1
|
Ngo HTT, Hang NTT, Nguyen XC, Nguyen NTM, Truong HB, Liu C, La DD, Kim SS, Nguyen DD. Toxic metals in rice among Asian countries: A review of occurrence and potential human health risks. Food Chem 2024; 460:140479. [PMID: 39053271 DOI: 10.1016/j.foodchem.2024.140479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Heavy metals such as cadmium (Cd), arsenic (As), and lead (Pb) pose significant health risks, particularly in Asia, where rice is a staple for nearly three billion people. Despite their known dangers and environmental prevalence, studies addressing their concentrations in rice across different regions and the associated health implications remain insufficient. This review systematically examines the occurrence and impact of these toxic elements, filling a critical gap in the literature. Data from seven countries indicate mean concentrations in the order of Pb > As>Cd, with values of 0.255 ± 0.013, 0.236 ± 0.317, and 0.136 ± 0.150 mg/kg, respectively. Uncertainty analysis shows extensive variability, especially for Cd, with a 95% confidence interval range from 0.220 to 0.992 mg/kg. The typical daily intake of heavy metals through rice consumption, in the order of As>Cd > Pb, frequently exceeds safe limits. Generally, data obtained from various studies showed that children were more prone to heavy metal contamination through rice consumption than adults. This review is fundamental for ongoing monitoring, future research, and management strategies to reduce heavy metal contamination in rice.
Collapse
Affiliation(s)
- Hien Thi Thu Ngo
- Faculty of Health Sciences, Thang Long University, Hanoi 100000, Viet Nam
| | - Nguyen Thi Thuy Hang
- Faculty of Environment, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Xuan Cuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Ngoc Thi Minh Nguyen
- Faculty of Public Health, Haiphong University of Medicine and Pharmacy, Hai Phong 180000, Viet Nam
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Chong Liu
- Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - Duc Duong La
- Institute of Chemistry and Materials, 17 Hoang Sam, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Sung Su Kim
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
2
|
Zhang T, Yang X, Zeng Z, Li Q, Yu J, Deng H, Shi Y, Zhang H, Gerson AR, Pi K. Combined Remediation Effects of Sewage Sludge and Phosphate Fertilizer on Pb-Polluted Soil from a Pb-Acid Battery Plant. ENVIRONMENTAL MANAGEMENT 2024; 74:928-941. [PMID: 38376512 DOI: 10.1007/s00267-024-01948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
Pb soil pollution poses a serious health risk to both the environment and humans. Immobilization is the most common strategy for remediation of heavy metal polluted soil. In this study, municipal sewage sludge was used as an amendment for rehabilitation of Pb-contaminated soils, for agricultural use, near a lead-acid battery factory. The passivation effect was further improved by the addition of phosphate fertilizer. It was found that the leachable Pb content in soils was decreased from 49.6 mg kg-1 to 16.1-36.6 mg kg-1 after remediation of sludge for 45 d at applied dosage of municipal sewage sludge of 4-16 wt%, and further decreased to 14.3-34.3 mg kg-1 upon extension of the remediation period to 180 d. The addition of phosphate fertilizer greatly enhanced the Pb immobilization, with leachable Pb content decreased to 2.0-23.6 mg kg-1 with increasing dosage of phosphate fertilizer in range of 0.8-16 wt% after 180 d remediation. Plant assays showed that the bioavailability of Pb was significantly reduced by the soil remediation, with the content of absorbed Pb in mung bean roots decreased by as much as 87.0%. The decrease in mobility and biotoxicity of the soil Pb is mainly attributed to the speciation transformation of carbonate, Fe-Mn oxides and organic matter bound Pb to residue Pb under the synergism of reduction effect of sludge and acid dissolution and precipitation effect of phosphate fertilizer. This study suggests a new method for remediation of Pb-contaminated soil and utilization of municipal sewage sludge resources.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Xiong Yang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China.
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Zhijia Zeng
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Qiang Li
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jiahai Yu
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Huiling Deng
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yafei Shi
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Huiqin Zhang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Andrea R Gerson
- Blue Minerals Consultancy, Wattle Grove, Tasmania, 7109, TAS, Australia
| | - Kewu Pi
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China.
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
3
|
Krzyżak J, Rusinowski S, Szada-Borzyszkowska A, Pogrzeba M, Stec R, Janota P, Lipowska B, Stec K, Długosz J, Sitko K. A novel agrosinters support growth, photosynthetic efficiency and reduce trace metal elements accumulation in oilseed rape growing on metalliferous soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125095. [PMID: 39389250 DOI: 10.1016/j.envpol.2024.125095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Soil conditioners to fertilize, improve soil structure and support the phytostabilization of trace metal elements (TMEs) are being used more and more frequently. One of the options are agrosinters - slow-release ceramic fertilizers consisting mainly of SiO2, CaO, P2O5 and K2O, with an alkaline pH and high impact strength. The effect of two different agrosinters, A1 and A2, on the growth and physiological condition of Brassica napus grown in uncontaminated and Pb-, Cd- and Zn-contaminated soil was investigated in a pot experiment. In vivo data were collected using an infrared gas analyzer, a fluorimeter, a pigment content meter and a thermal camera. Elemental composition of the biomass was also investigated. The tested agrosinters promote biomass yield and have an effect on improving leaf chlorophyll content, phenomenological energy fluxes and plant gas exchange. The effect of the agrosinters on the plants was dose- and amendment-specific. An immobilization effect was observed not only in the soil but also in the plants. A reduction in the Cd (22%) and Zn (40%) content in the biomass was measured. All this was related to the effect of increasing the available form of P (50%), K (300%) and Ca (50%) in the soil, which improves soil fertility and reduces the bioavailable forms of the studied TMEs, due to the increase in soil pH and/or the complexation of these with phosphate compounds. The multidimensional analysis of A2 agrosinter shows the most positive effects on plant conditions, indicating that fly ash as a mixed substrate benefits the plants.
Collapse
Affiliation(s)
- J Krzyżak
- Institute for Ecology of Industrial Areas, Katowice, Poland.
| | - S Rusinowski
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | | | - M Pogrzeba
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | - R Stec
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | - P Janota
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | - B Lipowska
- Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Refractory Materials Centre in Gliwice, Poland
| | - K Stec
- Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Refractory Materials Centre in Gliwice, Poland
| | - J Długosz
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | - K Sitko
- Institute for Ecology of Industrial Areas, Katowice, Poland; Plant Ecophysiology Team, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
4
|
Sun Q, Yang H, Zhao T. Multistage stabilization of Cd, Pb, Zn, Cu and As in contaminated soil by phosphorus-coated nZVI layered composite materials: characteristics, process and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134991. [PMID: 38909473 DOI: 10.1016/j.jhazmat.2024.134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
This study developed a shell-like slow-release material, PF@ST/Fe-0.5, by encapsulating nanoscale zero-valent iron composites (NZC) with phosphate fertilizer (PF) and a starch binder (ST). The material dissolved in soil in stages, first releasing P and Ca to increase the soil pH from 4.95 to 7.14. This was followed by the formation of phosphates and hydroxides precipitates with Pb, Cu, Zn, and Cd in soil, reducing their bioavailable forms by 81.73 %, 79.58 %, 91.05 %, and 86.47 %, respectively. The process also involved the competitive adsorption between PO43-/HPO42- and arsenate/arsenite led to the release of specifically adsorbed arsenic, increasing the probability of reaction with the material. Afterwards, the exposure of the NZC core reacted with arsenate/arsenite to form ferric arsenates, thus reducing the content of bioavailable arsenic in the soil by 73.57 %. Excess PO43- and alkali metal cations were captured and mineralized by the iron (hydro) oxides and reactive silicates in NZC, enhancing the remediation effect. Furthermore, the wet-dry alternation test had demonstrated the adaptability of PF@ST/Fe-0.5 to the rainy dry-wet soil environment in Yunnan, which enabled the bioavailable content of As, Pb, Cu, Zn, and Cd decreased by 71.2 %, 94.8 %, 84.1 %, 79.8 %, and 83.9 %, respectively. The layered structure minimized internal reactive substance consumption and protected the internal nZVI from oxidation. The phased release of phosphate and Fe0 stabilized Pb, Cu, Zn, and Cd, enhancing As stabilization and providing a new perspective for the synchronous stabilization of soil contaminated.
Collapse
Affiliation(s)
- Qiwei Sun
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of the Ministry of Education of China for High-efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
| | - Huifen Yang
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Tong Zhao
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of the Ministry of Education of China for High-efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Li J, Ma H, Chen X, Yu Y, Xia X, Zhao W, Li D, Zhao Q, Wei L. Integrating HYDRUS-2D and Bayesian Networks for simulating long-term sludge land application: Uncovering heavy metal mobility and pollution risk in the soil-groundwater environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134803. [PMID: 38850931 DOI: 10.1016/j.jhazmat.2024.134803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The release of sludge-derived heavy metals (HMs) to soil and their subsequent migration into groundwater poses a significant challenge for safe and low-carbon sludge land application. This study developed a predictive framework to simulate 60-year sludge land application, evaluating the risk of HMs pollution in the soil-groundwater environment and assessing the influence of soil and water properties. HYDRUS-2D simulations revealed that highly mobile Cu, Ni, and Zn penetrated a 10 m soil layer over a 60-year period, contributing to groundwater pollution. In contrast, Cr was easily sequestered within the topsoil layer after 5-years continuous operation. The non-equilibrium parameter α could serve as an indicator for assessing their potential risk. Furthermore, the limited soil adsorption sites for Pb (f = 0.02772) led to short-term (1-year) groundwater pollution at a 0.5 m-depth. Bayesian Networks model outcomes indicated that humic-like organics crucially influenced HMs transformation, enhancing the desorption of Cd, Cu, Ni, Pb, and Zn, while inhibiting the desorption for Cr. Additionally, electrical conductivity promoted the release of most HMs, in contrast to the Mn mineralogy in soil. This study bridges the gap between the macro-level HMs migration trends and the micro-level adsorption-desorption characteristics, providing guidance for the safe land application of sewage sludge. ENVIRONMENTAL IMPLICATION: This study introduces a framework integrating HYDRUS-2D simulations with Bayesian Networks to assess the risks of groundwater pollution by heavy metals (HMs) over a 60-year sludge application. Sludge-derived Cu, Ni, and Zn are found to penetrate soil up to 10 m and exceed safety limits, with the non-equilibrium parameter α serving as an indicator for pollution risk. The importance of nutrients from sludge-amended soil for the transformation of HMs in the subsurface environment highlights the need for enhanced sludge management, specifically through more detailed regulation of nutrient composition. These findings contribute to developing precise strategies for the long-term sludge land application.
Collapse
Affiliation(s)
- Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinwei Chen
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China; China Construction Eighth Engineering Division Corp., LTD, 200112, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Songliao Aquatic Environment (Ministry of Education), Jilin Jianzhu University, Changchun 130118, China.
| |
Collapse
|
6
|
Madsen J, Dascalos Z, Ramsey K, Mayer F, Wong C, Raposo Z, Hunter R, Reinhart M, Carlson A, Catlin A, Mihelic T, Pfahler Z, Carroll A, Angelich K, Stubler C, Sun D, Betts A, Appel C. Impacts of phosphorus amendments on legacy soil contamination from lead-based paint on a California, USA university campus. CHEMOSPHERE 2024; 362:142645. [PMID: 38897327 PMCID: PMC11441423 DOI: 10.1016/j.chemosphere.2024.142645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Lead (Pb) is one of the most common heavy metal urban soil contaminants with well-known toxicity to humans. This incubation study (2-159 d) compared the ability of bone meal (BM), potassium hydrogen phosphate (KP), and triple superphosphate (TSP), at phosphorus:lead (P:Pb) molar ratios of 7.5:1, 15:1, and 22.5:1, to reduce bioaccessible Pb in soil contaminated by Pb-based paint relative to control soil to which no P amendment was added. Soil pH and Mehlich 3 bioaccessible Pb and P were measured as a function of incubation time and amount and type of P amendment. XAS assessed Pb speciation after 30 and 159 d of incubation. The greatest reductions in bioaccessible Pb at 159 d were measured for TSP at the 7.5:1 and 15:1 P:Pb molar ratios. The 7.5:1 KP treatment was the only other treatment with significant reductions in bioaccessible Pb compared to the control soil. It is unclear why greater reductions of bioaccessible Pb occurred with lower P additions, but it strongly suggests that the amount of P added was not a controlling factor in reducing bioaccessible Pb. This was further supported because Pb-phosphates were not detected in any samples using XAS. The most notable difference in the effect of TSP versus other amendments was the reduction in pH. However, the relationship between increasing TSP additions, resulting in decreasing pH and decreasing Pb bioaccessibility was not consistent. The 22.5:1 P:Pb TSP treatment had the lowest pH but did not significantly reduce bioaccessible Pb compared to the control soil. The 7.5:1 and 15:1 P:Pb TSP treatments significantly reduced bioaccessible Pb relative to the control and had significantly higher pH than the 22.5:1 P:Pb treatment. Clearly, impacts of P additions and soil pH on Pb bioaccessibility require further investigation to decipher mechanisms governing Pb speciation in Pb-based paint contaminated soils.
Collapse
Affiliation(s)
- Julia Madsen
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Zoe Dascalos
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kristina Ramsey
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Freddie Mayer
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Connie Wong
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Zach Raposo
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Rachel Hunter
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Mac Reinhart
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Alexandra Carlson
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Austin Catlin
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Tanner Mihelic
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Zoe Pfahler
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Alec Carroll
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kyle Angelich
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Craig Stubler
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Dennis Sun
- Department of Statistics, Stanford University, Stanford, CA, 94305, USA
| | - Aaron Betts
- U.S. Environmental Protection Agency, Cincinnati, OH, 45268, USA.
| | - Chip Appel
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
7
|
Zhou C, Zhu L, Zhao T, Dahlgren RA, Xu J. Fertilizer application alters cadmium and selenium bioavailability in soil-rice system with high geological background levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124033. [PMID: 38670427 DOI: 10.1016/j.envpol.2024.124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The co-occurrence of cadmium (Cd) pollution and selenium (Se) deficiency commonly exists in global soils, especially in China. As a result, there is great interest in developing practical agronomic strategies to simultaneously achieve Cd remediation and Se mobilization in paddy soils, thereby enhancing food quality/safety. To this end, we conducted a field-plot trial on soils having high geological background levels of Cd (0.67 mg kg-1) and Se (0.50 mg kg-1). We explored 12 contrasting fertilizers (urea, potassium sulfate (K2SO4), calcium-magnesium-phosphate (CMP)), amendments (manure and biochar) and their combinations on Cd/Se bioavailability. Soil pH, total organic carbon (TOC), soil available Cd/Se, Cd/Se fractions and Cd/Se accumulation in different rice components were determined. No significant differences existed in mean grain yield among treatments. Results showed that application of urea and K2SO4 decreased soil pH, whereas the CMP fertilizer and biochar treatments increased soil pH. There were no significant changes in TOC concentrations. Three treatments (CMP, manure, biochar) significantly decreased soil available Cd, whereas no treatment affected soil available Se at the maturity stage. Four treatments (CMP, manure, biochar and manure+urea+CMP+K2SO4) achieved our dual goal of Cd reduction and Se enrichment in rice grain. Structural equation modeling (SEM) demonstrated that soil available Cd and root Cd were negatively affected by pH and organic matter (OM), whereas soil available Se was positively affected by pH. Moreover, redundancy analysis (RDA) showed strong positive correlations between soil available Cd, exchangeable Cd and reducible Cd with grain Cd concentration, as well as between pH and soil available Se with grain Se concentration. Further, there was a strong negative correlation between residual Cd/Se (non-available fraction) and grain Cd/Se concentrations. Overall, this study identified the primary factors affecting Cd/Se bioavailability, thereby providing new guidance for achieving safe production of Se-enriched rice through fertilizer/amendment management of Cd-enriched soils.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Lianghui Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Tingting Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, 95616, CA, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Vendrell-Puigmitja L, Bertrans-Tubau L, Roca-Ayats M, Llenas L, Proia L, Abril M. Exposure and recovery: The effect of different dilution factors of treated and untreated metal mining effluent on freshwater biofilm function and structure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106843. [PMID: 38281390 DOI: 10.1016/j.aquatox.2024.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Abandoned mines generate effluents rich in heavy metals, and these contaminants are released uncontrolled into the nearby aquatic ecosystems, causing severe pollution. However, no real solution exists, leaving a legacy of global pollution. In this study, the efficiency of the treatment technologies in reducing the ecological impacts of mining effluents to freshwater ecosystems with different dilution capacities was tested using biofilm communities as biological indicators. The functional and structural recovery capacity of biofilm communities after 21 days of exposure was assessed. With this aim, we sampled aquatic biofilms from a pristine stream and exposed them to treated (T) and untreated (U) metal mining effluent from Frongoch abandoned mine (Mid Wales, UK). Additionally, we simulated two different flow conditions for the receiving stream: high dilution (HD) and low dilution (LD). After exposure, the artificial streams were filled with artificial water for 14 days to assess the biofilm recovery. Unexposed biofilm served as control for biofilm responses (functional and structural) measured throughout time. During the exposure, short term effects on biofilm functioning (photosynthetic efficiency, nutrient uptake) were observed in T-LD, U-HD, and U-LD, whereas long term effects (community composition, chl-a, and diatom metrics) were observed on the structure of all biofilms exposed to the treated and untreated mining effluent. On the other hand, metal accumulation occurred in biofilms exposed to the mining effluents. However, a functional recovery was observed for all treatments, except in the U-LD in which biofilm structure did not present a significant recovery after the exposure period. The results presented here highlight the need to consider the dilution capacity of the receiving stream to assess the real efficiency of treatment technologies applied to mining effluents to mitigate the ecological impact on freshwater ecosystems.
Collapse
Affiliation(s)
- Lidia Vendrell-Puigmitja
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, Ctra de Roda 70, 08500 Vic, Spain
| | - Lluís Bertrans-Tubau
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, Ctra de Roda 70, 08500 Vic, Spain
| | - Maria Roca-Ayats
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, Ctra de Roda 70, 08500 Vic, Spain
| | - Laia Llenas
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, Ctra de Roda 70, 08500 Vic, Spain
| | - Lorenzo Proia
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, Ctra de Roda 70, 08500 Vic, Spain
| | - Meritxell Abril
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, Ctra de Roda 70, 08500 Vic, Spain.
| |
Collapse
|
9
|
Ge R, E T, Cheng Y, Wang Y, Yu J, Li Y, Yang S. NaH 2PO 4 synergizes with organic matter to stabilize chromium in tannery sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119843. [PMID: 38128209 DOI: 10.1016/j.jenvman.2023.119843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Heavy metal stabilization is an effective method to treat chromium in tannery sludge. Here we show that mainly investigated NaH2PO4 (MSP) and organic matter (OM) to stabilize chromium in tannery sludge. The experimental investigation revealed that the addition of montmorillonite (MMT) and MSP samples showed a significant increase in the percentage of reducible and oxidizable Cr in the former compared to the samples with the addition of MMT. This is attributed to the formation of Cr-O bond, which allows the MSP to undergo an inner-sphere complexation reaction with the metal oxide of Cr via ligand exchange. Significantly, the MSP moiety adsorbs on the surface of OM through monodentate, which increases the adsorption sites of OM for Cr6+ and promotes the reduction of Cr6+ to Cr3+. Moreover, PO43- reacts with Cr3+ to produce CrPO4 precipitation, thus reducing the free Cr3+ content. Finally, DFT calculations confirmed that a ternary system is formed between PO43-, OM, and Cr, and the binding energy is negative, which indicated that PO43- could co-stabilize Cr with OM.
Collapse
Affiliation(s)
- Ruijie Ge
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Tao E
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Ying Cheng
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Yuanfei Wang
- Liaoning Huadian Environmental Testing Co., LTD, Jinzhou, 121013, Liaoning, China
| | - Jia Yu
- Environmental Protection Monitoring Station of Haining, Haining, 330481, Zhejiang, China
| | - Yun Li
- Chemistry & Chemical Engineering of College Yantai University, Yantai, 264005, Shandong, China.
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China.
| |
Collapse
|
10
|
Hussain B, Riaz L, Li K, Hayat K, Akbar N, Hadeed MZ, Zhu B, Pu S. Abiogenic silicon: Interaction with potentially toxic elements and its ecological significance in soil and plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122689. [PMID: 37804901 DOI: 10.1016/j.envpol.2023.122689] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Abiogenic silicon (Si), though deemed a quasi-nutrient, remains largely inaccessible to plants due to its prevalence within mineral ores. Nevertheless, the influence of Si extends across a spectrum of pivotal plant processes. Si emerges as a versatile boon for plants, conferring a plethora of advantages. Notably, it engenders substantial enhancements in biomass, yield, and overall plant developmental attributes. Beyond these effects, Si augments the activities of vital antioxidant enzymes, encompassing glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), among others. It achieves through the augmentation of reactive oxygen species (ROS) scavenging gene expression, thus curbing the injurious impact of free radicals. In addition to its effects on plants, Si profoundly ameliorates soil health indicators. Si tangibly enhances soil vitality by elevating soil pH and fostering microbial community proliferation. Furthermore, it exerts inhibitory control over ions that could inflict harm upon delicate plant cells. During interactions within the soil matrix, Si readily forms complexes with potentially toxic metals (PTEs), encapsulating them through Si-PTEs interactions, precipitative mechanisms, and integration within colloidal Si and mineral strata. The amalgamation of Si with other soil amendments, such as biochar, nanoparticles, zeolites, and composts, extends its capacity to thwart PTEs. This synergistic approach enhances soil organic matter content and bolsters overall soil quality parameters. The utilization of Si-based fertilizers and nanomaterials holds promise for further increasing food production and fortifying global food security. Besides, gaps in our scientific discourse persist concerning Si speciation and fractionation within soils, as well as its intricate interplay with PTEs. Nonetheless, future investigations must delve into the precise functions of abiogenic Si within the physiological and biochemical realms of both soil and plants, especially at the critical juncture of the soil-plant interface. This review seeks to comprehensively address the multifaceted roles of Si in plant and soil systems during interactions with PTEs.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, 47150, Punjab, Pakistan
| | - Kun Li
- Sichuan Academy of Forestry, Chengdu, 610081, Sichuan, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Naveed Akbar
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | | | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
11
|
Kumar V, Rout C, Singh J, Saharan Y, Goyat R, Umar A, Akbar S, Baskoutas S. A review on the clean-up technologies for heavy metal ions contaminated soil samples. Heliyon 2023; 9:e15472. [PMID: 37180942 PMCID: PMC10172878 DOI: 10.1016/j.heliyon.2023.e15472] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/19/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
The soil contamination with heavy metal ions is one of the grave intricacies faced worldwide over the last few decades by the virtue of rapid industrialization, human negligence and greed. Heavy metal ions are quite toxic even at low concentration a swell as non-biodegradable in nature. Their bioaccumulation in the human body leads to several chronic and persistent diseases such as lung cancer, nervous system break down, respiratory problems and renal damage etc. In addition to this, the increased concentration of these metal ions in soil, beyond the permissible limits, makes the soil unfit for further agricultural use. Hence it is our necessity, to monitor the concentration of these metal ions in the soil and water bodies and adopt some better technologies to eradicate them fully. From the literature survey, it was observed that three main types of techniques viz. physical, chemical, and biological were employed to harness the heavy metal ions from metal-polluted soil samples. The main goal of these techniques was the complete removal of the metal ions or the transformation of them into less hazardous and toxic forms. Further the selection of the remediation technology depends upon different factors such as process feasibility/mechanism of the process applied, nature and type of contaminants, type and content of the soil, etc. In this review article, we have studied in detail all the three technologies viz. physical, chemical and biological with their sub-parts, mechanism, pictures, advantages and disadvantages.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Civil Engineering, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
| | - Chadetrik Rout
- Department of Civil Engineering, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
- Corresponding author.
| | - Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
| | - Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, And Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Corresponding author. Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - S. Baskoutas
- Department of Materials Science, University of Patras, Patras, Greece
| |
Collapse
|
12
|
Rehman ZU, Junaid MF, Ijaz N, Khalid U, Ijaz Z. Remediation methods of heavy metal contaminated soils from environmental and geotechnical standpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161468. [PMID: 36627001 DOI: 10.1016/j.scitotenv.2023.161468] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal contaminated soil (HMCS) threatens world health and sustainable growth, owing to which numerous remediation methods have been devised. Meanwhile, environmental sustainability and geotechnical serviceability of remediated HMCS are important considerations for reusing such soils and achieving sustainable development goals; therefore, these considerations are critically reviewed in this article. For this purpose, different onsite and offsite remediation methods are evaluated from environmental and geotechnical standpoints. It was found that each remediation method has its own merits and limitations in terms of environmental sustainability and geotechnical serviceability; generally, sustainable green remediation (SGR) and cementation are regarded as effective solutions for the problems related to the former and latter, respectively. Overall, the impact of remediation techniques on the environment and geotechnical serviceability is a developing area of study that calls for increased efforts to improve the serviceability, sustainability, reusability and environmental friendliness of the remediated HMCS.
Collapse
Affiliation(s)
- Zia Ur Rehman
- School of Civil Engineering and Surveying, University of Portsmouth, Portland Building, Portland Street, Portsmouth PO1 3AH, United Kingdom.
| | - Muhammad Faisal Junaid
- Department of Materials Engineering and Physics, Faculty of Civil Engineering, Slovak University of Technology, Bratislava 810 05, Slovakia; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Nauman Ijaz
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, College of Civil Engineering, Tongji University, Shanghai 200092, PR China.
| | - Usama Khalid
- Geotechnical Engineering Department, National Institute of Transportation (NIT), National University of Sciences and Technology (NUST), Risalpur 23200, Pakistan.
| | - Zain Ijaz
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, College of Civil Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
13
|
Gomes FP, Soares MB, de Carvalho HWP, Sharma A, Hesterberg D, Alleoni LRF. Zinc speciation and desorption kinetics in a mining waste impacted tropical soil amended with phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161009. [PMID: 36549526 DOI: 10.1016/j.scitotenv.2022.161009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Mining is an important component of the Brazilian economy. However, it may also contribute to environmental problems such as the pollution of soils with zinc and other potentially toxic metals. Our objective was to evaluate changes in the chemical speciation and mobility of Zn in a soil amended with phosphate. Soil samples were collected from a deactivated mining area in the state of Minas Gerais, Brazil, and amended with NH4H2PO4 saturated with deionized water to 70 % of maximum water retention and incubated at 25 ± 2 °C in open containers for 60 days. The soil was chemically and mineralogically characterized, and sequential extraction, desorption kinetics, and speciation were carried out using synchrotron bulk-sample and micro-X-ray Absorption Near-Edge Structure (XANES/μ-XANES) spectroscopy at the Zn K-edge, and X-ray fluorescence microprobe analysis (μ-XRF). The combination of μ-XRF and μ-XANES techniques made it possible to identify Zn hotspots in the main species formed after phosphate remediation. The best fit combination for bulk XANES and μ-XANES was observed in Zn-montmorillonite, Zn-kerolite, Zn-ferrihydrite, and gahnite. In the course of phosphate treatment, gahnite, Zn layered double hydroxides (Zn-LDH), Zn3(PO4), and ZnO were identified by bulk XANES, while Zn-ferrihydrite, Zn-montmorillonite, and scholzite were identified by μ-XANES. Zinc in the phosphate-amended soil had the strongest partial correlations (r' > 0.05) with Ni, Co, Fe, Cr, Mn, Si, P, Cd, Pb, and Cd, while the unamended soil showed the strongest correlation with Cu, Pb, Fe, and Si. The application of NH4H2PO4 altered Zn speciation and favored an increase in Zn desorption. The most available Zn contents after phosphate amendment were correlated with the release of exchangeable Zn fractions, associated with carbonate and organic matter.
Collapse
Affiliation(s)
- Frederico Prestes Gomes
- University of São Paulo, Luiz de Queiroz College of Agriculture, Av. Pádua Dias, 11, Piracicaba, São Paulo 13418-900, Brazil.
| | - Matheus Bortolanza Soares
- University of São Paulo, Luiz de Queiroz College of Agriculture, Av. Pádua Dias, 11, Piracicaba, São Paulo 13418-900, Brazil
| | | | - Aakriti Sharma
- Department of Soil Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Dean Hesterberg
- Department of Soil Science, North Carolina State University, Raleigh, NC 27695, USA; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil
| | - Luís Reynaldo Ferracciú Alleoni
- University of São Paulo, Luiz de Queiroz College of Agriculture, Av. Pádua Dias, 11, Piracicaba, São Paulo 13418-900, Brazil
| |
Collapse
|
14
|
Cui W, Li X, Duan W, Xie M, Dong X. Heavy metal stabilization remediation in polluted soils with stabilizing materials: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01522-x. [PMID: 36906650 DOI: 10.1007/s10653-023-01522-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The remediation of soil contaminated by heavy metals has long been a concern of academics. This is due to the fact that heavy metals discharged into the environment as a result of natural and anthropogenic activities may have detrimental consequences for human health, the ecological environment, the economy, and society. Metal stabilization has received considerable attention and has shown to be a promising soil remediation option among the several techniques for the remediation of heavy metal-contaminated soils. This review discusses various stabilizing materials, including inorganic materials like clay minerals, phosphorus-containing materials, calcium silicon materials, metals, and metal oxides, as well as organic materials like manure, municipal solid waste, and biochar, for the remediation of heavy metal-contaminated soils. Through diverse remediation processes such as adsorption, complexation, precipitation, and redox reactions, these additives efficiently limit the biological effectiveness of heavy metals in soils. It should also be emphasized that the effectiveness of metal stabilization is influenced by soil pH, organic matter content, amendment type and dosage, heavy metal species and contamination level, and plant variety. Furthermore, a comprehensive overview of the methods for evaluating the effectiveness of heavy metal stabilization based on soil physicochemical properties, heavy metal morphology, and bioactivity has also been provided. At the same time, it is critical to assess the stability and timeliness of the heavy metals' long-term remedial effect. Finally, the priority should be on developing novel, efficient, environmentally friendly, and economically feasible stabilizing agents, as well as establishing a systematic assessment method and criteria for analyzing their long-term effects.
Collapse
Affiliation(s)
- Wenwen Cui
- College of Civil Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Xiaoqiang Li
- College of Civil Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Wei Duan
- College of Civil Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Mingxing Xie
- College of Civil Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Xiaoqiang Dong
- College of Civil Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China.
- Shanxi Key Laboratory of Civil Engineering Disaster Prevention and Control, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China.
| |
Collapse
|
15
|
Dong L, He Z, Wu J, Zhang K, Zhang D, Pan X. Remediation of uranium-contaminated alkaline soil by rational application of phosphorus fertilizers: Effect and mechanism. ENVIRONMENTAL RESEARCH 2023; 220:115172. [PMID: 36584849 DOI: 10.1016/j.envres.2022.115172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In alkaline soil, abundant carbonates will mobilize uranium (U) and increase its ecotoxicity, which is a serious threat to crop growth. However, the knowledge of U remediation in alkaline soils remains very limited. In this study, U-contaminated alkaline soil (tillage layer) was collected from the Ili mining area of Xinjiang, the soil remediation was carried out by using phosphorus (P) fertilizers of different solubility (including KH2PO4, Ca(H2PO4)2, CaHPO4, and Ca3(PO4)2), and the pathways and mechanisms of U passivation in the alkaline soil were revealed. The results showed that water-soluble P fertilizers, KH2PO4 and Ca(H2PO4)2, were highly effective at immobilizing U, and significantly reduced the bioavailability of soil U. The exchangeable U was reduced by 70.5 ± 0.1% (KH2PO4) and 68.2 ± 1.9% (Ca(H2PO4)2), which was converted into the Fe-Mn oxide-bound and residual phases. Pot experiments showed that soil remediation by KH2PO4 significantly promoted crop growth, especially for roots, and reduced U uptake in crops by 94.5 ± 1.0%. The immobilization of U by KH2PO4 could be attributed to the release of phosphate anions, which react with the uranyl ion (UO22+) forming a stable mineral of meta-ankoleite and enhancing the binding of UO22+ to the soil Fe-Mn oxides. In addition, KH2PO4 dissolution produces acidity and P fertilizer, which can reduce soil alkalinity and improve crop growth. The findings in this work demonstrate that a rational application of P fertilizer can effectively, conveniently, and cheaply remediate U contamination and improve crop yield and safety on alkaline farmland.
Collapse
Affiliation(s)
- Lingfeng Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| | - Jingyi Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Keqing Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
16
|
Lin P, Liu H, Yin H, Zhu M, Luo H, Dang Z. Remediation performance and mechanisms of Cu and Cd contaminated water and soil using Mn/Al-layered double oxide-loaded biochar. J Environ Sci (China) 2023; 125:593-602. [PMID: 36375941 DOI: 10.1016/j.jes.2022.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 06/16/2023]
Abstract
The combined pollution of heavy metals is ubiquitous worldwide. Mn/Al-layered double oxide-loaded crab shells biochar (LDO/BC) was prepared, so as to remediate the combined pollution of Cd and Cu in soil and water. The pristine and used LDO/BC were characterized and the results revealed that the layered double oxide was successfully loaded on crab shells biochar (BC) and metal element Ca in crab shells was beneficial to the formation of more regular layered and flake structure. The maximal adsorption capacity (Qm) of LDO/BC for aqueous Cu2+ and Cd2+ was 66.23 and 73.47 mg/g, respectively. LDO/BC and BC were used to remediate e-waste-contaminated soil for the first time and exhibited highly efficient performance. The extraction amount of Cu and Cd in the contaminated soil by diethylene triamine penta-acetic acid (DTPA) after treating with 5% LDO/BC was significantly reduced from 819.84 to 205.95 mg/kg (with passivation rate 74.8%) and 8.46 to 4.16 mg/kg (with passivation rate 50.8%), respectively, inferring that the bioavailability of heavy metals declined remarkably. The experimental result also suggested that after remediation by LDO/BC the exchangeable and weak acid soluble Cu and Cd in soil translated to reducible, residual and oxidizable fraction which are more stable state. Precipitation, complexation and ion exchange were proposed as the possible mechanisms for Cd and Cu removal. In general, these experiment results indicate that LDO/BC can be a potentially effective reagent for remediation of heavy metal contaminated water and soil.
Collapse
Affiliation(s)
- Pengcheng Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Haoyu Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| |
Collapse
|
17
|
Vuong TX, Stephen J, Nguyen TTT, Cao V, Pham DTN. Insight into the Speciation of Heavy Metals in the Contaminated Soil Incubated with Corn Cob-Derived Biochar and Apatite. Molecules 2023; 28:molecules28052225. [PMID: 36903469 PMCID: PMC10005082 DOI: 10.3390/molecules28052225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Soil heavy metal contamination is a severe issue. The detrimental impact of contaminated heavy metals on the ecosystem depends on the chemical form of heavy metals. Biochar produced at 400 °C (CB400) and 600 °C (CB600) from corn cob was applied to remediate Pb and Zn in contaminated soil. After a one month amendment with biochar (CB400 and CB600) and apatite (AP) with the ratio of 3%, 5%, 10%, and 3:3% and 5:5% of the weight of biochar and apatite, the untreated and treated soil were extracted using Tessier's sequence extraction procedure. The five chemical fractions of the Tessier procedure were the exchangeable fraction (F1), carbonate fraction (F2), Fe/Mn oxide fraction (F3), organic matter (F4), and residual fraction (F5). The concentration of heavy metals in the five chemical fractions was analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). The results showed that the total concentration of Pb and Zn in the soil was 3023.70 ± 98.60 mg kg-1 and 2034.33 ± 35.41 mg kg-1, respectively. These figures were 15.12 and 6.78 times higher than the limit standard set by the United States Environmental Protection Agency (U.S. EPA 2010), indicating the high level of contamination of Pb and Zn in the studied soil. The treated soil's pH, OC, and EC increased significantly compared to the untreated soil (p > 0.05). The chemical fraction of Pb and Zn was in the descending sequence of F2 (67%) > F5 (13%) > F1 (10%) > F3 (9%) > F4 (1%) and F2~F3 (28%) > F5 (27%) > F1 (16%) > F4 (0.4%), respectively. The amendment of BC400, BC600, and apatite significantly reduced the exchangeable fraction of Pb and Zn and increased the other stable fractions including F3, F4, and F5, especially at the rate of 10% of biochar and a combination of 5:5% of biochar and apatite. The effects of CB400 and CB600 on the reduction in the exchangeable fraction of Pb and Zn were almost the same (p > 0.05). The results showed that CB400, CB600, and the mixture of these biochars with apatite applied at 5% or 10% (w/w) could immobilize lead and zinc in soil and reduce the threat to the surrounding environment. Therefore, biochar derived from corn cob and apatite could be promising materials for immobilizing heavy metals in multiple-contaminated soil.
Collapse
Affiliation(s)
- Truong Xuan Vuong
- Faculty of Chemistry, TNU-University of Science, Thai Nguyen City 24000, Vietnam
- Correspondence: (T.X.V.); (D.T.N.P.)
| | - Joseph Stephen
- School of Materials Science and Engineering, University of NSW, Kensington, NSW 2052, Australia
- Institute of Resources, Ecosystem and Environment of Agriculture, Center of Biochar and Green Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
- ISEM and School of Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Thi Thu Thuy Nguyen
- Faculty of Chemistry, TNU-University of Science, Thai Nguyen City 24000, Vietnam
| | - Viet Cao
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City 35120, Vietnam
| | - Dung Thuy Nguyen Pham
- NTT Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
- Correspondence: (T.X.V.); (D.T.N.P.)
| |
Collapse
|
18
|
Huang H, Lin K, Lei L, Li Y, Li Y, Liang K, Shangguan Y, Xu H. Microbial response to antimony-arsenic distribution and geochemical factors at arable soil around an antimony mining site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47972-47984. [PMID: 36746862 DOI: 10.1007/s11356-023-25507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Antimony (Sb) mining often causes severe Sb pollution and associate arsenic (As) compound contamination. To further understand the interaction mechanism among soil microorganisms, heavy metal distribution, and geochemical factors, the effects of environmental factors on soil microbial communities under different levels of Sb-As co-contamination were studied in situ of Chashan antimony mine, Guangxi Province. The results showed that the range of Sb and As contents in soil were 1339.63-7762.28 mg/kg and 2170.3-10,371.36 mg/kg, respectively, and the residual fraction accounted for more than 98.0% with less than 2.0% of bioavailable fraction. Besides, the concentration of the two metals is both related to the distance to surface runoff. Different microbial communities in arable soils of each sample site were analyzed, which was significantly affected by soil environmental factors such as pH, ALN, AP, OM, Tot-Sb, Tot-As, Bio-As, and Bio-Sb. The phylum of Actinobacteria in sites 1, 4, and 5 was the most dominant and the phylum of Proteobacteria were the most dominant in sites 2 and 3. Moreover, the results of redundancy analysis (RDA), variation partition analysis (VPA), and Spearman correlation analyses demonstrated that microorganisms, heavy metal distribution, and geochemical factors interacted with each other and together shaped the microbial community. Our findings are beneficial for understanding the response of soil microorganisms to As-Sb distribution and geochemical factors in arable soils under Sb mining areas.
Collapse
Affiliation(s)
- Huayan Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Kangkai Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Ling Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yongyun Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yipeng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Ke Liang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yuxian Shangguan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
- Sichuan Academy of Agricultural Sciences, No. 4, Shizishan Road, Jinjiang District, Chengdu, 610066, China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Department of Ecology and Environment of Sichuan, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| |
Collapse
|
19
|
Sha H, Li J, Wang L, Nong H, Wang G, Zeng T. Preparation of phosphorus-modified biochar for the immobilization of heavy metals in typical lead-zinc contaminated mining soil: Performance, mechanism and microbial community. ENVIRONMENTAL RESEARCH 2023; 218:114769. [PMID: 36463989 DOI: 10.1016/j.envres.2022.114769] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The use of modified biochar for the remediation of heavy metal (HM) has received much attention. However, the immobilization mechanism of biochar to multiple HMs and the interaction of different forms of HMs with microorganisms are still unclear. K2HPO4-modified biochar (PBC) was produced and used in a 90-days immobilization experiment with soil collected from a typic lead-zinc (Pb-Zn) mining soil. Incubation experiments showed that PBC enhanced the transformation of Cd, Pb, Zn and Cu from exchangeable (Ex-) and/or carbonate-bound forms (Car-) to organic matter-bound (Or-) and/or residual forms (Re-). After scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDS), X-ray diffractometry (XRD), fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) analysis, the mechanisms of HM immobilization by PBC were proposed as precipitation (PO43-, HPO42-, OH- and CO32-), electrostatic attraction, complexation (-COOH, -OH and R-O-H) and the indirect roles of soil parameter variations (pH, moisture and microbial community). Microbial community analysis through high-throughput sequencing showed that PBC reduced bacterial and fungal abundance. However, addition of PBC increased the relative proportions of Proteobacteria by 15.04%-42.99%, Actinobacteria by 4.74%-22.04%, Firmicutes by 0.76%-23.35%, Bacteroidota by 0.16%-12.34%, Mortierellomycota by 4.00%-9.66% and Chytridiomycota by 0.10%-13.7%. Ex-Cd/Pb/Zn, Car-Cd/Zn and Re-Cd/Pb/As were significantly positively (0.001<P≤0.05) correlated with bacterial phyla of Crenarchaeota and Methylomirabilota, and Re-Cu and Ex-/Car-/Fe-Mn oxide-bound (Fe-Mn-)/Or-As were significantly positively correlated (0.001<P≤0.05) with the bacterial phyla of Proteobacteria and Bacteroidota. While Car-Cd/Zn and Re-Pb/As were positively correlated (0.01<P≤0.05) with fungal phyla of Ascomycota, Glomeromycota, Kickxellomycota, Basidiomycota and Mucoromycota. The bacterial network contained more complex interactions than the fungal network, suggesting that bacteria play a larger role in HMs transformation processes. The results indicate that PBC is an effective agent for the remediation of HMs polluted soil in Pb-Zn mining areas.
Collapse
Affiliation(s)
- Haichao Sha
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Jie Li
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Liangqin Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Haidu Nong
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
20
|
Zveushe OK, Ling Q, Li X, Sajid S, de Dios VR, Nabi F, Han Y, Dong F, Zeng F, Zhou L, Shen S, Zhang W, Li Z. Reduction of Cd Uptake in Rice ( Oryza sativa) Grain Using Different Field Management Practices in Alkaline Soils. Foods 2023; 12:314. [PMID: 36673405 PMCID: PMC9858237 DOI: 10.3390/foods12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Cadmium contamination and toxicity on plants and human health is a major problem in China. Safe rice production in Cd-contaminated alkaline soils, with acceptably low Cd levels and high yields, remains an important research challenge. To achieve this, a small-scale field experiment with seven different soil amendment materials was conducted to test their effects performance. Two best-performing materials were selected for the large-scale field experiment. Combinations of humic acid, foliar, and/or soil silicon fertilization and deep or shallow plowing were designed. It was found that the combination, including humic acid, soil and foliar silicate fertilization, and shallow plowing (5-10 cm), produced the most desirable results (the lowest soil bioavailable Cd, the lowest grain Cd concentrations, and the highest grain yield). Rice farmers are therefore recommended to implement this combination to attain high grain yield with low Cd concentrations in alkaline soils.
Collapse
Affiliation(s)
- Obey Kudakwashe Zveushe
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qin Ling
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Sumbal Sajid
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Department of Crop and Forest Sciences, University of Lleida, 25003 Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO, Universitat de Lleida, 25003 Lleida, Spain
| | - Farhan Nabi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ying Han
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
| | - Fang Zeng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Songrong Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Zhang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Center of Analysis and Testing, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhi Li
- Chengdu Defei Environmental Engineering Co., Ltd., Chengdu 610041, China
| |
Collapse
|
21
|
Liu W, Gao J, Wan X, Li Q, Fu Q, Zhu J, Hu H. Effect of phosphorus fertilizer on phytoextraction using Ricinus communis L. in Cu and Cd co-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:822-831. [PMID: 35996867 DOI: 10.1080/15226514.2022.2112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mining activities have led to Cu and Cd contaminated of surrounding agricultural soil. To decrease the Cu and Cd accumulation in crops, the Ricinus communis L. (castor) has been used for phytoremediation. A pot experiment was served to investigate the effect of phosphate fertilizer (Ca(H2PO4)2) on the growth and Cu/Cd uptake of castor in contaminated soil. The results showed that the application of P fertilizer improved the leaf cell morphology, decreased the malonaldehyde (MDA) content of castor leaves, and increased the plant biomass (28.2-34.2%). Besides, phosphate fertilizer still facilitated accumulation Cu and Cd by castor. The addition of phosphate fertilizer increased the contents of Cu in the root of castor, improved the bioconcentration factor (BCF) of Cu, and observably enhanced the accumulation of Cu (up to 201 μg/plant) in castor. Applying phosphorus increased the percentage of residual Cd, diminished the percentage of acid extractable Cd in soil, and the accumulation of Cd in castor was not significantly increased. These results suggest that phosphorus alleviated the stress of heavy metals on castor leaves and enhanced the accumulation of Cu and Cd in castor by promoting the growth of castor.
Collapse
Affiliation(s)
- Wenying Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jieyu Gao
- Hubei Geological Survey Institute, Wuhan, China
| | - Xiang Wan
- Hubei Geological Survey Institute, Wuhan, China
| | - Qian Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Efficient bioimmobilization of cadmium contamination in phosphate mining wastelands by the phosphate solubilizing fungus Penicillium oxalicum ZP6. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Ma J, Zia Ur Rehman M, Saleem MH, Adrees M, Rizwan M, Javed A, Rafique M, Qayyum MF, Ali S. Effect of phosphorus sources on growth and cadmium accumulation in wheat under different soil moisture levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119977. [PMID: 35987285 DOI: 10.1016/j.envpol.2022.119977] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Both cadmium (Cd) toxicity and water limited stress in crop plants are serious concerns worldwide while little is known about the impact of various phosphorus (P) sources on Cd accumulation in cereals especially under water limited stress. A study was conducted to explore the efficiency of three frequently available P fertilizers on Cd accumulation in wheat under different soil moisture levels. Three different P sources including diammonium phosphate (DAP), single super phosphate (SSP), and nitrophos (NP) were applied in the soil with three levels (0, 50 and 100 mg/kg). The drought stress was applied to half treatments during the latter growth stages of wheat and plants were harvested at maturity. The results demonstrated that water-limited stress decreased the growth and yield of plants than respective treatments without water stress. P supply increased the growth of wheat irrespective of water-limited stress. The effect on growth and yield varied with the sources and levels of P and maximum effects was observed in DAP treatment (100 mg/kg). The P amendments enhanced the leaf photosynthesis and activities of SOD, POD, CAT and decreased the leaf oxidative burst. Water limited stress enhanced the Cd concentrations in shoots, roots, and grains whereas P amendments minimized the Cd concentrations and enhanced the P concentrations in these parts of plants. The results obtained demonstrated that P supply in the form of DAP might be effective in minimization of Cd in grains and can be used for safe cultivation of metal-contaminated soils.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing, 210098, China
| | - Muhammad Zia Ur Rehman
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Muhammad Adrees
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Aqsa Javed
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, Haripur, 22630, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
24
|
He L, Yu Y, Lin J, Hong Z, Dai Z, Liu X, Tang C, Xu J. Alkaline lignin does not immobilize cadmium in soils but decreases cadmium accumulation in the edible part of lettuce (Lactuca sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119879. [PMID: 35931389 DOI: 10.1016/j.envpol.2022.119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal contamination and low use efficiency of phosphorus (P) fertilizers are worldwide issues. Alkaline lignin is expected to decrease the heavy metal risk and enhance the P availability in heavy-metal-contaminated soils. A 120-day incubation study examined the effects of alkaline lignin on Cd, Pb and P bioavailability and transformation in Cd or Cd/Pb co-contaminated red and cinnamon soils and elucidated the associated mechanisms. A pot experiment further tested Cd accumulation in lettuce (Lactuca sativa L.) grown in the Cd-contaminated red soil. The amendment of alkaline lignin increased the concentrations of bioavailable Cd by 13-20% in the acid red soil and 97-107% in the alkaline cinnamon soil, respectively, due to the increase of dissolved organic C concentrations. Meanwhile, it also increased the concentrations of available P in both soils, Al-P in the red soil and Ca2-P in the cinnamon soil. Consequently, alkaline lignin amendment increased lettuce biomass of shoots by 8-23% and of roots by 56-71%, P uptake by 37-50% in shoots and by 28-62% in roots, and limited Cd transport from root to shoot which decreased Cd concentrations by 26% in lettuce shoot (edible part). The results suggest that alkaline lignin increases plant growth and decreases Cd bioaccumulation in the shoot through restricting Cd translocation from the root to shoot and increasing soil P availability but not Cd immobilization, and hence may have potential to reduce vegetable Cd contamination risk.
Collapse
Affiliation(s)
- Lizhi He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Yijun Yu
- Arable Soil Quality and Fertilizer Administration Bureau of Zhejiang Province, Hangzhou, 310020, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Zhiqi Hong
- Agricultural Experiment Station, Zhejiang University, Hangzhou, 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Xingmei Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Li S, Chen W, Liu D, Tao Y, Ma H, Feng Z, Li S, Zhou K, Wu J, Li J, Wei Y. Effect of superphosphate addition on heavy metals speciation and microbial communities during composting. BIORESOURCE TECHNOLOGY 2022; 359:127478. [PMID: 35714776 DOI: 10.1016/j.biortech.2022.127478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Superphosphate fertilizer (SSP) as an additive can reduce the nitrogen loss and increase available phosphorus in composting but few studies investigated the effect of SSP addition on heavy metal and microbial communities. In this study, different ratios (10%, 18%, 26%) of SSP were added into pig manure composting to assess the changes of heavy metal (Cu, Mn, As, Zn, and Fe) fractions, bacterial and fungal communities as well as their interactions. SSP addition at 18% had lower ecological risk but still increased the bioavailability of Cu, Mn, and Fe in composts compared to control. Adding 18% SSP into compost decreased bacterial number and increased the fungal diversity compared to CK. Redundancy analysis indicated heavy metal fractions correlated significantly with bacterial and fungal community compositions in composting with 18% SSP. Network analysis showed adding 18% SSP increased microbial interaction and positive cooperation especially enhanced the proportion of Proteobacteria and Ascomycota.
Collapse
Affiliation(s)
- Shuxin Li
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Wenjie Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Dun Liu
- Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beihang University, Beijing 100191, China
| | - YueYue Tao
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences, Suzhou 215155, China
| | - Hongting Ma
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Ziwei Feng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Songrong Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Juan Wu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
26
|
Effects of Amendments and Indigenous Microorganisms on the Growth and Cd and Pb Uptake of Coriander ( Coriandrum sativum L.) in Heavy Metal-Contaminated Soils. TOXICS 2022; 10:toxics10080408. [PMID: 35893841 PMCID: PMC9332394 DOI: 10.3390/toxics10080408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Heavy metal (HM) contamination of soils is a worldwide problem with adverse consequences to the environment and human health. For the safe production of vegetables in contaminated soil, efficient soil amendments need to be applied such as nano-hydroxyapatite (n-HAP) and poly γ-glutamic acid (γ-PGA), which can mitigate heavy metal uptake and enhance crop yield. However, the combined effects of soil amendments and indigenous microorganisms (IMOs) on HMs immobilisation and accumulation by crops have received little attention. We established a pot experiment to investigate the effects of IMOs combined with n-HAP and γ-PGA on coriander (Coriandrum sativum L.) growth and its Cd and Pb uptake in two acidic soils contaminated with HMs. The study demonstrated that applying n-HAP, with and without IMOs, significantly increased shoot dry biomass and reduced plant Cd and Pb uptake and diethylenetriaminepentaacetic acid (DTPA) extractable Cd and Pb concentrations in most cases. However, γ-PGA, with and without IMOs, only reduced soil DTPA-extractable Pb concentrations in slightly contaminated soil with 0.29 mg/kg Cd and 50.9 mg/kg Pb. Regardless of amendments, IMOs independently increased shoot dry biomass and soil DTPA-extractable Cd concentrations in moderately contaminated soil with 1.08 mg/kg Cd and 100.0 mg/kg Pb. A synergistic effect was observed with a combined IMOs and n-HAP treatment, where DTPA-extractable Cd and Pb concentrations decreased in slightly contaminated soil compared with the independent IMOs and n-HAP treatments. The combined treatment of γ-PGA and IMOs substantially increased shoot dry biomass in moderately contaminated soil. These results indicate that solo n-HAP enhanced plant growth and soil Cd and Pb immobilisation, and mitigated Cd and Pb accumulation in shoots. However, the combination of n-HAP and IMOs was optimal for stabilising and reducing HMs' uptake and promoting plant growth in contaminated soil, suggesting its potential for safe crop production.
Collapse
|
27
|
Field Experiments of Phyto-Stabilization, Biochar-Stabilization, and Their Coupled Stabilization of Soil Heavy Metal Contamination around a Copper Mine Tailing Site, Inner Mongolia. MINERALS 2022. [DOI: 10.3390/min12060702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A field trial was conducted in Inner Mongolia to evaluate the stabilization effects of phyto-stabilization, biochar-stabilization, and their coupled stabilization for As, Cu, Pb, and Zn in soil. Stabilization plants (Achnatherum splendens, Puccinellia chinampoensis, and Chinese small iris) and biochar (wood charcoals and chelator-modified biochar) were introduced in the field trial. The acid-extractable fraction and residual fraction of the elements were extracted following a three-stage modified procedure to assess the stabilization effect. The results after 60 days showed that the coupled stabilization produced a better stabilization effect than biochar-/phyto- stabilization alone. Achnatherum splendens and Puccinellia chinampoensis were found to activate the target elements: the residual fraction proportion of As, Cu, Pb, and Zn decreased while the acid-extractable fraction proportion of Cu and Zn increased in the corresponding planting area. Neither type of biochar produced a notable stabilization effect. The residual fraction proportion of As (20.8–84.0%, 29.2–82%), Pb (31.6–39.3%, 32.1–48.9%), and Zn (30.0–36.2%, 30.1–41.4%) increased, while the acid-extractable fraction proportion remained nearly unchanged after treatment using Chinese small iris-straw biochar or Achnatherum splendens-straw biochar, respectively. The results indicate that phyto-stabilization or biochar-stabilization alone are not suitable, whereas the coupled stabilization approach is a more efficient choice.
Collapse
|
28
|
The Synergistic Effect of Biochar-Combined Activated Phosphate Rock Treatments in Typical Vegetables in Tropical Sandy Soil: Results from Nutrition Supply and the Immobilization of Toxic Metals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116431. [PMID: 35682013 PMCID: PMC9180871 DOI: 10.3390/ijerph19116431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022]
Abstract
Sandy soils in tropical areas are more vulnerable to potential toxic elements as a result of their low nutrition. The composite addition of biochar and phosphate material is considered a promising method of immobilizing toxic metals in sandy soils, but the synergistic effects of this process still need to be further explored, especially in typical tropical vegetables. In this study, a pot experiment was conducted to evaluate the agronomic and toxic metal-immobilization effects of single amendments (phosphate rock, activated phosphate rock, and biochar) and combined amendments, including biochar mixed with phosphate rock (BCPR) and biochar mixed with activated phosphate rock (BCAPR), on vegetables grown in tropical sandy soil. Among these amendments, the composite amendment BCAPR was the most effective for increasing Ca, Mg, and P uptake based on water spinach (Ipomoea aquatica L.) and pepper (Capsicum annuum L.), showing increased ratios of 22.5%, 146.0%, and 136.0%, respectively. The SEM-EDS and FTIR analysis verified that the activation process induced by humic acid resulted in the complexation and chelation of the elements P, Ca, and Mg into bioavailable forms. Furthermore, the retention of available nutrition elements was enhanced due to the strong adsorption capacity of the biochar. In terms of cadmium (Cd) and lead (Pb) passivation, the formation of insoluble mineral precipitates reduced the mobility of these metals within the BCAPR treatments, with the maximum level of extractable Cd (86.6%) and Pb (39.2%) reduction being observed in the tropical sandy soil. These results explore the use of sustainable novel cost-effective and highly efficient bi-functional mineral-based soil amendments for metal passivation and plant protection.
Collapse
|
29
|
Application of Phosphate Materials as Constructed Wetland Fillers for Efficient Removal of Heavy Metals from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095344. [PMID: 35564738 PMCID: PMC9105325 DOI: 10.3390/ijerph19095344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Abstract
Constructed wetlands are an environmentally friendly and economically efficient sewage treatment technology. Heavy metals (HMs) removal is always regarded as one of the most important tasks in constructed wetlands, which have aroused increasing concern in the field of contamination control in recent times. The fillers of constructed wetlands play an important role in HMs removal. However, traditional wetland fillers (e.g., zeolite, sand, and gravel) are known to be imperfect because of their low adsorption capacity. Regarding HMs removal, our work involved the selection of prominent absorbents, the evaluation of adsorption stability for various treatments, and then the possibility of applying this HM removal technology to constructed wetlands. For this purpose, several phosphate materials were tested to remove the heavy metals Cu and Zn. Three good phosphates including hydroxyapatite (HAP), calcium phosphate (CP), and physic acid sodium salt hydrate (PAS) demonstrated fast removal efficiency of HMs (Cu2+, Zn2+) from aqueous solution. The maximum removal rates of Cu2+ and Zn2+ by HAP, CP, and PAS reached 81.6% and 95.8%; 66.9% and 70.4%; 98.8% and 1.99%, respectively. In addition, better adsorption stability of these heavy metals was found to occur with a wide variation of desorption time and pH range. The most remarkable efficiency for heavy metal removal among tested phosphates was PAS, followed by HAP and CP. This study can provide a basis for the application of HMs removal in manmade wetland systems.
Collapse
|
30
|
Huang R, Li Y, Li F, Yin X, Li R, Wu Z, Liang X, Li Z. Phosphate fertilizers facilitated the Cd contaminated soil remediation by sepiolite: Cd mobilization, plant toxicity, and soil microbial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113388. [PMID: 35272193 DOI: 10.1016/j.ecoenv.2022.113388] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
In-situ immobilization does not remove Cd from the contaminated soil. It is vital to investigate the effects of fertilizers on soil Cd mobility during remediation with amendments. In the current study, a pot experiment was conducted to investigate the effects of calcium magnesium phosphate (CMP) and calcium superphosphate (SSP) on the remediation of Cd-contaminated soil by sepiolite. We mainly focused on changes in soil Cd immobilization, plant toxicity, and soil microbial communities after applying two phosphates during Cd-contaminated soil remediation by sepiolite. The results demonstrated that sepiolite decreased Cd concentration in brown rice, straw, and roots by 32.66%, 38.89%, and 30.94%, respectively. During soil remediation by sepiolite, the Cd concentrations of brown rice and straw were not affected by CMP or SSP, except for the treatment with sepiolite plus high-dose CMP. Sepiolite significantly decreased HCl-extractable Cd and DTPA-extractable Cd by 32.21% and 10.50%, respectively. During soil remediation by sepiolite, the HCl-extractable and DTPA-extractable Cd further decreased with CMP or SSP. The decreasing amplitude with CMP was 40.57-72.60% and 7.05-14.53%, and that of SSP was 37.68-59.66% and 20.71-25.07%, respectively. The superoxide dismutase, peroxidase, catalase activities, and malondialdehyde concentration in rice roots decreased inordinately with the addition of sepiolite, CMP, and SSP, indicating that the application of sepiolite, CMP, or SSP alleviated Cd-induced rice root stress and protected rice roots from Cd toxicity. Alpha diversity estimators (including the Chao, ACE, and Shannon indices) indicated that sepiolite, CMP, or SSP applications had no adverse effects on soil bacterial richness and diversity. Hierarchical clustering analysis revealed that the two phosphate fertilizers and sepiolite were the main factors affecting changes in the bacterial communities structure. Redundancy analysis revealed that soil pH, Eh, and soil-extractable Cd were critical factors affecting the structure of the bacterial communities.
Collapse
Affiliation(s)
- Rong Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, PR China; Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Yanqiong Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Feng Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Department of Chemistry and Life Science, Xiangnan University, Chenzhou, Hunan Province 423000, PR China
| | - Xiuling Yin
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Ran Li
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Zhimin Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, PR China
| | - Xuefeng Liang
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China.
| | - Zhian Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| |
Collapse
|
31
|
Li J, Zhang S, Ding X. Biochar combined with phosphate fertilizer application reduces soil cadmium availability and cadmium uptake of maize in Cd-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25925-25938. [PMID: 34854000 DOI: 10.1007/s11356-021-17833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) has become the primary pollution factor in farmland, which seriously threatens crop growth and food safety. A pot experiment was conducted to investigate the effect of combined application with biochar and P fertilizer on soil Cd availability and translocation, in which biochar was 0 (C0) and 20 g kg-1 (C20), P fertilizer was 0 (P0), 20 (P20), and 40 mg P kg-1 (P40). Results showed that, compared with C0 level, the content of DTPA-Cd in soil was significantly decreased with biochar addition after 60 days of cultivation, under C20 level, soil DTPA-Cd in C20P40 treatment were significantly increased. Under both C levels, the percentage of exchangeable Cd fraction at P40 rate was significantly lower than that at P20 rate, because the excess P in soil could precipitate Cd. The percentage of residual-Cd fraction was significantly increased with the combined addition of biochar and P fertilizer, particularly in C20P40 treatment, which was 75.95%, while it was only 61.65% in C0P0 treatment. The Cd translocation factor (TF) and bioconcentration factor (BCF) were also significantly reduced in C20P20 and C20P40 treatments compared with C0P0 treatment. Therefore, the combined high P and biochar application was a good choice in inhibiting soil Cd availability and plant Cd uptake, which benefited to the safe utility of the Cd contaminated soil.
Collapse
Affiliation(s)
- Jifeng Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Shirong Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Xiaodong Ding
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Shandong, 266109, China.
| |
Collapse
|
32
|
Noor I, Sohail H, Hasanuzzaman M, Hussain S, Li G, Liu J. Phosphorus confers tolerance against manganese toxicity in Prunus persica by reducing oxidative stress and improving chloroplast ultrastructure. CHEMOSPHERE 2022; 291:132999. [PMID: 34808198 DOI: 10.1016/j.chemosphere.2021.132999] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 05/02/2023]
Abstract
In this study, we evaluated the mitigative role of phosphorus (P) in terms of manganese (Mn) toxicity in peach (Prunus persica L.) plants. Ten-day-old seedlings were treated with excess Mn (1 mM MnSO4) alone and in combination with different P levels (100, 150, 200 and 250 μM KH2PO4) in half-strength Hoagland medium. The results demonstrated that Mn toxicity plants accumulated a significant amount of Mn in their tissues, and the concentration was higher in roots than in leaves. The accumulated Mn led to a considerable reduction in plant biomass, water status, chlorophyll content, photosynthetic rate, and disrupted the chloroplast ultrastructure by increasing oxidative stress (H2O2 and O2•-). However, P supplementation dramatically improved plant biomass, leaf relative water and chlorophyll contents, upregulating the ascorbate-glutathione pool and increasing the activities of antioxidant enzymes (superoxide dismutase; peroxidase dismutase; ascorbate peroxidase; monodehydroascorbate reductase; dehydroascorbate reductase), thus reducing oxidative damage as evidenced by lowering H2O2 and O2•- staining intensity. Moreover, P application markedly restored stomatal aperture and improved chloroplast ultrastructure, as indicated by the improved performance of photosynthetic machinery. Altogether, our findings suggest that P (250 μM) has a great potential to induce tolerance against Mn toxicity by limiting Mn accumulation in tissues, upregulating antioxidant defense mechanisms, alleviating oxidative damage, improving chloroplast ultrastructure and photosynthetic performance in peach plants.
Collapse
Affiliation(s)
- Iqra Noor
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Guohuai Li
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Junwei Liu
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
33
|
Hao S, Wang P, Ge F, Li F, Deng S, Zhang D, Tian J. Enhanced Lead (Pb) immobilization in red soil by phosphate solubilizing fungi associated with tricalcium phosphate influencing microbial community composition and Pb translocation in Lactuca sativa L. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127720. [PMID: 34810010 DOI: 10.1016/j.jhazmat.2021.127720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Phosphate (P) minerals and phosphate solubilizing fungi (PSF) play essential roles in lead (Pb) immobilization, but their roles in driving Pb bioavailability and ecological risks in red soil remains poorly understood. In this study, the inoculation of P. oxalicum and TCP successfully enhanced available P (AP) and urease concentrations in artificially Pb contaminated red soil. Combined P. oxalicum and TCP inoculation significantly reduced Pb bioavailability, bioaccessibility, leachability and mobility by increasing soil AP concentration and forming stable Pb-P compounds during the 21-day experiment. Soil AP and Pb bioavailability play an important role in shifting soil microbial communities induced by co-occurrence of P. oxalicum and TCP. Combined P. oxalicum and TCP could notably promote the relative abundances of predominant soil genus to enhance microbial resistance to soil Pb. Likewise, coexistence of P. oxalicum and TCP showed the highest biomass and better branch root development of Pb-stressed in lettuces (Lactuca sativa L.) in pot experiment, and significantly reduced up to 88.1% of Pb translocation from soil to root over control. The reductions of Pb translocation and accumulation in root in P. oxalicum + TCP treatment could enhance the oxidase activities and alleviate the oxidative damages of H2O2 and O2.- in shoot tissues. Our study provided strong evidence to use PSF associated with P materials for the stable and eco-friendly soil Pb remediation.
Collapse
Affiliation(s)
- Shaofen Hao
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Peiying Wang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
34
|
Merchichi A, Hamou MO, Edahbi M, Bobocioiu E, Neculita CM, Benzaazoua M. Passive treatment of acid mine drainage from the Sidi-Kamber mine wastes (Mediterranean coastline, Algeria) using neighbouring phosphate material from the Djebel Onk mine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151002. [PMID: 34656571 DOI: 10.1016/j.scitotenv.2021.151002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Passive abiotic treatment of acid mine drainage (AMD) was investigated using phosphate mining residuals (raw low-grade phosphate ore, phosphatic limestone wastes, and phosphate mine tailings) from the Djebel Onk mine, Algeria. Laboratory batch tests were performed using the main expected lithologies of phosphate materials in contact with synthetic AMD, which had a low pH (3.08) and contained high concentrations of Fe (600 mg/L), Mn (40 mg/L), Mg (10 mg/L), Zn (20 mg/L), Cu (25 mg/L), As (50 mg/L), and sulfate (3700 mg/L). Phosphate materials were used as an oxic limestone drain to evaluate the increase in the pH of the AMD and metal removal by sorption and precipitation mechanisms. The results showed that all phosphatic lithologies were efficient in the passive treatment of AMD. The pH rapidly increased from 3.08 to 8.47 during water-rock interactions. The neutralization potential comparisons also showed that the phosphatic limestone wastes neutralized more acid than other lithologies. In addition, metals were efficiently removed (95.5% to 99.9%) by all materials. The results of batch sorption tests showed that the concentrations of metals in residual leachates did not exceed the Algerian criteria for industrial liquid effluents. Overall, these findings indicate that passive systems using phosphatic materials from the Djebel Onk mine can be effective for AMD treatment. The use of these mine wastes for passive treatment of AMD would allow the development of integrated management strategies for these residual materials in the context of sustainable development of phosphate mining.
Collapse
Affiliation(s)
- Amira Merchichi
- Ecole Nationale Polytechnique d'Alger, Laboratoire de Génie Minier, 10 Rue des Frères OUDEK, El-Harrach 16200, Alger, Algeria
| | - Malek Ould Hamou
- Ecole Nationale Polytechnique d'Alger, Laboratoire de Génie Minier, 10 Rue des Frères OUDEK, El-Harrach 16200, Alger, Algeria
| | - Mohamed Edahbi
- Université du Quebec en Abitibi-Temiscamingue (UQAT), Research Institute on Mines and Environment (RIME), 445 boul de l'Universite, Rouyn-Noranda J9X 5E4, QC, Canada; Higher School of Technology (ESTFBS), Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Ema Bobocioiu
- Ecole Normale Supérieure de Lyon (ENS), Université Lyon1, CNRS, UMR 5276 LGL-TPE, Lyon, France
| | - Carmen M Neculita
- Université du Quebec en Abitibi-Temiscamingue (UQAT), Research Institute on Mines and Environment (RIME), 445 boul de l'Universite, Rouyn-Noranda J9X 5E4, QC, Canada.
| | - Mostafa Benzaazoua
- Université du Quebec en Abitibi-Temiscamingue (UQAT), Research Institute on Mines and Environment (RIME), 445 boul de l'Universite, Rouyn-Noranda J9X 5E4, QC, Canada; Mining Environment and Circular Economy, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
35
|
Gomes FP, Barreto MSC, Amoozegar A, Alleoni LRF. Immobilization of lead by amendments in a mine-waste impacted soil: Assessing Pb retention with desorption kinetic, sequential extraction and XANES spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150711. [PMID: 34626622 DOI: 10.1016/j.scitotenv.2021.150711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Chemical stabilization is an in-situ remediation that uses amendments to reduce contaminant availability in polluted soils. Rates of phosphate, lime, biochar, and biosolids were evaluated as affecting Pb speciation and mobility in soil samples of a mining area located in Vazante, state of Minas Gerais, Brazil. Chemical and mineralogical characterization, desorption kinetics, sequential extraction, leaching evaluation in columns and speciation using X-ray absorption near edge structure were performed. Pb adsorbed on bentonite and on anglesite were the predominant species in the unamended soil. The treatments with phosphate and lime transformed part of the Pb species to pyromorphite. Conversely, part of Pb species was transformed to Pb adsorbed on citrate in the soil amended with biochar, while PbCl2 was formed in soil samples amended with biosolids. Phosphate and lime increased the Pb extracted in the residual fraction, thus showing that more recalcitrant species, such as pyromorphite, were formed. Biosolids and biochar treatments decreased the Pb in the residual fraction, and the fraction associated to organic matter increased after the addition of biosolids. Phosphate and lime were effective to immobilize Pb and to decrease Pb desorption kinetics, but the organic amendments increased the desorption kinetics of Pb in all rates applied. The soil amended with phosphate decreased the Pb leached in the experiment with leaching columns.
Collapse
Affiliation(s)
- Frederico Prestes Gomes
- University of São Paulo, Luiz de Queiroz College of Agriculture, Av. Pádua Dias, 11, Piracicaba, São Paulo 13418-900, Brazil
| | - Matheus Sampaio C Barreto
- University of São Paulo, Luiz de Queiroz College of Agriculture, Av. Pádua Dias, 11, Piracicaba, São Paulo 13418-900, Brazil; AgroBiosciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.
| | - Aziz Amoozegar
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620, USA
| | - Luís Reynaldo Ferracciú Alleoni
- University of São Paulo, Luiz de Queiroz College of Agriculture, Av. Pádua Dias, 11, Piracicaba, São Paulo 13418-900, Brazil
| |
Collapse
|
36
|
Li M, Zhang X. Argon Plasma Treated Phosphatic Clays for Efficient Heavy Metal Pb(II) Immobilization. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:122-128. [PMID: 34727220 DOI: 10.1007/s00128-021-03400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Phosphatic clays, one type of phosphorite industry wastes, could induce environmental issues and geological disasters when they are piled in the open air. Previous research demonstrated that phosphatic clays usually exhibit poor performance in heavy metal immobilization mostly due to low phosphate content. Thus, phosphatic clays could not be applied in practical heavy metal remediation without pretreatment. If the adsorption performance of phosphatic clays could be improved, employing phosphatic clays for heavy metal immobilization may act as an eco-friendly, economic way to not only reutilize phosphorite industry wastes but also remedy environmental heavy metal pollution at the same time. In this study, we propose an argon plasma treatment approach to remarkably improve the effectiveness of phosphatic clay performances in heavy metal immobilization. The optimal Pb(II) sorption capacity of 66.7 mg g-1 can be obtained at pH 6 and 25°C by using 15-min argon plasma treated phosphatic clays, which is two times as large as those of the untreated phosphatic clays and almost reaches those of raw apatite minerals. Moreover, the Pb(II) desorption ratios of Pb(II)-adsorbed phosphatic clays are also reduced by 30%-60% at different pH conditions. Therefore, applying argon-plasma technique to transform waste phosphatic clays into efficient heavy-metal sorbents is a promising road to phosphorite waste reclamation and environmental remediation.
Collapse
Affiliation(s)
- Mingtao Li
- School of Chemical Engineering and Resource Recycling, Wuzhou University, Wuzhou, 543002, China.
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Xiang Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
37
|
Shahraki A, Mohammadi-Sichani M, Ranjbar M. Identification of lead-resistant rhizobacteria of Carthamus tinctorius and their effects on lead absorption of Sunflower. J Appl Microbiol 2021; 132:3073-3080. [PMID: 34897903 DOI: 10.1111/jam.15410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
AIMS Using rhizobacteria as plant growth-promoting agents for improving heavy-metal phytoremediation processes in contaminated soil has attracted a lot of attention mainly because of their eco-friendliness. The aim of this study was the evaluation of lead phytoremediation by Carthamus tinctorius improved with the isolated and molecularly identified lead-resistant rhizobacteria. METHODS AND RESULTS Rhizobacteria were isolated from C. tinctorius root and was identified using macroscopic and microscopic characteristics, biochemical testing and PCR. Then, the indole acetic acid production and phosphate-solubilizing activity were determined. Finally, the amount of lead in the plant was measured by atomic absorption method. Five strains of Bacillus cereus, Bacillus muralis, Bacillus sp., Pseudomonas fluorescens and Brevibacterium frigoritolerans with the ability of mineral phosphate solubilizing, high levels of indole acetic acid production and resistance to lead were isolated from the rhizosphere of C. tinctorius. The amount of produced indole acetic acid and the level of phosphate solubilizing by the isolates were 7.1-69.54 µg ml-1 and 91-147.3 µg ml-1 respectively. Lead assimilation in aerial part of safflower ranged from 925 to 2175 ppm. P. fluorescens and B. cereus strains had the highest effect on Lead assimilation with 2175 and 1862 ppm respectively. CONCLUSIONS The results showed that different bacterial treatments influenced the rate of lead absorption by C. tinctorius exposed to lead stress. SIGNIFICANCE AND IMPACT OF THE STUDY Use of rhizosphere isolates of C. tinctorius can improve phytoremediation capability and lead absorption in lead-contaminated soil.
Collapse
Affiliation(s)
- Atefeh Shahraki
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | | | - Monireh Ranjbar
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
38
|
Runlong W, Shunan Z, Tong S, Yingming X, Tao S, Yuebing S. Microstructure characteristics of aggregates and Cd immobilization performance under a 3-year sepiolite amendment: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149269. [PMID: 34325144 DOI: 10.1016/j.scitotenv.2021.149269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Sepiolite is an efficient mineral for the immobilization of Cd in contaminated soils. Here, we conducted a 3-year field experiment to investigate the effect of sepiolite on soil aggregation and porosity, Cd availability, and organic carbon content in the bulk and aggregate soils and Cd accumulation by leafy vegetables. The sepiolite-treated soils showed a 15.4%-53.4% and 5.5%-63.0% reduction in available Cd content in the bulk soil and different particle-size aggregates, respectively. Moreover, the Cd concentrations in the edible parts of Brassica campestris, Lactuca sativa L., and Lactuca sativa var. ramosa Hort. decreased by 5.9%-26.2%, 22.8%-30.1%, and 14.4%-19.1%, respectively, compared with those of the control groups. Treatments with 0.5%-1.5% sepiolite resulted in a significant increase (P < 0.05) in the proportion of 0.25-5.0 mm aggregates, and the increase in the mean weight diameter and geometric mean weight of the soil aggregates indicated that sepiolite treatments enhanced soil aggregate stability. Furthermore, three-dimensional X-ray computed tomography imaging showed that sepiolite treatments resulted in an increase in the total area, average size, and pore perimeter of aggregates, with the maximum values being 1.63-, 1.41-, and 1.401-fold higher than those of the corresponding control groups, respectively. The highest values of soil organic carbon and particulate organic carbon were obtained in 1.5% sepiolite-treated soils and were 2.07- and 1.91-fold higher than those of the control groups, respectively. Additionally, the level of organic carbon functional groups in the bulk soil and different particle-size aggregates generally increased with increasing sepiolite application. Overall, sepiolite, as a soil amendment, not only reduced toxic element bioavailability and uptake by plants but also enhanced soil structure and function.
Collapse
Affiliation(s)
- Wang Runlong
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Zheng Shunan
- Rural Energy & Environment Agency, MARA, Beijing 100125, China
| | - Sun Tong
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Xu Yingming
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Sun Tao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Sun Yuebing
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| |
Collapse
|
39
|
Meng X, Guo J, Yang J, Chen T, Yang J, Bian J, He M, Ma C. Effects of Soil Amendments on Soil Pb Bioavailability and Pb Absorption by a low-Pb Accumulator Kumquat Grown in Two Types of Pb-Contaminated Soils. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:1128-1135. [PMID: 34159411 DOI: 10.1007/s00128-021-03301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
A pot experiment was conducted to investigate the effects of 0.5% and 1% alkaline, clay mineral and phosphorus amendments, as well as 2% and 5% organic amendments, on lead (Pb) soil bioavailability and Pb absorption by the low-Pb accumulator kumquat (Citrus japonica Thunb.) 'Cuipi' in two typical Pb-contaminated soils, Jiyuan and Yangshuo, from northern and southern China, respectively. The diethylenetriaminepentaacetic acid-extractable Pb soil concentration and Pb accumulation in kumquat significantly decreased with amendment additions. High amendment doses had greater inhibitory effects than low doses but no significant effects on the kumquat's biomass in the two typical soils. Alkaline, but not clay mineral, amendments greatly increased the soil pH level. Organic amendments effectively reduced Pb accumulation owing to their strong adsorptive capacities. Thus, using organic amendments combined with a low-Pb accumulator kumquat forms a suitable farming practice for producing safe fruit in the two common types of Pb-contaminated soils in China.
Collapse
Affiliation(s)
- Xiaofei Meng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junmei Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianlin Bian
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Mengke He
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| |
Collapse
|
40
|
Han B, Song L, Li H, Song H. Immobilization of Cd and phosphorus utilization in eutrophic river sediments by biochar-supported nanoscale zero-valent iron. ENVIRONMENTAL TECHNOLOGY 2021; 42:4072-4078. [PMID: 32186252 DOI: 10.1080/09593330.2020.1745289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
The Ulansuhai River is polluted by heavy metals and faces a serious problem of eutrophication. According to a previous study, biochar-supported nanoscale zero-valent iron composite (BC-nZVI) can be used to effectively immobilize heavy metals, converting Cd from labile to a stable fraction. The present study aimed to evaluate the immobilization of Cd in sediments of eutrophic rivers by BC-nZVI and investigate the effects of phosphorus on Cd immobilization in BC-nZVI immobilized sediments. The immobilization of Cd with BC-nZVI as a stabilizer at different KH2PO4 solution concentrations, the available phosphorus in the sediments, the total phosphorus in the overlying water, and the changes in the pH of the sediments were investigated. The changes of available phosphorus in sediments after the addition of BC, nZVI and BC-nZVI stabilizers were also studied. Results showed that the presence of phosphorus could promote the immobilization of Cd in sediments. The content of total phosphorus in overlying water was reduced, precipitates of phosphate and Cd were produced, and the available phosphorus in sediments was increased after the addition of BC-nZVI. The pH of sediments increased along with the increase in incubation time, which is beneficial for Cd immobilization. This study proved that (1) BC-nZVI can effectively immobilize Cd in eutrophic river sediments, (2) the presence of phosphorous in overlying water is conductive to the conversion of Cd from labile fractions to stable fraction in the sediment, and (3) adsorption and precipitation may be the main mechanisms in Cd immobilization.
Collapse
Affiliation(s)
- Baohong Han
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| | - Lei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| | - Hao Li
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| | - Hongwei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| |
Collapse
|
41
|
Hossain MF, Islam MS, Kashem MA, Osman KT, Zhou Y. Lead immobilization in soil using new hydroxyapatite-like compounds derived from oyster shell and its uptake by plant. CHEMOSPHERE 2021; 279:130570. [PMID: 33895674 DOI: 10.1016/j.chemosphere.2021.130570] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Protecting the natural environment and ecological systems from the inorganic pollutants such as lead (Pb) has highlighted the urgent need to develop new and effective approaches for this substance's immobilization in soil. In this study, new, low-cost, and eco-friendly hydroxyapatite (HAp)-like compounds were prepared by reacting oyster shell (Oys) with diammonium phosphate ((NH4)2HPO4) (DAP) and calcium hydroxide (Ca(OH)2) at 25-28 °C (OyOHr) and 100 °C (OyOHh). Furthermore, OyOHr and OyOHh were assessed for their effectiveness to immobilize Pb in soil and suppress Pb uptake by Indian spinach (Basella Alba L.). Application of 0.5% OyOHr and OyOHh to soil (by weight) reduced Pb concentration in the shoots by 76.9-78.0% compared to control (CK), to a level that was slightly higher (by 15.5-21.5%) than the recommended food safety level (2 mg kg-1) suggested by WHO. The changes in Pb fractions revealed that the total contents of oxidizable and residual forms in OyOHr or OyOHh after harvest was >415.0 mg kg-1, which indicated that >92% of Pb when added to the soil, was immobilized and not able to be taken up by plants. The proposed Pb immobilization mechanism might be the dissolution of OyOHr or OyOHh followed by hydroxypyromorphite (Pb10(PO4)6(OH)2) (HP) formation. Due to their facile preparation and eco-friendly and excellent Pb immobilizing characteristics, OyOHr or OyOHh could be readily integrated into current farming systems to mitigate the risk of Pb transferring to plants. However, OyOHr seemed a better immobilizing agent correspond to OyOHh in terms of cost and efficiency.
Collapse
Affiliation(s)
- Md Faysal Hossain
- Department of Soil Science, University of Chittagong, Chittagong, 4331, Bangladesh; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130, Meilong Road, Shanghai, 200237, China
| | - Md Shoffikul Islam
- Department of Soil Science, University of Chittagong, Chittagong, 4331, Bangladesh.
| | - Md Abul Kashem
- Department of Soil Science, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Khan Towhid Osman
- Department of Soil Science, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130, Meilong Road, Shanghai, 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
42
|
Miranda LS, Wijesiri B, Ayoko GA, Egodawatta P, Goonetilleke A. Water-sediment interactions and mobility of heavy metals in aquatic environments. WATER RESEARCH 2021; 202:117386. [PMID: 34229194 DOI: 10.1016/j.watres.2021.117386] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The adsorption-desorption behaviour of heavy metals in aquatic environments is complex and the processes are regulated by the continuous interactions between water and sediments. This study provides a quantitative understanding of the effects of nutrients and key water and sediment properties on the adsorption-desorption behaviour of heavy metals in riverine and estuarine environments. The influence levels of the environmental factors were determined as conditional regression coefficients. The research outcomes indicate that the mineralogical composition of sediments, which influence other sediment properties, such as specific surface area and cation exchange capacity, play the most important role in the adsorption and desorption of heavy metals. It was found that particulate organic matter is the most influential nutrient in heavy metals adsorption in the riverine environment, while particulate phosphorus is more important under estuarine conditions. Dissolved nutrients do not exert a significant positive effect on the release of heavy metals in the riverine area, whilst dissolved phosphorus increases the transfer of specific metals from sediments to the overlying water under estuarine conditions. Furthermore, the positive interdependencies between marine-related ions and the release of most heavy metals in the riverine and estuarine environments indicate an increase in the mobility of heavy metals as a result of cation exchange reactions.
Collapse
Affiliation(s)
- Lorena S Miranda
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| | - Buddhi Wijesiri
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| | - Godwin A Ayoko
- Faculty of Science, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia; Centre for the Environment, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| | - Prasanna Egodawatta
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia; Centre for the Environment, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| | - Ashantha Goonetilleke
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia; Centre for the Environment, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| |
Collapse
|
43
|
Duan K, Zhang S, Zhao B, Peng X, Yang P, Ma Y. Soil contamination and plant accumulation characteristics of toxic metals and metalloid in farmland soil-food crop system in Qilihe, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50063-50073. [PMID: 33948838 DOI: 10.1007/s11356-021-14175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Toxic metals and metalloids (TMMs) in soil can be accumulated in crops, which poses potential risks to human health. In this paper, 55 topsoil and 23 crop samples, collected in Qilihe, China, were selected to study the contamination, risk, and plant accumulation of TMMs in soil-crop system. TMM concentrations in soil samples were all below the permissible limits, but Hg and Cd exhibited the potential ecological risk due to their slight accumulation in soil. There was slight Hg pollution in 2 samples of Lanzhou lily (Lilium davidii), and 1 sample of radish (Raphanus sativus), Chinese cabbage (Brassica pekinensis), and welsh onions (Allium fistulosum) due to Hg's strong bio-accumulation, but there was no risk to human health. The TMM accumulation in leaf crops was large, followed in tuber and seed crops. Available potassium, cation exchange capacity, soil organic matter, and available phosphate were the main factors associated with TMM accumulation in crops among the selected soil properties. This study shows the current contamination situation and the predominant influencing factors associated with the accumulation of TMMs in 24 crops, which provides the emphasis and direction of relative policies in land use and crop plantation.
Collapse
Affiliation(s)
- Kaixiang Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Songlin Zhang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China.
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China.
| | - Xinbo Peng
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Peng Yang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Yanlong Ma
- The Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou, 730070, Gansu, China
| |
Collapse
|
44
|
Wang Y, Ouyang W, Wang A, Liu L, Lin C, He M. Synergetic loss of heavy metal and phosphorus: Evidence from geochemical fraction and estuary sedimentation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125710. [PMID: 33862479 DOI: 10.1016/j.jhazmat.2021.125710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The synergetic loss mechanism of heavy metals (HMs) and phosphorus (P), as well as the relationships between their different geochemical fractions remain unclear. This study employs field research, source identification and sedimentary geochemistry in Yellow River basin to investigate the internal mechanisms of the different geochemical fractions, terrestrial source signatures, and synergetic loss fluxes. The average contents of As, Cd, Cr, Cu, Pb, Zn and P in the basin were 8.29 mg/kg, 0.15 mg/kg, 47.52 mg/kg, 11.78 mg/kg, 10.65 mg/kg, 46.56 mg/kg and 578.78 mg/kg, respectively. Based on Pearson's correlation and redundancy analyses, the impact factors on the transport of HMs and P, and the internal relationships between different geochemical fractions were analyzed. According to the constant rate of supply (CRS) model, the terrestrial losses of As, Cd, Cr and Cu showed significant positive relationships with the TP flux, with r2 value of 0.981, 0.991, 0.996 and for 0.984, respectively. It has been proven that the extensive fine particles in the Yellow River basin carry a large amount of diffuse pollutants, thus ultimately increasing the estuarine pollutant load. This research provides new insights from the level of microscopic fractions to macroscopic fluxes to investigate the impacts of anthropogenic activity on regional environmental changes.
Collapse
Affiliation(s)
- Yidi Wang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China.
| | - Aihua Wang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Lianhua Liu
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China; Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University at Zhuhai, 519087, China
| | - Chunye Lin
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
45
|
Wang C, Huang Y, Zhang C, Zhang Y, Yuan K, Xue W, Liu Y, Liu Y, Liu Z. Inhibition effects of long-term calcium-magnesia phosphate fertilizer application on Cd uptake in rice: Regulation of the iron-nitrogen coupling cycle driven by the soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125916. [PMID: 34492849 DOI: 10.1016/j.jhazmat.2021.125916] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) pollution in paddy soil seriously endangers food safety production. To investigate the effects and microbiological mechanisms of calcium-magnesium-phosphate (CMP) fertilizer application on Cd reduction in rice, field experiments were conducted in Cd-contaminated paddy soil. Compared with conventional compound fertilizer, CMP fertilizer treatments inhibited Cd uptake through plant roots, significantly decreasing Cd content in rice grains from 0.340 to 0.062 mg/kg. Soil pH and total Ca, Mg and P contents increased after CMP fertilizer application, resulting in a further decrease in soil available Cd content from 0.246 to 0.181 mg/kg. Specific extraction analysis recorded a decrease in both available Fe content and the ratio of nitrate to ammonium nitrogen, indicating that the soil Fe-N cycle was affected by the addition of CMP fertilizer. This finding was also recorded using soil bacterial community sequencing, with CMP fertilizer promoting the progress of nitrate-dependent Fe-oxidation driven by Thiobacillus (1.60-2.83%) and subsequent dissimilatory nitrate reduction to ammonium (DNRA) driven by Ignavibacteriae (1.01-1.92%); Fe-reduction driven by Anaeromyxobacter (3.09-2.23%) was also inhibited. Our results indicate that CMP fertilizer application regulates the Fe-N coupling cycle driven by the soil microbial community to benefit remediation of Cd contaminated paddy soil.
Collapse
Affiliation(s)
- Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Yahui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Kai Yuan
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Yaping Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Yuemin Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China.
| |
Collapse
|
46
|
Shao X, Yao H, Cui S, Peng Y, Gao X, Yuan C, Chen X, Hu Y, Mao X. Activated low-grade phosphate rocks for simultaneously reducing the phosphorus loss and cadmium uptake by rice in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146550. [PMID: 34030346 DOI: 10.1016/j.scitotenv.2021.146550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) pollution and phosphorus (P) leaching in paddy soils has raised the global concern. In this study, two kinds of the low grade phosphate rocks activated by the sodium lignosulfonate (SL) and humic acid (HA) were fabricated for soil Cd passivation and reduction of the soil P leaching simultaneously. The mechanisms of the Cd adsorption and passivation by the activated phosphate rocks (APRs) were investigated through the batch experiment and the indoor culture test (i.e., incubation and pot experiments) in the Cd-polluted paddy soil. The effects of the APRs on the potted rice growth, uptake of Cd by rice and P loss were also studied. In comparison with the superphosphate treatment, the cumulative P loss from SL- and HA-APRs were reduced by the 65.2% and 65.3%. In terms of the Cd passivation, the Cd adsorbed on the APRs was through the chemical ways (i.e., ligand exchange and the formation of internal complexes). The application of the APRs significantly decreased the soil exchangeable Cd by 48.9%-55.0%, while the Fe/Mn oxides-bound Cd and residual Cd increased significantly by 19.6%-20.3% and 50.7%-69.4%, respectively. Pot experiment also suggested that both the APRs treatments (SL- and HA-APRs) significantly diminished soil Cd accumulation in rice (by 72.7% and 62.8%) coupling with the significantly decreased P leaching. These results provide a sustainable way to explore a novel cost-effective, high-efficient and bi-functional mineral-based soil amendments for environmental remediation.
Collapse
Affiliation(s)
- Xiangqing Shao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huanli Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shihao Cui
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yutao Peng
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xing Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chengpeng Yuan
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xian Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Yueming Hu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory for Land Use and Consolidation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyun Mao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
47
|
Yen YS, Chen KS, Yang HY, Lai HY. Effect of Vermicompost Amendment on the Accumulation and Chemical Forms of Trace Metals in Leafy Vegetables Grown in Contaminated Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126619. [PMID: 34205439 PMCID: PMC8296319 DOI: 10.3390/ijerph18126619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
(1) Background: Trace metal (TM) contamination of farmland soil in Taiwan occurs because factories dump wastewater into irrigation ditches. Since vermicompost affects the bioavailability of TMs, the objective of this study was to evaluate its effects on the accumulation of growth of TMs in leafy vegetables. (2) Methods: Two TM-contaminated soils and different types of pak choi and lettuce were used and amended with vermicompost. Besides soil properties, the study assessed vermicompost’s influence on the growth, accumulation, and chemical forms of TMs and on the health risks posed by oral intake. (3) Results: Vermicompost could increase the content of soil organic matter, available phosphorus, exchangeable magnesium, and exchangeable potassium, thus promoting the growth of leafy vegetables. The accumulation of four TMs in crops under vermicompost was reduced compared to the control, especially for the concentration of cadmium, which decreased by 60–75%. The vermicompost’s influence on changing the chemical form of TMs depended on the TM concentrations, type of TM, and crop species; moreover, blanching effectively reduced the concentrations of TMs in high-mobility chemical forms. Although vermicompost mostly reduced the amount of cadmium consumed via oral intake, cadmium still posed the highest health risk compared to the other three TMs.
Collapse
Affiliation(s)
- Yu-Shan Yen
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-S.Y.); (K.-S.C.)
| | - Kuei-San Chen
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-S.Y.); (K.-S.C.)
| | - Hsin-Yi Yang
- Department of Environmental Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Hung-Yu Lai
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-S.Y.); (K.-S.C.)
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: ; Tel.: +886-4-22840373 (ext. 4406)
| |
Collapse
|
48
|
Izydorczyk G, Mikula K, Skrzypczak D, Moustakas K, Witek-Krowiak A, Chojnacka K. Potential environmental pollution from copper metallurgy and methods of management. ENVIRONMENTAL RESEARCH 2021; 197:111050. [PMID: 33753074 DOI: 10.1016/j.envres.2021.111050] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
This paper presents the latest overview of the environmental impact of wastes from the non-ferrous metallurgical industry. Ashes, slags and dusts - by-products from mining and metal processing - are sources of toxic metals, such as Pb, Cd, Hg, As, Al, as well as particulate matter. Physical, chemical and biological processes transform industrial wastes and cause water, soil and air pollution. Improperly protected heaps are subject to wind erosion and rain water leaching. Heavy metals and particulate matter are transported over long distances, contaminating the soil, living areas, watercourses, while in combination with mist they create smog. Water erosion releases heavy metals, which are leached into groundwater or surface runoff. This paper focuses on the range of pollution emissions from non-ferrous metallurgy wastes, hazards, mechanisms of their formation and fallouts, on the current state of technology and technological risk reduction solutions. The impact of pollution on human health and the biosphere, and methods of waste reduction in this industry sector are also presented. A sustainable and modern mining industry is the first step to cleaner production.
Collapse
Affiliation(s)
- Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland.
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| |
Collapse
|
49
|
Wei M, Chen JJ, Xia CH. Remediation of arsenic-cationic metals from smelter contaminated soil by washings of Na 2EDTA and phosphoric acid: removal efficiencies and mineral transformation. ENVIRONMENTAL TECHNOLOGY 2021; 42:2211-2219. [PMID: 31755814 DOI: 10.1080/09593330.2019.1696413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Sequential and combined soil washing tests of Na2EDTA and phosphoric acids were conducted to remediation soil contaminated with arsenic and cationic metals (cadmium, copper, and lead) at a former metal smelter. The aim of the testing was to improve the heavy metals removal efficiency and investigate the mechanism of the influence of soil minerals on washing efficiency, including the influence on soil mineral, metal oxides, and functional groups of soil surface. The results indicated that the combined washing of Na2EDTA and phosphoric acid was effective in removing both arsenic and cationic metals from contaminated soil and had synergy effect for most target metals. The results of metal removal efficiency indicated that the washing agent, washing mode, and washing times influenced the removal efficiencies of arsenic and cationic metals. The spectroscopic analysis demonstrated that sequential and combined washings were effective in dissolving and reforming soil minerals compared with single washing. The promoted complexation, ligand exchange, desorption, and inhibition of adsorption resulted in the synergistic effect for most target metals under combined washing.
Collapse
Affiliation(s)
- Meng Wei
- School of Resources and Environmental Engineering, Ludong University, Yantai, People's Republic of China
- Key Laboratory for Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing, People's Republic of China
| | - Jia-Jun Chen
- Key Laboratory for Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing, People's Republic of China
| | - Chuan-Hai Xia
- School of Resources and Environmental Engineering, Ludong University, Yantai, People's Republic of China
| |
Collapse
|
50
|
Abstract
The contamination of soil by heavy metals and metalloids is a worldwide problem due to the accumulation of these compounds in the environment, endangering human health, plants, and animals. Heavy metals and metalloids are normally present in nature, but the rise of industrialization has led to concentrations higher than the admissible ones. They are non-biodegradable and toxic, even at very low concentrations. Residues accumulate in living beings and become dangerous every time they are assimilated and stored faster than they are metabolized. Thus, the potentially harmful effects are due to persistence in the environment, bioaccumulation in the organisms, and toxicity. The severity of the effect depends on the type of heavy metal or metalloid. Indeed, some heavy metals (e.g., Mn, Fe, Co, Ni) at very low concentrations are essential for living organisms, while others (e.g., Cd, Pb, and Hg) are nonessential and are toxic even in trace amounts. It is important to monitor the concentration of heavy metals and metalloids in the environment and adopt methods to remove them. For this purpose, various techniques have been developed over the years: physical remediation (e.g., washing, thermal desorption, solidification), chemical remediation (e.g., adsorption, catalysis, precipitation/solubilization, electrokinetic methods), biological remediation (e.g., biodegradation, phytoremediation, bioventing), and combined remediation (e.g., electrokinetic–microbial remediation; washing–microbial degradation). Some of these are well known and used on a large scale, while others are still at the research level. The main evaluation factors for the choice are contaminated site geology, contamination characteristics, cost, feasibility, and sustainability of the applied process, as well as the technology readiness level. This review aims to give a picture of the main techniques of heavy metal removal, also giving elements to assess their potential hazardousness due to their concentrations.
Collapse
|