1
|
Saaristo M, Johnstone CP, Mikkonen A, Lewis P, Sardiña P, Taylor MP. Trace elements in liver and muscle tissues from wild waterfowls in Australia: Risk associated with human consumption in a global context. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124949. [PMID: 39277125 DOI: 10.1016/j.envpol.2024.124949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Trace elements in game meats remain a point of concern for both the public and policymakers alike due to the human health implications if levels present are above guideline limits. This study aimed to: (1) determine trace element concentrations (As, Cd, Hg, Pb Cr, Cu, Se, Zn) in edible portions (breast meat and liver) of the four most frequently hunted duck Anatidae species inhabiting wetlands in Victoria, Australia, to identify the risk to human health from consumption; (2) investigate landscape-scale variables that may influence the detected concentrations and; (3) review the studies available (n = 41) in duck liver and muscle tissues from the 1970s to 2024, to contextualise the detected concentrations found on a global scale. Our study shows that ducks in Victoria had trace element concentrations below tolerable daily intake (TDI) guidelines for human health with one exception: notably high Hg in a filter-feeding specialist, the Pink-eared duck (Malacorhynchus membranaceus). Yet, the only trace element concentrations that were influenced by proximity to populated centres, were As and Zn. Compared to international reports, Pb concentrations in livers and muscle of Victorian waterfowl were lower, however, Pink-eared ducks had higher Hg than other duck (Anas spp.) species. Review of the worldwide data indicate that Pb concentrations in liver tissues from all Anas species have declined from the 1970s to 2024. This is the first study to identify this trend at a global scale. International movements towards Pb-shot bans, along with phasing out of Pb in gasoline and paint are the most likely cause of declining concentrations in tissues of wild waterfowl. These findings strongly underscore the importance of legislative efforts to limit trace elements entering the environment.
Collapse
Affiliation(s)
- Minna Saaristo
- Environment Protection Authority Victoria, Centre for Applied Sciences, Melbourne, Victoria, Australia.
| | - Chris P Johnstone
- Environment Protection Authority Victoria, Centre for Applied Sciences, Melbourne, Victoria, Australia
| | - Antti Mikkonen
- Environment Protection Authority Victoria, Centre for Applied Sciences, Melbourne, Victoria, Australia
| | - Phoebe Lewis
- Environment Protection Authority Victoria, Centre for Applied Sciences, Melbourne, Victoria, Australia
| | - Paula Sardiña
- Environment Protection Authority Victoria, Centre for Applied Sciences, Melbourne, Victoria, Australia
| | - Mark Patrick Taylor
- Environment Protection Authority Victoria, Centre for Applied Sciences, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Colombi F, Holland A, Baldwin D, Lawrence S, Davies P, Rutherfurd I, Grove J, Turnbull J, Macklin M, Hil G, Silvester E. Legacy effects of historical gold mining on floodplains of an Australian river. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:247. [PMID: 38869651 PMCID: PMC11176104 DOI: 10.1007/s10653-024-02003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
The gold rush at the end of the nineteenth century in south-eastern Australia resulted in the mobilization and re-deposition of vast quantities of tailings that modified the geomorphology of the associated river valleys. Previous studies of contamination risk in these systems have either been performed directly on mine wastes (e.g., battery sand) or at locations close to historical mine sites but have largely ignored the extensive area of riverine alluvial deposits extending downstream from gold mining locations. Here we studied the distribution of contaminant metal(loids) in the Loddon River catchment, one of the most intensively mined areas of the historical gold-rush period in Australia (1851-1914). Floodplain alluvium along the Loddon River was sampled to capture differences in metal and metalloid concentrations between the anthropogenic floodplain deposits and the underlying original floodplain. Elevated levels of arsenic up to 300 mg-As/kg were identified within the anthropogenic alluvial sediment, well above sediment guidelines (ISQG-high trigger value of 70 ppm) and substantially higher than in the pre-mining alluvium. Maximum arsenic concentrations were found at depth within the anthropogenic alluvium (plume-like), close to the contact with the original floodplain. The results obtained here indicate that arsenic may pose a significantly higher risk within this river catchment than previously assessed through analysis of surface floodplain soils. The risks of this submerged arsenic plume will require further investigation of its chemical form (speciation) to determine its mobility and potential bioavailability. Our work shows the long-lasting impact of historical gold mining on riverine landscapes.
Collapse
Affiliation(s)
- Francesco Colombi
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Albury/Wodonga Campus, Wodonga, VIC, 3690, Australia.
| | - Aleicia Holland
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Albury/Wodonga Campus, Wodonga, VIC, 3690, Australia
| | - Darren Baldwin
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Thurgoona, NSW, 2640, Australia
- River and Wetlands, Thurgoona, NSW, Australia
| | - Susan Lawrence
- Department of Archaeology and History, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Peter Davies
- Department of Archaeology and History, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ian Rutherfurd
- School of Geography, Faculty of Earth and Atmospheric Science, University of Melbourne, 22 Bouverie Street, Melbourne, VIC, 3001, Australia
| | - James Grove
- School of Geography, Faculty of Earth and Atmospheric Science, University of Melbourne, 22 Bouverie Street, Melbourne, VIC, 3001, Australia
| | - Jodi Turnbull
- Department of Archaeology and History, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Mark Macklin
- School of Geography and Lincoln Centre for Water and Planetary Health, College of Science, University of Lincoln, Lincoln, Lincolnshire, LN6 TS, UK
| | - Greg Hil
- Department of Archaeology and History, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ewen Silvester
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Albury/Wodonga Campus, Wodonga, VIC, 3690, Australia
| |
Collapse
|
3
|
Saleem M, Pierce D, Wang Y, Sens DA, Somji S, Garrett SH. Heavy Metal(oid)s Contamination and Potential Ecological Risk Assessment in Agricultural Soils. J Xenobiot 2024; 14:634-650. [PMID: 38804290 PMCID: PMC11130943 DOI: 10.3390/jox14020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Soil pollution caused by heavy metal(oid)s has generated great concern worldwide due to their toxicity, persistence, and bio-accumulation properties. To assess the baseline data, the heavy metal(oid)s, including manganese (Mn), iron (Fe), Cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), lead (Pb), mercury (Hg), chromium (Cr), and cadmium (Cd), were evaluated in surface soil samples collected from the farmlands of Grand Forks County, North Dakota. Samples were digested via acid mixture and analyzed via inductively coupled plasma mass spectrometry (ICP MS) analysis to assess the levels, ecological risks, and possible sources. The heavy metal(oid) median levels exhibited the following decreasing trend: Fe > Mn > Zn > Ni > Cr > Cu > Pb > Co > As > Cd > Hg. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) suggested the main lithogenic source for the studied metal(oid)s. Metal(oid) levels in the current investigation, except Mn, are lower than most of the guideline values set by international agencies. The contamination factor (Cf), geo accumulation index (Igeo) and enrichment factor (EF) showed considerable contamination, moderate contamination, and significant enrichment, respectively, for As and Cd on median value basis. Ecological risk factor (Er) results exhibited low ecological risk for all studied metal(oid)s except Cd, which showed considerable ecological risk. The potential ecological risk index (PERI) levels indicated low ecological risk to considerable risk. Overall, the results indicate the accumulation of As and Cd in the study area. The high nutrients of the soils potentially affect their accumulation in crops and impact on consumers' health. This drives the impetus for continued environmental monitoring programs.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - David Pierce
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yuqiang Wang
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Donald A Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Scott H Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
4
|
Dimassi SN, Hahladakis JN, Chamkha M, Ahmad MI, Al-Ghouti MA, Sayadi S. Investigation on the effect of several parameters involved in the biodegradation of polyethylene (PE) and low-density polyethylene (LDPE) under various seawater environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168870. [PMID: 38040377 DOI: 10.1016/j.scitotenv.2023.168870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
This work investigates the biodegradation of polyethylene (PE) and low-density polyethylene (LDPE) and the leaching of their harmful additives. Micro/macro-plastics of both types were subjected to different laboratory-controlled conditions for 3 months. Gas Chromatography-Mass Spectroscopy (GC-MS) results revealed that leachate concentrations ranged from 0.40 ± 0.07 μg/L to 96.36 ± 0.11 μg/L. It was concluded that the additives' leaching process was promoted by light. However, light was not the only factor examined; microorganisms, pH, salinity, aeration/mixing and temperature influenced the biodegradation process, too. GC-MS results showed a prodigious impact on the biodegradation process when Pseudomonas aeruginosa was added to the artificial seawater compared to plastics exposed to light/air only. Scanning Electron Microscopy (SEM) micrographs demonstrated a significant alteration in the plastics' morphologies. Similarly, Fourier-Transform Infrared Spectroscopy (FTIR) spectra showed obvious changes in plastics characteristic peaks, especially microplastics. Furthermore, it was shown that PE was more susceptible to degradation/biodegradation than LDPE. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) findings showed that some toxic metals were present in water samples after experiments, with concentrations above the permissible limits. For instance, bio-augmentation/bio-stimulation experiments showed that the concentrations of Pb, Sr, and Zn were 0.59 mg/L, 70.09 mg/L, and 0.17 mg/L, respectively; values above the permissible limits. It is crucial to emphasise that plastics must be meticulously engineered to avoid environmental and human impacts, originated from their degradation by-products. Furthermore, a holistic approach engaging stakeholders, researchers, policymakers, industries and consumers, is essential to effectively tackle the global challenge of marine plastic pollution.
Collapse
Affiliation(s)
- Sarra N Dimassi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - John N Hahladakis
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia
| | - Mohammad I Ahmad
- Central Laboratories Unit, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| |
Collapse
|
5
|
Mufalo W, Arima T, Igarashi T, Ito M, Sato T, Tomiyama S, Nyambe I, Tabelin CB, Nakata H, Nakayama S, Ishizuka M. Insights on hazardous metal bioaccessibility, and groundwater impacted by Zn residues from a legacy mine and risk evaluation of adjacent soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:64. [PMID: 38319371 DOI: 10.1007/s10653-024-01864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
This study explored the legacy impact of Zinc plant residues (ZPRs) in Kabwe, Zambia, on the environment and human health, particularly in light of the town's reputation for Pb pollution. ZPRs solid samples and groundwater within and around ZPRs zone were collected from the legacy mine, along with soils in a 10 km radius from the mine site. Bioaccessible fractions of Pb and Zn were elucidated by Japanese leaching test (JLT) and simple bioaccessibility extraction test (SBET). Cationic speciation of Pb and Zn from inhalable and ingestible ZPRs particles was investigated via sequential extraction. Groundwater in the ZPRs area showed higher Zn levels (1490 mg/L) compared to Pb (1.7 mg/L). Elevated Zn concentration were facilitated by the presence of soluble Zn sulfates while Pb was constrained due to its precipitation as anglesite. Groundwater sampled outside the ZPRs area was within the Zambia regulatory limits (< 0.5 mg/L for Pb and < 1 mg/L for Zn). Inhalation exposure to < 30 µm dust particles from ZPRs and soils near the mine indicated negligible risk, with < 3% of bioaccessible Pb in artificial lysosomal fluid. Meanwhile, oral intake of ZPRs particles < 250 µm revealed elevated bioaccessible fractions (36% for Pb and 70% for Zn). ZPRs cationic speciation of ingestible particles < 30 µm, 30-75 µm, 75-150 µm and 150-250 µm indicated that the bioaccessible Pb predominantly emanated from labile Pb fractions under gastric conditions with pH < 1. This was due to the dissolution of Pb associated with the exchangeable phase, carbonates and iron/manganese oxides; however, only exchangeable/carbonate Pb was bioaccessible at pH < 2. Hazard quotients indicated increased risks of Pb intoxication through the ingestion of ZPRs and soils near the legacy mine, with higher risks observed in children, emphasizing the need to remediate legacy mine wastes to reduce health risks and protect groundwater through monitoring in mining-affected regions.
Collapse
Affiliation(s)
- Walubita Mufalo
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
| | - Takahiko Arima
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Toshifumi Igarashi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Mayumi Ito
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Tsutomu Sato
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Shingo Tomiyama
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Imasiku Nyambe
- IWRM Centre/Geology Department, School of Mines, The University of Zambia, Lusaka, 32379, Zambia
| | - Carlito Baltazar Tabelin
- Department of Materials and Resources Engineering Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Hokuto Nakata
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo, 060-0818, Japan
| | - Shouta Nakayama
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo, 060-0818, Japan
- Biomedical Sciences Department, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo, 060-0818, Japan
| |
Collapse
|
6
|
Turner A. Lead and mercury in historical books and their contribution to dust contamination. JOURNAL OF HAZARDOUS MATERIALS 2023:131981. [PMID: 37414706 DOI: 10.1016/j.jhazmat.2023.131981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Historical products are often a source of toxic substances, like heavy metals, that have since been restricted. In this study, the lead (Pb) and mercury (Hg) content of 133 books housed in two collections in southwest England (a university library and council repository), and published between 1704 and 2018, have been determined on-site by X-ray fluorescence spectrometry. Lead was detected in the front panels, text blocks and interior colour illustrations of most books, with maximum concentration of 15,100 mg kg-1, 8680 mg kg-1 and 12,800 mg kg-1, respectively. However, concentrations above 1000 mg kg-1 were generally restricted to books published between about 1850 and 1960. Mercury was detected in fewer cases, but concentrations above 5000 mg kg-1 were found in the red panels, coloured illustrations and red fore-edging of books published in the Victorian era. Mean concentrations of Pb in dusts from council repository shelves (112 mg kg-1) and library shelves (159-224 mg kg-1) and light casings (71.7 mg kg-1) were significantly higher than mean concentrations in household dusts from buildings constructed over the same period (24.8 mg kg-1). The findings suggest that historical books could be a source of Pb exposure where collections are housed or sold and could also be used to improve evaluations of historical indoor pollution.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, UK.
| |
Collapse
|
7
|
Lin WH, Wang HY, Kuo J, Lo SL. Adsorption and desorption characteristics of heavy metals onto conventional and biodegradable plastics. CHEMOSPHERE 2023; 333:138920. [PMID: 37178936 DOI: 10.1016/j.chemosphere.2023.138920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Biodegradable plastics have been widely used to replace conventional plastics to minimize environmental impacts of plastic packaging. However, before biodegradable plastics decompose in the environment, they could pose a threat to terrestrial and aquatic creatures by acting as vectors of contaminants in the food chain. In this study, conventional plastic bags (CPBs) made of polyethylene and biodegradable plastic bags (BPBs) made of polylactic acid were examined for their heavy metal adsorption. Effects of solution pHs and temperatures on adsorption reactions were investigated. Because of a larger BET surface area, presence of oxygen-containing function groups, and smaller crystallinity, the heavy metal adsorption capacities of BPBs are significantly larger than those of CPBs. Among Cu (up to 791.48 mg⋅kg-1), Ni (up to 60.88 mg⋅kg-1), Pb (up to 1414.58 mg⋅kg-1), and Zn (up to 295.17 mg⋅kg-1), Pb and Ni show the largest and the lowest extents of adsorption onto the plastic bags, respectively. In the different waterbodies in nature, Pb adsorption on the CPBs and the BPBs were 318.08-379.91 and 528.41-764.22 mg⋅kg-1, respectively. Consequently, Pb was selected as the target contaminant in the desorption experiments. After Pb was adsorbed onto the CPBs and the BPBs, Pb could be completely desorbed and released into simulated digestive systems in 10 h. In conclusion, BPBs could be potential vectors of heavy metals, and their suitability as a substitute for CPBs must be thoroughly investigated and confirmed.
Collapse
Affiliation(s)
- Wei-Hong Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 10673, Taiwan, ROC
| | - Hsi-Yen Wang
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 10673, Taiwan, ROC
| | - Jeff Kuo
- Civil and Environmental Engineering Department, California State University, 800 N. State College Blvd, CA, 92831, Fullerton, United States
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 10673, Taiwan, ROC.
| |
Collapse
|
8
|
Beyene MT, Leibowitz SG, Dunn CJ, Bladon KD. To burn or not to burn: An empirical assessment of the impacts of wildfires and prescribed fires on trace element concentrations in Western US streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160731. [PMID: 36502971 PMCID: PMC9988007 DOI: 10.1016/j.scitotenv.2022.160731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/12/2022] [Accepted: 12/02/2022] [Indexed: 05/23/2023]
Abstract
The use of low-severity prescribed fires has been increasingly promoted to reduce the impacts from high-severity wildfires and maintain ecosystem resilience. However, the effects of prescribed fires on water quality have rarely been evaluated relative to the effects of wildfires. In this study, we assessed the effects of 54 wildfires and 11 prescribed fires on trace element (arsenic, selenium, and cadmium) concentrations of streams draining burned watersheds in the western US. To obtain results independent of the choice of method, we employed three independent analytical approaches to evaluate fire effects on water quality for the first three post-fire years. In general, we observed significant increases in trace element concentrations in streams burned by large, high-severity wildfires, despite substantial variability across sites. Comparatively, we did not observe increases in the spring mean concentration of arsenic, selenium, and cadmium in watersheds burned by prescribed fires. Our analysis indicated that the post-fire trace element response in streams was primarily influenced by burn area, burn severity, post-fire weather, surface lithology, watershed physiography, and land cover. This study's results demonstrate that prescribed burns could lessen the post-fire trace element loads in downstream waters if prescribed fires reduce subsequent high severity fires in the landscape.
Collapse
Affiliation(s)
- Mussie T Beyene
- Oak Ridge Institute for Science and Education (ORISE) Post-doc, c/o U.S. Environmental Protection Agency, Corvallis, OR 97330, USA.
| | - Scott G Leibowitz
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Corvallis, OR 97330, USA.
| | - Christopher J Dunn
- Oregon State University, Department of Forest Engineering, Resources, and Management, Corvallis, OR 97330, USA.
| | - Kevin D Bladon
- Oregon State University, Department of Forest Engineering, Resources, and Management, Corvallis, OR 97330, USA.
| |
Collapse
|
9
|
Local fruit peel biosorbents for lead(II) and cadmium(II) ion removal from waste aqueous solution: A kinetic and equilibrium study. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Tabelin CB, Uyama A, Tomiyama S, Villacorte-Tabelin M, Phengsaart T, Silwamba M, Jeon S, Park I, Arima T, Igarashi T. Geochemical audit of a historical tailings storage facility in Japan: Acid mine drainage formation, zinc migration and mitigation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129453. [PMID: 35797786 DOI: 10.1016/j.jhazmat.2022.129453] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Historical tailings storage facilities (TSFs) are either abandoned or sparsely rehabilitated promoting acid mine drainage (AMD) formation and heavy metal release. To sustainably manage these sites, a geochemical audit coupled with numerical simulation to predict AMD flow paths and heavy metal migration are valuable. In this study, a 40-year-old TSF in Hokkaido, Japan was investigated. Tailings in this historical TSF contain pyrite (FeS2) while its copper (Cu) and zinc (Zn) contents were 1400-6440 mg/kg and 2800-22,300 mg/kg, respectively. Copper and Zn were also easily released in leaching tests because they are partitioned with the exchangeable phase (29% of Zn; 15% of Cu) and oxidizable fraction (25% of Zn; 33% of Cu). Kinetic modeling results attributed AMD formation to the interactions of pyrite and soluble phases in the tailings with oxygenated groundwater, which is supported by the sequential extraction and leaching results. Calibrations of groundwater/AMD flow and solute transport in the 2D reactive transport model were successfully done using hydraulic heads measured on-site and leaching results, respectively. The model forecasted the quality of AMD to deteriorate with time and AMD formation to continue for 1000 years. It also predicted ~24% AMD flux reduction, including lower Zn release with time when recharge reduction interventions are implemented on-site.
Collapse
Affiliation(s)
- Carlito Baltazar Tabelin
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW, Australia.
| | - Asuka Uyama
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Shingo Tomiyama
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Mylah Villacorte-Tabelin
- Developmental Biology Laboratory, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines; Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Theerayut Phengsaart
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Marthias Silwamba
- Department of Metallurgical Engineering, School of Mines, University of Zambia, Lusaka, Zambia
| | - Sanghee Jeon
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Ilhwan Park
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Takahiko Arima
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Toshifumi Igarashi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Choppala G, Lamb D, Aughterson R, Burton ED. Tooeleite Transformation and Coupled As(III) Mobilization Are Induced by Fe(II) under Anoxic, Circumneutral Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9446-9452. [PMID: 35733356 PMCID: PMC9667501 DOI: 10.1021/acs.est.2c02130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tooeleite [FeIII6(AsIIIO3)4SO4(OH)4.4H2O] is an important As(III) host phase in diverse mining-impacted environments. Tooeleite has also received attention as a target phase for immobilizing As(III) in environmental and engineered settings. However, little is known regarding tooeleite's environmental stability, with no previous research examining the possible role of Fe(II) in inducing tooeleite transformation (as occurs for Fe(III) oxide minerals). We investigated shifts in solid-phase Fe and As speciation and associated As mobilization into the aqueous phase during exposure of tooeleite to aqueous Fe(II) under anoxic conditions at pH 4 to 8. Our results demonstrate that environmentally relevant concentrations of aqueous Fe(II) (i.e., 1 to 10 mM) induce significant mobilization of As(III) from tooeleite under near-neutral pH conditions, with greater As(III) mobilization occurring at higher pH. Extended X-ray absorption fine structure spectroscopy at both the As and Fe K-edge reveals that the observed As(III) mobilization was coupled with partial Fe(II)-induced transformation of tooeleite to As(III)-bearing ferrihydrite at pH 6 to 8. These results provide new insights into the environmental stability of tooeleite and demonstrate a novel pathway for As(III) mobilization in tooeleite-bearing systems.
Collapse
Affiliation(s)
- Girish Choppala
- Global
Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Dane Lamb
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Robert Aughterson
- Institute
of Materials Engineering, Australian Nuclear
Science and Technology Organization (ANSTO), Lucas Heights, Sydney, New South Wales 2234, Australia
| | - Edward D. Burton
- Faculty
of Science and Engineering, Southern Cross
University, Lismore, New South Wales 2480, Australia
| |
Collapse
|
12
|
Kebonye NM, Eze PN, John K, Agyeman PC, Němeček K, Borůvka L. An in-depth human health risk assessment of potentially toxic elements in highly polluted riverine soils, Příbram (Czech Republic). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:369-385. [PMID: 33742338 DOI: 10.1007/s10653-021-00877-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Environmental pollution by potentially toxic element (PTE) and the associated health risks in humans are increasingly becoming a global challenge. The current study is an in-depth assessment of PTEs including the often studied lead (Pb), manganese (Mn), zinc (Zn), arsenic (As) and the less-studied titanium (Ti), rubidium (Rb), strontium (Sr), zirconium (Zr), barium (Ba) and thorium (Th) in highly polluted floodplain topsoil samples from the Litavka River, Czech Republic. Soil chemical properties including carbon (Cox) and reaction (pH_H2O) together with iron (Fe) were assessed in the same soils. A portable X-ray fluorescence spectrometer (p-XRFS) (Delta Premium) was used to measure the PTEs and Fe contents of the soils. Soil organic carbon and reaction pH were determined following routine laboratory procedures. The concentration level of each PTE was compared against world average and crustal values, with the majority of elements exceeding the aforementioned geochemical background levels. Distributions of the PTEs were mapped. Two pollution assessment indices including enrichment factor (EF) and pollution index (PI) levels were calculated and their means for Zn (43.36, 55.54), As (33.23, 43.59) and Pb (81.08, 103.21) show that these elements were enriched. Zn, As and Pb accounted for the high pollution load index (PLI) levels observed in the study. The EF and PI distribution maps corresponded with the concentration distribution maps for each PTE. On health risk assessment, hazard quotients (HQ) in different human groups varied. Children had the highest HQs for all PTEs than adults (women and men). PTEs with high HQ levels in distinct human groups were As, Zr and Pb. Zirconium is a less likely element to pose a health risk in humans. Nonetheless, it should be kept in check despite its low pollution occurrence.
Collapse
Affiliation(s)
- Ndiye M Kebonye
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Prague, Czech Republic.
| | - Peter N Eze
- Department of Earth and Environmental Science, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | - Kingsley John
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Prague, Czech Republic
| | - Prince C Agyeman
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Prague, Czech Republic
| | - Karel Němeček
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Prague, Czech Republic
| | - Luboš Borůvka
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Prague, Czech Republic
| |
Collapse
|
13
|
Potentially Toxic Elements’ Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review. ENVIRONMENTS 2022. [DOI: 10.3390/environments9010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Both sectors of the Iberian Pyrite Belt, Portuguese and Spanish, have been exploited since ancient times, but more intensively during and after the second half of the 19th century. Large volumes of polymetallic sulfide ore were extracted in open pits or in underground works, processed without environmental concerns, and the generated waste rocks and tailings were simply deposited in the area. Many of these mining sites were abandoned for years under the action of erosive agents, leading to the spread of trace elements and the contamination of soils, waters and sediments. Some of these mine sites have been submitted to rehabilitation actions, mostly using constructive techniques to dig and contain the contaminated tailings and other waste materials, but the remaining soil still needs to be treated with the best available techniques to recover its ecosystem functions. Besides the degraded physical structure and poor nutritional status of these soils, they have common characteristics, as a consequence of the pyrite oxidation and acid drainage produced, such as a high concentration of trace elements and low pH, which must be considered in the remediation plans. This manuscript aims to review the results from studies which have already covered these topics in the Iberian Pyrite Belt, especially in its Portuguese sector, considering: (i) soils’ physicochemical characteristics; (ii) potentially toxic trace elements’ concentration; and (iii) sustainable remediation technologies to cope with this type of soil contamination. Phytostabilization, after the amelioration of the soil’s properties with organic and inorganic amendments, was investigated at the lab and field scale by several authors, and their results were also considered.
Collapse
|
14
|
Costa MR, Gošar D, Pinti M, Ferreira A, Bergant Marušič M. In vitro toxicity of arsenic rich waters from an abandoned gold mine in northeast Portugal. ENVIRONMENTAL RESEARCH 2021; 202:111683. [PMID: 34270993 DOI: 10.1016/j.envres.2021.111683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
This is a follow-up study of physicochemical water monitoring data from the abandoned Freixeda gold mine in Portugal, where arsenic (As) has remained above drinking water and irrigation limits over the years. The main objective of the current work was to investigate the toxicological potential of As-containing water on human cell line as an indicator of a potential health risk to humans. Six water samples collected in February 2018 were analysed for arsenic, major anions, cations and trace elements. Toxicity experiments were carried out on the human gastrointestinal cell line Caco-2 with five water samples containing As above 10 μg L-1. The results show that groundwater contains higher amounts of dissolved minerals than surface water, particularly with higher concentrations of SO42-, Fe and HCO3- and also higher As(III), reaching 336 μg L-1 (As(T) = 607 μg L-1). In surface waters As concentration decreased and reached 150 μg L-1, mainly as As(V). Metabolic activity was generally lower in Caco-2 cells exposed to As-containing water samples compared to pure As(III) solution, adapted to As concentrations, while production of reactive oxygen species (ROS) was higher. Short-term exposure to As-contaminated water samples also resulted in increased genotoxicity. This study suggests that mixture of As with various chemical elements in water may have a synergistic effect in promoting cytotoxicity. It is likely that prolonged exposure, as is common in areas with contaminated water, would have even more harmful effects.
Collapse
Affiliation(s)
- Maria R Costa
- Geology Department of UTAD, 5000-801, Vila Real, Portugal; GeoBioTec, Geosciences Department, University of Aveiro, Aveiro Santiago Campus, Portugal.
| | - Doroteja Gošar
- School of Environmental Sciences, University of Nova Gorica, Glavni trg 8, SI-5271, Vipava, Slovenia
| | - Marika Pinti
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, SI-5000, Nova Gorica, Slovenia
| | - Adelaide Ferreira
- LNEG - Laboratório Nacional de Energia e Geologia I.P., Rua da Amieira, Ap. 1089, 4466-901, S. Mamede de Infesta, Portugal.
| | - Martina Bergant Marušič
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, SI-5000, Nova Gorica, Slovenia.
| |
Collapse
|
15
|
Ran H, Guo Z, Yi L, Xiao X, Zhang L, Hu Z, Li C, Zhang Y. Pollution characteristics and source identification of soil metal(loid)s at an abandoned arsenic-containing mine, China. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125382. [PMID: 33930954 DOI: 10.1016/j.jhazmat.2021.125382] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Mining activities can result in serious contamination of soil by heavy metal(loid)s. In this study, the sources and spatial distribution of metal(loid)s, and the risks to public health from these metal(loid)s at an abandoned arsenic mine site were explored. The mean concentrations of arsenic (As), cadmium (Cd), mercury (Hg), manganese (Mn), lead (Pb), antimony (Sb), strontium (Sr), and thallium (Tl) in the soil in the mining area were higher than the mean background values. The main pollutants from the mining activities were As, Hg, and Sb. Five pollutant sources were identified using an approach that combined statistical methods, a positive matrix factorization model, and historical information analysis. As, Hg, Sb, and Tl were associated with the mining resources and related activities (37.29%); Mn (15.57%) and Sr (15.96%) were mainly from crustal origin and pedogenesis, respectively; Pb, Sb, and Tl were mainly from industrial sources (17.57%), and Cd was mainly from the production and application of phosphorous fertilizer (13.60%). Using incremental spatial autocorrelation crystallized that As, Hg, and Sb were mainly contained within 500 m of their source. There were formed existing non-carcinogenic hazards and carcinogenic risks from As, and potential carcinogenic risks from Cd, in the soil for those living locally.
Collapse
Affiliation(s)
- Hongzhen Ran
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Liwen Yi
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410083, PR China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Li Zhang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Zhihao Hu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Changzhou Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yunxia Zhang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| |
Collapse
|
16
|
Adsorption/Desorption Capability of Potassium-Type Zeolite Prepared from Coal Fly Ash for Removing of Hg2+. SUSTAINABILITY 2021. [DOI: 10.3390/su13084269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The feasibility of using potassium-type zeolite (K-type zeolite) prepared from coal fly ash (CFA) for the removal of Hg2+ from aqueous media and the adsorption/desorption capabilities of various potassium-type zeolites were assessed in this study. Potassium-type zeolite samples were synthesized by hydrothermal treatment of CFA at different intervals (designated CFA, FA1, FA3, FA6, FA12, FA24, and FA48, based on the hours of treatment) using potassium hydroxide solution, and their physicochemical characteristics were evaluated. Additionally, the quantity of Hg2+ adsorbed was in the order CFA, FA1 < FA3 < FA6 < FA12 < FA24 < FA48, in the current experimental design. Therefore, the hydrothermal treatment time is important to enhance the adsorption capability of K-type zeolite. Moreover, the effects of pH, temperature, contact time, and coexistence on the adsorption of Hg2+ were elucidated. In addition, Hg2+ adsorption mechanism using FA48 was demonstrated. Our results indicated that Hg2+ was exchanged with K+ in the interlayer of FA48 (correlation coefficient = 0.946). Finally, adsorbed Hg2+ onto FA48 could be desorbed using a sodium hydroxide solution (desorption percentage was approximately 70%). Our results revealed that FA48 could be a potential adsorbent for the removal of Hg2+ from aqueous media.
Collapse
|
17
|
Geochemistry, Mineralogy and Microbiology of Cobalt in Mining-Affected Environments. MINERALS 2020. [DOI: 10.3390/min11010022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cobalt is recognised by the European Commission as a “Critical Raw Material” due to its irreplaceable functionality in many types of modern technology, combined with its current high-risk status associated with its supply. Despite such importance, there remain major knowledge gaps with regard to the geochemistry, mineralogy, and microbiology of cobalt-bearing environments, particularly those associated with ore deposits and subsequent mining operations. In such environments, high concentrations of Co (up to 34,400 mg/L in mine water, 14,165 mg/kg in tailings, 21,134 mg/kg in soils, and 18,434 mg/kg in stream sediments) have been documented. Co is contained in ore and mine waste in a wide variety of primary (e.g., cobaltite, carrolite, and erythrite) and secondary (e.g., erythrite, heterogenite) minerals. When exposed to low pH conditions, a number of such minerals are known to undergo dissolution, typically forming Co2+(aq). At circumneutral pH, such aqueous Co can then become immobilised by co-precipitation and/or sorption onto Fe and Mn(oxyhydr)oxides. This paper brings together contemporary knowledge on such Co cycling across different mining environments. Further research is required to gain a truly robust understanding of the Co-system in mining-affected environments. Key knowledge gaps include the mechanics and kinetics of secondary Co-bearing mineral environmental transformation, the extent at which such environmental cycling is facilitated by microbial activity, the nature of Co speciation across different Eh-pH conditions, and the environmental and human toxicity of Co.
Collapse
|
18
|
Kapwata T, Mathee A, Sweijd N, Minakawa N, Mogotsi M, Kunene Z, Wright CY. Spatial assessment of heavy metals contamination in household garden soils in rural Limpopo Province, South Africa. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:4181-4191. [PMID: 32062739 DOI: 10.1007/s10653-020-00535-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Heavy metal pollution in soil poses a serious health threat to humans living in close proximity and in contact with contaminated soil. Exposure to heavy metals can result in a range of adverse health effects, including skin lesions, cardiovascular effects, lowering of IQ scores and cancers. The main objectives of this study were to (1) use a portable XRF spectrophotometer to measure concentrations of lead (Pb), arsenic (As), mercury (Hg) and cadmium (Cd) in residential soils in rural Giyani in the Limpopo province of South Africa; (2) to assess the spatial distribution of soil metal concentrations; and (3) to assess pollution levels in residential soils. There were elevated levels of As at one of the sites where 54% of soil samples exceeded the Canadian reference levels for As of 20 mg/kg. Using the geoaccumulation index (Igeo) to determine contamination levels of As, 57% of soil samples from the most polluted site were found to be moderately to heavily and extremely contaminated with As (Igeo class 2-5). The site is located near the Giyani Greenstone Belt, which is characterized by abandoned mines and artisanal mining activities. Gold ores are closely associated with sulphide minerals such as arsenopyrite, and these have been found to contain high amounts of As. This study highlighted the potential for soil contamination and the importance of site-specific risk assessment in the context of environment and health impact assessments prior to major developments, including human settlement developments.
Collapse
Affiliation(s)
- Thandi Kapwata
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, 2028, South Africa.
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa.
| | - Angela Mathee
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, 2028, South Africa
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- School of Public Health, University of the Witwatersrand, Johannesburg, 2028, South Africa
| | - Neville Sweijd
- Applied Centre for Climate and Earth Systems Science, National Research Foundation, Cape Town, South Africa
| | - Noboru Minakawa
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Mirriam Mogotsi
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, 2028, South Africa
| | - Zamantimande Kunene
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, 2028, South Africa
| | - Caradee Y Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, 0084, South Africa
- Department of Geography, Geoinformatics and Meteorology, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
19
|
Galhardi JA, de Mello JWV, Wilkinson KJ. Environmental and health risk assessment of agricultural areas adjacent to uranium ore fields in Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3965-3981. [PMID: 32653967 DOI: 10.1007/s10653-020-00659-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
To investigate the risks posed by trace and rare earth elements (REEs) in two tropical uranium ore fields, metal concentrations from 50 vegetable samples (corn and soybean) and their corresponding agricultural soils were evaluated in a U mining area and a U-rich coal mining area in Brazil. Samples from both areas had metal concentrations (REE: La to Lu, and trace elements: As, Pb, Cd, Ni, Cu, Cr, Mn, Zn, Ba, U, Sr) that were higher than the guidelines proposed by the Brazilian environmental agency. Soils from the U mining area (Poços de Caldas) generally had higher contents of trace elements than the coal mining area (Figueira), with the exception of Ni and Cr, indicating a higher risk of pollution, which was confirmed by a pollution load index that was greater than unity. For both sites, concentrations of uranium in the soil and plants, its hazard quotients and the soil contamination factor were higher in agricultural fields closer to the mines, indicating that contamination and the consequent risks to human health were distance dependent. REE concentrations averaged 52.8 mg kg-1 in the topsoils and 0.76 mg kg-1 in the grains for Figueira, whereas higher values of 371 mg kg-1 (topsoils) and 0.9 mg kg-1 (grains) were found in Poços de Caldas. Based upon corn and soybean consumption, the estimated intake dose of the REE was lower than the intake dose predicted to be problematic for human health for both sites, indicating limited risk related to the ingestion of REE.
Collapse
Affiliation(s)
- Juliana A Galhardi
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, QC, Canada.
| | - Jaime W V de Mello
- Soil Chemistry and Environmental Geochemistry Group, Department of Soil, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Kevin J Wilkinson
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
20
|
Ali W, Mao K, Zhang H, Junaid M, Xu N, Rasool A, Feng X, Yang Z. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122720. [PMID: 32387828 DOI: 10.1016/j.jhazmat.2020.122720] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Rice is the leading staple food for more than half of the world's population, and approximately 160 million hectares of agricultural area worldwide are under rice cultivation. Therefore, it is essential to fulfil the global demand for rice while maintaining food safety. Rice acts as a sink for potentially toxic metals such as arsenic (As), selenium (Se), cadmium (Cd), lead (Pb), zinc (Zn), manganese (Mn), nickel (Ni), and chromium (Cr) in paddy soil-rice systems due to the natural and anthropogenic sources of these metals that have developed in the last few decades. This review summarizes the sources and basic chemical behaviours of these trace elements in the soil system and their contamination status, uptake, translocation, and accumulation mechanisms in paddy soil-rice systems in major rice-growing countries. Several human health threats are significantly associated with these toxic and potentially toxic metals not only due to their presence in the environment (i.e., the soil, water, and air) but also due to the uptake and translocation of these metals via different transporters. Elevated concentrations of these metals are toxic to plants, animals, and even humans that consume them regularly, and the uniform deposition of metals causes a severe risk of bioaccumulation. Furthermore, the contamination of rice in the global rice trade makes this a critical problem of worldwide concern. Therefore, the global consumption of contaminated rice causes severe human health effects that require rapid action. Finally, this review also summarizes the available management/remediation measures and future research directions for addressing this critical issue.
Collapse
Affiliation(s)
- Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Atta Rasool
- Department of Environmental Sciences, COMSATS University, Islamabad Vehari Campus, Vehari 61100, Pakistan
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom
| |
Collapse
|
21
|
Bandara T, Xu J, Potter ID, Franks A, Chathurika JBAJ, Tang C. Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes. CHEMOSPHERE 2020; 254:126745. [PMID: 32315813 DOI: 10.1016/j.chemosphere.2020.126745] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The capacity of biochars derived from agricultural wastes to remove Cd(II) and Cu(II) from aqueous solution and contaminated mine water was evaluated using laboratory-based batch sorption experiments. To examine immobilization of heavy metals, biochars produced in a commercial-scale mobile pyrolizer from feedstocks: poultry litter; lucerne shoot; vetch shoot; canola shoot; wheat straws; and sugar-gum wood, were tested in a liquid-based system. Biochars were characterized by FTIR, XPS and XRD before and after the mine water treatment. Lucerne biochar had the highest Langmuir sorption capacity of Cd(II) (6.28 mg g-1) and vetch-derived biochar had the highest Cu(II) sorption capacity (18.0 mg g-1) at pH 5.5. All the biochars exhibited higher sorption capacity for Cu(II) than for Cd(II). The smaller ionic radius and higher electronegativity of Cu(II), and the PO43-, CO32- and N-containing functional groups of biochars enhanced their binding affinity. The results demonstrated that poultry litter-derived biochar was effective at removal of the Cd(II) and Cu(II) from mine water up to the levels recommended by the World Health Organisation. The results revealed that precipitation with CO32- and PO43-, complexation with -OH and -COOH groups and electrostatic interaction with O-containing surface functional groups were the main mechanisms involved in the removal of multi-metals by biochars, and that selection of feedstock materials for biochar production is important to maximise remediation of multi-metals in contaminated water.
Collapse
Affiliation(s)
- Tharanga Bandara
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ian D Potter
- Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Ashley Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia; Centre for Future Landscapes, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - J B A J Chathurika
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
22
|
Gao S, Wang Z, Wu Q, Zeng J. Multivariate statistical evaluation of dissolved heavy metals and a water quality assessment in the Lake Aha watershed, Southwest China. PeerJ 2020. [DOI: 10.7717/peerj.9660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heavy metals are of public concern in aquatic ecosystems due to their growing release from industries and mining activities. This study investigated the sources, temporal-spatial distributions and water quality of dissolved heavy metals (Mn, Co, Al, Ni, Ba, V, Sb, Fe, Sr) in the Lake Aha watershed, an area under the influence of sewage and acid mining drainage. These heavy metals displayed significant spatial and temporal variabilities. The water quality index results (WQI values ranged from 3.21 to 15.64) and health risk assessment (all hazard indexes are below 1) indicated that dissolved heavy metals in this study pose a low risk for human health. Correlation analysis and principal component analysis indicated that Fe and Sr mainly presented a natural geological feature in the study area, and Mn, Co, Al and Ni were influenced by the acid coal mine drainage, whereas Ba, V and Sb were under the impact of local industrial or medical activities. This study provides new insights into the risk assessment of heavy metals in small watersheds.
Collapse
Affiliation(s)
- Shilin Gao
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, Guizhou Province, China
| | - Zhuhong Wang
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qixin Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, Guizhou Province, China
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Jie Zeng
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, China
| |
Collapse
|
23
|
Galhardi JA, Leles BP, de Mello JWV, Wilkinson KJ. Bioavailability of trace metals and rare earth elements (REE) from the tropical soils of a coal mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:134484. [PMID: 31836238 DOI: 10.1016/j.scitotenv.2019.134484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/02/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
In order to assess the environmental risks related to mining activities in Southern Brazil, the transfer of trace metals and rare earth elements (REE) from soils to soybeans was evaluated in a U-rich area associated with coal mining. In some samples, As, Ba, Co, Cu and Ni were higher than the guidelines proposed by the Brazilian environmental agency. Soil, coal, ash, tailings and soybean were systematically sampled so that the chemical fractionation/speciation of the elements could be related to their bioavailability. In addition to total concentrations quantified by ICP-MS after microwave digestion, elemental measurements were made following different evaluations of the bioavailable metal, including chemical extractions (10 mM Ca(NO3)2 and 3-step sequential extraction), diffusive gradient in thin films technique (DGT) and chemical modeling (WHAM-free ion). Lower pH and higher clay and organic matter content were reflected by higher metal assimilation by the plants, especially by the roots and leaves. The bioaccumulation factor (BF) was generally higher for the leaves (e.g. Cu, Mn, Sr, Zn, Ba, REE with exception of Tm and Yb) and roots (e.g. Cd, Th and U). The results revealed that for Ba, Cd, Sr, Pb, U and most of the REE, the free ion concentration was strongly correlated with the metal content in the plants, especially for the grains. Values obtained by DGT were also correlated with the bioavailable portion of Ba, Mn, Sr, Zn, Pb, U and REE. Measurements obtained from Ca extractions correlated well with the bioavailable metals for Ba, Cd, Sr, Rb, Pb and Th. The free or extractable metal fractions gave much better correlations of the bioavailable fractions than did the total metal concentrations from the soils, especially for the REE. The paper validates some simplified means of estimating the risks associated with metals and REE in tropical soils affected by mining activities.
Collapse
Affiliation(s)
- Juliana A Galhardi
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada.
| | - Bruno P Leles
- Department of Ecology, São Paulo State University, Rio Claro, SP, Brazil
| | - Jaime W V de Mello
- Soil Chemistry and Environmental Geochemistry Group, Department of Soil, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Kevin J Wilkinson
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
24
|
Tuhý M, Rohovec J, Matoušková Š, Mihaljevič M, Kříbek B, Vaněk A, Mapani B, Göttlicher J, Steininger R, Majzlan J, Ettler V. The potential wildfire effects on mercury remobilization from topsoils and biomass in a smelter-polluted semi-arid area. CHEMOSPHERE 2020; 247:125972. [PMID: 32069734 DOI: 10.1016/j.chemosphere.2020.125972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/06/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Wildfires can be responsible for significant mercury (Hg) emissions especially in contaminated areas. Here, we investigated the Hg distribution in topsoils and vegetation samples and temperature-dependent Hg mobilization from biomass-rich topsoils collected near a copper (Cu) smelter in Tsumeb (semi-arid Namibia), where Hg-rich Cu concentrates are processed. The thermo-desorption (TD) experiments conducted on representative biomass-rich topsoils (3.9-7.7 mg Hg/kg) indicated that more than 91% of the Hg was released at ∼340 °C, which corresponds to the predominant grassland-fire conditions. The mineralogical investigation indicated that the Hg comes mainly from the deposited smelter emissions because no distinct Hg-rich microparticles corresponding to the windblown dust from the nearby disposal sites of the technological materials (concentrates, slags, tailings) were found. A comparison with the TD curves of the Hg reference compounds confirmed that the Hg in the biomass-rich topsoils occurs as a mixture of Hg bound to the organic matter and metacinnabar (black HgS), which exhibits similarities with the TD pattern of smelter flue dust residue. Despite the installation of a sulfuric acid plant in the smelter in 2015 and a calculated drop in the estimated Hg emissions (from 1301 ± 457 kg/y for the period 2004-2015 to 67 ± 5 kg/y after 2015), the Hg legacy pool in the smelter surroundings can potentially be re-emitted back to the atmosphere by wildfire. Using the Hg spatial distribution data in the area (184 km2), the estimates indicate that up to 303 kg and 1.3 kg can be remobilized from the topsoils and vegetation, respectively.
Collapse
Affiliation(s)
- Marek Tuhý
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague 2, Czech Republic.
| | - Jan Rohovec
- Institute of Geology, Academy of Sciences of the Czech Republic, Rozvojová 269, 165 00, Prague 6, Czech Republic
| | - Šárka Matoušková
- Institute of Geology, Academy of Sciences of the Czech Republic, Rozvojová 269, 165 00, Prague 6, Czech Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague 2, Czech Republic
| | - Bohdan Kříbek
- Czech Geological Survey, Geologická 6, 152 00, Prague 5, Czech Republic
| | - Aleš Vaněk
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Czech Republic
| | - Ben Mapani
- Department of Geology, Faculty of Science, University of Namibia, Private Bag, 13301, Windhoek, Namibia
| | - Jörg Göttlicher
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen, Germany
| | - Ralph Steininger
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen, Germany
| | - Juraj Majzlan
- Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, D-07749, Jena, Germany
| | - Vojtěch Ettler
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
25
|
Huang R, Lin Q, Zhong Q, Zhang X, Wen X, Luo H. Removal of Cd(II) and Pb(II) from aqueous solution by modified attapulgite clay. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
26
|
Bartholomew CJ, Li N, Li Y, Dai W, Nibagwire D, Guo T. Characteristics and health risk assessment of heavy metals in street dust for children in Jinhua, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5042-5055. [PMID: 31845277 DOI: 10.1007/s11356-019-07144-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Street dust and soil samples were collected from three study areas in Jinhua, China: a commercial area and two urban districts. The concentrations of nickel (Ni), lead (Pb), copper (Cu), cadmium (Cd), and particularly zinc (Zn) in street dust exceeded soil background values and Chinese soil screening safe levels in some areas. Zn and Cd concentrations in street dust appeared to pose health concerns in the majority of sample sites, but their levels in soils were noticeably lower, indicating possible contamination from atmospheric deposition. Of the three areas, the most severe pollution occurred in Jindong (JD) District. Practically all the samples from JD District showed contamination to some degree. Based on pollution indices, the contamination levels of heavy metals among the studied sites were ranked in the following descending order: JD District > commercial area (CA) > Wucheng District. Source metal identification assessment revealed that the majority of metals in street dust from Jinhua were significantly related to industrial and traffic activities. Health risk assessment was performed based on the US-Environmental Protection Agency model, and the results showed that virtually, no health risk existed from exposure to individual metals in dust particles. However, the noncarcinogenic risk exponentially increased through exposure to various metals in dust. Thus, the majority of hazard index values surpassed the acceptable level. For carcinogens, the carcinogenic risks of each metal did not supersede the acceptable range for children. This observation demonstrates that although the carcinogenic risk is acceptable, the noncarcinogenic risk remains a genuine health concern for local children.
Collapse
Affiliation(s)
- Chad Joseph Bartholomew
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321000, China
| | - Na Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321000, China
| | - Yuanyuan Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321000, China
| | - Weishuai Dai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321000, China
| | - Deborah Nibagwire
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321000, China
| | - Ting Guo
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321000, China.
| |
Collapse
|
27
|
Gu J, Yao J, Jordan G, Roha B, Min N, Li H, Lu C. Arundo donax L. stem-derived biochar increases As and Sb toxicities from nonferrous metal mine tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2433-2443. [PMID: 30121764 DOI: 10.1007/s11356-018-2780-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Toxic metal(loid)s released from tailing residues of mining operations have become a global issue with regard to environmental impacts. Biochar derived from the agriculture waste is considered as a cost-effective and stable material, which could be applied for remediation of sites contaminated with toxic metal(loid)s. In the present study, tailings were amended for 90 days with increasing concentrations of Arundo donax L. stem-derived biochar (ASBC; at 0, 1, 3, and 5%). The 7-day wheat seed germination toxicity test was then used to assess the bioavailability of toxicants in aqueous leachates of the biochar-amended tailing samples. Concentrations of As, Cd, Cu, Pb, and Sb in leachates and the Community Bureau of Reference chemical fractions were determined using ICP-OES. The results indicated that tailing leachates were phytotoxic, an effect that was partially decreased due to increasing concentrations of ASBC, with maximum effects (∼47% of tailing phytotoxicity) occurring at 3% ASBC. Results of further fractionation analyses indicated that increasing concentrations of ASBC amendment decreased the mobile fractions of Cd, Cu, and Pb in tailing samples, but increased the mobilities of As and Sb. A novel approach using the relative toxicity index (= sum of toxicities of individual potentially toxic elements) indicated that the toxicity of the tailings decreased when As was not present, since As decreased the biochar-reduced toxicity. Our results suggest that the ability of using biochar to decrease toxicity in tailings (by sequestration of cationic metals such as Cd, Cu, and Pb) is limited by its inability to immobilize oxyanionic metalloids such as As and Sb.
Collapse
Affiliation(s)
- Jihai Gu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| | - Gyozo Jordan
- Department of Applied Chemistry, Szent István University, Villányiút 35-43, Budapest, 1118, Hungary
| | - Beenish Roha
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Ning Min
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Hao Li
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Chao Lu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| |
Collapse
|
28
|
Potential Ecological Risk and Human Health Risk Assessment of Heavy Metal Pollution in Industrial Affected Soils by Coal Mining and Metallurgy in Ostrava, Czech Republic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224495. [PMID: 31739633 PMCID: PMC6888271 DOI: 10.3390/ijerph16224495] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022]
Abstract
The heavy metal pollution of soils has become serious environmental problem, mainly in localities with high industrialization and rapid growth. The purpose of this detailed research was to determine the actual status of heavy metal pollution of soils and an assessment of heavy metal pollution in a highly industrialized city, Ostrava, with a history of long-term impacts from the metallurgy industry and mining. The ecological risks to the area was subsequently also assessed. The heavy metals Cd, Hg, Cu, Mn, Pb, V, Zn, Cr and Fe were determined in top-soils (0–20 cm) using atomic absorption spectrometry (F AAS, GF AAS) from three areas with different anthropogenic loads. The obtained data expressed as mean metal concentrations were very varied among the sampled soils and values of all analyzed metal concentrations were higher than its background levels. To identify the ecological risk and assessment of soil pollution, various pollution indices were calculated, such as single pollution indices (Igeo, CF, EF, PI) and total complex indices (IPI, PLI, PINemerow, Cdeg, mCdeg, Er and PERI). The identification of pollution sources was assessed using Pearson’s correlation analysis and multivariate methods (HCA, PCA/FA). The obtained results confirmed three major groups of metals (Fe–Cr, Pb–Cu and Mn–V). A human health risk was identified in the case of Pb, Cd and Cr, and the HI value of V for children also exceeded 1.
Collapse
|
29
|
Vareda JP, Valente AJM, Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:101-118. [PMID: 31176176 DOI: 10.1016/j.jenvman.2019.05.126] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 05/18/2023]
Abstract
Heavy metal pollution is a nefarious issue with implications for life. Heavy metals are natural occurring elements, having both natural and anthropogenic sources. The latter are however the most significant, releasing greater amounts of these pollutants in more toxic and mobile forms. Their chemistry and dynamics in the ecosystems are presented, and the relation to the pollution problematic thereof is discussed. The concentration of heavy metals in several sites, assessed in water, soil and sediment samples, affected by different pollution sources are reviewed. These evidence how human activities impact natural media and how the pollution spreads. The pollution in each media is assessed by the concentration relative to drinking and irrigation water guidelines, and by the geoaccumulation index of soils and sediments. It is found that ore extraction and processing and metallurgical industries stand atop the most polluting sources. Given the dynamics of heavy metal cations and that, most of these are released in liquid effluents, wastewater treatment techniques for the removal of heavy metals are also surveyed and critically discussed. Economic viability at a large municipal scale and the ability to comply with strict regulations are the determining factors in the selection of these techniques. A critical discussion on the viability of such techniques is made, reviewing some literature studies and commenting on their applicability on the previously found polluted media.
Collapse
Affiliation(s)
- João P Vareda
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - Artur J M Valente
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Luisa Durães
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal.
| |
Collapse
|
30
|
Cheng J, Zhang X, Ren S, Wang T, Tang Z. Metals in wild fish from Gaotang Lake in the area of coal mining, China: assessment of the risk to human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23754-23762. [PMID: 31209755 DOI: 10.1007/s11356-019-05732-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Environmental pollution can cause metal accumulation in aquatic organisms, but information on metal bioaccumulation in wild fish from coal mining areas is limited. We investigated tissue-specific metal accumulation in six economically important fish species common to Gaotang Lake, China, located in a coal mining area. We also conducted an assessment of potential risks to human health from consumption of these fish. Mean concentrations of arsenic, cadmium, cobalt, copper, mercury, lead, and antimony in the muscle of six fish species were below the corresponding Chinese maximum allowable concentrations except chromium and generally comparable with levels in fish reported by other studies. Tissue distribution patterns suggested that chromium and mercury were easily transported to the muscle, but concentrations of the other six metals were higher in the liver and gills. The daily intake of each metal was estimated at 0.002-0.220 g/day/kg body weight, and the non-carcinogenic health risks associated with the consumption of the fish from Gaotang Lake were acceptable. The results suggest that metal bioaccumulation in wild fish is not high in this coal mining area.
Collapse
Affiliation(s)
- Jiali Cheng
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xianhui Zhang
- Agricultural Product Quality Safety Inspection and Testing Center of Huainan, Huainan, 232007, Anhui, China
| | - Shuo Ren
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Tonglei Wang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Zhenwu Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
31
|
Kandic S, Tepe SJ, Blanch EW, De Silva S, Mikkonen HG, Reichman SM. Quantifying factors related to urban metal contamination in vegetable garden soils of the west and north of Melbourne, Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:193-202. [PMID: 31078958 DOI: 10.1016/j.envpol.2019.04.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Vegetable gardens in cities provide communities with fresh vegetables but also may contribute towards public exposure to metals present in soil from historical pollution. Contamination of some Melbourne garden soils with Pb (range 12.9-773 mg kg-1 in soil) was found with some soils exceeding the Australian human health screening criteria for residential land use of 300 mg kg-1. Cadmium concentrations (0.12-1.04 mg kg-1) were above the ambient background soil concentrations of <1 mg kg-1. Nickel concentrations (7.6-40.5 mg kg-1) and Cr (11.6-49.4 mg kg-1) were within the range of expected ambient background concentrations. Distance from the nearest arterial road, house age and the likely use of lead-based paints were the main factors explaining approximately 75% of soil Pb variability in garden soils. Metal concentrations in garden soils of wooden houses were found to be significantly higher than the garden soil of brick and concrete houses (Pb (p < 0.0001)) and Cd (p < 0.001)). Significant correlations were found between backyard garden soil metal concentration and house age for Pb (R2 = 0.83, p < 0.0001) and Cd (R2 = 0.40, p < 0.0002) and the distance from arterial roads for Pb (R2 = 0.38, p < 0.002), while Cr and Ni are related to soil characteristics cation exchange capacity, organic matter, and pH. Vegetable garden with elevated Pb and Cd had recognizable risk factors such as older, painted structures on adjacent houses and closer proximity to arterial roads with higher frequency traffic.
Collapse
Affiliation(s)
- Slavica Kandic
- School of Engineering, RMIT University, Melbourne, 3001, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Melbourne, 3001, Australia
| | - Susanne J Tepe
- School of Property, Construction and Project Management, RMIT University, Melbourne, 3001, Australia
| | - Ewan W Blanch
- School of Science, RMIT University, Melbourne, 3001, Australia
| | - Shamali De Silva
- School of Engineering, RMIT University, Melbourne, 3001, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Melbourne, 3001, Australia
| | - Hannah G Mikkonen
- School of Engineering, RMIT University, Melbourne, 3001, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Melbourne, 3001, Australia
| | - Suzie M Reichman
- School of Engineering, RMIT University, Melbourne, 3001, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Melbourne, 3001, Australia.
| |
Collapse
|
32
|
Antoniadis V, Shaheen SM, Levizou E, Shahid M, Niazi NK, Vithanage M, Ok YS, Bolan N, Rinklebe J. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review. ENVIRONMENT INTERNATIONAL 2019; 127:819-847. [PMID: 31051325 DOI: 10.1016/j.envint.2019.03.039] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 05/22/2023]
Abstract
Trace elements (TEs) may have toxic effects to plants and humans; thus, countries and organizations impose maximum allowable regulation limits of their concentrations in soils. Usually such limits are placed in different categories according to soil use, soil properties or based on both attributes. However, some countries have regulation limits irrespective of differentiation in soil properties. In this review, we aimed at collecting TE regulation limits in soils from major countries and organizations around the globe, and critiquing them by assessing potential human health risks in the case of soils attaining the maximum allowable values. We explored the soil-to-human pathway and differentiated among three major exposures from TEs, i.e., residential, industrial and agricultural. We observed the existence of problems concerning TE regulation limits, among which the fact that limits across countries do not regulate the same TEs, not even a minimum number of TEs. This indicates that countries do not seem to agree on which regulation limits of TEs pose a high risk. Also, these regulation limits do not take into account TE mobility to neighbouring environment interphases such as plant, especially edible, and water matrices. Moreover, limits for same TEs are vastly diverse across countries; this indicates that those countries have conflicting information concerning TE-related health risks. Subsequently, we addressed this problem of diversity by quantifying resultant risks; we did that by calculating human health risk indices, taking into consideration the cases in which the highest allowable TE limits are attained in soil. Arsenic limits were found to generate a relatively high hazard quotient (HQi, accounting for human intake over the maximum allowable oral reference dose for that same TE), indicating that its risk tends to be underestimated. Other TE limits, such as those of Cd, Cu, Ni, Pb, and Zn typically result in low HQi, meaning that limits in their cases are rather overprotective. Our approach reveals the need of reducing diversity in regulation limits by drafting soil legislations of worldwide validity, since risks are common across countries. We suggest that new directions should strategically tend to (a) reduce limits of TEs with underestimated contribution to health risk (such as As), (b) cautiously increase limits of TEs that currently cause minor health risks, (c) quantify TE risks associated with uptake to edible plants and potable water, and (d) consider multi-element contamination cases, where risks are cumulatively enhanced due to TE synergism.
Collapse
Affiliation(s)
- Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Yong Sik Ok
- School of Natural Resources and Environmental Science & Korea Biochar Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, NSW, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Rinklebe J, Antoniadis V, Shaheen SM, Rosche O, Altermann M. Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. ENVIRONMENT INTERNATIONAL 2019; 126:76-88. [PMID: 30784803 DOI: 10.1016/j.envint.2019.02.011] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 05/22/2023]
Abstract
Floodplain soils across Central Elbe River (CER), Germany, vary considerably in potentially toxic element (PTE) content. However, there has never been a comprehensive study that links PTE levels with human health risk for children and adults. Our objective was to determine the contamination of 13 PTEs in 94 soil profiles along CER and assess the associated health risk via diverse indices for adults and children. Of 94 soil profiles, we measured soil properties and total content of arsenic, barium, chromium, copper, nickel, lead, rubidium, tin, strontium, vanadium, zinc, and zirconium using x-ray fluorescence spectrometer (XRF). We calculated the Contamination Factor and the Pollution Load Index (PLI), and assessed the health risk for male and female adults as well as for children. Topsoil median contents of Cr (84 mg kg-1), Cu (42), Ni (33), and Zn (195) exceeded the Precautionary Values for sandy soils according to the German Federal Soil Protection and Contaminated Sites Ordinance, while As, Pb, and V were 32, 73, and 77 mg kg-1, respectively. Median topsoil PLI was 1.73, indicating elevated multi-element contamination, with 90th percentile and maximum values being 3.20 and 4.31, respectively. All PTE concentrations were higher in top- compared to subsoils. Also at the 50th percentile the most enriched elements were Sn and As, followed by Zr and Rb, while in the 90th percentile Sn and As were followed by Zn, Pb and Cu. Median children's hazard index (HI) was higher than unity (HI = 2.27) and the 90th percentile was 5.53, indicating elevated health risk. Adult median HIs were 0.18 for male and 0.21 for female persons. Arsenic was found to be the primary contributor to total risk, accounting of 57.4% of HI in all three-person groupings, with Cr (17.3%) being the second, and V (10.2%) the third. Children's health is at dramatically higher risk than that of adults; also As, Cr, Pb, and V have a predominant role in contamination-related health risks. The presence of V, a less-expected element, among those of major risk contribution, reveals the necessity of monitoring areas at large scale. Our results demonstrate that our study may serve as a model for similar works studying multi-element-contaminated areas in future.
Collapse
Affiliation(s)
- Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt; Department of Arid Land Agriculture, Faculty of Meteorology, Environment, and Arid Land Agriculture, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Oliver Rosche
- Soil Protection Authority Saalkreis Merseburg, Germany
| | | |
Collapse
|
34
|
Boente C, Albuquerque MTD, Gerassis S, Rodríguez-Valdés E, Gallego JR. A coupled multivariate statistics, geostatistical and machine-learning approach to address soil pollution in a prototypical Hg-mining site in a natural reserve. CHEMOSPHERE 2019; 218:767-777. [PMID: 30508795 DOI: 10.1016/j.chemosphere.2018.11.172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
The impact of mining activities on the environment is vast. In this regard, many mines were operating well before the introduction of environmental law. This is particularly true of cinnabar mines, whose activity has declined for decades due to growing public concern regarding Hg high toxicity. Here we present the exemplary case study of an abandoned Hg mine located in the Somiedo Natural Reserve (Spain). Until its closure in the 1970s, this mine operated under no environmental regulations, its tailings dumped in two spoil heaps, one of them located uphill and the other in the surroundings of the village of Caunedo. This study attempts to outline the degree to which soil and other environmental compartments have been affected by the two heaps. To this end, we used a novel combination of multivariate statistical, geostatistical and machine-learning methodologies. The techniques used included principal component and clustering analysis, Bayesian networks, indicator kriging, and sequential Gaussian simulations. Our results revealed high concentrations of Hg and, secondarily, As in soil but not in water or sediments. The innovative methodology abovementioned allowed us to identify natural and anthropogenic associations between 25 elements and to conclude that soil pollution was attributable mainly to natural weathering of the uphill heap. Moreover, the probability of surpassing the threshold limits and the local backgrounds was found to be high in a large extension of the area. The methodology used herein demonstrated to be effective for addressing complex pollution scenarios and therefore they are applicable to similar cases.
Collapse
Affiliation(s)
- C Boente
- INDUROT and Environmental Technology, Biotechnology, and Geochemistry Group, Universidad de Oviedo, Campus de Mieres, 33600 Mieres, Asturias, Spain
| | - M T D Albuquerque
- Instituto Politécnico de Castelo Branco, CERENA/FEUP Research Center, 6001-909 Castelo Branco, Portugal
| | - S Gerassis
- Department of Natural Resources and Environmental Engineering, Univ. of Vigo, Lagoas Marcosende, 36310 Vigo, Spain
| | - E Rodríguez-Valdés
- INDUROT and Environmental Technology, Biotechnology, and Geochemistry Group, Universidad de Oviedo, Campus de Mieres, 33600 Mieres, Asturias, Spain
| | - J R Gallego
- INDUROT and Environmental Technology, Biotechnology, and Geochemistry Group, Universidad de Oviedo, Campus de Mieres, 33600 Mieres, Asturias, Spain.
| |
Collapse
|
35
|
Antoniadis V, Golia EE, Liu YT, Wang SL, Shaheen SM, Rinklebe J. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. ENVIRONMENT INTERNATIONAL 2019; 124:79-88. [PMID: 30640132 DOI: 10.1016/j.envint.2018.12.053] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/10/2018] [Accepted: 12/23/2018] [Indexed: 05/25/2023]
Abstract
Agricultural lands adjacent to industrial activities are vulnerable due to the risk of trace elements (TEs) being accumulated into crops and subsequently humans. One such case concerns the industrial area of Volos, Greece, a suspected contaminated area which has never been studied. We measured Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, and Zn in soil and maize (leaves and grains) and assessed health risk of human exposure via soil ingestion and grain consumption. We found that the most highly enriched elements in soils were Tl (enrichment factor = 19), Se (17.68), Sb (14.81), As (7.89), Ni (6.91), Mo (5.22) and Cr (4.33); they all likely derived from anthropogenic activities and in particular from a nearby major steel factory, except for Ni which is known to be lithogenically elevated in that area. Synchrotron XANES spectra analysis revealed that As species were associated with ferrihydrite, and predominant species were As(V) (at ca. 85%) and As(III) (at ca. 15%). Although the total content of the studied elements was high, the ammonium bicarbonate-DTPA extractions recovered very low element concentrations, probably due to the fact that soil conditions decelerated solubility (i.e., soils were alkaline, clayey, and with high Fe oxides content). This was confirmed by the soil-to-grain transfer index, which was particularly low for all studied elements. In 5% of sampled grains concerning Cd, and in 40% concerning Pb, the European food-related regulation limits were surpassed. Health risk assessment showed a dramatically elevated risk for Tl via soil ingestion (hazard quotient, HQ = 2.399), a value that contributed 74% of the total risk. Similarly, concerning the grain consumption-related health risk, Tl was the predominant contributor (HQ = 0.128, contributing 40% of the total risk). Such elevated Tl risk which has rarely been reported previously, led to a considerably high hazard index (HI) well above the threshold of HI = 1. Cancer risk was below the 1 × 10-4 risk threshold for As and Pb. Our findings indicate that this study should be pivotal concerning similar industrially-affected agricultural soils of suspected contamination, since less-expected toxic elements such as Tl here may be primary contributors to health risk.
Collapse
Affiliation(s)
- Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Evangelia E Golia
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Yu-Ting Liu
- Department of Soil and Environmental Sciences, National Chung-Hsing University, 145 Xingda Rd., Taichung 402, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung-Hsing University, 145 Xingda Rd., Taichung 402, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Sabry M Shaheen
- University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Shang Z, Zhang L, Zhao X, Liu S, Li D. Removal of Pb(II), Cd(II) and Hg(II) from aqueous solution by mercapto-modified coal gangue. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:391-396. [PMID: 30368148 DOI: 10.1016/j.jenvman.2018.10.072] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/20/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
A low-cost mercapto-modified coal gangue (CG-SH) was fabricated by modification of coal gangue (CG) with (3-mercaptopropyl) trimethoxysilane. The structure and composition for as-prepared CG-SH were characterized by using X-ray diffraction (XRD), Fourier transfer infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray fluorescence (XRF). Results indicated that larger amounts of mercapto-groups (-SH) was successfully introduced onto CG, which followed by acted as active sites for the removal of heavy metal cations, such as Pb(II), Cd(II) and Hg(II). The factors that affected the adsorption equilibrium as well as the removal efficiency, i.e., contact time, initial concentration, pH and temperature, were investigated in detail. The adsorption isotherms for Pb(II), Cd(II) and Hg(II) were well fitted with Langmuir model. The maximum adsorption capacity of CG-SH for Pb(II), Cd(II) and Hg(II) were calculated to be 332.8, 110.4 and 179.2 mg g-1, respectively. The adsorption for Pb(II), Cd(II) and Hg(II) on CG-SH could be well described by pseudo-second-order kinetic model. And thermodynamic analysis suggests that the adsorption process for Pb(II) is exothermal, while that for Cd(II) and Hg(II) are endothermal. The results suggest CG-SH have great potential to be used as efficient absorbent for the removal of heavy metal cations from water.
Collapse
Affiliation(s)
- Zhongbo Shang
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - LiWen Zhang
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Xuyang Zhao
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Shanhu Liu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Deliang Li
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
37
|
Cánovas CR, Caro-Moreno D, Jiménez-Cantizano FA, Macías F, Pérez-López R. Assessing the quality of potentially reclaimed mine soils: Environmental implications for the construction of a nearby water reservoir. CHEMOSPHERE 2019; 216:19-30. [PMID: 30359913 DOI: 10.1016/j.chemosphere.2018.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
The cementation complex of Las Viñas (SW Spain) is a partially reclaimed abandoned mine site located in the drainage basin of a water reservoir currently under construction. The aim of this investigation was to analyze these mine soils to evaluate their potential environmental impact, especially on the final reservoir water quality. Results evidence the extremely high acidity of soils (pH of 3.4 and maximum potential acidity of 47 kg CaCO3/ton), with high concentrations of trace elements, especially As, Pb and Cu. Sequential extraction data reveal the potential release of significant quantities of Mn, Cd, Cu and other easily-soluble trace elements by rainfalls. The weathering and transport of soils to the bottom sediments of the planned reservoir could lead to the release of significant quantities of toxic trace elements to the water column if anoxic (mainly As, Sb, Cr, Ni, Cu and Pb) or oxic (mainly Hg, Pb, V, Cu and As) conditions are found in the sediments. The acidity and metals released from these soils could jeopardize the quality of the reservoir waters. Remediation measures must be therefore adopted, focused on the cleanup and liming of soils in order to promote colonization and vegetation succession, thus avoiding soil erosion and limiting metal release to the hydrosphere. This study proposes the use of different low-cost materials to improve the soil quality, limiting the metal transfer to the planned reservoir water. The information contained in this study could be of great importance in other watersheds affected by abandoned mine sites.
Collapse
Affiliation(s)
- Carlos Ruiz Cánovas
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva. Campus 'El Carmen', Fuerzas Armadas s/n, 21071 Huelva, Spain.
| | - David Caro-Moreno
- Environmental and Water Agency. Regional Government of Andalusia, (Agencia de Medio Ambiente y Agua de Andalucía, AMAyA). Johan G. Gutenberg 1, 41092 Seville, Spain
| | - Francisco A Jiménez-Cantizano
- Environmental and Water Agency. Regional Government of Andalusia, (Agencia de Medio Ambiente y Agua de Andalucía, AMAyA). Johan G. Gutenberg 1, 41092 Seville, Spain
| | - Francisco Macías
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva. Campus 'El Carmen', Fuerzas Armadas s/n, 21071 Huelva, Spain
| | - Rafael Pérez-López
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva. Campus 'El Carmen', Fuerzas Armadas s/n, 21071 Huelva, Spain
| |
Collapse
|
38
|
Xiao R, Shen F, Du J, Li R, Lahori AH, Zhang Z. Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:178-183. [PMID: 29990729 DOI: 10.1016/j.ecoenv.2018.06.095] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/04/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Phytoremediation is regarded as one of the most cost-effective and environmentally friendly strategies for potentially toxical metals (PTMs) contaminated soil remediation. Despite that, continuous studies are conducting to explore the potential plant species in order to achieve enhanced remediation efficiencies. Therefore, in this study, a field investigation was conducted to screen the potential phytoremediation plants from a contaminated site in the surrounding area of a Zn smelter in Feng Country, China. Results indicated that soils in the studied area were severely contaminated with Cd and Zn, while the contents of other metals (Cu, Pb, and Ni) were below the allowanced threshold. Moreover, the contamination was more serious in areas closer to the smelter. The elevated level of contamination had great impacts on plant diversity and abundance. Fifty-nine plant species belonging to 28 families were identified in the studied area, of which plants from the Asteraceae family and herbs were most frequently observed. Plants demonstrated differentiated potential on metal accumulation and translocation, and the total Cd, Cu, Pb, and Zn contents in the aerial parts of plants ranged from 5.57 to 268.5, 14.34 to 140.90, 10.43 to 570.3, and 110.3 to 1350 mg kg-1, respectively. Symphytum officinale Linn. distinguished itself from the various plants as a promising plant candidate for soil remediation, due to its great capacities for absorbing Cd, Pb, and Zn. Specifically, an individual Symphytum officinale Linn. plant can accumulate up to 5.54, 21.0, and 52.9 mg Cd, Pb, and Zn in its aboveground parts (20.67 g dry weight). Results from this study can provide a reference for the phytoremediation of PTMs contaminated soil in this area or other places with similar soil and climate conditions.
Collapse
Affiliation(s)
- Ran Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Feng Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Altaf Hussain Lahori
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|