1
|
Cai W, Chen Q, Wang J. Toxicological and mechanistic insights into organic contaminants released from on-line membrane cleaning during ultrafiltration of algal-containing waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136139. [PMID: 39426149 DOI: 10.1016/j.jhazmat.2024.136139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Eutrophication has significantly challenged the treatment of algae-contaminated water. Ultrafiltration has become an essential method for water purification, though frequent on-line chemical cleaning is necessary to maintain membrane permeability. This study aims to systematically investigate the impact of various chemical cleaning agents on the release of dissolved organic matters and toxic by-products, particularly from algal cells. Through a series of controlled experiments, Microcystis aeruginosa cells were exposed to different cleaning agents (HCl, NaOH, NaClO), and the resulting DOM and by-products were characterized. Special attention was paid to the release of intracellular organic matter (IOM) and extracellular organic matter (EOM). Results revealed that NaClO significantly oxidized IOM, leading to the formation of humic-like substances and halogenated organic compounds (TOX), including 15 types of halogenated by-products detected by UPLC/ESI-tqMS. Furthermore, the release of toxic microcystin LR (MC-LR) was traced primarily to IOM. The removability of these contaminants by UF and reverse osmosis (RO) membranes was analyzed, revealing that over 50 % of the toxic by-products passed through UF membranes, and 10 % still penetrated RO membranes, raising significant concerns for downstream water quality and drinking water safety.
Collapse
Affiliation(s)
- Weiwei Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Qiuying Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingwei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
2
|
Arshad Z, Bang TH, Kim MS, Shin KH, Park HY, Hur J. Quantitative source tracking for organic foulants in ultrafiltration membrane using stable isotope probing approach. WATER RESEARCH 2024; 249:120989. [PMID: 38101049 DOI: 10.1016/j.watres.2023.120989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Quantitatively identifying the primary sources of organic membrane fouling is essential for the effective implementation of membrane technology and optimal water resource management prior to the treatment. This study leveraged carbon stable isotope tracers to estimate the quantitative contributions of various organic sources to membrane fouling in an ultrafiltration system. Effluent organic matter (EfOM) and aquatic natural organic matter (NOM), two common sources, were combined in five different proportions to evaluate their mixed effects on flux decline and the consequent fouling behaviors. Generally, biopolymer (BP) and low molecular weight neutral (LMWN) size fractions - abundantly present in EfOM - were identified as significant contributors to reversible and irreversible fouling, respectively. Fluorescence spectroscopy disclosed that a protein-like component notably influenced overall membrane fouling, whereas humic-like components were predominantly responsible for irreversible fouling rather than reversible fouling. Fluorescence index (FI) and biological index (BIX), common fluorescence source tracers, showed promise in determining the source contribution for reversible foulants. However, these optical indices were insufficient in accurately determining individual source contributions to irreversible fouling, resulting in inconsistencies with the observed hydraulic analysis. Conversely, applying a carbon stable isotope-based mixing model yielded reasonable estimates for all membrane fouling. The contribution of EfOM surpassed 60 % for reversible fouling and increased with its content in DOM source mixtures. In contrast, aquatic NOM dominated irreversible fouling, contributing over 85 %, regardless of the source mixing ratios. This study emphasizes the potential of stable isotope techniques in accurately estimating the contributions of different organic matter sources to both reversible and irreversible membrane fouling.
Collapse
Affiliation(s)
- Zeshan Arshad
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Truong Hai Bang
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Min-Seob Kim
- Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon 22689, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, South Korea
| | - Ho-Yeon Park
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
3
|
Chen Q, Wang Y, Zhao ZP, Cai W. Emerging algal organic matter from simulated on-line chemical cleaning of ultrafiltration membranes treating algae-containing water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167893. [PMID: 37865257 DOI: 10.1016/j.scitotenv.2023.167893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Massive reproduction of algae due to the eutrophication of water body poses a new challenge to the water ecosystem. Despite ultrafiltration (UF) acting as an effective method to treat algae-containing waters, on-line chemical cleaning is frequently utilized to sustain the permeability of UF membranes. However, little attention is currently paid on the side-effects of practical on-line chemical cleaning on aqueous environments. Therefore, this work evaluated the generation of algae organic matter triggered by diverse membrane cleaning reagents (i.e., HCl, NaOH, NaClO, SDS and CA), and their subsequent fate in terms of biodegradation and membrane retention. The results indicated that NaOH, HCl and NaClO caused serious damage and lysis of algal cells, leading to the significant release of dissolved organic matter (DOM), while CA and SDS induced negligible DOM release. The occurrence of DOM release was able to cause extra biofouling, thus deteriorating the UF permeability. Furthermore, DOM was characterized in terms of three molecular weight ranges, i.e., high molecular weight (HMW, > 3400 Da), medium molecular weight (MMW, 150-3400 Da), and low molecular weight (LMW, <150 Da). Protein-related substances in the range of HMW and MMW were primarily produced under HCl and NaOH exposures. In contrast, NaClO led to an obvious release of humic-like materials with MMW. During the next round of UF operation, roughly 17 % to 31 % of these released DOM could be removed by via the joint actions of suspended algae biodegradation and fouling layer retention. Nevertheless, roughly 69 % to 83 % of these produced DOM eventually entered into the UF permeate, resulting in the deterioration of permeate quality. Consequently, the detailed mechanisms of DOM generation and subsequent removal by UF were proposed, which re-examined the origins of emerging contaminants in aqueous environment and shed new light on the strategies to ameliorate current practice of on-line membrane chemical cleaning.
Collapse
Affiliation(s)
- Qiuying Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Yuanyuan Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Zhi-Ping Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Weiwei Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
4
|
Hu J, Zuo Y, Guo B, Shi H. Enhanced hydrogen production from sludge anaerobic fermentation by combined freezing and calcium hypochlorite pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160134. [PMID: 36372170 DOI: 10.1016/j.scitotenv.2022.160134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
A novel and high-efficiency sludge pretreatment method by combination of freezing and calcium hypochlorite (CH) for promoting the anaerobic fermentation performance was reported in this work. Experimental results indicated that a maximum biohydrogen production of 18.18 ± 0.43 mL/g volatile suspended solids (VSS) was realized by freezing (-5 °C) combined with CH (0.12 g/g VSS) pretreatment, which was 1.19, 4.05 and 11.36 times to that from the sole CH, sole freezing and control fermenters, respectively. Mechanism study showed that freezing + CH pretreatment efficiently disintegrated sludge flocs, producing abundant substrates for anaerobic fermentation. Model substances degradation experiment showed that the biochemical processes were all suppressed by freezing + CH method, but the suppressive degrees for hydrogen-consuming processes were greater than hydrogen-producing processes. 16S rRNA analysis revealed that the microbial community in freezing + CH treated reactor was more beneficial to hydrogen generation than that in the control, because the abundance of functional microbes was enriched from 6.81 % to 34.95 % by the co-treatment. Furthermore, sludge dewatering performance, including settleability, dewaterability and filterability, was enhanced by freezing + CH pretreatment.
Collapse
Affiliation(s)
- Jiawei Hu
- College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yuanhui Zuo
- Research Institute of Fudan University in Ningbo, 315336, China
| | - Bing Guo
- CCCC National Engineering Research Center of Dredging Technology and Equipment Co., Ltd., Shanghai 200082, China
| | - Huancong Shi
- Huzhou Institute of Zhejiang University, Huzhou 313000, China; School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
5
|
Gao Z, Chen Q, Song X, Wang J, Cai W. Microbial Responses to Various Types of Chemical Regents during On-Line Cleaning of UF Membranes. MEMBRANES 2022; 12:920. [PMID: 36295679 PMCID: PMC9606962 DOI: 10.3390/membranes12100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Ultrafiltration is widely used to treat various environmental waters, and on-line membrane cleaning with various chemical reagents is frequently employed to sustain the filtration flux. However, the residue of cleaning agents in the ultrafiltration system is unavoidable, which may affect microbiological properties and biofilm formation during the next-round filtration. By investigating the changes in microbial characteristics, and their biofouling behaviors after exposure to HCl, NaOH, NaClO, citric acid (CA), and sodium dodecyl sulfonate (SDS), this study fills a knowledge gap in microbial responses to various types of chemical cleaning agents in an ultrafiltration system. The result shows that HCl, NaOH, and NaClO affect the bacterial properties and subsequent attachment on the membrane surface, while CA and SDS have no obvious influence on microorganisms. Specifically, HCl, NaOH, and NaClO reduce the hydrophobicity and mean size of suspended microorganisms, increase the extracellular polymeric substances (EPS) release, and trigger intracellular reactive oxygen species (ROS) generation, resulting in the death of a large quantity of microorganisms. Due to the self-protecting strategy, plenty of living cells aggregate on the membrane surface and form a cake layer with a stratified structure, causing more severe membrane biofouling.
Collapse
Affiliation(s)
- Zeyuan Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Qiuying Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xiaolan Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingwei Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Weiwei Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
6
|
Gao Z, Zhao ZP, Cai W. Chemically induced alteration in PAC characteristics and its influences on PAC/UF water treatment: Implications for on-line membrane cleaning with NaClO. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Ab Hamid NH, Wang DK, Smart S, Ye L. A green, hybrid cleaning strategy for the mitigation of biofouling deposition in the elevated salinity forward osmosis membrane bioreactor (FOMBR) operation. CHEMOSPHERE 2022; 288:132612. [PMID: 34678348 DOI: 10.1016/j.chemosphere.2021.132612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Forward osmosis membrane bioreactors (FOMBRs) are currently gaining attention from the wastewater treatment industry, for their potential to produce high effluent quality and a relatively better flux stability against fouling. However, only using physical cleaning methods is not sufficient to recover the water flux performance satisfactorily under a long-term operation. This study comprehensively investigated the efficiency of a hybrid, environmentally-friendly cleaning strategy involving a combination of physical and free nitrous acid (FNA) cleanings under a long-term FOMBR operation. During 92 days of FOMBR operation, physical cleaning recovered the water flux by 85%, whilst FNA cleaning contributed to an additional 5% of the recovery. In addition, FNA cleaning also offered a retardation of fouling deposition by maintaining the water flux 18-30% more than that obtained by only the physical cleaning. A possible mechanism for FNA's role as the cleaning reagent was proposed for the first time in this study based on the water flux performance and membrane autopsy analysis. The results showed FNA cleaning broke down the residual fouling layer, preferencing protein-based substances. A lower ratio of protein to polysaccharides of the residual fouling layer contributed to a more negatively charged membrane surface (- 42.34 ± 0.30 mV) compared to the virgin one (- 17.54 ± 0.81 mV). This resulted in a stronger electrostatic repulsion between the foulants and the membrane surface, and thus slowed down the biofouling deposition process. This study suggested FNA solution has the great potential not only to recover the membrane performance, also as a strategy to slow down fouling deposition.
Collapse
Affiliation(s)
- Nur Hafizah Ab Hamid
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - David K Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon Smart
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
8
|
Cheng X, Wang S, Huang W, Wang F, Fang S, Ge R, Zhang Q, Zhang L, Du W, Fang F, Feng Q, Cao J, Luo J. Current status of hypochlorite technology on the wastewater treatment and sludge disposal: Performance, principals and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150085. [PMID: 34525771 DOI: 10.1016/j.scitotenv.2021.150085] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
As cost-effective and high-efficient oxidants, the hypochlorite chemicals have been widely utilized for bleaching and disinfection. However, its potential applications in wastewater treatment and sludge disposal were less concerned. This paper mainly summarized the state-of-the-art applications of hypochlorite technology in wastewater and sludge treatment based on the main influencing factors and potential mechanisms of hypochlorite treatment. The results indicated that the hypochlorite approaches were not only effective in pollutants removal and membrane fouling mitigation for wastewater treatment, but also contributed to sludge dewatering and resource recovery for sludge disposal. The ClO- and large generated free active radicals (i.e., reactive chlorine species and reactive oxygen species), which possessed strong oxidative ability, were the primary contributors to the pollutants decomposition, and colloids/microbes flocs disintegration during the hypochlorite treatment process. The performance of hypochlorite treatment was highly associated with various factors (i.e., pH, temperature, hypochlorite types and dosage). In combination with the reasonable activators (i.e., Fe2+ and ultraviolet), auxiliary agents, and innovative processes (i.e., hydrothermal and electro-oxidation), the operational performance of hypochlorite technology could be further enhanced. Finally, the feasibility and benefits of hypochlorite application for wastewater and sludge treatment were analyzed, and the existing challenges and future research efforts that need to be made have also prospected. The review can hopefully provide a theoretical basis and technical guidance to extend the application of hypochlorite technology for wastewater treatment and sludge disposal on large scale.
Collapse
Affiliation(s)
- Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Suna Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Ran Ge
- College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
9
|
Cai W, Zhang J, Li Y, Chen Q, Xie W, Wang J. Characterizing membrane fouling formation during ultrafiltration of high-salinity organic wastewater. CHEMOSPHERE 2022; 287:132057. [PMID: 34474376 DOI: 10.1016/j.chemosphere.2021.132057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
High-salinity organic wastewater usually consists of diverse highly concentrated ions such as Na+, Ca2+ and Al3+ etc., which may significantly influence the fouling propensity when membrane technique is employed for contaminants removal. The current work investigated the effects of high salinity especially high-concentration Na+, Ca2+ and Al3+ on UF fouling characteristics, where 2 M Na+ and 0.5-1.0 M Ca2+ or Al3+ were applied according to the general composition of high-salinity wastewater. The results demonstrated that the presence of high-concentration Na+ alone benefited the ultrafiltration of bovine serum albumin (BSA) solution, but posed adverse effects on the ultrafiltration of humic acid (HA) solution. Further addition of Ca2+ or Al3+ on the basis of Na+ was found to aggravate the development of BSA fouling. Such differentiated behaviors were further elucidated by the comprehensive fouling characterizations in terms of foulant properties, specific resistances, filtration modelling and fouling layer observations. Correlation analysis suggested that irreversible fouling had strong relationship with Al3+ addition, while reversible fouling seemed to be primarily influenced by foulant size. Meanwhile, membrane rejection in the presence of various salts remarkably decreased, which was negatively correlated with zeta potential. Consequently, this study should shed light on the membrane fouling formation for treating high-salinity organic wastewater using membrane techniques.
Collapse
Affiliation(s)
- Weiwei Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Jingyu Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Qiuying Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Wenwen Xie
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jingwei Wang
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Jiang B, Zeng Q, Hou Y, Li H, Shi S, Chen Z, Cui Y, Hu D, Ge H, Che S, Sui Y, Qi Y. The responses of activated sludge to membrane cleaning reagent H 2O 2 and protection of extracellular polymeric substances. ENVIRONMENTAL RESEARCH 2022; 203:111817. [PMID: 34352233 DOI: 10.1016/j.envres.2021.111817] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2O2) is evaluated as a potential replacement for chlorine to control biofouling in membrane bioreactors (MBRs). However, H2O2 might diffuse into the mixed liquor and damage microorganisms during membrane cleaning. This study comprehensively analyzed the impacts of H2O2 on microbes. Key enzymes involved in phenol biodegradation were inhibited with H2O2 concentration increased, and thus phenol degradation efficiency was decreased. Increase of lactic dehydrogenase (LDH) and intracellular reactive oxygen species (ROS) indicated more severe cell rupture with H2O2 concentration increased. At the same H2O2 concentration, Extracellular polymeric substances (EPS) extraction further led to inhibiting the activity of key enzymes, decreasing phenol degradation efficiency, and enhancing LDH release and ROS production, demonstrating that the existence of EPS moderated the adverse impacts on microbes. Spectroscopic characterization revealed the increase of H2O2 decreased tryptophan protein-like substances, protein-associated bonds and polysaccharide-associated bonds. Hydroxyl and amide groups in EPS were attacked, which might lead to the consumption of H2O2, indicated EPS protect the microorganism through sacrificial reaction with H2O2.
Collapse
Affiliation(s)
- Bei Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China.
| | - Qianzhi Zeng
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Yuan Hou
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Hongxin Li
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Shun Che
- Yingkou Port Group CORP, Yingkou, 115007, China
| | - Yanan Sui
- Yingkou Port Group CORP, Yingkou, 115007, China
| | - Yu Qi
- Yingkou Port Group CORP, Yingkou, 115007, China
| |
Collapse
|
11
|
Arshad Z, Maqbool T, Shin KH, Kim SH, Hur J. Using stable isotope probing and fluorescence spectroscopy to examine the roles of substrate and soluble microbial products in extracellular polymeric substance formation in activated sludge process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147875. [PMID: 34134356 DOI: 10.1016/j.scitotenv.2021.147875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
In this study, we used stable isotope-labeled soluble microbial products (SMP) and substrates to explore their assimilation into the formation of new biological products (i.e., extracellular polymeric substances and biomass) in two adjacent sequencing batch reactors. The isotope labeling approach along with fluorescence spectroscopy allowed us to distinguish between refractory and labile portions of SMP constituents as well as their roles in the formation of extracellular polymeric substances (EPS). Comparison of SMP fluorescence and the specific UV absorbance values between the two reactors revealed the presence of humic-like aromatic substances in the non-consumable part of SMP, which can be ultimately released as effluent organic matter. Parallel factor analysis modeling of fluorescence spectra showed that the hydrolysis of EPS contents mostly resulted in humic-like components in SMP rather than protein-like components, which were initially abundant in EPS (>80%). From variations in carbon and nitrogen isotopic contents in EPS and biomass, it was found that carbon-containing substrates were enriched faster than their nitrogenous counterparts. The contributions to new EPS formation reached 87.5% for carbon and 60.5% for nitrogen. Meanwhile, the isotopic tracking of the labeled SMP revealed that only 11.0% and 11.9% of carbon and 13.3% and 11.6% of nitrogen from the influent SMP were finally assimilated into EPS and biomass, respectively. In contrast, the isotopic enrichment in SMP was higher (~50%) than that of EPS and biomass, indicating the low bioavailability and refractory nature of the feed SMP. This study proposed a promising approach for estimating the relative contributions of different forms of labile substrate and SMP to the formation of EPS in activated sludge processes. This approach could be suggested as a versatile method for establishing the kinetics, substrate element flow, mass balance on organic substrates and nutrients, as well as for tracking the consumption and uptake pathways of hazardous materials.
Collapse
Affiliation(s)
- Zeshan Arshad
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Kyung Hoon Shin
- Department of Environmental Marine Sciences, Hanyang University, Ansan, Gyeonggi do 15588, South Korea
| | - Seung-Hee Kim
- Department of Environmental Marine Sciences, Hanyang University, Ansan, Gyeonggi do 15588, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
12
|
Park S, Hong SM, Park J, You S, Lee Y, Kim E, Cho KH. Evaluating an on-line cleaning agent for mitigating organic fouling in a reverse osmosis membrane. CHEMOSPHERE 2021; 275:130033. [PMID: 33676278 DOI: 10.1016/j.chemosphere.2021.130033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Cleaning-in-place (CIP) is a representative fouling management process from which the filtration performances of fouled membranes can be recovered. However, CIP can cause significant inefficiency in water production because frequent system restabilization is necessary for cleaning processes. This study applied a newly developed on-line cleaning agent (OCA, a feed water additive for fouling mitigation), to reduce the number of CIP by enhancing water productivity. Reverse osmosis filtration was performed to evaluate the effect of on-line cleaning on the mitigation of organic fouling originating from humic acid (HA) and bovine serum albumin. OCA increased the permeate flux in proportion to OCA concentration. In particular, OCA effectively reduced the fouling layer thickness by 22% when fouling was influenced by HA-Ca2+ complexation, increasing water production by 5%. It also had a minor influence on bovine serum albumin fouling, producing a 1.4% increase in permeate flux. Furthermore, the pore blockage-cake filtration model was used to evaluate OCA cleaning performance through the reduction in fouling layer resistance and the growth parameter. The results demonstrated the advantages of OCA utilization for mitigating cake layer development. These findings imply that OCA can be an effective cleaning additive, especially in seawater and groundwater treatment processes with a high proportion of HA and calcium ions.
Collapse
Affiliation(s)
- Sanghun Park
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Seok Min Hong
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Jongkwan Park
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
| | - Sunam You
- Corporate R&D Institute, Doosan Heavy Industries and Construction Co., Ltd., Gyeonggi-do, 16858, Republic of Korea
| | - Younggeun Lee
- Corporate R&D Institute, Doosan Heavy Industries and Construction Co., Ltd., Gyeonggi-do, 16858, Republic of Korea
| | - Eunggil Kim
- Primetech International Co., Ltd, Chungmin-ro 52, Songpa-gu, Seoul, 05839, Republic of Korea
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
13
|
Tang G, Zheng X, Li X, Liu T, Wang Y, Ma Y, Ji Y, Qiu X, Wan Y, Pan B. Variation of effluent organic matter (EfOM) during anaerobic/anoxic/oxic (A 2O) wastewater treatment processes. WATER RESEARCH 2020; 178:115830. [PMID: 32335369 DOI: 10.1016/j.watres.2020.115830] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Here, we studied seasonal variation of effluent organic matter (EfOM), based on molecular weight distribution and fluorescent components, during the traditional anaerobic/anoxic/oxic (A2O) wastewater treatment processes. Microbial community structure and effect of temperature on some isolated pure strains were analyzed to explain the related mechanism. Results showed that the anaerobic process played a key role in EfOM removal by removing building blocks, low molecular weight (LMW) neutrals, biopolymers, and protein-related substances (C4 and C5), thus determining the fate of EfOM during the A2O processes. On the other hand, humic substances, LMW neutrals, large molecular-sized hydrophobic humic-like compounds (C3), and aromatic proteins (C4) were generated during the anoxic process in summer and winter. Proteobacteria (Gamma-, Beta-, and Alpha-proteobacteria) and Bacteroidetes constituted over 50% of the sludge community. Temperature was found to be positively correlated with the generation of soluble microbial products (SMP) based on the performance of the mixture of isolated Herbaspirillum sp. (Beta-proteobacteria) and Pseudomonas sp. (Gamma-proteobacteria). Through comprehensive analysis of the co-action of Proteobacteria and temperature, we proposed the Synergetic Effect of Temperature and Proteobacteria as a possible mechanism of the seasonal variation of EfOM. These findings are important for understanding the fate of EfOM during the wastewater treatment processes and therefore be helpful for better EfOM control.
Collapse
Affiliation(s)
- Gang Tang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China.
| | - Xiaolin Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Tong Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Yan Wang
- Shaanxi Provincial Institute of Microbiology, Xi'an, 710043, China
| | - Yinliang Ma
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Yetong Ji
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaopeng Qiu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Yi Wan
- Shaanxi Provincial Institute of Microbiology, Xi'an, 710043, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
14
|
Cai W, Han J, Zhang X, Liu Y. Formation mechanisms of emerging organic contaminants during on-line membrane cleaning with NaOCl in MBR. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121966. [PMID: 31896006 DOI: 10.1016/j.jhazmat.2019.121966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
On-line chemical cleaning with sodium hypochlorite (NaOCl) is widely employed for sustaining MBR permeability, during which the inevitable contact between activated sludge and NaOCl had been shown to trigger substantial release of dissolved organic matter (DOM). Therefore, this work further explored the formation mechanisms of such DOM by looking into the respective reactions of intracellular organic matter (IOM) and cell debris in activated sludge with NaOCl. The results showed that DOM was primarily produced from the dissolution of cell wall, while IOM release was insignificant at the NaOCl concentration of 25 mg/L as Cl2. On the basis of experimental observations, a three-step mechanism was proposed for elucidating the DOM formation from activated sludge upon NaOCl exposure: (i) NaOCl first damaged cells by perforating cellular wall, producing a considerable amount of humic-like substances and low-molecular-weight halogenated byproducts; (ii) IOM was released but rapidly degraded and humified by NaOCl, accompanied with the formation of relatively high-molecular-weight halogenated byproducts; (iii) the residual NaOCl and combined chlorine continued to react with cell wall or likely diffused into cells leading to the deactivation of DNA/enzymes. Consequently, this study offers mechanistic insights into the origination of emerging contaminants during on-line membrane cleaning of practical MBR.
Collapse
Affiliation(s)
- Weiwei Cai
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
15
|
Maqbool T, Cho J, Hur J. Importance of nutrient availability for soluble microbial products formation during a famine period of activated sludge: Evidence from multiple analyses. J Environ Sci (China) 2019; 84:112-121. [PMID: 31284902 DOI: 10.1016/j.jes.2019.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Much remains unknown about compositional variations in soluble microbial products (SMP) with the shift of the substrate condition from a feast to a famine phase in biological treatment systems. This study demonstrated that the formation of SMP could be suppressed by up to 75% during the famine phase with the addition of essential nutrients. In contrast, presence of electron acceptor did not play any significant role during the stress condition, showing the similar amounts of SMP (r = 0.98, p < 0.05) formation between the bioreactors supplied with air and N2. The SMP formed in the famine phase was more bio-refractory in the famine versus the feast phase with a linear correlation shown between the production and their aromatic structures in the composition (R2 > 0.95). The fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) revealed the presence of four different fluorescent components, including two protein-like (C1 and C4), fulvic-like (C2), and humic-like (C3) components, in the SMP and bEPS formed at different conditions. Both C1 and C4 showed increasing trends (R2 > 0.95) with the length of starvation in the bioreactors without essential nutrients. Nutrient availability was found to be a key factor to quench the production of large-sized biopolymers. This study provides a wealth of information on operation conditions of activated sludge treatment systems to minimize large sized SMP molecules (particularly proteins), which typically exert many environmental concerns to effluent organic matter quality.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
16
|
Maqbool T, Cho J, Hur J. Improved dewaterability of anaerobically digested sludge and compositional changes in extracellular polymeric substances by indigenous persulfate activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:96-104. [PMID: 31004908 DOI: 10.1016/j.scitotenv.2019.04.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 05/15/2023]
Abstract
In this study, an indigenous activation of persulfate by iron-bearing minerals was examined using peroxymonosulfate (PMS) and peroxydisulfate (PDS) for the dewaterability and extracellular polymeric substances (EPS) composition of anaerobically digested sludge (ADS). Iron minerals originally present in the ADS seemed to operate as an initiator of the persulfate activation, which was indicated by an increase in the total dissolved iron in the supernatant. The PMS showed higher performance in improving the ADS dewaterability compared to the PDS, with more reduction in the average microbial flocs size. The extracted EPS consisted of three different fluorescent components of tryptophan-like (C1), humic-like (C2), and fulvic-like (C3) components. In the tightly bound (TB)-EPS, two humic-like components (C2 and C3), which were resistant to degradation, exhibited a strong linkage with dewaterability; whereas, in both the PMS and the PDS systems, the C1 was preferentially degraded by the radical-based oxidation, with a greater extent for the PMS-based treatments. The results showed that prior to the actual EPS degradation, the produced radicals were initially involved in cell disruption. The SEC results during the oxidation clearly demonstrated the degradation of a large-sized biopolymer fraction, followed by the production of relatively small sized molecules. They also revealed in the TB-EPS a close association between the ADS dewaterability and the degradation of humic substances.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
17
|
Luo W, Zhang B, Bi Y, Li G, Sun Q. Effects of sludge enhanced aeration on nutrient contents and phytotoxicity of anaerobically digested centrate. CHEMOSPHERE 2018; 203:490-496. [PMID: 29649690 DOI: 10.1016/j.chemosphere.2018.03.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/12/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
In this study, we investigated the impact of intensive aeration pre-treatment on nutrient contents and phytotoxicity of anaerobically digested manure centrate. Activated sludge from conventional wastewater treatment plants was added to reinforce the aeration process. Results show that the addition of activated sludge did not negatively affect the nutrient contents, but significantly reduced the phytotoxicity of digested centrate, as indicated by an enhancement of seed germination index, during the aeration treatment. Based on the orthogonal experiment and following statistical analysis, the lowest phytotoxicity of digested centrate could be achieved under the aeration conditions: sludge concentration of 6 g/L, aeration time of 2 h, gas/water ratio of 40:1, and pH = 6.5. Of these operational parameters, the digested centrate pH dominantly determined its nutrient contents (e.g., amino acids, total phosphorus, and ammonium) and phytotoxicity. These results were further verified by hydroponic experiments, which showed that using digested centrate after sludge enhanced aeration as the nutrient solution facilitated the growth and dry biomass of maize.
Collapse
Affiliation(s)
- Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Bangxi Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Institute of Agricultural Resources and Environment, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yanmeng Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Qiaoping Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|