University, Changchun 130021, PR China
| |
Collapse
|
5
|
Ma JY, Li WY, Yang ZY, Su JZ, Li L, Deng YR, Tuo YF, Niu YY, Xiang P. The spatial distribution, health risk, and cytotoxicity of metal(loid)s in contaminated field soils: The role of Cd in human gastric cells damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162942. [PMID: 36940749 DOI: 10.1016/j.scitotenv.2023.162942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 05/13/2023]
Abstract
The spatial distribution and pollution level of heavy metal(loid)s in soil (0-6 m) from a typical industrial region in Jiangmen City, Southeast China was investigated. Their bioaccessibility, health risk, and human gastric cytotoxicity in topsoil were also evaluated using an in vitro digestion/human cell model. The average concentrations of Cd (87.52 mg/kg), Co (106.9 mg/kg), and Ni (1007 mg/kg) exceeded the risk screening values. The distribution profiles of metal(loid)s showed a downward migration trend to reach a depth of 2 m. The highest contamination was found in topsoil (0-0.5 m), with the concentrations of As, Cd, Co, and Ni being 46.98, 348.28, 317.44, and 2395.60 mg/kg, respectively, while Cd showed the highest bioaccessibility in the gastric phase (72.80 %), followed by Co (21.08 %), Ni (18.27 %), and As (5.26 %) and unacceptable carcinogenic risk. Moreover, the gastric digesta of topsoil suppressed the cell viability and triggered cell apoptosis, evidenced by disruption of mitochondrial transmembrane potential and increase of Cytochrome c (Cyt c) and Caspases 3/9 mRNA expression. Bioaccessible Cd in topsoil was responsible for those adverse effects. Our data suggest the importance to reduce Cd in the soil to decrease its adverse impacts on the human stomach.
Collapse
Affiliation(s)
- Jiao-Yang Ma
- Yunnan Province Innovative Research Team of Environmental pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Wei-Yu Li
- Yunnan Province Innovative Research Team of Environmental pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510000, China
| | - Zi-Yue Yang
- Yunnan Province Innovative Research Team of Environmental pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Jin-Zhou Su
- Yunnan Province Innovative Research Team of Environmental pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Li Li
- Precious Metal Testing Co. LTD of Yunnan Gold Mining Group, Kunming 650215, China
| | - Yi-Rong Deng
- Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510000, China
| | - Yun-Fei Tuo
- Yunnan Province Innovative Research Team of Environmental pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - You-Ya Niu
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, China.
| | - Ping Xiang
- Yunnan Province Innovative Research Team of Environmental pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
6
|
van den Heever L, Elburg MA, Iaccheri L, Naidoo V, Ueckermann H, Bybee G, Smit-Robinson HA, Whitecross MA, McKechnie AE. Identifying the origin of lead poisoning in white-backed vulture (Gyps africanus) chicks at an important South African breeding colony: a stable lead isotope approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15059-15069. [PMID: 36166116 DOI: 10.1007/s11356-022-23209-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Elevated lead levels in scavenging raptors can originate from a variety of environmental and anthropogenic sources, including soil, water, mining activities and legacy lead from leaded fuel, but has mostly been attributed to fragments of lead-based ammunition embedded in the tissues of carcasses. To identify the origins of lead in the tissues of white-backed vulture (Gyps africanus) chicks at Dronfield Nature Reserve, South Africa, we used MC-ICP-MS to compare the isotopic composition of lead in blood samples to those of soil in the chicks' immediate environment, different mining activities in South Africa and lead ammunition commonly used in hunting and game management practices. The isotopic ratios in vulture blood samples ranged widely (207Pb/206Pb: 0.827-0.911), but fell within those measured for ammunition (0.761-0.938). Dronfield water can be excluded as a significant source, as the lead concentration for water was below detection limits. Uranium, coal, atmospheric Pb, legacy Pb from fuel and Pb mining can also be excluded as significant sources, based on the limited overlap with Pb isotopic ratios measured in vulture blood. Whereas 55% of chicks we sampled displayed isotopic ratios consistent with Dronfield soil, the low local Pb concentration and the low extractable Pb levels in South African soil in general, imply that soil Pb is unlikely the major source of Pb in WBV chicks, especially in birds with elevated blood Pb levels, i.e. > 20 µg/dL. Our results, when considered in the context of vulture feeding ecology and low Pb levels in non-scavenging birds in South Africa, imply the major source of elevated Pb levels in WBV chicks to be fragments of lead-based ammunition embedded in the carrion fed to them by their parents.
Collapse
Affiliation(s)
- Linda van den Heever
- Conservation Division, BirdLife South Africa, Johannesburg, South Africa.
- Department of Zoology and Entomology, DSI-NRF Centre of Excellence at the FitzPatrick Institute, University of Pretoria, Pretoria, South Africa.
| | - Marlina A Elburg
- Department of Geology, University of Johannesburg, Auckland Park, South Africa
| | - Linda Iaccheri
- Wits Isotope Geosciences Laboratory, School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vinny Naidoo
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | | | - Grant Bybee
- School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Hanneline A Smit-Robinson
- Conservation Division, BirdLife South Africa, Johannesburg, South Africa
- Applied Behavioural Ecological & Ecosystem Research Unit (ABEERU), UNISA, Florida, South Africa
| | - Melissa A Whitecross
- Conservation Division, BirdLife South Africa, Johannesburg, South Africa
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrew E McKechnie
- Department of Zoology and Entomology, DSI-NRF Centre of Excellence at the FitzPatrick Institute, University of Pretoria, Pretoria, South Africa
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, South Africa
| |
Collapse
|
7
|
Wijayawardena MAA, Yan K, Liu Y, Naidu R. Can the mouse model successfully predict mixed metal(loid)s bioavailability in humans from contaminated soils? CHEMOSPHERE 2023; 311:137113. [PMID: 36356801 DOI: 10.1016/j.chemosphere.2022.137113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Mouse models have been employed by many scientific research groups worldwide to predict the bioavailability of metal (loid)s and other chemicals in humans. Their suitability for predicting mixed metal (loid) bioavailability has been questioned and debated for decades by many research teams. In this study soils contaminated by lead (Pb) and arsenic (As), either in the field or by spiking in the laboratory, were used in bioavailability and bioaccessibility tests. The spiked soils were aged for more than a year prior to testing to achieve steady state and eliminate soil ageing effects, as reported in previous research. The bioavailability of, firstly, Pb in the presence of As and secondly, As in the presence of Pb was determined using mice. Furthermore, bioaccessibility was determined using a range of in vitro methods: relative bioaccessibility leaching procedure (RBALP), the Unified Bioaccessibility Research Group Europe (BARGE) method (UBM) gastric and intestinal phases, and the National Institute for Public Health and the Environment (RIVM) gastric and intestinal phases. The correlations between Pb and As bioavailability and their in vitro bioaccessibility when they were present in mixtures were analysed. The results indicated that the bioavailability of Pb in mice kidney tissues significantly correlated with bioaccessibility of Pb in RBALP (p < 0.01), UBM gastric (p < 0.01) and intestinal phases (p < 0.01) and RIVM gastric phases when Pb is present in metal (loid) mixtures. Results of the current study reveal that the RBALP, and UBM gastric and intestinal phase were by far the best methods for predicting the RB of Pb when it is present in metal (loid) mixtures. Consequently, the mouse model can successfully explain the in vivo in vitro correlation (IVIVC) of Pb when it is present in metal (loid) mixtures. However, we did find that a mouse model may not be the best one to explain the IVIVC of As when it is present in metal (loid) mixtures.
Collapse
Affiliation(s)
- M A A Wijayawardena
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - K Yan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Y Liu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building University of Newcastle, Callaghan, NSW, 2308, Australia
| | - R Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
8
|
Tepanosyan G, Pipoyan D, Beglaryan M, Sahakyan L. Compositional features of Pb in agricultural soils and geochemical associations conditioning Pb contents in plants. CHEMOSPHERE 2022; 306:135492. [PMID: 35760136 DOI: 10.1016/j.chemosphere.2022.135492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Soil geochemical data is compositional. Hence the studies targeting the potential of accumulation of toxic elements (TE) in plants have to consider the compositional nature of soil chemical environment. In this study, the combined application of compositional data analysis and geospatial mapping was used to investigate Pb geochemical associations in agricultural soils, revealing the link between these associations and Pb contents in plants, as well as identifying source-specific transfer of Pb from soil to plants. The obtained results showed that soil chemical composition was conditioned by the geological peculiarities of the study area and the potential sources of chemical elements' release. Particularly, k-means clustering and CoDa-biplot allows to identify three distinct subsamples and the application of HCA showed that both Pb soil and plants contents were in the same cluster in all subsamples. However, the geochemical association of elements in subsamples I and III suggested that Pb contents in plants were conditioned by the geochemical behaviors of carbonates whereas in subsample II Pb plant contents were presented in a geochemical association (K, Rb, Pb, and Zn) typical for both fertilizers and the potassium feldspar. The transfer factor (TF) for the comparatively higher values is observed for the subsample linked to K, Rb, Pb, and Zn geochemical association. At the same time, the negative influence of carbonates on the Pb availability in the plants was evidenced. The results of this study can serve as a good example for other investigations targeting the role of soil chemical elements compositional features in elements transfer to plant.
Collapse
Affiliation(s)
- Gevorg Tepanosyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, 0025, Yerevan, Armenia.
| | - Davit Pipoyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, 0025, Yerevan, Armenia
| | - Meline Beglaryan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, 0025, Yerevan, Armenia
| | - Lilit Sahakyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, 0025, Yerevan, Armenia
| |
Collapse
|
9
|
Zhang X, Wang B, Pan F, Cai Y, Wu X, Liu H, Guo Z. Potential pollution assessment of labile trace metals in Xixi River estuary sediments in Xiamen, China. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 250:104055. [PMID: 35917655 DOI: 10.1016/j.jconhyd.2022.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/03/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The release of trace metals caused by industrial effluents and anthropogenic activities has been recorded in the Xixi River estuary, southern China. However, a thorough understanding of the behavior of trace heavy metals in Xixi River sediments is lacking. A total of 12 sediment cores were collected in June and December in the upper estuary section and mouth of the estuary. Here, an in situ high-resolution sampling technique, namely, diffusive gradients in thin films (DGT), was employed to acquire profiles of trace element concentrations and the release of bioavailable metals from sediments in different seasons. A three-step Community Bureau of Reference (BCR) sequential extraction method was used to explore the chemical speciation of trace metals in different seasons and to thereby assess the release potential of trace elements in sediments. The BCR sequential extraction results showed that the trace metals Fe, Mn, Co and Pb were mainly in the residual fraction, which rarely influences living organisms. The total mobile fractions (F1 + F2 + F3) of all trace metals were higher in winter than in summer, suggesting that accumulation occurred from summer to winter. DGT measurements showed that the intensity of sulfate reduction was higher in summer than in winter because of the high temperatures and high organic matter in summer. The intensity of sulfate and Mn(III/IV) reduction increased from the upper estuary section to the lower estuary. Fe(III) reduction decreased in summer but increased slowly in winter. The Pearson correlation results showed that the release of DGT-labile Co in pore water was related to Mn(III/IV) reduction, while the release of DGT-labile Pb was basically not controlled by the Fe-Mn-S redox transition. Abnormally high DGT-labile Pb concentrations were observed at the sampling station (XR3) closest to the estuary in winter, which might have been caused by the high Pb content in the local micro-sediments.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Bo Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Feng Pan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Yu Cai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Xindi Wu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Huatai Liu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China.
| | - Zhanrong Guo
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
10
|
Guo G, Li K, Lei M. Accumulation, environmental risk characteristics and associated driving mechanisms of potential toxicity elements in roadside soils across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155342. [PMID: 35489507 DOI: 10.1016/j.scitotenv.2022.155342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 05/25/2023]
Abstract
Roadside soils may be affected by potential toxicity elements (TPEs) from vehicles; however, pollution status, ecological and health risks of PTEs in roadside soils were rarely reported on national scale. In this study, a dataset of PTEs in roadside soils was compiled based on the literatures published in 2000-2021, and then pollution level, ecological and health risks of PTEs were evaluated using geochemical accumulation index (Igeo), potential ecological risk index (ER), and human risk assessment coupled with Monte Carlo simulation. Driving factors of PTE accumulation in soils were determined by Geo-detector method. Results indicated that Cd exhibited moderate pollution and considerable ecological risk with the highest Igeo of 1.25 and ER of 100.1, respectively. Vehicle ownership (VP) and precipitation (PP) significantly affected accumulation of PTEs, with q values of 0.209 and 0.191 (P < 0.05), respectively. VP paired with PP enhanced nonlinearly PTE accumulation (q = 0.77). Only 6.89% and 1.54% of non-carcinogenic risks for children and adolescent exceeded the threshold of 1, respectively, whereas 93.11%, 95.67%, 58.80% and 58.14% of carcinogenic risks for senior, adults, adolescent, and children surpassed 1E-06, respectively. The results of this study provided valuable implication for managers to design effective strategies for pollution prevent and risk control.
Collapse
Affiliation(s)
- Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kai Li
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Chen H, Wang L, Hu B, Xu J, Liu X. Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. CHEMOSPHERE 2022; 289:133182. [PMID: 34883131 DOI: 10.1016/j.chemosphere.2021.133182] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
The integrated analysis of the distribution characteristics, health risks, and source identification of heavy metals is crucial for formulating prevention and control strategies for soil contamination. In this study, the area around an abandoned electronic waste dismantling center in China was selected as the research area. The probabilistic health risks caused by heavy metals were evaluated by the Monte Carlo simulation. Random forest, partial least squares regression, and generalized linear models were utilized to predict heavy metal distributions and identify the potential driving factors affecting heavy metal accumulation in soil. The relationships of spatial variation between the heavy metal contents and environmental variables were further visualized. The results revealed that cadmium (Cd) and copper (Cu) were the primary soil pollutants in the study area and caused high ecological risks. The probabilistic health risk assessment indicated that the non-carcinogenic and carcinogenic risks for all populations were acceptable. However, children are more susceptible to heavy metal soil contamination than adults. The sensitivity analyses indicated that the total contents of soil heavy metals and soil ingestion rate were the dominant factors affecting human health. The random forest model, with R2 values of 0.41, 0.65, 0.57, 0.71, and 0.58 for Cd, Cu, Ni, Zn, and Pb, respectively, predicted the heavy metal concentrations better than the other two models. The distance to the nearest industrial enterprise, industrial output, and agricultural chemical input were the main factors affecting Cd, Cu, Zn, and Pb accumulations in the soil, and soil pH and soil parent material were the primary factors influencing Ni accumulation in the soil. The visualization results of the geographically weighted regression model showed a significant relationship between soil heavy metal contents and industrial activity level. This study could be utilized as a reference for policymakers to formulate prevention and control strategies for heavy metal pollution in agricultural areas.
Collapse
Affiliation(s)
- Hanrui Chen
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Lu Wang
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Bifeng Hu
- Department of Land Resource Management, School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang, 330013, China
| | - Jianming Xu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Xingmei Liu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Islam MR, Sanderson P, Naidu R, Payne TE, Johansen MP, Bari ASMF, Rahman MM. Beryllium in contaminated soils: Implication of beryllium bioaccessibility by different exposure pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126757. [PMID: 34352522 DOI: 10.1016/j.jhazmat.2021.126757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 05/14/2023]
Abstract
Inhalation exposure and beryllium (Be) toxicity are well-known, but research on bioaccessibility from soils via different exposure pathways is limited. This study examined soils from a legacy radioactive waste disposal site using in vitro ingestion (Solubility Bioaccessibility Research Consortium [SBRC], physiologically based extraction test [PBET], in vitro gastrointestinal [IVG]), inhalation (simulated epithelial lung fluid [SELF]) and dynamic two-stage bioaccessibility (TBAc) methods, as well as 0.43 M HNO3 extraction. The results showed, 70 ± 4.8%, 56 ± 16.8% and 58 ± 5.7% of total Be were extracted (gastric phase [GP] + intestinal phase [IP]) in the SBRC, PBET, and IVG methods, respectively. Similar bioaccessibility of Be (~18%) in PBET-IP and SELF was due to chelating agents in the extractant. Moreover, TBAc-IP showed higher extraction (20.8 ± 2.0%) in comparison with the single-phase (SBRC-IP) result (4.8 ± 0.23%), suggesting increased Be bioaccessibility and toxicity in the gastrointestinal tract when the contamination derives from the inhalation route. The results suggested Be bioaccessibility depends on solution pH; time of extraction; soil reactive fractions (organic-inorganic); particle size, and the presence of chelating agents in the fluid. This study has significance for understanding Be bioaccessibility via different exposure routes and the application of risk-based management of Be-contaminated sites.
Collapse
Affiliation(s)
- Md Rashidul Islam
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Peter Sanderson
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Timothy E Payne
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Mathew P Johansen
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - A S M Fazle Bari
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| |
Collapse
|
13
|
Terrones-Saeta JM, Suárez-Macías J, Bernardo-Sánchez A, Álvarez de Prado L, Menéndez Fernández M, Corpas-Iglesias FA. Treatment of Soil Contaminated by Mining Activities to Prevent Contamination by Encapsulation in Ceramic Construction Materials. MATERIALS 2021; 14:ma14226740. [PMID: 34832142 PMCID: PMC8623602 DOI: 10.3390/ma14226740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022]
Abstract
Mining is an essential activity for obtaining materials necessary for the well-being and development of society. However, this activity produces important environmental impacts that must be controlled. More specifically, there are different soils near new or abandoned mining productions that have been contaminated with potentially toxic elements, and currently represent an important environmental problem. In this research, a contaminated soil from the mining district of Linares was studied for its use as a raw material for the conforming of ceramic materials, bricks, dedicated to construction. Firstly, the contaminated soil was chemically and physically characterized in order to evaluate its suitability. Subsequently, different families of samples were conformed with different percentages of clay and contaminated soil. Finally, the conformed ceramics were physically and mechanically characterized to examine the variation produced in the ceramic material by the incorporation of the contaminated soil. In addition, in this research, leachate tests were performed according to the TCLP method determining whether encapsulation of potentially toxic elements in the soil occurs. The results showed that all families of ceramic materials have acceptable physical properties, with a soil percentage of less than 80% being acceptable to obtain adequate mechanical properties and a maximum of 70% of contaminated soil to obtain acceptable leachate according to EPA regulations. Therefore, the maximum percentage of contaminated soil that can be incorporated into the ceramic material is 70% in order to comply with all standards. Consequently, this research not only avoids the contamination that contaminated soil can produce, but also valorizes this element as a raw material for new materials, avoiding the extraction of clay and reducing the environmental impact.
Collapse
Affiliation(s)
- Juan María Terrones-Saeta
- Research Group TEP-222 “Materials and Mining Engineering”, Higher Polytechnic School of Linares, Scientific and Technological Campus of Linares, University of Jaén, 23700 Linares, Spain; (J.S.-M.); (F.A.C.-I.)
- Correspondence:
| | - Jorge Suárez-Macías
- Research Group TEP-222 “Materials and Mining Engineering”, Higher Polytechnic School of Linares, Scientific and Technological Campus of Linares, University of Jaén, 23700 Linares, Spain; (J.S.-M.); (F.A.C.-I.)
| | - Antonio Bernardo-Sánchez
- Department of Mining, Topography and Structures, University of León, 24071 León, Spain; (A.B.-S.); (L.Á.d.P.); (M.M.F.)
| | - Laura Álvarez de Prado
- Department of Mining, Topography and Structures, University of León, 24071 León, Spain; (A.B.-S.); (L.Á.d.P.); (M.M.F.)
| | - Marta Menéndez Fernández
- Department of Mining, Topography and Structures, University of León, 24071 León, Spain; (A.B.-S.); (L.Á.d.P.); (M.M.F.)
| | - Francisco Antonio Corpas-Iglesias
- Research Group TEP-222 “Materials and Mining Engineering”, Higher Polytechnic School of Linares, Scientific and Technological Campus of Linares, University of Jaén, 23700 Linares, Spain; (J.S.-M.); (F.A.C.-I.)
| |
Collapse
|
14
|
Wu Q, Mou X, Wu H, Tong J, Sun J, Gao Y, Shi J. Water management of alternate wetting and drying combined with phosphate application reduced lead and arsenic accumulation in rice. CHEMOSPHERE 2021; 283:131043. [PMID: 34146868 DOI: 10.1016/j.chemosphere.2021.131043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Lead (Pb) and arsenic (As) exist in soil with different ionic forms, and it is difficult to immobilize simultaneously Pb and As in soil. The objective of this study is to determine the effects of water management including flooding (FL), alternate wetting and drying (AWD) and dry farming (DF) combined with addition of phosphate (P) on the accumulation of Pb and As in rice. Our results showed that Pb accumulated in root during vegetative stage, and most of As in root was transported to the above ground parts during the reproductive stage. Pb was evenly distributed in grains, and As was mostly accumulated in bran and aleurone layer. Water management had a reverse effect on the accumulation of Pb and As in rice. However, the effects of P on arid soil environment and Pb, As accumulation in rice were stronger than that in flooded soil. Application of P under AWD treatment could maintain a similar quantity of Fe plaque with flooding, decrease the availability of Pb in rhizosphere soil, reduce Pb and As accumulation in root, and result in the reduction of Pb and As accumulation in grains by 86% and 66% respectively. Besides, our study also found that flooding or AWD during vegetative stage facilitated the formation of iron plaque. In conclusion, AWD combined with P application could maintain a relatively lower concentrations of Pb and As in grains.
Collapse
Affiliation(s)
- Qianhua Wu
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, 310058, China; Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyu Mou
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, 310058, China; Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hanxin Wu
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, 310058, China; Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianhao Tong
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, 310058, China; Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiacong Sun
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, 310058, China; Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Gao
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, 310058, China; Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, 310058, China; Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Kao CS, Wang YL, Chuang TW, Jiang CB, Hsi HC, Liao KW, Chien LC. Effects of soil lead exposure and land use characteristics on neurodevelopment among children under 3 years of age in northern Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117288. [PMID: 33984777 DOI: 10.1016/j.envpol.2021.117288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Lead (Pb) exposure increases the risks of neurodevelopmental disorders in children. Child-specific activities and land use scenarios may lead to elevated opportunities for Pb exposure through the soil. Therefore, we investigated hair and fingernail Pb concentrations among young children in northern Taiwan, in relation to soil Pb pollution and land use characteristics. We also explored the effect of the Pb exposure burden and land use scenarios on neurobehavioral development. In total, 139 healthy children under 3 years of age were recruited in October 2011 to April 2014. Pb levels in hair and fingernail samples were determined using an inductively coupled plasma/mass spectrometer. Pb concentrations in soils and land use types surrounding the children's homes were accessed by a geographic information system to identify any associations with hair Pb levels. The Bayley Scales of Infant and Toddler Development (Bayley-III) were used to evaluate the cognitive, language, and motor development of the children. A multivariable regression model was performed to assess the effects of soil Pb levels and land-use status on Pb exposure in children, as well as associations of Pb exposure and land-use scenarios with neurodevelopmental abilities. Geometric mean Pb concentrations in hair, fingernails, and soil were 2.9 ± 4.8 μg/g, 0.8 ± 5.1 μg/g, and 20.8 ± 4.3 mg/kg, respectively. The multivariable analysis indicated that soil Pb concentrations and green areas around residences had potential links with Pb exposure among children in northern Taiwan. Hair Pb concentrations were negatively associated with expressive language scores. Soil Pb exposure was positively associated with hair Pb concentrations. Land use types around the children's homes in northern Taiwan were associated with their neurodevelopment. Increased green areas were negatively associated with hair Pb concentrations. Living near a highway may have had negative impacts on gross motor scores. A healthy residence can avoid potential health risks for children during their early life.
Collapse
Affiliation(s)
- Chi-Sian Kao
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ying-Lin Wang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Wu Chuang
- School of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Ling-Chu Chien
- School of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
16
|
Rehman MU, Khan R, Khan A, Qamar W, Arafah A, Ahmad A, Ahmad A, Akhter R, Rinklebe J, Ahmad P. Fate of arsenic in living systems: Implications for sustainable and safe food chains. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126050. [PMID: 34229383 DOI: 10.1016/j.jhazmat.2021.126050] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Arsenic, a group 1 carcinogen for humans, is abundant as compared to other trace elements in the environment and is present mainly in the Earth's crust and soil. The arsenic distributions in different geographical regions are dependent on their geological histories. Anthropogenic activities also contribute significantly to arsenic release into the environment. Arsenic presents several complications to humans, animals, and plants. The physiology of plants and their growth and development are affected by arsenic. Arsenic is known to cause cancer and several types of organ toxicity, such as cardiotoxicity, nephrotoxicity, and hepatotoxicity. In the environment, arsenic exists in variable forms both as inorganic and organic species. From arsenic containing compartments, plants can absorb and accumulate arsenic. Crops grown on these contaminated soils pose several-fold higher toxicity to humans compared with drinking water if arsenic enters the food chain. Information regarding arsenic transfer at different trophic levels in food chains has not been summarized until now. The present review focuses on the food chain perspective of arsenic, which affects all components of the food chain during its course. The circumstances that facilitate arsenic accumulation in flora and fauna, as components of the food chain, are outlined in this review.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Lab, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rukhsana Akhter
- Department of Clinical Biochemistry, Govt. Degree College (Baramulla), Khawaja Bagh, Baramulla, Jammu and Kashmir, India
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, South Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Lead Pollution, Demographics, and Environmental Health Risks: The Case of Philadelphia, USA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179055. [PMID: 34501644 PMCID: PMC8431549 DOI: 10.3390/ijerph18179055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Lead (Pb) soil contamination in urban environments represents a considerable health risk for exposed populations, which often include environmental justice communities. In Philadelphia, Pennsylvania (PA), Pb pollution is a major concern primarily due to extensive historical Pb-smelting/processing activity and legacy use of Pb-based paints and leaded gasoline. The U.S. Environmental Protection Agency (USEPA) organized and/or compiled community-driven soil sampling campaigns to investigate Pb content in surface soils across Philadelphia. Using these data (n = 1277), combined with our own dataset (n = 1388), we explored the spatial distribution of Pb content in soils across the city using ArcGIS. While assessing Zone Improvement Plan (ZIP)-code level data, we found strong correlations between factors, such as the percentage of children with elevated blood lead levels (% EBLL) and % minority population as well as between % EBLL and % children in poverty. We developed a “Lead Index” that took demographics, median measured Pb-in-soil content, and % EBLLs into account to identify ZIP codes in need of further assessment. Our results will be used to help lower the Pb-exposure risk for vulnerable children living in disproportionately burdened communities.
Collapse
|
18
|
Wade AM, Richter DD, Craft CB, Bao NY, Heine PR, Osteen MC, Tan KG. Urban-Soil Pedogenesis Drives Contrasting Legacies of Lead from Paint and Gasoline in City Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7981-7989. [PMID: 34019756 DOI: 10.1021/acs.est.1c00546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study analyzed the impact of urban-soil pedogenesis on soil lead (Pb) contamination from paint and gasoline in the historic core of Durham, North Carolina. Total soil Pb in 1000 samples from streetsides, residential properties, and residual upland and floodplains ranged from 6 to 8825 mg/kg (mean = 211 mg/kg), with 50% of samples between 50 and 200 mg/kg soil Pb. The highest Pb concentrations were within 1 m of pre-1978 residential foundations, with concentrations inversely correlated with house age. Streetside soil Pb concentrations were elevated over the geologic background of <30 mg/kg and correlated with traffic flow. Streetside soil Pb concentrations were lower than Durham streetside soils collected in the 1970s, which was attributed to urban pedogenesis, the complex of natural and human processes that change soils over time. Accelerated erosion redistributes legacy Pb and floodplain sampling indicates sedimentation rates of up to 4 mm/year. Mixing and burial of soil with elevated Pb are also lowering soil Pb concentrations over time. These mechanisms are likely of greater significance on streetsides than near foundation soils. The development of an urban-pedogenesis framework can help guide public health approaches to Pb exposure by incorporating pedogenic processes that reduce and dissipate soil Pb contamination.
Collapse
Affiliation(s)
- Anna M Wade
- Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, North Carolina 27708, United States
| | - Daniel D Richter
- Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, North Carolina 27708, United States
| | - Christopher B Craft
- School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Nancy Y Bao
- Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, North Carolina 27708, United States
| | - Paul R Heine
- Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, North Carolina 27708, United States
| | - Mary C Osteen
- Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, North Carolina 27708, United States
| | - Kevin G Tan
- Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, North Carolina 27708, United States
| |
Collapse
|
19
|
Rivera-Urbalejo AP, Vázquez D, Fernández Vázquez JL, Rosete Enríquez M, Cesa-Luna C, Morales-García YE, Muñoz Rojas J, Quintero Hernández V. APORTES Y DIFICULTADES DE LA METAGENÓMICA DE SUELOS Y SU IMPACTO EN LA AGRICULTURA. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n3.85760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los microorganismos son de gran interés porque colonizan todo tipo de ambiente, sin embargo, uno de los problemas al que nos enfrentamos para conocer su diversidad biológica es que no todos los microorganismos son cultivables. El desarrollo de nuevas tecnologías como la generación de vectores de clonación aunado al desarrollo de técnicas de secuenciación de alto rendimiento ha favorecido el surgimiento de una nueva herramienta llamada metagenómica, la cual nos permite estudiar genomas de comunidades enteras de microorganismos. Debido a que ningún ambiente es idéntico a otro, es importante mencionar que dependiendo del tipo de muestra a analizar será el tipo de reto al cual nos enfrentaremos al trabajar con metagenómica, en el caso específico del suelo existen diversas variantes como la contaminación del suelo con metales pesados o diversos compuestos químicos que podrían limitar los estudios. Sin embargo, pese a las limitaciones que el mismo ambiente presenta, la metagenómica ha permitido tanto el descubrimiento de nuevos genes como la caracterización de las comunidades microbianas que influyen positivamente en el desarrollo de plantas, lo cual en un futuro podría generar un gran impacto en la agricultura. En este artículo se realizó una revisión de diversas investigaciones que han empleado metagenómica, reportadas en las bases de datos de PudMed y Google Schoolar, con el objetivo de examinar los beneficios y limitaciones de las diversas metodologías empleadas en el tratamiento del ADN metagenómico de suelo y el impacto de la metagenómica en la agricultura.
Collapse
|
20
|
Comparison between a Traditional (Horse Manure) and a Non-Conventional (Cork Powder) Organic Residue in the Uptake of Potentially Toxic Elements by Lettuce in Contaminated Soils. ENVIRONMENTS 2021. [DOI: 10.3390/environments8050045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The use of natural organic correctives is a current agricultural practice that may have advantages for the production of plants in contaminated soils. Cork powder is a natural sub-product of the cork industry that has several potential benefits compared to more commonly used soil amendments. In this work, an evaluation was performed of the use of cork powder (a non-conventional organic residue) and horse manure (traditionally used in agriculture) to control the availability of potentially toxic elements in artificially contaminated soils. Four concentrations were used for each element: Cr (100 to 800 mg kg−1), Ni (37.5 to 300 mg kg−1), Zn (150 to 1200 mg kg−1), Cd (1.5 to 12 mg kg−1) and Pb (150 to 1200 mg kg−1). The accumulation of these elements in lettuce plants grown in pots under controlled conditions was evaluated. With the exception of Cd, no significant differences were detected in the absorption of the different elements by lettuce plants at the studied amounts of correctives applied (1% for cork powder and 0.5% for horse manure). Cadmium was the element that accumulated most in lettuce. Cork powder was shown to be less effective than horse manure in controlling the bioavailability of these elements in the soil. Further tests with chemically modified cork products could improve its efficiency.
Collapse
|
21
|
Obeng-Gyasi E, Roostaei J, Gibson JM. Lead Distribution in Urban Soil in a Medium-Sized City: Household-Scale Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3696-3705. [PMID: 33625850 PMCID: PMC9234951 DOI: 10.1021/acs.est.0c07317] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This study characterizes potential soil lead (Pb) exposure risk at the household scale in Greensboro, North Carolina, using an innovative combination of field sampling, statistical analysis, and machine-learning techniques. Soil samples were collected at the dripline, yard, and street side at 462 households (total sample size = 2310). Samples were analyzed for Pb and then combined with publicly available data on potential historic Pb sources, soil properties, and household and neighborhood demographic characteristics. This curated data set was then analyzed with statistical and machine-learning techniques to identify the drivers of potential soil Pb exposure risks and to build predictive models. Among all samples, 43% exceeded current guidelines for Pb in residential gardens. There were significant racial disparities in potential soil Pb exposure risk; soil Pb at the dripline increased by 19% for every 25% increase in the neighborhood population identifying as Black. A machine-learned Bayesian network model was able to classify residential parcels by risk of exceeding residential gardening standards with excellent reproducibility in cross validation. These findings underscore the need for targeted outreach programs to prevent Pb exposure in residential areas and demonstrate an approach for prioritizing outreach locations.
Collapse
Affiliation(s)
- Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Javad Roostaei
- Department of Environmental and Occupational Health, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Jacqueline MacDonald Gibson
- Department of Environmental and Occupational Health, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| |
Collapse
|
22
|
Ye J, Liao W, Zhang P, Li J, Nabi M, Wang S, Cai Y, Li F. Fe 1-xS/biochar combined with thiobacillus enhancing lead phytoavailability in contaminated soil: Preparation of biochar, enrichment of thiobacillus and their function on soil lead. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115447. [PMID: 32866876 DOI: 10.1016/j.envpol.2020.115447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/01/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Properly increasing mobility of heavy metals could promote phytoremediation of contaminated soil. Fe1-xS/biochar was successfully prepared from sawdust with loading pyrrhotite (Fe1-xS) at a pyrolysis temperature of 550 °C. Thiobacillus were successfully adsorbed and enriched on the surface of Fe1-xS/biochar. Microbial growth for 36 d supported by bio-oxidization of Fe1-xS decreased the system pH from 4.32 to 3.50, increased the ORP from 298 to 487 mV, and the Fe3+ release reached 25.48 mg/g, enhancing the oxidation and leaching of soil Pb. Finally, Fe1-xS/biochar and Thiobacillus were simultaneously applied into Pb-contaminated soil for 60 d, the soil pH decreased from 7.83 to 6.72, and the exchangeable fraction of soil Pb increased from 22.86% to 37.19%. Ryegrass planting for 60 d in Pb-contaminated soil with Fe1-xS/biochar and Thiobacillus showed that the Pb content in shoot and root of ryegrass increased by 55.65% and 73.43%, respectively, confirming an obvious increase of phytoavailability of soil Pb. The relative abundance of Thiobacillus in remediated soil significantly increased from 0.06% to 34.55% due to the addition of Fe1-xS/biochar and Thiobacillus. This study provides a novel approach for regulating the Pb phytoavailability for phytoremediation of Pb-contaminated soil.
Collapse
Affiliation(s)
- Junpei Ye
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wenmin Liao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Juan Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Mohammad Nabi
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Siqi Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yajing Cai
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Fan Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
23
|
Doya R, Nakayama SMM, Nakata H, Toyomaki H, Yabe J, Muzandu K, Yohannes YB, Kataba A, Zyambo G, Ogawa T, Uchida Y, Ikenaka Y, Ishizuka M. Land Use in Habitats Affects Metal Concentrations in Wild Lizards Around a Former Lead Mining Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14474-14481. [PMID: 32490671 DOI: 10.1021/acs.est.0c00150] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We investigated the potential effects of different land use and other environmental factors on animals living in a contaminated environment. The study site in Kabwe, Zambia, is currently undergoing urban expansion, while lead contamination from former mining activities is still prevalent. We focused on a habitat generalist lizards (Trachylepis wahlbergii). The livers, lungs, blood, and stomach contents of 224 lizards were analyzed for their lead, zinc, cadmium, copper, nickel, and arsenic concentrations. Habitat types were categorized based on vegetation data obtained from satellite images. Multiple regression analysis revealed that land use categories of habitats and three other factors significantly affected lead concentrations in the lizards. Further investigation suggested that the lead concentrations in lizards living in bare fields were higher than expected based on the distance from the contaminant source, while those in lizards living in green fields were lower than expected. In addition, the lead concentration of lungs was higher than that of the liver in 19% of the lizards, implying direct exposure to lead via dust inhalation besides digestive exposure. Since vegetation reduces the production of dust from surface soil, it is plausible that dust from the mine is one of the contamination sources and that vegetation can reduce exposure to this.
Collapse
Affiliation(s)
- Rio Doya
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Hokuto Nakata
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Haruya Toyomaki
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - John Yabe
- School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Kaampwe Muzandu
- School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Yared B Yohannes
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Andrew Kataba
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Golden Zyambo
- School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Takahiro Ogawa
- Faculty of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan
| | - Yoshitaka Uchida
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
- Water Research Group, School of Environmental Sciences and Development, NorthWest University, Potchefstroom 2520, South Africa
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
24
|
Li SW, Li MY, Sun HJ, Li HB, Ma LQ. Lead bioavailability in different fractions of mining- and smelting-contaminated soils based on a sequential extraction and mouse kidney model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114253. [PMID: 32179223 DOI: 10.1016/j.envpol.2020.114253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Lead bioavailability in contaminated soils varies considerably depending on Pb speciation and sources of contamination. However, little information is available on bioavailability of Pb associated with different fractions. In this study, the Tessier sequential extraction was used to fractionate Pb in 3 contaminated soils to exchangeable (F1), carbonate-bound (F2), Fe/Mn oxides-bound (F3), organic-bound (F4), and residual fractions (F5). In addition, soil residues after F1-F2 extraction (F345), F1-F3 extraction (F45), and F1-F4 extraction (F5) were measured for Pb relative bioavailability (RBA) using a mouse kidney model. Based on the mouse model, Pb-RBA in the soils was 44-93%, which decreased to 43-89%, 28-75%, and 15-68% in the F345, F45, and F5 fractions, respectively. Based on Pb-RBA in the soil residues, Pb-RBA in different fractions was calculated based on a mass balance. The data showed that Pb-RBA was the highest (∼100%) in the exchangeable and carbonate fraction, and the lowest (15-68%) in the residual fraction. In addition, Pb in the first three fractions (F1-F3) contributed most (83-89%) to bioavailable Pb in contaminated soils. Our study shed light on oral bioavailability of Pb in contaminated soils of different fractions based on sequential extraction and provide important information for soil remediation.
Collapse
Affiliation(s)
- Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hong-Jie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Fan J, Zhao L, Kan J, Qiu H, Xu X, Cao X. Uptake of vegetable and soft drink affected transformation and bioaccessibility of lead in gastrointestinal track exposed to lead-contaminated soil particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110411. [PMID: 32151869 DOI: 10.1016/j.ecoenv.2020.110411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/18/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Accidental ingestion of Pb-contaminated soil particles by direct hand-to-mouth activity or by swallowing airborne dust particles is important pathway of human exposure to Pb. Appropriate evaluation of Pb risk to human is important in determining whether the soil needs remediation or not, however, there is paucity of data about the dietary influences on Pb bioaccessibility (Pb-BA) and transformation in humans. This study chose two typical foods, spinach and cola, representing vegetable and soft drink, respectively, and investigated their effects on Pb species in gastrointestinal tract using the physiologically based extraction test. Results showed that ingestion of spinach and cola decreased the Pb-BA by 52%-94% in the gastric phase and by 38%-95% in the intestinal phase, respectively. The reduction of Pb-BA by spinach was attributed to the precipitation of Pb with phosphorus in spinach and the sorption of Pb by the generated hydrolysate and un-hydrolysate from spinach in gastrointestinal tract. Cola decreased Pb-BA mainly via formation of insoluble Pb phosphates precipitates. Analysis of X-ray diffraction and MINTEQ modeling demonstrated that the dissolved Pb was transformed to precipitated or sorbed Pb with intake of cola or spinach. Our findings suggest that dietary habit greatly influence the speciation and subsequent Pb-BA in the gastrointestinal tract, which should be incorporated into human health risk assessment of Pb-contaminated soil.
Collapse
Affiliation(s)
- Jin Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China.
| | - Junhong Kan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
26
|
Yan K, Dong Z, Naidu R, Liu Y, Li Y, Wijayawardena A, Sanderson P, Li H, Ma LQ. Comparison of in vitro models in a mice model and investigation of the changes in Pb speciation during Pb bioavailability assessments. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121744. [PMID: 31796360 DOI: 10.1016/j.jhazmat.2019.121744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
In this study, the predominant Pb minerals prior to and after Pb relative bioavailability (Pb-RBA) and Pb bioaccessibility (Pb-BAc) tests were identified using SEM (scanning electron microscopy), XANES (X-ray absorption near edge structure) and XRD (X-ray diffraction). The correlations between in vitro Pb-BAc (using the UBM (Unified BARGE Method) and RBALP (Relative BioAccessibility Leaching Procedure) models) and in vivo Pb-RBA (using endpoints of kidney and liver in an mice model) were determined. The results demonstrated that both RBALP and UBM (gastric phase) reliably indicate Pb-RBA (Pb-RBA). However, raising the solid:liquid ratio of the gastric phase of UBM is necessary to determine Pb-BAc if the soils contain total Pb >10,000 mg/kg. The comparison of Pb minerals prior to and after in vitro extractions demonstrated that the relatively soluble forms of Pb (PbSO4, PbO2 and MgO Pb) start to dissolve than other forms of Pb minerals, suggesting there was no difference in Pb2+ release between chemical-based (RBALP) and physiologically-based (UBM) models. The identification of the Pb minerals of Pb5(PO4)3Cl and organically-complexed Pb in mice excreta demonstrated that a portion of Pb2+ combined with food and humic acid to generate organically-complexed Pb in mice excreta, and that Pb5(PO4)3Cl is not bioavailable.
Collapse
Affiliation(s)
- Kaihong Yan
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijing, China
| | - Ravi Naidu
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Yanju Liu
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yeling Li
- School of Resource and Environmental Engineering, East China University of Technology, Nanchang, China
| | - Ayanka Wijayawardena
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Peter Sanderson
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hongbo Li
- School of the Environment, Nanjing University, Nanjing, China.
| | - Lena Q Ma
- School of the Environment, Nanjing University, Nanjing, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
27
|
Lancellotti L, Sighinolfi S, Marchetti A, Tassi L. Use of Lead Isotopic Ratios as Geographical Tracer for Lambrusco PDO Wines. Molecules 2020; 25:molecules25071641. [PMID: 32252457 PMCID: PMC7180896 DOI: 10.3390/molecules25071641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, the lead isotope signature was tested with the aim to verify its potential as geographic tracer for wine production and particularly for the Lambrusco PDO wines of the province of Modena (Italy). A solid phase extraction procedure, for separating lead from the investigated matrices, soil and wine, was optimized. Furthermore, different mathematical models, based on an exponential law and internal or external correction approach, were evaluated for the correction of instrumental mass dependent fractionation. The optimized analytical procedure yielded isotopic ratio data relative to the lead NIST 981 standard, 208Pb/206Pb = 2.16664 and 207Pb/206Pb = 0.914645, in good agreement both with the tabulated values and with the most recent literature data. Measured isotope ratio data highlight the contribute of multiple lead sources in bottled wine but different from the one present in soils.
Collapse
|
28
|
Zhang G, Shao L, Li F, Yang F, Wang J, Jin Z. Bioaccessibility and health risk assessment of Pb and Cd in urban dust in Hangzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11760-11771. [PMID: 31975000 DOI: 10.1007/s11356-020-07741-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Heavy metals in urban dust can enter the human body through a variety of ways, thus endangering human health. Understanding the bioaccessibility of heavy metals in urban dust is a key to its risk assessment. After the G20 summit in 2016, Hangzhou city has received much attention, including its environmental health risk. The surface dust collected from three different functional areas in Hangzhou were subjected to the in vitro physiologically based extraction test (PBET) to measure the bioaccessibility of Pb and Cd. In terms of spatial variation, the distribution of Pb bioaccessibility was in the order of residential areas > city parks > main roads > the Botanic Garden, while for Cd ordered in city parks > residential areas > main roads > the Botanic Garden. For temporal variation, the bioaccessibility of Pb was higher in autumn and winter, and the bioaccessibility of Cd was higher in spring and autumn. Based on multiple linear statistical analysis, the relationship between the spatial and temporal distribution differences of the bioaccessibility of Pb and Cd in the city and the main components was discussed. Meanwhile, the non-carcinogenic hazard quotients of Pb and the carcinogenic risk of Cd were calculated and showed no harm to human health, except the total Pb in the surface dust with a high non-carcinogenic risk for infants. Urban dust in Hangzhou city has a slight pollution and health risk from Pb. Currently, controlling and reducing the city's Pb emission is the key to maintain Hangzhou city's air quality and matching with its international tourism city.
Collapse
Affiliation(s)
- Gaoxiang Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Luze Shao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Feng Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jiamin Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zanfang Jin
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
29
|
Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072179. [PMID: 32218253 PMCID: PMC7177270 DOI: 10.3390/ijerph17072179] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/21/2022]
Abstract
Lead (Pb) toxicity has been a subject of interest for environmental scientists due to its toxic effect on plants, animals, and humans. An increase in several Pb related industrial activities and use of Pb containing products such as agrochemicals, oil and paint, mining, etc. can lead to Pb contamination in the environment and thereby, can enter the food chain. Being one of the most toxic heavy metals, Pb ingestion via the food chain has proven to be a potential health hazard for plants and humans. The current review aims to summarize the research updates on Pb toxicity and its effects on plants, soil, and human health. Relevant literature from the past 20 years encompassing comprehensive details on Pb toxicity has been considered with key issues such as i) Pb bioavailability in soil, ii) Pb biomagnification, and iii) Pb- remediation, which has been addressed in detail through physical, chemical, and biological lenses. In the review, among different Pb-remediation approaches, we have highlighted certain advanced approaches such as microbial assisted phytoremediation which could possibly minimize the Pb load from the resources in a sustainable manner and would be a viable option to ensure a safe food production system.
Collapse
|
30
|
Du H, Yin N, Cai X, Wang P, Li Y, Fu Y, Sultana MS, Sun G, Cui Y. Lead bioaccessibility in farming and mining soils: The influence of soil properties, types and human gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135227. [PMID: 31812419 DOI: 10.1016/j.scitotenv.2019.135227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
To better understand the risk assessment of Lead (Pb) in contaminated soils, 78 soil samples were collected from different locations in China and Pb bioaccessibility was assessed using the PBET (The Physiologically Based Extraction Test) method combined with SHIME (The Simulator of the Human Intestinal Microbial Ecosystem), and Pb bioaccessibility data from the PBET method on 88 soil samples that found in the literature were also used for the assessment. For all the soils, the mean Pb bioaccessibility was as follows: the gastric phase (31.25%) > colon phase (17.78%) > small intestinal phase (10.13%). The values of Pb bioaccessibility in most soils were lower than 60%, which is the typical default assumption for Pb (RBA, relatively bioavailability) by the US EPA. Mean Pb bioaccessibility (41.10% and 14.00% for gastric and small intestinal phases, respectively) in the present study was slightly higher than the values from the literature (24.80% and 8.68% for gastric and small intestinal phases, respectively) in the gastrointestinal tract. Mean Pb bioaccessibility was lower in acidic soil during the small intestinal phase, while the values for the alkaline soil were higher in the small intestinal and colon phases. In the gastric and small intestinal phases, mean Pb bioaccessibility in farming soils was slightly lower than it was in mining soils. However, the mean Pb bioaccessibility from farming soils was increased compared with mining soils in the colon phase given the action of human gut microbiota. Soil pH and type are important factors for predicting soil Pb bioaccessibility and health risk.
Collapse
Affiliation(s)
- Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yan Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yaqi Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Mst Sharmin Sultana
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Guoxin Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.
| |
Collapse
|
31
|
Zhao R, Guan Q, Luo H, Lin J, Yang L, Wang F, Pan N, Yang Y. Fuzzy synthetic evaluation and health risk assessment quantification of heavy metals in Zhangye agricultural soil from the perspective of sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134126. [PMID: 31491630 DOI: 10.1016/j.scitotenv.2019.134126] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Heavy metals in agricultural soil receive much attention because they are easily absorbed by crop into the ecosystem. Managing the discharge of heavy metals from the source is an effective way to prevent and control heavy metals pollution. Grouped principal component analysis (GPCA) and Positive Matrix Factorization (PMF) receptor models were utilized in this study to conduct source apportionment, and the former was optimal because of the accuracy of predicting. Based on the source contribution by GPCA/APCS, heavy metals were evaluated by fuzzy synthetic evaluation model and health risk assessment model. The results of source apportionment showed that heavy metals in Zhangye agricultural soil were mainly affected by steel industry, traffic, agrochemicals, manures, mining activities, leather industry and metal processing industry source. Fuzzy synthetic evaluation showed that the pollution levels of Chromium (Cr) derived by leather industry and metal processing industry and Nickel (Ni) derived by steel industry and traffic source were higher. Health risk assessment revealed that the non-carcinogenic and carcinogenic risks of Cr derived by leather industry and metal processing industry and Lead (Pb) derived by steel industry and traffic source were higher.
Collapse
Affiliation(s)
- Rui Zhao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education) and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qingyu Guan
- Key Laboratory of Western China's Environmental Systems (Ministry of Education) and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Haiping Luo
- Key Laboratory of Western China's Environmental Systems (Ministry of Education) and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinkuo Lin
- Key Laboratory of Western China's Environmental Systems (Ministry of Education) and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liqin Yang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education) and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Feifei Wang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education) and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ninghui Pan
- Key Laboratory of Western China's Environmental Systems (Ministry of Education) and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yanyan Yang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education) and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
32
|
Li HB, Li MY, Zhao D, Li J, Li SW, Juhasz AL, Basta NT, Luo YM, Ma LQ. Oral Bioavailability of As, Pb, and Cd in Contaminated Soils, Dust, and Foods based on Animal Bioassays: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10545-10559. [PMID: 31442034 DOI: 10.1021/acs.est.9b03567] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Metal contamination in soil, dust, and food matrices impacts the health of millions of people worldwide. During the past decades, various animal bioassays have been developed to determine the relative bioavailability (RBA) of As, Pb, and Cd in contaminated soils, dust, and foods, which vary in operational approaches. This review discusses the strengths and weaknesses of different animal models (swine and mice), dosing schemes (single gavage dose, repeated gavage dose, daily repeated feeding, and free access to diet), and end points (blood, urine, and tissue) in metal-RBA measurement; compares metal-RBA obtained using mouse and swine bioassays, different dosing schemes, and different end points; and summarizes key findings on As-, Pb-, and Cd-RBA values in contaminated soils, dust, and foods. Future directions related to metal-RBA research are highlighted, including (1) comparison of metal-RBA determinations between different bioassays and different laboratories to ensure robust bioavailability data, (2) enhancing the metal-RBA database for contaminated dust and foods, (3) identification of physiological and physicochemical mechanisms responsible for variability in metal-RBA values, (4) formulation of strategies to decrease metal-RBA values in contaminated soils, dust, and foods, and (5) assessing the impacts of cocontaminants on metal-RBA measurement.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Di Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Jie Li
- College of Geography and Environment , Shandong Normal University , Jinan 250358 , China
| | - Shi-Wei Li
- School of Water Conservancy and Environment , University of Jinan , Jinan 250022 , China
| | - Albert L Juhasz
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| | - Nicholas T Basta
- School of Environment and Natural Resources , Ohio State University , Columbus , Ohio 43210
| | - Yong-Ming Luo
- Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
33
|
Yang S, Zhao J, Chang SX, Collins C, Xu J, Liu X. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis. ENVIRONMENT INTERNATIONAL 2019; 128:165-174. [PMID: 31055203 DOI: 10.1016/j.envint.2019.04.044] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Heavy metal accumulation in agriculture soils is of particular concern in China, while the status and probabilistic health risks of metal contamination in Chinese agriculture soils have been rarely studied at the national scale. In this study, we compiled a database of heavy metal concentrations in Chinese agriculture soils and selected six heavy metals for pollution assessment and risk screening: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb) and Zinc (Zn). Monte Carlo simulation was employed to assess the probabilistic health risks, the associated uncertainties, as well as variations in toxicity parameters, ingestion rate and body weight. Results indicated that the concentrations of Cd were elevated above their reference standard and Cd had the highest mean geo-accumulation index (Igeo) of 1.79. Moreover, the mean hazard index (HI) through exposure to six heavy metals was 1.85E-01 and 2.87E-02 for children and adults, respectively, with 2.2% of non-cancer risks for children that exceeded the guideline value of 1. In contrast, 95.0% and 90.0% of the total cancer risks (TCR) through exposure to six heavy metals for children and adults, respectively, exceeded the guideline value of 1E-06. Six metals were ranked based on their percent of risk outputs exceeding the guideline values. Arsenic had the high exceedance of both cancer and non-cancer risks, while both Cr and Cd were metals with high concern that had high exceedance of cancer risk. Sensitivity analyses indicated that metal concentrations and ingestion rate of soil were the predominant contributors to total risk variance. Overall, the adverse health risks induced by exposure to heavy metals contaminated farmland were elevated. Results from this study may provide valuable implications for public health professionals and policy-makers to design effective strategy to manage nation-wide farmland and reduce heavy metal exposure.
Collapse
Affiliation(s)
- Shiyan Yang
- College of Environmental Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jian Zhao
- College of Environmental Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Chris Collins
- Department of Geography and Environmental Science, University of Reading, Whiteknights Campus, Reading RG6 6DW, UK
| | - Jianming Xu
- College of Environmental Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xingmei Liu
- College of Environmental Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Liu ZD, Li HB, Fang X, Zhang H, Ma LQ, Luo J. Investigating Lead Species and Bioavailability in Contaminated Soils: Coupling DGT Technique with Artificial Gastrointestinal Extraction and in Vivo Bioassay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5717-5724. [PMID: 31009209 DOI: 10.1021/acs.est.8b06918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although strong in vivo-in vitro correlations (IVIVCs) between relative bioavailability (RBA) and bioaccessibility of soil Pb were well reported, knowledge on the fractions of bioaccessible Pb in simulated gastrointestinal (GI) fluids that are available for absorption into the systemic circulation is limited. Here, Pb-RBA in 14 Pb-contaminated soils were assessed using an in vivo mouse bioassay and compared to Pb bioaccessibility by the gastrointestinal phase of the UBM (Unified Bioaccessibility research group of Europe (BARGE) Method) in vitro assay with and without 0.45 μm filtration of GI fluid. Results showed good IVIVC between Pb-RBA and Pb bioaccessibility without filtration ( r 2 = 0.62), while Pb bioaccessibility with filtration provided a poor correlation with Pb-RBA ( r 2 = 0.16). This suggested that besides dissolved Pb ions, Pb-complexes formed in the UBM gastrointestinal fluid might also contribute to bioavailable Pb. To ascertain this, DGT (diffusive gradients in thin-films) devices which can measure both Pb2+ ions and labile inorganic and organic Pb-complexes were introduced to the UBM fluids to measure Pb DGT-bioaccessibility, which showed strong correlation to Pb-RBA ( r 2 = 0.71). With increasing diffusive gel thickness which could enhance release of Pb ions from Pb-complexes, Pb DGT-bioaccessibility increased by 3.4-5.7 times, while inclusion of dialysis membrane within DGT devices significantly decreased Pb DGT-bioaccessibility by inhibiting diffusion of Pb complexes to binding gel. These results confirmed the contribution of Pb-complexes to Pb bioavailability, providing new insights to Pb bioavailability.
Collapse
Affiliation(s)
- Zhao-Dong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Xu Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Hao Zhang
- Lancaster Environment Centre , Lancaster University , Lancaster , LA1 4YQ , United Kingdom
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , People's Republic of China
- Soil and Water Science Department , University of Florida , Gainesville , Florida 32611 , United States
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| |
Collapse
|
35
|
Lago-Vila M, Arenas-Lago D, Rodríguez-Seijo A, Andrade ML, Vega FA. Ability of Cytisus scoparius for phytoremediation of soils from a Pb/Zn mine: Assessment of metal bioavailability and bioaccumulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:152-160. [PMID: 30682667 DOI: 10.1016/j.jenvman.2019.01.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Abandoned mining areas are an environmental concern for aquatic and terrestrial ecosystems due to their unfavourable soil properties and high levels of potentially toxic elements. Despite this, some plant species may grow spontaneously and colonise these areas; being suitable in many cases for restoration practices, since they may accumulate metals in their tissues. This study aims to assess the effectiveness of 14 chemical soil extractants to predict the bioavailability of toxic elements (Cd, Pb and Zn) in soils from the abandoned Pb/Zn mine of Rubiais (NW Spain), based on root and shoot metal contents in Cytisus scoparius (L.) Link, which grows spontaneously in this area. Afterwards, its potential for phytoremediation activities was assessed. Mine soils showed high contents Cd (1.77-14.38 mg kg-1), Pb (850-2137 mg kg-1) and Zn (1754-12090 mg kg-1). Cytisus scoparius grows in spite of these high metal contents; accumulating Zn and Pb in its roots, Zn in the aerial part and excluding mostly Cd from its tissues. None of the extractants used to determine the bioavailable content of Pb allow predicting its availability for C. scoparius. However, LMWOA was the most effective extractant to determine the bioavailability of Cd and Zn for this species. Besides, NH4NO3 and Ca(NO3)2 are also good indicators for Zn bioavailability. The analysis of bioconcentration and translocation factors suggest that C. scoparius behaves like a Zn accumulator plant, whereas alternatively, it behaves like a Pb phytostabiliser and as a Cd excluder species. Thus, C. scoparius can be used as a species for mine soil restoration, decreasing the mobility of metals and preventing their dispersion to another ecosystem compartments.
Collapse
Affiliation(s)
- Manoel Lago-Vila
- Department of Plant Biology and Soil Science, University of Vigo, As Lagoas, Marcosende, E-36310, Vigo, Spain
| | - Daniel Arenas-Lago
- Department of Plant Biology and Soil Science, University of Vigo, As Lagoas, Marcosende, E-36310, Vigo, Spain.
| | - Andrés Rodríguez-Seijo
- GreenUPorto & Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Maria Luisa Andrade
- Department of Plant Biology and Soil Science, University of Vigo, As Lagoas, Marcosende, E-36310, Vigo, Spain
| | - Flora A Vega
- Department of Plant Biology and Soil Science, University of Vigo, As Lagoas, Marcosende, E-36310, Vigo, Spain
| |
Collapse
|
36
|
González-Grijalva B, Meza-Figueroa D, Romero FM, Robles-Morúa A, Meza-Montenegro M, García-Rico L, Ochoa-Contreras R. The role of soil mineralogy on oral bioaccessibility of lead: Implications for land use and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1468-1479. [PMID: 30677913 DOI: 10.1016/j.scitotenv.2018.12.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Understanding the oral bioaccessibility of lead (Pb) present in soils in urbanized areas is important for the human exposure risk assessment. In particular, the role of the soil-mineralogy in the oral bioaccessibility has not been extensively studied. To investigate bioaccessibility, five types of periurban soils were collected, samples were spiked with the same amount of lead-chromates from traffic paint, and subjected to the in vitro Physiological Based Extraction Test (PBET). Ten samples of urban topsoils were collected at elementary schools playgrounds, Pb-bioaccessibility was measured, and a prediction equation for bioaccessibility was constructed. Mineralogy, and metal content were identified with a combination of X-ray powder diffraction, scanning electron microscopy, and portable X-ray fluorescence techniques. Traffic paint sample is made of 15% quartz (SiO2), 13% crocoite (PbCrO4), 55% calcite (CaCO3), and 17% kaolinite (Al2Si2O5(OH)4) and it contains high metal content (Pb, Cr, Zn, and Ca). Studied soils are characterized by variable amounts of acid-neutralizing minerals (carbonates) and low metal content. Spiked soils contained almost equal concentration of Pb, Cr, and Zn, because the contribution of these metals is from the added paint. However, obtained Pb-bioaccessibility at gastric and intestinal conditions are variable (40 to 51% gastric, 24 to 70.5% intestinal). Carbonate content shows significant correlation (p < 0.05) with Cr, Ca, calcite, crocoite, and Pb-bioaccessible at gastric conditions. Correlation of Pb-bioaccessible at intestinal conditions is significant (p < 0.05) with kaolinite. Variability of Pb-bioaccesibility in urban environments is commonly associated to differences in Pb-sources, however, our results show that the bioaccessibility of the same pollutant behaves different for each soil type. This suggests that soil mineralogy may play a role in Pb-releasing at gastrointestinal conditions. Soil information about mineralogical characteristics from this study may help to reduce exposure to lead from urban sources if data are incorporated into urban planning.
Collapse
Affiliation(s)
- Belem González-Grijalva
- Earth Sciences Graduate Program, Institute of Geology, National University of Mexico, Colosio y Madrid, Hermosillo, Sonora 83240, Mexico
| | - Diana Meza-Figueroa
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico; National Laboratory of Geochemistry and Mineralogy - LANGEM, Mexico.
| | - Francisco M Romero
- Institute of Geology, National University of Mexico, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, Mexico; National Laboratory of Geochemistry and Mineralogy - LANGEM, Mexico
| | - Agustín Robles-Morúa
- Department of Natural Resources, Technological Institute of Sonora, Cd. Obregón, Sonora, Mexico; National Laboratory of Geochemistry and Mineralogy - LANGEM, Mexico
| | - Mercedes Meza-Montenegro
- Department of Natural Resources, Technological Institute of Sonora, Cd. Obregón, Sonora, Mexico; National Laboratory of Geochemistry and Mineralogy - LANGEM, Mexico
| | - Leticia García-Rico
- Center of Research in Food and Development, A.C., Carretera a la Victoria km 0.6, 83304 Hermosillo, Sonora, Mexico
| | - Roberto Ochoa-Contreras
- Center of Research in Food and Development, A.C., Carretera a la Victoria km 0.6, 83304 Hermosillo, Sonora, Mexico
| |
Collapse
|
37
|
Yan K, Dong Z, Wijayawardena MAA, Liu Y, Li Y, Naidu R. The source of lead determines the relationship between soil properties and lead bioaccessibility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:53-59. [PMID: 30529941 DOI: 10.1016/j.envpol.2018.11.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Lead (Pb) contaminated soil is of particular concern for infants and children due to their susceptibility to exposure, fast metabolic rates and rapidly developing neuronal systems. Determining the bioaccessibility of Pb in soils is critical in human health risk assessments, which can vary due to different soil properties and sources of Pb contamination. In this study, the potential relationships between soil properties and Pb bioaccessibility from various Pb sources including Pb contamination from mining (specifically, Broken Hill), three shooting ranges, a smelter and two industry sites (pottery and battery), were investigated using the Relative Bioavailability Leaching Procedure (RBALP). We found the following: (1) CEC, TOC, sand and silt content, and total Pb were significantly different (p < 0.05) between the two particle size fractions of < 2 mm and < 250 μm; (2) EC, CEC and total Pb were significantly correlated to Pb bioaccessibility (p < 0.05); and (3) soil analyses based on source of Pb demonstrated a strongly significant relationship between Pb bioaccessibility and soil properties (CEC, EC, clay content and total Pb) for mining soils from Broken Hill (r2 = 0.86, p < 0.05, n = 18). These results demonstrated the influences of Pb contamination sources, soil properties and particle size fractions on Pb bioaccessibility as well as the prediction of Pb bioaccessibility using soil properties. The findings documented here will help in developing a predictive tool for human health risk assessment and the remediation of Pb contaminated soils.
Collapse
Affiliation(s)
- Kaihong Yan
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhaomin Dong
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia; School of Space and Environment, Beihang University, Beijing, China
| | - M A Ayanka Wijayawardena
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yanju Liu
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yubiao Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ravi Naidu
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
38
|
Dang F, Jiang Y, Li M, Zhong H, Peijnenburg WGM, Shi W, Zhou D. Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:364-373. [PMID: 30199811 DOI: 10.1016/j.envpol.2018.08.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
The abundance of silver nanoparticles (AgNPs) in consumer products has led to their environmental release and therefore to concern about their impact on human health. The ingestion of AgNP-contaminated soil from urban sites is an important exposure pathway, especially for children. Given the limited information on oral bioaccessibility of soil Ag, we used a physiologically based extraction test (PBET) to evaluate the bioaccessibility of AgNPs and AgNO3 from soil digestion. The AgNPs underwent several biochemical transformations, including their simultaneous dissolution and agglomeration in gastric fluid followed by the disintegration in the intestinal fluid of the agglomerates into NPs containing silver and chlorine. Therefore, Ag-containing soil exposed the intestine to nanoparticulate Ag in forms that were structurally different from the original forms. The bioaccessibility of AgNPs (0.5 ± 0.05%-10.9 ± 0.7%) was significantly lower than that of AgNO3 (4.7 ± 0.6%-14.4 ± 0.1%), as a result of the lower adsorption of nanoparticles to soil residues during the digestive process. For the soils tested, the bioaccessibility of AgNPs increased with decreasing clay contents and lower pH. By identifying the soil properties that control AgNP bioaccessibility, a more efficient and accurate screening can be performed of soil types that pose the greatest health risk associated with AgNP exposure.
Collapse
Affiliation(s)
- Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuanyuan Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences, Nanjing, 210008, China; Suzhou University of Science and Technology, Kerui Road 1 in Gaoxin Section, Suzhou, 215011, Jiangsu, China
| | - Min Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu Province, China
| | - WillieJ G M Peijnenburg
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, 3720, BA, Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, 2300, RA, Leiden, the Netherlands
| | - Weilin Shi
- Suzhou University of Science and Technology, Kerui Road 1 in Gaoxin Section, Suzhou, 215011, Jiangsu, China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
39
|
Plunkett SA, Wijayawardena MAA, Naidu R, Siemering GS, Tomaszewski EJ, Ginder-Vogel M, Soldat DJ. Use of Routine Soil Tests to Estimate Pb Bioaccessibility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12556-12562. [PMID: 30351030 DOI: 10.1021/acs.est.8b02633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Soil lead (Pb) hazard level is contingent on bioavailability, but existing assays that estimate Pb bioavailability for human health risks are too expensive or otherwise inaccessible to many people that are impacted by Pb-contaminated soil. This study investigated the use of routine soil nutrient tests to estimate soil-Pb bioaccessibility as a surrogate measure of Pb bioavailability. A silt loam soil was spiked to a target concentration of 2000 mg Pb kg-1 with Pb(NO3)2 and amended with H3PO4 (varying P-to-Pb molar ratios) and KCl (Cl-to-P molar ratio of 2:5) to generate soils with similar total Pb concentrations but a range of Pb bioavailability (and bioaccessibility). Soils were extracted using Mehlich 3, Mehlich 1, Bray P1, Olsen, and micronutrient (DTPA) methods, and the results were compared to U.S. Environmental Protection Agency method 1340 data as well as to extended X-ray absorption fine structure (EXAFS) spectroscopy. The Mehlich 3 and method 1340 treatment effect ratios were well-correlated ( r2 = 0.88, p ≤ 0.05), whereas Bray P1, DTPA, and Olsen results were more reflective of EXAFS data. Preliminary animal-feeding trials suggest that the Mehlich 3 is as effective as method 1340 at predicting the impact of P treatment on Pb relative bioavailability; however, both methods over-estimated the Pb hazard to mice in P-amended soil. Other routine soil tests that have heightened sensitivity to P amendment (e.g., Bray P1) may be promising candidates for Pb bioaccessibility assessment.
Collapse
Affiliation(s)
- Shannon A Plunkett
- Department of Soil Science , University of Wisconsin , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| | - M A Ayanka Wijayawardena
- Global Centre for Environmental Remediation , University of Newcastle , ATC Building , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRE CARE) , Mawson Lakes , SA 5095 , Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation , University of Newcastle , ATC Building , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRE CARE) , Mawson Lakes , SA 5095 , Australia
| | - Geoffrey S Siemering
- Department of Soil Science , University of Wisconsin , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| | - Elizabeth J Tomaszewski
- Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program , University of Wisconsin , 660 North Park Street , Madison , Wisconsin 53706 , United States
| | - Matthew Ginder-Vogel
- Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program , University of Wisconsin , 660 North Park Street , Madison , Wisconsin 53706 , United States
| | - Douglas J Soldat
- Department of Soil Science , University of Wisconsin , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| |
Collapse
|
40
|
Ti Q, Gu C, Liu C, Cai J, Bian Y, Yang X, Song Y, Wang F, Sun C, Jiang X. Comparative evaluation of influence of aging, soil properties and structural characteristics on bioaccessibility of polychlorinated biphenyls in soil. CHEMOSPHERE 2018; 210:941-948. [PMID: 30208554 DOI: 10.1016/j.chemosphere.2018.07.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Though bioaccessibility commonly recognized as a guideline for risk assessment is closely related with pollution occurrence and chemical species of compounds, the mechanistic links are barely evaluated particularly for widespread polychlorinated biphenyls (PCBs) in soil. With the biomimetic extraction of hydroxypropyl-β-cyclodextrin (β-HPCD), the temporal and spatial influences of soil properties, aging and structural characteristics, e.g. polarity of PCB congeners on bioaccessibility were investigated for PCBs. Sensitive variation of bioaccessibility with aging, soil organic matter (SOM), particle size and soil moisture were clearly evidenced for different PCB congeners. Due to aging, the bioaccessibility decreased in the long term after stabilization for 36 h. In concert with the first-order kinetics, the decay rates of bioaccessibility were shown with congener-specificity and were well correlated with dipoles of PCBs. The increment of SOM diminished the bioaccessibility for the strengthened adsorption while the increased particle size and soil moisture elevated it possibly due to the less adsorption on soil particles and more accommodation of PCBs in soil pore water. Except the positive correlations with particle size, soil moisture and dipole moment, the greater dependency on aging and SOM was highlighted for bioaccessibility by partial least squares (PLS) analysis. The mutual relationship with influential factors was quantitatively formulated for accelerative prediction of bioaccessibility, and the comparative evaluation and detailed insights into the mechanistic links would thus help enhance the precise determination of bioaccessibility and risk assessment of PCBs in soil.
Collapse
Affiliation(s)
- Qingqing Ti
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenggang Gu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Chang Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Cai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Xinglun Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Yang Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|
41
|
Ai S, Liu B, Yang Y, Ding J, Yang W, Bai X, Naeem S, Zhang Y. Temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system and associated influencing factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:204-214. [PMID: 29438813 DOI: 10.1016/j.ecoenv.2018.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/07/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Heavy metal pollution in farmlands is highly concerned as crops' easy-uptake of heavy metal can ultimately affect consumers. In order to offer suggestions on cultivating safe quality vegetable, specifically eggplant which is widely consumed for its nutritional value and antioxidant activity, a field study was undertaken to investigate the temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system. In the present study, eggplants were planted in the farmlands of Weichuan village (WC) (relatively unpolluted field), Liangzhuang village (LZ) (moderately polluted field) and Minqin village (MQ) (seriously polluted field) to elucidate their temporal uptake processes of heavy metals described by the sigmoid model. Eggplant tissues from severely polluted farmlands were found with higher heavy metal concentrations and lower yields compared with other two groups. What is more, 25 farmlands along the Dongdagou stream (heavy metals polluted stream) were chosen to analyze the spatial distribution of heavy metals in soils and eggplants. Heavy metal concentrations in eggplants decreased with the decline of heavy metal concentrations in soil from upstream (pollution source) to downstream. Moreover, several methods were employed to assess bioavailability of heavy metals in soils. All the bioavailable heavy metals were found in linear positive correlations with heavy metal concentrations. Meanwhile, linear correlations were found between heavy metals in soils and eggplants. At last, redundancy analysis was used to investigate the effects of soil properties (pH, organic matter and texture of soils) and heavy metals on eggplants' uptake. The results indicated that soil heavy metals had a dominant impact on their accumulations in eggplant fruit, with a variance contribution of 78.0%, while soil properties had a regulatory effect, with a variance contribution of 5.2%.
Collapse
Affiliation(s)
- Shiwei Ai
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bailin Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jian Ding
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenzhi Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaojuan Bai
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sajid Naeem
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
42
|
Yan K, Naidu R, Liu Y, Wijayawardena A, Duan L, Dong Z. A Pooled Data Analysis to Determine the Relationship between Selected Metals and Arsenic Bioavailability in Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050888. [PMID: 29710849 PMCID: PMC5981927 DOI: 10.3390/ijerph15050888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 11/22/2022]
Abstract
Chronic exposure to arsenic (As) is a global concern due to worldwide exposure and adverse effects, and the importance of incorporating bioavailability in the exposure assessment and risk assessment of As is increasing acknowledged. The bioavailability of As is impacted by a number of soil properties, such as pH, clay and metal concentrations. By retrieving 485 data from 32 publications, the aim of this study was to determine the relationship between selected metals (Fe and Al) and As bioavailability. In present study, the bioaccessibility (BAC) data measured by in vitro approaches were converted into bioavailability data based on the previously determined relationship between BAC and bioavailability. The As relative bioavailability (RBA) was summarized to be 24.36 ± 18.49%, which is in the range previously reported. A significant association between Fe concentration and the bioavailability of As was observed while this association varied for different types of RBA data. This disparity may suggest a non-reliable association between Fe and As bioavailability. The correlations between logarithmically transformed total content of Fe + Al and As bioavailability is then outlined: RBA = (−8.40 ± 1.02) × Ln(Fe + Al) + (58.25 ± 4.09), R2 = 0.25, p < 0.001, n = 212. Jackknife resampling was also applied to validate the relation between total content of (Fe + Al) and As bioavailability, which suggested that the relation is robust. This is the first pooled study to address the relations between selected metal concentrations and As bioavailability, which may provide some implications to establish soil properties-based RBA prediction for As.
Collapse
Affiliation(s)
- Kaihong Yan
- Global Centre for Environmental Remediation, the Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, the Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Yanju Liu
- Global Centre for Environmental Remediation, the Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Ayanka Wijayawardena
- Global Centre for Environmental Remediation, the Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Luchun Duan
- Global Centre for Environmental Remediation, the Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Zhaomin Dong
- Global Centre for Environmental Remediation, the Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| |
Collapse
|