1
|
Wang H, Wu P, Li F, Shin J, Ki JS. Molecular characterization of a catalase gene in the freshwater green alga Closterium ehrenbergii and its putative function against abiotic stresses. Eur J Protistol 2024; 95:126111. [PMID: 39137618 DOI: 10.1016/j.ejop.2024.126111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Catalases (CATs) are ubiquitous antioxidant enzymes that prevent cellular oxidative damage through the decomposition of H2O2. However, there is relatively little information on CAT in the worldwide-distributed freshwater green alga Closterium ehrenbergii. Here, we cloned the full-length catalase cDNA from C. ehrenbergii (CeCAT) and characterized its structural features and expressional responses against aquatic contaminants. The open reading frame of CeCAT was determined to be 1476 bp, encoding 491 amino acids with a theoretical molecular mass of 56.1 kDa. The CeCAT protein belongs to the NADPH-binding CAT family and might be located in the cytosol. BLAST and phylogenetic results showed that CeCAT had a high identity with CAT proteins from other microalgae and the water lily Nymphaea colorata (Streptophyta). The transcriptional levels of CeCAT were significantly upregulated by the metal copper and herbicide atrazine, but little affected by other tested metals (Ni and Cr) and endocrine-disrupting chemicals (polychlorinated biphenyl, PCB). The maximum expression was registered under 0.1 mg/L CuCl2 and 0.2 mg/L CuSO4 exposures. In addition, excess copper considerably increased production of reactive oxygen species in the cells. These results suggest that CeCAT may function to defend against oxidative stress in green algae and can respond specifically to different kinds of metals and herbicides.
Collapse
Affiliation(s)
- Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Peiling Wu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fengru Li
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jeongmin Shin
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
2
|
Wang H, Wu P, Xiong L, Kim HS, Kim JH, Ki JS. Nuclear genome of dinoflagellates: Size variation and insights into evolutionary mechanisms. Eur J Protistol 2024; 93:126061. [PMID: 38394997 DOI: 10.1016/j.ejop.2024.126061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Recent progress in high-throughput sequencing technologies has dramatically increased availability of genome data for prokaryotes and eukaryotes. Dinoflagellates have distinct chromosomes and a huge genome size, which make their genomic analysis complicated. Here, we reviewed the nuclear genomes of core dinoflagellates, focusing on the genome and cell size. Till now, the genome sizes of several dinoflagellates (more than 25) have been measured by certain methods (e.g., flow cytometry), showing a range of 3-250 pg of genomic DNA per cell. In contrast to their relatively small cell size, their genomes are huge (about 1-80 times the human haploid genome). In the present study, we collected the genome and cell size data of dinoflagellates and compared their relationships. We found that dinoflagellate genome size exhibits a positive correlation with cell size. On the other hand, we recognized that the genome size is not correlated with phylogenetic relatedness. These may be caused by genome duplication, increased gene copy number, repetitive non-coding DNA, transposon expansion, horizontal gene transfer, organelle-to-nucleus gene transfer, and/or mRNA reintegration into the genome. Ultimate verification of these factors as potential causative mechanisms would require sequencing of more dinoflagellate genomes in the future.
Collapse
Affiliation(s)
- Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea
| | - Peiling Wu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Lu Xiong
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jin Ho Kim
- Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
3
|
Park H, Kim HS, Abassi S, Bui QTN, Ki JS. Two novel glutathione S-transferase (GST) genes in the toxic marine dinoflagellate Alexandrium pacificum and their transcriptional responses to environmental contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169983. [PMID: 38215848 DOI: 10.1016/j.scitotenv.2024.169983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The present study identified two novel glutathione S-transferase (GST) genes from the toxic dinoflagellate Alexandrium pacificum and examined their molecular characteristics and transcriptional responses to algicides and environmental contaminants. Bioinformatic analysis revealed that both ApGSTs are cytosolic, belonging to the chi-like class (ApGST1) and an undefined class (ApGST2). The overall expression of ApGSTs showed similar patterns depending on the exposed contaminants, while they were differently regulated by polychlorinated biphenyl (PCB). Copper treatments (CuCl2 and CuSO4) did not significantly induce the expression of ApGSTs. The highest up-regulations of ApGST1 and ApGST2 were under 6-h treatments of 0.10 and 0.50 mg L-1 NaOCl. Interestingly, only ApGST1 increased significantly after 0.10, 0.50, and 1.00 mg L-1 of PCB exposure (6 h). Intracellular reactive oxygen species (ROS) increased considerably under NaOCl; however, it was not significantly higher in the PCB-treated cells. GST activity was increased by NaOCl and PCB treatments, but only PCB caused apoptosis. These results suggest that GSTs are involved in the first line of phase II detoxification, protecting dinoflagellate cells against oxidative damage.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Sofia Abassi
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul, South Korea; Department of Biotechnology, Sangmyung University, Seoul, South Korea.
| |
Collapse
|
4
|
Shen A, Qian A, Ma S, Xiang S, Ouyang L, Shao L. Transcriptome analysis of the bloom-forming dinoflagellate Prorocentrum donghaiense exposed to Ginkgo biloba leaf extract, with an emphasis on photosynthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18579-18592. [PMID: 38351353 DOI: 10.1007/s11356-024-32409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024]
Abstract
Ginkgo biloba leaf extract (GBE) can effectively treat bloom-forming freshwater algae. However, there is limited information about the underlying suppression mechanism of the marine bloom-forming Prorocentrum donghaiense-the most dominant algal bloom species in the East China Sea. We investigated the effect of GBE on P. donghaiense in terms of its response to photosynthesis at the molecular/omic level. In total, 93,743 unigenes were annotated using six functional databases. Furthermore, 67,203 differentially expressed genes (DEGs) were identified in algae treated with 1.8 g∙L-1 GBE. Among these DEGs, we identified the genes involved in photosynthesis. PsbA, PsbB and PsbD in photosystem II, PsaA in photosystem I, and PetB and PetD in the cytochrome b6/f complex were downregulated. Other related genes, such as PsaC, PsaE, and PsaF in photosystem I; PetA in the cytochrome b6/f complex; and atpA, atpD, atpH, atpG, and atpE in the F-type H+-ATPase were upregulated. These results suggest that the structure and activity of the complexes were destroyed by GBE, thereby inhibiting the electron flow between the primary and secondary quinone electron acceptors, primary quinone electron acceptor, and oxygen-evolving complex in the PSII complex, and interrupting the electron flow between PSII and PSI, ultimately leading to a decline in algal cell photosynthesis. These findings provide a basis for understanding the molecular mechanisms underlying P. donghaiense exposure to GBE and a theoretical basis for the prevention and control of harmful algal blooms.
Collapse
Affiliation(s)
- Anglu Shen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
| | - Aixue Qian
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Shengwei Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, People's Republic of China
| | - Shu Xiang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Longling Ouyang
- Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- East China Sea Fisheries Research Institute, Shanghai, 200090, China
| | - Liu Shao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| |
Collapse
|
5
|
Akbar MA, Mohd Yusof NY, Usup G, Ahmad A, Baharum SN, Bunawan H. Nutrient Deficiencies Impact on the Cellular and Metabolic Responses of Saxitoxin Producing Alexandrium minutum: A Transcriptomic Perspective. Mar Drugs 2023; 21:497. [PMID: 37755110 PMCID: PMC10532982 DOI: 10.3390/md21090497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 09/28/2023] Open
Abstract
Dinoflagellate Alexandrium minutum Halim is commonly associated with harmful algal blooms (HABs) in tropical marine waters due to its saxitoxin production. However, limited information is available regarding the cellular and metabolic changes of A. minutum in nutrient-deficient environments. To fill this gap, our study aimed to investigate the transcriptomic responses of A. minutum under nitrogen and phosphorus deficiency. The induction of nitrogen and phosphorus deficiency resulted in the identification of 1049 and 763 differently expressed genes (DEGs), respectively. Further analysis using gene set enrichment analysis (GSEA) revealed 702 and 1251 enriched gene ontology (GO) terms associated with nitrogen and phosphorus deficiency, respectively. Our results indicate that in laboratory cultures, nitrogen deficiency primarily affects meiosis, carbohydrate catabolism, ammonium assimilation, ion homeostasis, and protein kinase activity. On the other hand, phosphorus deficiency primarily affects the carbon metabolic response, cellular ion transfer, actin-dependent cell movement, signalling pathways, and protein recycling. Our study provides valuable insights into biological processes and genes regulating A. minutum's response to nutrient deficiencies, furthering our understanding of the ecophysiological response of HABs to environmental change.
Collapse
Affiliation(s)
- Muhamad Afiq Akbar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.Y.M.Y.); (G.U.)
| | - Gires Usup
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.Y.M.Y.); (G.U.)
| | - Asmat Ahmad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Syarul Nataqain Baharum
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Hamidun Bunawan
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
6
|
The synergistic effect of EDTA-Fe and 1-naphthaleneacetic acid on the growth and carbohydrate content of Scenedesmus obliquus. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Yu F, Luo W, Xie W, Li Y, Meng S, Kan J, Ye X, Peng T, Wang H, Huang T, Hu Z. Community reassemblies of eukaryotes, prokaryotes, and viruses in the hexabromocyclododecanes-contaminated microcosms. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129159. [PMID: 35643009 DOI: 10.1016/j.jhazmat.2022.129159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The microbial community in seriously contaminated environment were not well known. This research investigated the community reassemblies in microcosms made of two distinct mangrove sediments amended with high levels of hexabromocyclododecanes (HBCDs). After eight months of contamination, the transformation of HBCDs yielded various lower brominated products and resulted in acidification (pH ~2). Therefore, the degraders and dehalogenase homologous genes involved in transformation of HBCDs only presented in low abundance to avoid further deterioration of the habitats. Moreover, in these deteriorated habitats, 1344 bacterial, 969 archaeal, 599 eukaryotic (excluded fungi), 187 fungal OTUs, and 10 viral genera, were reduced compared with controls. Specifically, in two groups of microcosms, Zetaproteobacteria, Deinococcus-Thermus, Spirochaetes, Bacteroidetes, Euryarchaeota, and Ascomycota, were positively responding taxa to HBCDs. Caloneis (Bacillariophyta) and Ascomycota turned to the dominant eukaryotic and fungal taxa. Most of predominant taxa were related to the contamination of brominated flame retardants (BFRs). Microbial communities were reassembled in divergent and sediment-dependent manner. The long-term contamination of HBCDs leaded to the change of relations between many taxa, included some of the environmental viruses and their known hosts. This research highlight the importance of monitoring the ecological effects around plants producing or processing halogenated compounds.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Shanshan Meng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Jie Kan
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, PR China.
| |
Collapse
|
8
|
Ma Y, Shen W, Tang T, Li Z, Dai R. Environmental estrogens in surface water and their interaction with microalgae: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150637. [PMID: 34592293 DOI: 10.1016/j.scitotenv.2021.150637] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Environmental estrogens (EEs) have received extensive attention because they interfere with biological endocrine and reproduction systems by mimicking, antagonizing, or otherwise affecting the actions of endogenous hormones. Additionally, harmful algal blooms have become a global problem in surface water. Microalgae, as an essential primary producer, is especially important for aquatic life and the entire ecosystem. The presence of EEs in surface water may be a potential promoting factor for algal blooms, and microalgae may have effects on the degradation of EEs. This review focuses on the distribution and pollution characteristics of EEs in global surface waters, effects of single and mixed EEs on microalgae regarding growth and toxin production, mechanisms of EEs on microalgae at the cellular and molecular level. The impacts of microalgae on EEs were also discussed. This review provides a risk assessment of EEs and identifies essential clues that will aid in formulating and revising the relevant standards of surface water regarding EEs, which is significant for ecosystems and human health.
Collapse
Affiliation(s)
- Yingxiao Ma
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| | - Wendi Shen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| | - Tingting Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| | - Zihao Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| | - Ruihua Dai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| |
Collapse
|
9
|
Lu T, Zhang Q, Zhang Z, Hu B, Chen J, Chen J, Qian H. Pollutant toxicology with respect to microalgae and cyanobacteria. J Environ Sci (China) 2021; 99:175-186. [PMID: 33183695 DOI: 10.1016/j.jes.2020.06.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/11/2023]
Abstract
Microalgae and cyanobacteria are fundamental components of aquatic ecosystems. Pollution in aquatic environment is a worldwide problem. Toxicological research on microalgae and cyanobacteria can help to establish a solid foundation for aquatic ecotoxicological assessments. Algae and cyanobacteria occupy a large proportion of the biomass in aquatic environments; thus, their toxicological responses have been investigated extensively. However, the depth of toxic mechanisms and breadth of toxicological investigations need to be improved. While existing pollutants are being discharged into the environment daily, new ones are also being produced continuously. As a result, the phenomenon of water pollution has become unprecedentedly complex. In this review, we summarize the latest findings on five kinds of aquatic pollutants, namely, metals, nanomaterials, pesticides, pharmaceutical and personal care products (PPCPs), and persistent organic pollutants (POPs). Further, we present information on emerging pollutants such as graphene, microplastics, and ionic liquids. Efforts in studying the toxicological effects of pollutants on microalgae and cyanobacteria must be increased in order to better predict the potential risks posed by these materials to aquatic ecosystems as well as human health.
Collapse
Affiliation(s)
- Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
10
|
Abassi S, Wang H, Ki JS. Molecular cloning of heat shock protein 70 and HOP from the freshwater green algae Closterium ehrenbergii and their responses to stress. Cell Stress Chaperones 2020; 25:1117-1123. [PMID: 32794097 PMCID: PMC7591666 DOI: 10.1007/s12192-020-01143-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022] Open
Abstract
Heat shock proteins (HSPs) and HSP70-HSP90 organizing proteins (HOPs) are related, and they function together to maintain cellular homeostasis and respond to stress. In the present study, we reported the first molecular characteristics of HSP70 (designated as CeHSP70) and HOP (designated as CeHOP) genes from the freshwater green algae Closterium ehrenbergii and examined the changes in their expression profiles under heat stress and toxic chemicals treatment. CeHSP70 presented the conserved motif patterns and EEVD domain specific to cytosolic HSP70; CeHOP contained a typical domain of TPR repeats. Real-time PCR analysis showed that thermal stress considerably up-regulated both CeHOP and CeHSP70. In addition, the genes were significantly induced by CuCl2, CuSO4, and NiSO4, but not by K2Cr2O7, herbicide, and endocrine disrupting chemicals. These results suggest that CeHOP and CeHSP70 function together and play a role in responses to specific stressors and indicate their possible use as sensitive specific biomarkers in risk assessments.
Collapse
Affiliation(s)
- Sofia Abassi
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|
11
|
Kim H, Wang H, Abassi S, Ki JS. The herbicide alachlor severely affects photosystem function and photosynthetic gene expression in the marine dinoflagellate Prorocentrum minimum. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:620-629. [PMID: 32364417 DOI: 10.1080/03601234.2020.1755198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Alachlor is one of the most widely used herbicides and can remain in agricultural soils and wastewater. The toxicity of alachlor to marine life has been rarely studied; therefore, we evaluated the physiological and transcriptional responses in the marine dinoflagellate Prorocentrum minimum. The herbicide led to considerable decreases in P. minimum cell numbers and pigment contents. The EC50 was determined to be 0.373 mg/L. Photosynthesis efficiency and chlorophyll autofluorescence dramatically decreased with increasing alachlor dose and exposure time. Real-time PCR analysis showed that the photosynthesis-related genes PmpsbA, PmatpB, and PmrbcL were induced the most by alachlor; the transcriptional level of each gene varied with time. PmrbcL expression increased after 30 min of alachlor treatment, whereas PmatpB and PmpsbA increased after 24 h. The PmpsbA expression level was highest (5.0 times compared to control) after 6 h of alachlor treatment. There was no significant change in PmpsaA expression with varying treatment time or concentration. Additionally, there was no notable change in the expression of antioxidant genes PmGST and PmKatG, or in ROS accumulation. These suggest that alachlor may affect microalgal photosystem function, with little oxidative stress, causing severe physiological damage to the cells, and even cell death.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| | - Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| | - Sofia Abassi
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| |
Collapse
|
12
|
Chen N, Shan Q, Qi Y, Liu W, Tan X, Gu J. Transcriptome analysis in normal human liver cells exposed to 2, 3, 3', 4, 4', 5 - Hexachlorobiphenyl (PCB 156). CHEMOSPHERE 2020; 239:124747. [PMID: 31514003 DOI: 10.1016/j.chemosphere.2019.124747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/31/2019] [Accepted: 09/03/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUNDS Polychlorinated biphenyls are persistent environmental pollutants associated with the onset of non-alcoholic fatty liver disease in humans, but there is limited information on the underlying mechanism. In the present study, we investigated the alterations in gene expression profiles in normal human liver cells L-02 following exposure to 2, 3, 3', 4, 4', 5 - hexachlorobiphenyl (PCB 156), a potent compound that may induce non-alcoholic fatty liver disease. METHODS The L-02 cells were exposed to PCB 156 for 72 h and the contents of intracellular triacylglyceride and total cholesterol were subsequently measured. Microarray analysis of mRNAs and long non-coding RNAs (lncRNAs) in the cells was also performed after 3.4 μM PCB 156 treatment. RESULTS Exposure to PCB 156 (3.4 μM, 72 h) resulted in significant increases of triacylglyceride and total cholesterol concentrations in L-02 cells. Microarray analysis identified 222 differentially expressed mRNAs and 628 differentially expressed lncRNAs. Gene Ontology and pathway analyses associated the differentially expressed mRNAs with metabolic and inflammatory processes. Moreover, lncRNA-mRNA co-expression network revealed 36 network pairs comprising 10 differentially expressed mRNAs and 34 dysregulated lncRNAs. The results of bioinformatics analysis further indicated that dysregulated lncRNA NONHSAT174696, lncRNA NONHSAT179219, and lncRNA NONHSAT161887, as the regulators of EDAR, CYP1B1, and ALDH3A1 respectively, played an important role in the PCB 156-induced lipid metabolism disorder. CONCLUSION Our findings provide an overview of differentially expressed mRNAs and lncRNAs in L-02 cells exposed to PCB 156, and contribute to the field of polychlorinated biphenyl-induced non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ningning Chen
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China; State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yu Qi
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaojun Tan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jinsong Gu
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| |
Collapse
|
13
|
Ki JS, Ebenezer V, Lim WA. Yellow clay modulates carbohydrate and glutathione responses in the harmful dinoflagellate Cochlodinium polykrikoides and leads to sedimentation. Eur J Protistol 2019; 71:125642. [PMID: 31654920 DOI: 10.1016/j.ejop.2019.125642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022]
Abstract
The marine dinoflagellate Cochlodinium polykrikoides is a harmful algal bloom (HAB) species that severely impacts the environment and causes huge economic losses. Yellow clay (YC), considered to be a non-toxic and naturally-occurring material, represents an important step towards the direct control of HABs. In the present study, we evaluated the physiological and biochemical effects of YC on C. polykrikoides after exposures of up to 72 h. We observed little physiological changes in growth rate, chlorophyll a, lipid peroxidation, antioxidant enzymatic activities of superoxide dismutase and catalase, and activity of alkaline phosphatase after exposure to YC. Interestingly, YC significantly increased total carbohydrate and glutathione levels, affecting the physiology of the cells. These results indicate that total carbohydrate content may play an important role in cell-clay aggregation and it could be the main underlying mechanism that mitigates HAB cells via sedimentation.
Collapse
Affiliation(s)
- Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea.
| | - Vinitha Ebenezer
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Weol-Ae Lim
- Ocean Climate and Ecology Research Division, National Institute of Fisheries Science (NIFS), Busan 46083, South Korea
| |
Collapse
|
14
|
Omics Analysis for Dinoflagellates Biology Research. Microorganisms 2019; 7:microorganisms7090288. [PMID: 31450827 PMCID: PMC6780300 DOI: 10.3390/microorganisms7090288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023] Open
Abstract
Dinoflagellates are important primary producers for marine ecosystems and are also responsible for certain essential components in human foods. However, they are also notorious for their ability to form harmful algal blooms, and cause shellfish poisoning. Although much work has been devoted to dinoflagellates in recent decades, our understanding of them at a molecular level is still limited owing to some of their challenging biological properties, such as large genome size, permanently condensed liquid-crystalline chromosomes, and the 10-fold lower ratio of protein to DNA than other eukaryotic species. In recent years, omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, have been applied to the study of marine dinoflagellates and have uncovered many new physiological and metabolic characteristics of dinoflagellates. In this article, we review recent application of omics technologies in revealing some of the unusual features of dinoflagellate genomes and molecular mechanisms relevant to their biology, including the mechanism of harmful algal bloom formations, toxin biosynthesis, symbiosis, lipid biosynthesis, as well as species identification and evolution. We also discuss the challenges and provide prospective further study directions and applications of dinoflagellates.
Collapse
|
15
|
Wang H, Kim H, Lim WA, Ki JS. Molecular cloning and oxidative-stress responses of a novel manganese superoxide dismutase (MnSOD) gene in the dinoflagellate Prorocentrum minimum. Mol Biol Rep 2019; 46:5955-5966. [PMID: 31407247 DOI: 10.1007/s11033-019-05029-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
Dinoflagellate algae are microeukaryotes that have distinct genomes and gene regulation systems, making them an interesting model for studying protist evolution and genomics. In the present study, we discovered a novel manganese superoxide dismutase (PmMnSOD) gene from the marine dinoflagellate Prorocentrum minimum, examined its molecular characteristics, and evaluated its transcriptional responses to the oxidative stress-inducing contaminants, CuSO4 and NaOCl. Its cDNA was 1238 bp and contained a dinoflagellate spliced leader sequence, a 906 bp open reading frame (301 amino acids), and a poly (A) tail. The gene was coded on the nuclear genome with one 174 bp intron; signal peptide analysis showed that it might be localized to the mitochondria. Real-time PCR analysis revealed an increase in gene expression of MnSOD and SOD activity when P. minimum cells were separately exposed to CuSO4 and NaOCl. In addition, both contaminants considerably decreased chlorophyll autofluorescence, and increased intracellular reactive oxygen species. These results suggest that dinoflagellate MnSOD may be involved in protecting cells against oxidative damage.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Weol-Ae Lim
- Ocean Climate and Ecology Research Division, National Institute of Fisheries Science (NIFS), Busan, 46083, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|
16
|
Salama ES, Govindwar SP, Khandare RV, Roh HS, Jeon BH, Li X. Can Omics Approaches Improve Microalgal Biofuels under Abiotic Stress? TRENDS IN PLANT SCIENCE 2019; 24:611-624. [PMID: 31085124 DOI: 10.1016/j.tplants.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Microalgae hold the promise of an inexpensive and sustainable source of biofuels. The existing microalgal cultivation technologies need significant improvement to outcompete other biofuel sources such as terrestrial plants. Application of 'algomics' approaches under different abiotic stress conditions could be an effective strategy for optimization of microalgal growth and production of high-quality biofuels. In this review, we discuss the roles of omics in understanding genome structure and biocomponents metabolism in various microalgal species to optimize sustainable biofuel production. Application of individual and integrated omics revealed that genes and metabolic pathways of microalgae have been altered under multiple stress conditions, resulting in an increase in biocomponents, providing a research platform for expansion of genetic engineering studies in microalgal strains.
Collapse
Affiliation(s)
- El-Sayed Salama
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Sanjay P Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Rahul V Khandare
- Amity Institute of Biotechnology, Amity University, Mumbai, 410206, India
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 220-710, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| |
Collapse
|
17
|
Han M, Wang R, Ding N, Liu X, Zheng N, Fu B, Sun L, Gao P. Reactive oxygen species-mediated caspase-3 pathway involved in cell apoptosis of Karenia mikimotoi induced by linoleic acid. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|