1
|
Gentile A, Di Stasio L, Oliva G, Vigliotta G, Cicatelli A, Guarino F, Nissim WG, Labra M, Castiglione S. Antibiotic resistance in urban soils: Dynamics and mitigation strategies. ENVIRONMENTAL RESEARCH 2024; 263:120120. [PMID: 39384008 DOI: 10.1016/j.envres.2024.120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Antibiotic resistance (AR) is a critical global health issue with significant clinical and economic implications. AR occurs when microorganisms develop mechanisms to withstand the effects of antibiotics, reducing treatment efficacy and increasing the risk of mortality and healthcare costs. While the connection between antibiotic use in clinical and agricultural settings and the emergence of AR is well-established, the role of urban soils as reservoirs and spreaders of AR is underexplored. This review examines the complex dynamics of AR in urban soils, highlighting the various sources of antibiotics, including domestic wastewater, industrial effluents, urban agricultural practices, but also microplastics and domestic animal excrements. The selective pressure exerted by these anthropogenic sources promotes the proliferation of antibiotic-resistant bacteria, particularly through horizontal gene transfer, which facilitates the transmission of resistance genes among soil microorganisms in urban environments. About that, the presence of antibiotics in urban soils poses a significant threat to public health by potentially transferring resistance genes to human pathogens through multiple pathways, including direct contact, food consumption, and water ingestion. Furthermore, AR in urban soils disrupts microbial community dynamics, impacting soil fertility, plant growth, and overall environmental quality. Therefore, this review aims to address gaps in understanding AR in urban soils, offering insights into its implications for human health and ecosystem integrity. By identifying these gaps and suggesting evidence-based strategies, this review proposes valid and sustainable solutions to mitigate and counteract the spread of AR in urban environments.
Collapse
Affiliation(s)
- Annamaria Gentile
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy
| | - Luca Di Stasio
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy
| | - Gianmaria Oliva
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy.
| | - Giovanni Vigliotta
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, (MI), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, (MI), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
2
|
Kaw HY, Yu J, Ma X, Yang Q, Zhu L, Wang W. The significance of environmentally bioavailable antimicrobials in driving antimicrobial resistance in soils. ENVIRONMENT INTERNATIONAL 2024; 190:108830. [PMID: 38943926 DOI: 10.1016/j.envint.2024.108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Antimicrobial resistance (AMR) stands as an escalating public health crisis fueled by antimicrobial residues in the environment, particularly in soil, which acts as a reservoir for antimicrobial resistance genes (ARGs). Merely quantifying the total extractable concentration of antimicrobials, instead of bioavailable fractions, may substantially underestimate their minimal selection concentration for propagating ARGs. To shed light on the role of bioavailability in ARG abundance within soil, a systematic bioavailability assessment method was established for accurately quantifying the partitioning of multi-class antimicrobials in representative Chinese soils. Microcosm studies unveiled that antimicrobials persisting in the bioavailable fraction could potentially prolong their selection pressure duration to trigger AMR. Notably, the co-occurrence of pesticide or steroid hormone influenced the development trends of ARG subtypes, with fluoroquinolone resistance genes (RGs) being particularly susceptible. Partial least squares path model (PLS-PM) analysis uncovered potentially distinct induction mechanisms of antimicrobials: observable results suggested that extractable residual concentration may exert a direct selection pressure on the development of ARGs, while bioavailable concentration could potentially play a stepwise role in affecting the abundance of mobile genetic elements and initiating ARG dissemination. Such unprecedented scrutinization of the interplay between bioavailable antimicrobials in soils and ARG abundance provides valuable insights into strategizing regulatory policy or guidelines for soil remediation.
Collapse
Affiliation(s)
- Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Jing Yu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Xuejing Ma
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Qi Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
3
|
Yang B, Li L, Xiao X, Guo Q. Effect of streptomycin sulphate on the nitrification system in activated sludge: insight into nitrification characteristic, antibiotic resistance gene and microbial community. ENVIRONMENTAL TECHNOLOGY 2024; 45:1908-1918. [PMID: 36484541 DOI: 10.1080/09593330.2022.2157755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Wastewater with residual streptomycin sulphate usually contains high content of ammonia-nitrogen. However, the biological removal process of ammonia-nitrogen under streptomycin sulphate circumstance was unclear. In this study, short-term and long-term effects of streptomycin sulphate on biological nitrification systems, including AOB, NOB, SAOR, SNOR and SNPR, were evaluated comprehensively. The results indicated IC50 for AOB and NOB were 7.5 and 6.6 mg/L. SAOR and SNPR could be decreased to 3.43 ± 0.52 mg N/(g MLSS·h) and 0.24 ± 0.03 mg N/(g MLSS·h) while the addition of streptomycin sulphate was 10 mg/L. When streptomycin sulphate addition was stopped, nitrification ability recovered slightly, SAOR and SNPR increased to 9.37 ± 0.36 mg N/(g MLSS·h) and 1.66 ± 0.49 mg N/(g MLSS·h), respectively. The protein of EPS increased gradually during the acclimatization process, and the maximal protein value was 68.24 mg/g MLSS on the 100th day, however, no significant change of polysaccharose was observed during the acclimatization process. High abundance of ARGs and intI1 was detected in effluent and sludge of the biological treatment system. The maximal relative abundance of aadA1 in the sludge appeared on the 140th day, and increased by 0.99 orders of magnitude. Biological diversity decreased significantly during the acclimatization process, relative abundance of nitrosomonas was changed from 9.07% to 38.68% on the 61st day, while relative abundance of nitrobacter was changed from 1.30% to 0.64%. It should be noted that relative abundances of nitrosomonas and nitrobacter were reduced to 16.17% and 0.25% on the 140th day. This study would be helpful for nitrogen removal in wastewater with antibiotic.
Collapse
Affiliation(s)
- Bairen Yang
- School of Environmental Science and Engineering, Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, People's Republic of China
| | - Lingling Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Xiangqian Xiao
- Linyi Chengtou Sports Industry Group Co., Ltd, Linyi, People's Republic of China
| | - Qingyuan Guo
- School of Environmental Science and Engineering, Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, People's Republic of China
| |
Collapse
|
4
|
Perez-Bou L, Gonzalez-Martinez A, Gonzalez-Lopez J, Correa-Galeote D. Promising bioprocesses for the efficient removal of antibiotics and antibiotic-resistance genes from urban and hospital wastewaters: Potentialities of aerobic granular systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123115. [PMID: 38086508 DOI: 10.1016/j.envpol.2023.123115] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The use, overuse, and improper use of antibiotics have resulted in higher levels of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), which have profoundly disturbed the equilibrium of the environment. Furthermore, once antibiotic agents are excreted in urine and feces, these substances often can reach wastewater treatment plants (WWTPs), in which improper treatments have been highlighted as the main reason for stronger dissemination of antibiotics, ARB, and ARGs to the receiving bodies. Hence, achieving better antibiotic removal capacities in WWTPs is proposed as an adequate approach to limit the spread of antibiotics, ARB, and ARGs into the environment. In this review, we highlight hospital wastewater (WW) as a critical hotspot for the dissemination of antibiotic resistance due to its high level of antibiotics and pathogens. Hence, monitoring the composition and structure of the bacterial communities related to hospital WW is a key factor in controlling the spread of ARGs. In addition, we discuss the advantages and drawbacks of the current biological WW treatments regarding the antibiotic-resistance phenomenon. Widely used conventional activated sludge technology has proved to be ineffective in mitigating the dissemination of ARB and ARGs to the environment. However, aerobic granular sludge (AGS) technology is a promising technology-with broad adaptability and excellent performance-that could successfully reduce antibiotics, ARB, and ARGs in the generated effluents. We also outline the main operational parameters involved in mitigating antibiotics, ARB, and ARGs in WWTPs. In this regard, WW operation under long hydraulic and solid retention times allows better removal of antibiotics, ARB, and ARGs independently of the WW technology employed. Finally, we address the current knowledge of the adsorption and degradation of antibiotics and their importance in removing ARB and ARGs. Notably, AGS can enhance the removal of antibiotics, ARB, and ARGs due to the complex microbial metabolism within the granular biomass.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain; Microbial Biotechnology Group, Microbiology and Virology Department, Faculty of Biology, University of Havana, Cuba
| | - Alejandro Gonzalez-Martinez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain.
| |
Collapse
|
5
|
Wu L, Wu Q, Xu J, Rong L, Yu X, Cai C, Huang X, Zou X. Responses of antibiotic resistance genes in the enhanced biological phosphorus removal system under various antibiotics: Mechanisms and implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167247. [PMID: 37739079 DOI: 10.1016/j.scitotenv.2023.167247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The effects of antibiotics on the proliferation of antibiotic resistant genes (ARGs) in WWTPs have drawn great attention in recent years. The effects of antibiotics on ARGs in the enhanced biological phosphorus removal (EBPR) system and its mechanisms, however, are still not well understood. In this study, EBPR systems were constructed using activated sludge to investigate the effects of ten commonly detected antibiotics in the environment on the proliferation of ARGs and the mechanisms involved. The results showed that the total abundance of ARGs increased to varying degrees with the addition of different antibiotics (0.05 mmol/L), and the top 30 ARGs increased by 271.1 % to 370.0 %. Mobile genetic elements (MGEs), functional modules, and the bacteria community were consistently related to the changes in ARGs. Refractory antibiotics, in particular, have a stronger promoting effect on transduction in the EBPR system. The insertion sequence common region (ISCR) and transposon (Tnp) were identified as crucial factors in the proliferation of ARGs. Moreover, the risk of polyphosphate accumulating organisms (PAOs) carrying ARGs in the presence of antibiotics should not be ignored. Our findings emphasize the potential efficacy of employing strategies that target the reduction of MGEs, regulation of cellular communication, and management of microbial communities to effectively mitigate the risks associated with ARGs.
Collapse
Affiliation(s)
- Ligui Wu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Qiaofeng Wu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Fuzhou Urban and Rural Construction Group Co. Ltd, Fuzhou 350007, China
| | - Jingcheng Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lingling Rong
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Xiaoli Yu
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Chen Cai
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
6
|
Sun J, Yuan Y, Cai L, Zeng M, Li X, Yao F, Chen W, Huang Y, Shafiq M, Xie Q, Zhang Q, Wong N, Wang Z, Jiao X. Metagenomic evidence for antibiotics-driven co-evolution of microbial community, resistome and mobilome in hospital sewage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121539. [PMID: 37019259 DOI: 10.1016/j.envpol.2023.121539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/11/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Overconsumption of antibiotics is an immediate cause for the emergence of antimicrobial resistance (AMR) and antibiotic resistant bacteria (ARB), though its environmental impact remains inadequately clarified. There is an urgent need to dissect the complex links underpinning the dynamic co-evolution of ARB and their resistome and mobilome in hospital sewage. Metagenomic and bioinformatic methods were employed to analyze the microbial community, resistome and mobilome in hospital sewage, in relation to data on clinical antibiotic use collected from a tertiary-care hospital. In this study, resistome (1,568 antibiotic resistance genes, ARGs, corresponding to 29 antibiotic types/subtypes) and mobilome (247 types of mobile genetic elements, MGEs) were identified. Networks connecting co-occurring ARGs with MGEs encompass 176 nodes and 578 edges, in which over 19 types of ARGs had significant correlations with MGEs. Prescribed dosage and time-dependent antibiotic consumption were associated with the abundance and distributions of ARGs, and conjugative transfer of ARGs via MGEs. Variation partitioning analyses show that effects of conjugative transfer were most likely the main contributors to transient propagation and persistence of AMR. We have presented the first evidence supporting idea that use of clinical antibiotics is a potent driving force for the development of co-evolving resistome and mobilome, which in turn supports the growth and evolution of ARB in hospital sewage. The use of clinical antibiotics calls for greater attention in antibiotic stewardship and management.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China; Guangdong Province Center for Disease Control and Prevention, Guangzhou, 511400, China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Leshan Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, 515041, China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Weidong Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yuanchun Huang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Qiaoxin Zhang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Naikei Wong
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515041, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, 515041, China.
| |
Collapse
|
7
|
Zhang X, Zuo S, Li S, Shang Y, Du Q, Wang H, Guo W, Hao Ngo H. Responses of biofilm communities in a hybrid moving bed biofilm reactor-membrane bioreactor system to sulfadiazine antibiotic exposure. BIORESOURCE TECHNOLOGY 2023; 382:129126. [PMID: 37127169 DOI: 10.1016/j.biortech.2023.129126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Antibiotics in wastewater can affect the structures and functions of bacterial communities, subsequently influencing how well a biological process performs. Therefore, the characteristics of bacterial community were investigated in a hybrid moving bed biofilm reactor-membrane bioreactor system when treating domestic wastewater containing sulfadiazine (SDZ). Results indicated total nitrogen removal reduced by 10.2%, 9.1%, 2.7% and 2.9%, respectively, with increasing carbon to nitrogen (C/N) ratios (2.5, 4, 6 and 9) when SDZ was present (0.5 mg/L). The microbial communities' analysis revealed that the abundance of nitrogen removal-related bacteria increased with C/N. Specifically, the abundance of ammonia-oxidizing bacteria (0.46%-0.90%) was low, and the nitrite-oxidizing bacteria (2.16%-7.13%) and denitrifying bacteria showed a significant increase (Hyphomicrobium: 0.57%-3.54%) when C/N ratio increased. The abundance of denitrifying bacterial declined by 4.82-8.56% at different C/N ratios, while nitrifying bacterial rose by 0.70-5.67%. Interestingly, the denitrifying bacteria Enterobacter, Sphingomonas and Gemmatimonas acted as mutualistic bacteria that stabilized denitrification.
Collapse
Affiliation(s)
- Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Sicong Zuo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Songya Li
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yutong Shang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Qing Du
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Huizhong Wang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
8
|
Wang N, Xue L, Ding G, Han Y, Feng Y, Liu J, Li N, He W. High concentration of ammonia sensitizes the response of microbial electrolysis cells to tetracycline. WATER RESEARCH 2022; 225:119064. [PMID: 36130438 DOI: 10.1016/j.watres.2022.119064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Microbial electrolysis cell (MEC) is a promising technology for effective energy conversion of wastewater organics to biogas. Yet, in swine wastewater treatment, the complex contaminants including antibiotics may affect MEC performance, while the high ammonia concentration might increase this risk by increasing cell membrane permeability. In this work, the responses of MECs on tetracycline (TC) with low and high ammonia loadings (80 and 1000 mg L-1) were fully investigated. The TC of 0 to 1 mg L-1 slightly improved MEC performance in current production and electrochemical characteristics with low ammonia loading, while TC ≥ 4 mg L-1 started to show negative effects. Generally, the high ammonia loading sensitized MECs to TC concentration, inducing the current and COD removal of MECs to sharply decline with TC ≥ 0.5 mg L-1. The positive effect of high ammonia loading on MEC due to conductivity increase was counteracted with TC ≥ 1 mg L-1. The co-contamination of TC and ammonia significantly decreased the bioactivity and biomass of anode biofilm. Although the high concentration of co-existing TC and ammonia inhibited MEC performance, the reactors still obtained positive energy feedback. The network analyses indicated that the effluent suspension contributed much to antibiotic resistance gene (ARG) transmission, while the microplastics (MPs) in wastewater greatly raised the risks of ARGs spreading. This work systematically examined the synergetic effects of TC and ammonia and the transmission of ARGs in MEC operation, which is conducive to expediting the application of MECs in swine wastewater treatment.
Collapse
Affiliation(s)
- Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lefei Xue
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Guofang Ding
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yu Han
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huang he Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
9
|
Li S, Ondon BS, Ho SH, Jiang J, Li F. Antibiotic resistant bacteria and genes in wastewater treatment plants: From occurrence to treatment strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156544. [PMID: 35679932 DOI: 10.1016/j.scitotenv.2022.156544] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
This study aims to discuss the following: (1) occurrence and proliferation of antibiotic resistance in wastewater treatment plants (WWTPs); (2) factors influencing antibiotic resistance bacteria and genes in WWTPs; (3) tools to assess antibiotic resistance in WWTPs; (4) environmental contamination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from WWTPs; (5) effects of ARB and ARGs from WWTPs on human health; and (6) treatment strategies. In general, resistant and multi-resistant bacteria, including Enterobacteriaceae, Pseudomonas aeruginosa, and Escherichia coli, exist in various processes of WWTPs. The existence of ARB and ARGs results from the high concentration of antibiotics in wastewater, which promote selective pressures on the local bacteria present in WWTPs. Thus, improving wastewater treatment technology and avoiding the misuse of antibiotics is critical to overcoming the threat of proliferation of ARBs and ARGs. Numerous factors can affect the development of ARB and ARGs in WWTPs. Abiotic factors can affect the bacterial community dynamics, thereby, affecting the applicability of ARB during the wastewater treatment process. Furthermore, the organic loads and other nutrients influence bacterial survival and growth. Specifically, molecular methods for the rapid characterization and detection of ARBs or their genes comprise DNA sequencing, real-time PCR, simple and multiplex PCR, and hybridization-based technologies, including micro- and macro-arrays. The reuse of effluent from WWTPs for irrigation is an efficient method to overcome water scarcity. However, there are also some potential environmental risks associated with this practice, such as increase in the levels of antibiotic resistance in the soil microbiome. Human mortality rates may significantly increase, as ARB can lead to resistance among several types of antibiotics or longer treatment times. Some treatment technologies, such as anaerobic and aerobic treatment, coagulation, membrane bioreactors, and disinfection processes, are considered potential techniques to restrict antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Brim Stevy Ondon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Jiwei Jiang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Zungu PV, Kosgey K, Kumari S, Bux F. Effects of antimicrobials in anammox mediated systems: critical review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1551-1564. [PMID: 36178823 DOI: 10.2166/wst.2022.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Anammox-mediated systems are thought to be cost-effective and efficient technologies for removing nitrogen from wastewater by converting nitrite and ammonium into dinitrogen gas. However, there are inhibitory substances that reduce the effectiveness and efficiency of these processes, preventing their widespread application. Antimicrobial agents are among these substances that have been observed to inhibit anammox-mediated processes. Therefore, this review provides a comprehensive overview of the effects of various antimicrobials on the anammox-based systems with emphasis on the effects in different reactor configurations, sludge types and microbial population of anammox-based systems. In addition, this review also discusses the mechanisms by which nitrifying bacteria are inhibited by the antimicrobials. Gaps in knowledge based on this review as well as future research needs have also been suggested. This review gives a better knowledge of antimicrobial effects on anammox-based systems and provides some guidance on the type of system to use to treat antimicrobial-containing wastewater using anammox-based processes.
Collapse
Affiliation(s)
- Phumza Vuyokazi Zungu
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| | - Kiprotich Kosgey
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| |
Collapse
|
11
|
Li H, Qiu L, Chen B, Wang H, Liu H, Long Y, Hu L, Fang C. Vertical distribution of antibiotics and antibiotic resistance genes in a representative municipal solid waste landfill, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113919. [PMID: 35901592 DOI: 10.1016/j.ecoenv.2022.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The vertical distribution of sulfonamides (SAs), tetracyclines (TCs), macrolides (MLs), and their related antibiotic resistance genes (ARGs) were comprehensively investigated and characterized in a representative municipal solid waste (MSW) landfill in China. The total concentrations of target antibiotics in the MSW landfill were SAs > TCs > MLs. The abundances of mexF (10.78 ± 0.65 log10copies/g) and sul genes (9.15 ± 0.54 log10copies/g) were relatively high, while the tet genes (7.19 ± 0.77 log10copies/g) were the lowest. Both the abundance of antibiotics and genes fluctuated with landfill depth, and the ARGs of the same antibiotics were consistent with depth change. Intl1 and sul genes (sul1, sul2) were tightly connected, and a close relationship also existed between tet genes (tetM, tetQ) and MLs resistance genes (ermB, mefA). High-throughput sequencing showed the dominant genera were Sporosarcina (38%) and Thiobacillus (17%) at sampling points A and C, while the microbial community varied with depth increase at point B were Brevundimonas (20%), Sporosarcina (20%), Pseudomonas (24%), Lysobacter (28%), and Thioalkalimicrobium (14%), respectively. Network analysis further visualized the relationship among antibiotics, genes, and microbial communities and the results indicated the non-random connection among them and the possible host of the target gene. Even at 12.0 m below the landfill surface, the pollution of antibiotics resistance was still serious, which posed difficulties for subsequent landfill remediation and pollution control.
Collapse
Affiliation(s)
- Hong Li
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Libo Qiu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Binhui Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Hua Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Hongyuan Liu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
12
|
Xin K, Chen X, Zhang Z, Zhang Z, Pang H, Yang J, Jiang H, Lu J. Trace antibiotics increase the risk of antibiotic resistance genes transmission by regulating the biofilm extracellular polymeric substances and microbial community in the sewer. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128634. [PMID: 35306411 DOI: 10.1016/j.jhazmat.2022.128634] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Sewer is considered a potential hotspot for antibiotic resistance, but the occurrence and proliferation of antibiotic resistance genes (ARGs) under trace antibiotics exposure have received little attention. This work evaluated the effects of tetracycline (TC) and sulfamethoxazole (SMX) individually and in combination in the sewer system and revealed the related mechanisms of ARG proliferation. The relative abundance of tetA and sul1 increased the most under TC and SMX stress, respectively, whereas sul1 increased the most under combined stress. Intl1 was abundant in both the liquid phase and the biofilm, and redundancy analysis confirmed that horizontal gene transfer was the main reason for the proliferation of ARGs. The increase in extracellular polymeric substances (EPS) secretion and the enhancement of the main hydrophobic functional groups facilitated the accumulation of biofilms, which promoted the proliferation of ARGs in biofilms. The relative abundance of most ARGs in the liquid phase was significantly correlated with EPS, protein and tryptophan-like substances. Furthermore, the microbial community structure and diversity affected the proliferation and spread of ARGs in the sewer. These findings contribute to our further understanding of the proliferation and development of ARGs in the sewer and lay the foundation for the front-end control of ARGs.
Collapse
Affiliation(s)
- Kuan Xin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xingdu Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zigeng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jing Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Jiang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
13
|
Xu C, Kong L, Gao H, Cheng X, Wang X. A Review of Current Bacterial Resistance to Antibiotics in Food Animals. Front Microbiol 2022; 13:822689. [PMID: 35633728 PMCID: PMC9133924 DOI: 10.3389/fmicb.2022.822689] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
The overuse of antibiotics in food animals has led to the development of bacterial resistance and the widespread of resistant bacteria in the world. Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in food animals are currently considered emerging contaminants, which are a serious threat to public health globally. The current situation of ARB and ARGs from food animal farms, manure, and the wastewater was firstly covered in this review. Potential risks to public health were also highlighted, as well as strategies (including novel technologies, alternatives, and administration) to fight against bacterial resistance. This review can provide an avenue for further research, development, and application of novel antibacterial agents to reduce the adverse effects of antibiotic resistance in food animal farms.
Collapse
Affiliation(s)
- Chunming Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Lingqiang Kong
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hanfang Gao
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Zhang R, Yang S, An Y, Wang Y, Lei Y, Song L. Antibiotics and antibiotic resistance genes in landfills: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150647. [PMID: 34597560 DOI: 10.1016/j.scitotenv.2021.150647] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Landfill are important reservoirs of antibiotics and antibiotic resistance genes (ARGs). They harbor diverse contaminants, such as heavy metals and persistent organic chemicals, complex microbial consortia, and anaerobic degradation processes, which facilitate the occurrence, development, and transfer of ARGs and antibiotic resistant bacteria (ARB). The main concern is that antibiotics and developed ARGs and ARB may transfer to the local environment via leachate and landfill leakage. In this paper, we provide an overview of established studies on antibiotics and ARGs in landfills, summarize the origins and distribution of antibiotics and ARGs, discuss the linkages among various antibiotics, ARGs, and bacterial communities as well as the influencing factors of ARGs, and evaluate the current treatment processes of antibiotics and ARGs. Finally, future research is proposed to fill the current knowledge gaps, which include mechanisms for the development and transmission of antibiotic resistance, as well as efficient treatment approaches for antibiotic resistance.
Collapse
Affiliation(s)
- Rui Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 101407, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yuwei An
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Yangqing Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Yu Lei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Liyan Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China; School of resources and environmental engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
15
|
Zhang X, Zhang N, Wei D, Zhang H, Song Y, Ma Y, Zhang H. Inducement of denitrification and the resistance to elevated sulfamethoxazole (SMX) antibiotic in an Anammox biofilm system. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Xiao G, Chen J, Show PL, Yang Q, Ke J, Zhao Q, Guo R, Liu Y. Evaluating the application of antibiotic treatment using algae-algae/activated sludge system. CHEMOSPHERE 2021; 282:130966. [PMID: 34082314 DOI: 10.1016/j.chemosphere.2021.130966] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Biological methods are promising treatment methods to remove pollutants from wastewater. Recently, microalgae have been proved to be of strong application potential in wastewater treatment. In this study, a microalga - antibiotic treatment system was built to evaluate the treatment capacity of microalgae in antibiotic wastewater. In the group with Chlorella pyrenoidosa, the removal rate of cefradine was 41.47 ± 0.62% after 24 h of treatment, which was 3.4 times higher than that without microalgae (12.37 ± 2.30%). Algal decomposition was the main removal mechanism. Meanwhile, the effect of multiple microalgae species on antibiotic treatment was studied. The removal rates of cefradine by C. pyrenoidosa cultivated in the filtered fluid of Microcystis aeruginosa were 75.48 ± 0.29%, which was significantly higher than those by C. pyrenoidosa only. Those indicated that multiple microalgae species strategy was a potential enhancement strategy for algae-based antibiotic treatment. Finally, amoxicillin and norfloxacin were used to study the treatment potential of this technology for more different kinds antibiotics and the integration of microalgae with activated sludge was also investigated. Amoxicillin can be quickly removed by microalgae, but the removal effect of norfloxacin by microalgae is poor. The refractory antibiotic norfloxacin can be treated by co-culturing microalgae and activated sludge. Those showed the good expansibility of microalgae-based technology. The findings indicated that with microalgae-based antibiotic removal method has good application potential, and combined with other technologies, it can effectively remove the refractory antibiotics.
Collapse
Affiliation(s)
- Guixing Xiao
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Pau Loke Show
- The University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Qiulian Yang
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jian Ke
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Qi Zhao
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
17
|
Du B, Wang Q, Yang Q, Wang R, Yuan W, Yan L. Responses of bacterial and bacteriophage communities to long-term exposure to antimicrobial agents in wastewater treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125486. [PMID: 33676244 DOI: 10.1016/j.jhazmat.2021.125486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of antibacterial agents has received increasing concern due to their possible threats to human health. However, the effects of antibacterial residues on the evolution and dynamics between bacteria and bacteriophages in wastewater treatment systems have seldom been researched. Especially for phages, little is known about their response to antimicrobial exposure. In this study, two identical anoxic-aerobic wastewater treatment systems were established to evaluate the responses of bacterial and phage communities to long-term exposure to antimicrobial agents. The results indicated simultaneous exposure to combined antimicrobials significantly inhibited (p < 0.05) the abundance of phages and bacteria. Metagenomic sequencing analysis indicated the community of bacteria and phages changed greatly at the genus level due to combined antibacterial exposure. Additionally, long-term exposure to antimicrobial agents promoted the attachment of receptor-binding protein genes to Klebsiella, Escherichia and Salmonella (which were all members of Enterobacteriaceae). Compared to that in the control system, the numbers of receptor-binding protein genes on their possible phages (such as Lambdalikevirus and P2likevirus) were also obviously higher when the microorganisms were exposed to antimicrobials. The results are helpful to understanding the microbial communities and tracking the relationship of phage-bacterial host systems, especially under the pressure of antimicrobial exposure.
Collapse
Affiliation(s)
- Bingbing Du
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Qiang Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China.
| | - Ruifei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Wei Yuan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Luyu Yan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
18
|
Dang BT, Bui XT, Itayama T, Ngo HH, Jahng D, Lin C, Chen SS, Lin KYA, Nguyen TT, Nguyen DD, Saunders T. Microbial community response to ciprofloxacin toxicity in sponge membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145041. [PMID: 33940712 DOI: 10.1016/j.scitotenv.2021.145041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
This study aims to offer insights into how ciprofloxacin (CIP) impact bacterial community structures in the Sponge-MBR process when CIP is spiked into hospital wastewater. We found that the CIP toxicity decreased richness critical phylotypes such as phylum class ẟ-, β-, ɣ-proteobacteria, and Flavobacteria that co-respond to suppress denitrification and cake fouling to 37% and 28% respectively. Cluster analysis shows that the different community structures were formed under the influence of CIP toxicity. CIP decreased attached growth biomass by 2.3 times while increasing the concentration of permeate nitrate by 3.8 times, greatly affecting TN removal by up to 26%. Ammonia removal was kept stable by inflating the ammonia removal rate (p < 0.003), with the wealthy Nitrospira genus guaranteeing the nitrification activity. In addition, we observed an increasing richness of Chloroflexi and Planctomycetes, which may play a role in fouling reduction in the Sponge-MBR. Therefore, if the amount of antibiotics in hospital wastewater continues to increase, it is so important to extend biomass retention for denitrification recovery.
Collapse
Affiliation(s)
- Bao-Trong Dang
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Thu Duc district, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam.
| | - Tomoaki Itayama
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Huu Hao Ngo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Deokjin Jahng
- Department of Environmental Engineering and Energy, Myongji University, Republic of Korea
| | - Chitsan Lin
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, No. 250 Kuo-Kuang Road, Taichung 402, Taiwan
| | - Thanh-Tin Nguyen
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Todd Saunders
- Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
19
|
Wang J, Yang Z, Wang H, Wu S, Lu H, Wang X. Decomposition process of cefotaxime sodium from antibiotic wastewater by Up-flow Blanket Filter (UBF) reactor: Reactor performance, sludge characteristics and microbial community structure analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143670. [PMID: 33257062 DOI: 10.1016/j.scitotenv.2020.143670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
In this study, a novel Up-flow Blanket Filter (UBF) reactor was applied to the degradation of antibiotic wastewater. The experiments showed that when the hydraulic retention time (HRT) was 24 h and the ratio of volatile fatty acids (VFA) to alkalinity (ALK) was 0.3, the best removal efficiency was achieved in the combined packing UBF reactor, and the COD removal efficiency reached 80.1%-84.6%, exhibiting a significant difference in reaction performance from the other two reactors (P < 0.05) and a good efficiency of cefotaxime sodium removal. Moreover, the microstructure and surface characteristics of the reactor fillers were studied through scanning electron microscope (SEM) analysis, which showed that three fillers all had biofilm adhesion, but the combined packing gave best performance. Energy dispersive spectrometer (EDS) tests indicated abundant element components in the combined packing. The particle size distribution of sludge was also considered in the experiment, and the result showed the particle size of sludge increased with the operation of the reactor. In addition, microbial community structures of sludge and biofilm with the combined packing were analyzed. High-throughput sequencing confirmed the existence of Pseudomonas, which had good adaptability to antibiotic wastewater and became the dominant bacteria. Decomposition process of cefotaxime sodium after hydrolysis and anaerobic treatment was analyzed through Fourier transform infrared spectroscopy (FTIR). The reactor, which is economical, exhibited favorable performance in degrading the pollutions in the antibiotic wastewater.
Collapse
Affiliation(s)
- Jia Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Zhinian Yang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Hao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Shuangrong Wu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Huan Lu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Xingguo Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| |
Collapse
|
20
|
Zhang L, Johnson NW, Liu Y, Miao Y, Chen R, Chen H, Jiang Q, Li Z, Dong Y, Mahendra S. Biodegradation mechanisms of sulfonamides by Phanerochaete chrysosporium - Luffa fiber system revealed at the transcriptome level. CHEMOSPHERE 2021; 266:129194. [PMID: 33316476 DOI: 10.1016/j.chemosphere.2020.129194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/11/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The overuse of antibiotics and subsequent enrichment of antibiotic resistant microbes in the natural and built environments is a severe threat to global public health. In this study, a Phanerochaete chrysosporium fungal-luffa fiber system was found to efficiently biodegrade two sulfonamides, sulfadimethoxine (SDM) and sulfadizine (SDZ), in cow urine wastewater. Biodegradation pathways were proposed on the basis of key metabolites identified using high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (HPLC-QqTOF-MS). Transcriptomic, metabolomic, and free radical analyses were performed to explore the functional groups and detailed molecular mechanisms of SDM and SDZ degradation. A total of 27 UniGene clusters showed significant differences between luffa fiber and luffa fiber-free systems, which were significantly correlated to cellulose catabolism, carbohydrate metabolism, and oxidoreductase activity. Carbohydrate-active enzymes and oxidoreductases appear to play particularly important roles in SDM and SDZ degradation. Electron paramagnetic resonance (EPR) spectroscopy revealed the generation and evolution of OH and R during the biodegradation of SDM and SDZ, suggesting that beyond enzymatic degradation, SDM and SDZ were also transformed through a free radical pathway. Luffa fiber also acts as a co-substrate to improve the activity of enzymes for the degradation of SDM and SDZ. This research provides a potential strategy for removing SDM and SDZ from agricultural and industrial wastewater using fungal-luffa fiber systems.
Collapse
Affiliation(s)
- Lan Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Nicholas W Johnson
- Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA.
| | - Yun Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Yu Miao
- Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA.
| | - Ruihuan Chen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Hong Chen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Qian Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Zhongpei Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Yuanhua Dong
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Shaily Mahendra
- Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
21
|
Zhao R, Feng J, Huang J, Li X, Li B. Reponses of microbial community and antibiotic resistance genes to the selection pressures of ampicillin, cephalexin and chloramphenicol in activated sludge reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142632. [PMID: 33045611 DOI: 10.1016/j.scitotenv.2020.142632] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
High concentrations of antibiotics can exert strong selection pressures on the microbial community and promote the emergence and dissemination of antibiotic resistance genes (ARGs). The activated sludge reactors treating ampicillin, cephalexin and chloramphenicol production wastewater were established to investigate the responses of microbial community, ARGs and mobile genetic elements (MGEs) to antibiotics. Antibiotic selection pressures significantly declined the microbial diversity and changed microbial community structures. Based on metagenomic analysis, a total of 500 ARG subtypes affiliated with 18 ARG types were identified and 63 ARGs were shared by all samples. The substantial increase of ARG abundance and the shifts of ARG profiles were significantly correlated with antibiotic types and concentrations. The evident enrichment of non-corresponding ARG types suggested the strong co-selection effects of the target antibiotics. Additionally, metagenomic analysis revealed the occurrence of 104 MGEs belonging to various types and the five dominant MGEs were tnpA, intI1, tniA, tniB and IS91. The ARG-MGE co-occurrence associations implied the potential mobility of ARGs. Network analysis also demonstrated that five ARG types (aminoglycoside, beta-lactam, chloramphenicol, multidrug and tetracycline resistance genes) tended to co-occur internally and the obvious co-occurrence patterns among different ARG types indicated the potential for resistance co-selection. Moreover, 15 bacterial genera were speculated as the hosts of diverse ARGs. This study provides a comprehensive overview of the occurrence of ARGs and MGEs and is valuable for the risk assessment and management of antibiotic resistance.
Collapse
Affiliation(s)
- Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jie Feng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Research Academy of Environmental Sciences, Shenzhen 518001, China
| | - Jin Huang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
22
|
Chaturvedi P, Giri BS, Shukla P, Gupta P. Recent advancement in remediation of synthetic organic antibiotics from environmental matrices: Challenges and perspective. BIORESOURCE TECHNOLOGY 2021; 319:124161. [PMID: 33007697 DOI: 10.1016/j.biortech.2020.124161] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Continuous discharge and persistence of antibiotics in aquatic ecosystem is identified as emerging environment health hazard. Partial degradation and inappropriate disposal induce appearance of diverse antibiotic resistant genes (ARGs) and bacteria, hence their execution is imperative. Conventional methods including waste water treatment plants (WWTPs) are found ineffective for the removal of recalcitrant antibiotics. Therefore, constructive removal of antibiotics from environmental matrices and other alternatives have been discussed. This review summarizes present scenario and removal of micro-pollutants, antibiotics from environment. Various strategies including physicochemical, bioremediation, use of bioreactor, and biocatalysts are recognized as potent antibiotic removal strategies. Microbial Fuel Cells (MFCs) and biochar have emerged as promising biodegradation processes due to low cost, energy efficient and environmental benignity. With higher removal rate (20-50%) combined/ hybrid processes seems to be more efficient for permanent and sustainable elimination of reluctant antibiotics.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India.
| | - Balendu Shekher Giri
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Parul Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
23
|
Zarei-Baygi A, Wang P, Harb M, Stadler LB, Smith AL. Membrane Fouling Inversely Impacts Intracellular and Extracellular Antibiotic Resistance Gene Abundances in the Effluent of an Anaerobic Membrane Bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12742-12751. [PMID: 32875793 DOI: 10.1021/acs.est.0c04787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anaerobic membrane bioreactors (AnMBRs) can significantly reduce the release of antibiotic resistance elements to the environment. The purpose of this study was to elucidate the role of membrane fouling layers (biofilms) in mitigating the release of intracellular and extracellular antibiotic resistance genes (iARGs and eARGs) from an AnMBR. The AnMBR was equipped with three membrane modules, each exhibiting a different level of fouling. Results showed that the absolute abundance of ARGs decreased gradually in the suspended biomass during operation of the AnMBR. Normalized abundances of targeted ARGs and intI1 were found to be significantly higher in the fouling layers compared to the suspended biomass, implying adsorption or an increased potential for horizontal gene transfer of ARGs in the biofilm. Effluent ARG data revealed that the highly fouled (HF) membrane significantly reduced the absolute abundance of eARGs. However, the HF membrane effluent concomitantly had the highest absolute abundance of iARGs. Nevertheless, total ARG abundance (sum of iARG and eARG) in the effluent of the AnMBR was not impacted by the extent of fouling. These results suggest a need for a combination of different treatment technologies to effectively prevent antibiotic resistance proliferation associated with these two ARG fractions.
Collapse
Affiliation(s)
- Ali Zarei-Baygi
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 S Vermont Avenue, Los Angeles, California 90089, United States
| | - Phillip Wang
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 S Vermont Avenue, Los Angeles, California 90089, United States
| | - Moustapha Harb
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos 1102, Lebanon
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 S Vermont Avenue, Los Angeles, California 90089, United States
| |
Collapse
|
24
|
Meng L, Wang J, Li X, Cui F. Insight into effect of high-level cephalexin on fate and driver mechanism of antibiotics resistance genes in antibiotic wastewater treatment system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110739. [PMID: 32505047 DOI: 10.1016/j.ecoenv.2020.110739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
In the study, antibiotic resistance genes (ARGs) were examined in wastewater and sludge samples to explore the effect of cephalexin (CFX) on the spreading and removal of ARGs in the Expanded Granular Sludge Bed (EGSB) reactor treating antibiotics wastewater. The result showed that the addition of CFX in the wastewater affected the removal amount of β-lactam ARGs and other types ARGs. Besides, the addition of CFX in the wastewater had no obviously effect on total concentration of targeted ARGs in the sludge, but it was related to the accumulation of some typical ARGs. Based on gene cassette array libraries analysis, the diversity of gene cassettes carried by intI1 gene was increased by the addition of CFX in the wastewater. Furthermore, the co-occurrence patterns between ARGs and bacterial genus were also investigated. The results showed the CFX in the wastewater not only affected the number of potential host bacteria of ARGs, but also changed the types of potential host bacteria of ARGs. The correlation analysis of ARG in influent, effluent and sludge showed that, for blaCTX-M, sul2, qnrS and AmpC genes, their removal amount in EGSB reactor treating antibiotic wastewater system might be enhanced by reducing their concentration in the sludge.
Collapse
Affiliation(s)
- Lingwei Meng
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China.
| | - Jichao Wang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Xiangkun Li
- School of Civil and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Fengguo Cui
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| |
Collapse
|
25
|
Sakudo A, Misawa T. Antibiotic-Resistant and Non-Resistant Bacteria Display Similar Susceptibility to Dielectric Barrier Discharge Plasma. Int J Mol Sci 2020; 21:E6326. [PMID: 32878289 PMCID: PMC7504529 DOI: 10.3390/ijms21176326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022] Open
Abstract
Here, we examined whether antibiotic-resistant and non-resistant bacteria show a differential susceptibility to plasma treatment. Escherichia coli DH5α were transformed with pPRO-EX-HT-CAT, which encodes an ampicillin resistance gene and chloramphenicol acetyltransferase (CAT) gene, and then treated with a dielectric barrier discharge (DBD) plasma torch. Plasma treatment reduced the viable cell count of E. coli after transformation/selection and further cultured in ampicillin-containing and ampicillin-free medium. However, there was no significant difference in viable cell count between the transformed and untransformed E. coli after 1 min- and 2 min-plasma treatment. Furthermore, the enzyme-linked immunosorbent assay (ELISA) and acetyltransferase activity assay showed that the CAT activity was reduced after plasma treatment in both transformed and selected E. coli grown in ampicillin-containing or ampicillin-free medium. Loss of lipopolysaccharide and DNA damage caused by plasma treatment were confirmed by a Limulus test and polymerase chain reaction, respectively. Taken together, these findings suggest the plasma acts to degrade components of the bacteria and is therefore unlikely to display a differential affect against antibiotic-resistant and non-resistant bacteria. Therefore, the plasma method may be useful in eliminating bacteria that are recalcitrant to conventional antibiotic therapy.
Collapse
Affiliation(s)
- Akikazu Sakudo
- School of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Tatsuya Misawa
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan;
| |
Collapse
|
26
|
Yang Y, Wan K, Yang Z, Li D, Li G, Zhang S, Wang L, Yu X. Inactivation of antibiotic resistant Escherichia coli and degradation of its resistance genes by glow discharge plasma in an aqueous solution. CHEMOSPHERE 2020; 252:126476. [PMID: 32229364 DOI: 10.1016/j.chemosphere.2020.126476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Emerging contaminants such as antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are becoming a global environmental problem. In this study, the glow discharge plasma (GDP) was applied for degrading antibiotic resistant Escherichia coli (E. coli) with resistance genes (tetA, tetR, aphA) and transposase gene (tnpA) in 0.9% sterile saline. The results showed that GDP was able to inactivate the antibiotic resistant E. coli and remove the ARGs and reduce the risk of gene transfer. The levels of E. coli determined by 16S rRNA decreased by approximately 4.7 logs with 15 min of discharge treatment. Propidium monoazide - quantitative polymerase chain reaction (PMA-qPCR) tests demonstrated that the cellular structure of 4.8 more logs E. coli was destroyed in 15 min. The reduction of tetA, tetR, aphA, tnpA genes was increased to 5.8, 5.4, 5.3 and 5.5 logs with 30 min discharge treatment, respectively. The removal of ARGs from high salinity wastewater was also investigated. The total abundance of ARGs was reduced by 3.9 logs in 30 min. Scavenging tests indicated that hydroxyl radicals (·OH) was the most probable agents for bacteria inactivation and ARGs degradation. In addition, the active chlorine (Cl· and Cl2) which formed during the discharge may also contribute to the inactivation and degradation.
Collapse
Affiliation(s)
- Ye Yang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China; College of Geography & Environmental Sciences, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Kun Wan
- Key Lab of Urban Environment & Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China; College of the Environment & Ecology, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhipeng Yang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China
| | - Dailin Li
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China
| | - Guoxin Li
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China
| | - Songlin Zhang
- College of Geography & Environmental Sciences, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Lei Wang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China.
| | - Xin Yu
- Key Lab of Urban Environment & Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China; College of the Environment & Ecology, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
27
|
Zhang L, Guo R, Li H, Du Q, Lu J, Huang Y, Yan Z, Chen J. Mechanism analysis for the process-dependent driven mode of NaHCO 3 in algal antibiotic removal: efficiency, degradation pathway and metabolic response. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122531. [PMID: 32283379 DOI: 10.1016/j.jhazmat.2020.122531] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
This work provided a comprehensive perspective to investigate the performance of NaHCO3-driving effect and mechanism including the antibiotic removal, degradation pathway and metabolites analysis, and the algal physiological response during the removal process. Cefuroxime sodium was selected as the target antibiotic. Our results showed that NaHCO3 did not facilitate self-decomposition of the target antibiotic, while drove the improvement on the removal capacity of every algal cell, which then attributed to the total removal efficiency. After 24 h, there was an improvement on the removal rate of the target antibiotic (from 10.21% to 92.89%) when NaHCO3 was added. The degradation pathway of the target antibiotic was confirmed by the formation of three main products (M1, M2 and M3), and the degradation process, that from M1 to M2 and M2 to M3, was accelerated by the existence of NaHCO3. Besides, a 4-stage model illustrated the relationship between NaHCO3 and antibiotic removal process. Moreover, algal culture that supplemented with NaHCO3 demonstrated a better growth capacity. A large increase in the content of chlorophyll a and a moderate increase in the activity of two carbon metabolic enzymes (RuBisCO and CA) might be viewed as a positive response of the algae during the NaHCO3-driving process.
Collapse
Affiliation(s)
- Ling Zhang
- China Pharmaceutical University, Nanjing, 210009, China
| | - Ruixin Guo
- China Pharmaceutical University, Nanjing, 210009, China
| | - Haitao Li
- Research Institute of Nanjing Chemical Industry Group, Nanjing, 210048, China
| | - Qiong Du
- China Pharmaceutical University, Nanjing, 210009, China
| | - Jilai Lu
- Jiangsu Province Key Laboratory of Environmental Engineering, Nanjing, 210036, China
| | - Yaxin Huang
- China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengyu Yan
- China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianqiu Chen
- China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
28
|
Zhang B, Wang M, Cai C, Wang P, Liu H. Assessing the effects of tylosin fermentation dregs as soil amendment on macrolide antibiotic resistance genes and microbial communities: Incubation study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:854-863. [PMID: 32648501 DOI: 10.1080/03601234.2020.1788337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tylosin fermentation dregs (TFDs) are biosolid waste of antibiotics tylosin production process which contain nutritious components and may be recycled as soil amendments. However, the specific ecological safety of TFDs from the perspective of bacterial resistance in soil microenvironment is not fully explored. In the present study, a series of replicated lab-scale work were performed using the simulated fertilization to gain insight into the potential environmental effects and risks of macrolide antibiotic resistance genes (ARGs) and the soil microbial communities composition via quantitative PCR and 16S rRNA sequencing following the TFDs land application as the soil amendments. The results showed that bio-processes might play an important role in the decomposition of tylosin which degraded above 90% after 20 days in soil. The application of TFDs might induce the development of antibiotic-resistant bacteria, change soil environment and reduce the microbial diversity. Though the abundances of macrolide ARGs exhibited a decreasing trend following the tylosin degradation, other components in TFDs may have a lasting impact on both macrolide ARGs abundance and soil bacterial communities. Thus, this study pointed out the fate of TFDs on soil ecological environment when directly applying into soil, and provide valuable scientific basis for TFDs management.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Chen Cai
- School of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Peng Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Liu M, Hata A, Katayama H, Kasuga I. Consecutive ultrafiltration and silica adsorption for recovery of extracellular antibiotic resistance genes from an urban river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114062. [PMID: 32041028 DOI: 10.1016/j.envpol.2020.114062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 05/09/2023]
Abstract
The dissemination of antibiotic resistance (AR) has attracted global attention because of the increasing antibiotic treatment failure it has caused. Through natural transformation, a live bacterium takes up extracellular DNA (exDNA), which facilitates AR dissemination. However, recovery of exDNA from water samples is challenging. In this study, we validated a consecutive ultrafiltration-based protocol to simultaneously recover intracellular DNA (inDNA), dissolved exDNA (Dis_exDNA, dissolved in the bulk water), and adsorbed exDNA (Ads_exDNA, adsorbed to the surfaces of suspended particles). Using hollow fiber ultrafiltration (HFUF), all DNA fractions were concentrated from environmental water samples, after which Dis_exDNA (supernatant) was separated from inDNA and Ads_exDNA (pellets) using centrifugation. Ads_exDNA was washed off from the pellets with proteinase K and sodium phosphate buffer. Dis_exDNA and Ads_exDNA were further concentrated using centrifugal ultrafiltration, from which silica binding was performed. inDNA was extracted from washed pellets with a commercial kit. For inDNA, HFUF showed recovery efficiencies of 96.5 ± 18.5% and 88.0 ± 2.0% for total cells and cultured Escherichia coli, respectively (n = 3). To represent all possible DNA fragments in water environment, exDNA with different lengths (10.0, 4.0, 1.0, and 0.5 kbp) were spiked to test the recovery efficiencies for Dis_exDNA. The whole process achieved 62.2%-62.9% recovery for 10 and 4 kbp exDNA, and 38.8%-44.5% recovery for 1.0 and 0.5 kbp exDNA. Proteinase K treatment enhanced the recovery of Ads_exDNA by 4.0-10.7 times. The protocol was applied to water samples from an urban river in Tokyo, Japan. The abundance of AR genes (ARGs) in inDNA, Dis_exDNA, and Ads_exDNA increased downstream of wastewater treatment plants. ARGs in Ads_exDNA and Dis_exDNA accounted for 1.8%-26.7% and 0.03%-20.9%, respectively, of the total DNA, implying that Ads_exDNA and Dis_exDNA are nonnegligible potential pools for the horizontal transfer of ARGs.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Urban Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Akihiko Hata
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180, Kurokawa, Imizu City, Toyama, 939-0398, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Ikuro Kasuga
- Department of Urban Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8656, Japan; VNU-Vietnam Japan University, My Dinh Campus, Luu Huu Phuoc Street, My Dinh 1 Ward, Nam Tu Liem District, Hanoi, Viet Nam.
| |
Collapse
|
30
|
Li DC, Gao JF, Zhang SJ, Gao YQ, Sun LX. Emergence and spread patterns of antibiotic resistance genes during two different aerobic granular sludge cultivation processes. ENVIRONMENT INTERNATIONAL 2020; 137:105540. [PMID: 32032776 DOI: 10.1016/j.envint.2020.105540] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 05/15/2023]
Abstract
The prevalence and accumulation of antibiotic resistance genes (ARGs) were frequently detected in biological wastewater treatment processes, which might cause potential health crisis to human. In present study, the fates of ARGs during two different aerobic granular sludge (AGS) cultivation processes were investigated. The results showed that traditional AGS (T-AGS) cultivation process and enhanced AGS (E-AGS) cultivation process had significant differences (P < 0.005) in ARGs shift patterns. E-AGS process had higher average relative abundance (0.280 ± 0.079) of ARGs than T-AGS process (0.130 ± 0.041), while the intensity of ARGs enrichment during E-AGS (1.52-5.29 fold) was lower than T-AGS (3.79-75.31 fold) process. TnpA and intI1 as two different types of mobile genetic elements (MGEs) carrying ARGs, were observed to contribute significantly to the horizontal gene transfer (HGT) during T-AGS (r = 0.902, P < 0.050) and E-AGS (r = 0.823, P < 0.001) processes, respectively. Higher HGT level took place and more possible potential hosts (25 hosts) harboring ARGs were detected during E-AGS process comparing with T-AGS process (17 hosts). Meanwhile, over large AGS might increase the propagation of several antibiotic deactivation ARGs, so it was not advised. Overall, whether during T-AGS or during E-AGS process which was applied in a pilot-scale sequencing batch reactor treating municipal wastewater, the accumulation and spread of ARGs were inevitable. It should be valued that some suitable pre-treatments of seed sludge should be executed, meanwhile, advanced treatment for removing of ARGs in AGS should be conducted to maintain the relative abundances of ARGs at relatively low level.
Collapse
Affiliation(s)
- Ding-Chang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jing-Feng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Shu-Jun Zhang
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China
| | - Yong-Qing Gao
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China
| | - Li-Xin Sun
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China
| |
Collapse
|
31
|
Nguyen LN, Commault AS, Kahlke T, Ralph PJ, Semblante GU, Johir MAH, Nghiem LD. Genome sequencing as a new window into the microbial community of membrane bioreactors - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135279. [PMID: 31791792 DOI: 10.1016/j.scitotenv.2019.135279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Recent developed sequencing techniques have resulted in a new and unprecedented way to study biological wastewater treatment, in which most organisms are uncultivable. This review provides (i) an insight on state-of-the-art sequencing techniques and their limitations; (ii) a critical assessment of the microbial community in biological reactor and biofouling layer in a membrane bioreactor (MBR). The data from high-throughput sequencing has been used to infer microbial growth conditions and metabolisms of microorganisms present in MBRs at the time of sampling. These data shed new insight to two fundamental questions about a microbial community in the MBR process namely the microbial composition (who are they?) and the functions of each specific microbial assemblage (what are their function?). The results to date also highlight the complexity of the microbial community growing on MBRs. Environmental conditions are dynamic and diverse, and can influence the diversity and structural dynamics of any given microbial community for wastewater treatment. The benefits of understanding the structure of microbial communities on three major aspects of the MBR process (i.e. nutrient removal, biofouling control, and micropollutant removal) were symmetrically delineated. This review also indicates that the deployment of microbial community analysis for a practical engineering context, in terms of process design and system optimization, can be further realized.
Collapse
Affiliation(s)
- Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Audrey S Commault
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Galilee U Semblante
- Technical Services, Western Sydney University, Kingswood, NSW 2747, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
32
|
Xu Z, Song X, Li Y, Li G, Luo W. Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:23-30. [PMID: 31150873 DOI: 10.1016/j.scitotenv.2019.05.241] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the removal of antibiotics by sequencing-batch membrane bioreactor (SMBR) for swine wastewater treatment. Nine compounds categorized into three groups of commonly used veterinary antibiotics, namely sulfonamides, tetracyclines and fluoroquinolones, were evaluated. Results showed that both sulfonamides and tetracyclines were efficiently removed by SMBR (>90%) while a lower removal was observed for fluoroquinolones (<70%). Mass balance analysis evidenced that biodegradation/biotransformation was the main mechanism for the removal of antibiotics in SMBR operation. Moreover, sludge adsorption and membrane retention also slightly contributed to antibiotic removal. Of the three groups of antibiotics, tetracyclines and fluoroquinolones were more prone to accumulate in biosolids. It is noteworthy that antibiotics temporarily affected SMBR performance by inhibiting sludge growth and activity as well as increasing the concentrations of extracellular polymeric substances and soluble microbial products in the mixed liquor. Nevertheless, >60% of organic matter and nutrients in swine wastewater could be removed over SMBR operation.
Collapse
Affiliation(s)
- Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoye Song
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yun Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Zhang J, Lu T, Shen P, Sui Q, Zhong H, Liu J, Tong J, Wei Y. The role of substrate types and substrate microbial community on the fate of antibiotic resistance genes during anaerobic digestion. CHEMOSPHERE 2019; 229:461-470. [PMID: 31091487 DOI: 10.1016/j.chemosphere.2019.05.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic digestion (AD) is regarded as a promising technology in energy recovery and the spread mitigation of antibiotic resistance. However, the performance of AD is dependent on various factors, and substrate type is one of the most important. In this study, the fate of antibiotic resistance genes (ARGs) response to the substrate types was investigated, and three typical environmental reservoirs of ARGs (pig manure, chicken manure and sewage sludge) were selected. The role of substrate microbial community on the fate of ARGs was clarified through the comparison between the AD of the substrates with and without a prior autoclave-disinfected step. Results showed that substrate types significantly influenced the fate of ARGs, while the influence from the substrate microbial community was limited. The concentration of antibiotics, the horizontal gene transfer reflected by intI1 and co-selection from heavy metals reflected by metal resistance genes (MRGs) were all reduced effectively. Microbial community varied from substrate types and dominated the ARGs fate concerning the standardized total effects through the mantel test and SEM analysis. The fate of tetX, ermF, tetM and ermB was mainly determined by the physicochemical parameters and the phyla of Firmicutes and Bacteroides. The phyla of Actinobacteria, pcoA and czcA contributed most to the reduction of blaTEM and mcr-1, and the phyla of Proteobacteria, Chloroflexi, Synergistetes, Euryarchaeote, intI1 and merA correlated significantly with the fate of blaCTX-M, ereA, tetG and sulI. This study highlighted the importance of substrate types when considering the fate of ARGs during AD.
Collapse
Affiliation(s)
- Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tiedong Lu
- College of Life Science and Technology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jibao Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
34
|
Yang L, Wen Q, Zhao Y, Chen Z, Wang Q, Bürgmann H. New insight into effect of antibiotics concentration and process configuration on the removal of antibiotics and relevant antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:60-66. [PMID: 30903957 DOI: 10.1016/j.jhazmat.2019.03.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
To compare the performance and antibiotic-resistance character in different process configurations under different levels of antibiotics, anoxic/oxic-membrane bioreactors (MBR) 1#, MBR2# and a sequencing batch reactor (SBR) were operated with identical operating parameters. MBR1# and SBR were operated under high and increasing levels of antibiotics, MBR2# received constant and low concentration of antibiotics. Microbiological community and antibiotic resistance genes (ARGs) were investigated using 16S rDNA gene high-throughput sequencing and qPCR. More than 90% of penicillin and chlortetracycline were removed due to strong hydrolysis, followed by sulfamethoxazole (69.27%-86.25%) through biodegradation and norfloxacin (28.66%-53.86%) through adsorption. Process configuration affected total nitrogen removal more, while antibiotics concentration affected total phosphorus removal more. MBR1# outperformed SBR in reducing sulfamethoxazole, norfloxacin and ARGs due to the retention effect of the membrane module. Retention efficiency of ARGs in MBRs increased along the operation. Compared to the operational taxonomic unit (OTU) number before antibiotics addition, the OTU number in MBR1# and SBR decreased by 23.7% and 28.7%, while that in MBR2# kept relatively stable. Process configuration contributed to higher dissimilarity of microbial community than antibiotics concentration. The research provides an insight into the influence factors of antibiotics-containing wastewater treatment.
Collapse
Affiliation(s)
- Lian Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Yaqi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730070, PR China.
| | - Qiong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Helmut Bürgmann
- Eawag Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Eawag, CH-6047, Switzerland
| |
Collapse
|
35
|
Oberoi AS, Jia Y, Zhang H, Khanal SK, Lu H. Insights into the Fate and Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7234-7264. [PMID: 31244081 DOI: 10.1021/acs.est.9b01131] [Citation(s) in RCA: 438] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Antibiotics, the most frequently prescribed drugs of modern medicine, are extensively used for both human and veterinary applications. Antibiotics from different wastewater sources (e.g., municipal, hospitals, animal production, and pharmaceutical industries) ultimately are discharged into wastewater treatment plants. Sorption and biodegradation are the two major removal pathways of antibiotics during biological wastewater treatment processes. This review provides the fundamental insights into sorption mechanisms and biodegradation pathways of different classes of antibiotics with diverse physical-chemical attributes. Important factors affecting sorption and biodegradation behavior of antibiotics are also highlighted. Furthermore, this review also sheds light on the critical role of extracellular polymeric substances on antibiotics adsorption and their removal in engineered biological wastewater treatment systems. Despite major advancements, engineered biological wastewater treatment systems are only moderately effective (48-77%) in the removal of antibiotics. In this review, we systematically summarize the behavior and removal of different antibiotics in various biological treatment systems with discussion on their removal efficiency, removal mechanisms, critical bioreactor operating conditions affecting antibiotics removal, and recent innovative advancements. Besides, relevant background information including antibiotics classification, physical-chemical properties, and their occurrence in the environment from different sources is also briefly covered. This review aims to advance our understanding of the fate of various classes of antibiotics in engineered biological wastewater treatment systems and outlines future research directions.
Collapse
Affiliation(s)
| | - Yanyan Jia
- Department of Civil and Environmental Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong
| | | | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Ma̅noa , 1955 East-West Road , Honolulu , Hawaii 96822 , United States
| | | |
Collapse
|
36
|
Zhou L, Zhuang WQ, De Costa Y, Xia S. Potential effects of suspended TiO 2 nanoparticles on activated sludge floc properties in membrane bioreactors. CHEMOSPHERE 2019; 223:148-156. [PMID: 30772594 DOI: 10.1016/j.chemosphere.2019.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/17/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
With the rapid development and application of consumer products containing nanoparticles (NPs), especially titanium dioxide (TiO2) NPs, the potential effects of suspended NPs on wastewater treatment has been a concern over the recent years. This study investigated the potential effects of suspended TiO2 NPs on activated sludge flocculation properties in a membrane bioreactor (MBR). Results showed that suspended TiO2 NPs inhibited the viability of activated sludge flocs, and led to bacterial protein secretion for bacterial protection, causing an overall protein increase of soluble microbial products. Suspended TiO2 NPs also destabilized the activated sludge floc structure and reduced flocculation capacity of flocs, causing an over production of organic matter and resulting in a floc size decrease of over 50%. Suspended TiO2 NPs also caused a change in the phylogenetic distribution of bacterial community. Whereby, the dominant species in activated sludge was replaced from Comamonadaceae to Thiotrichaceae in 50 mg/L suspended TiO2 NPs.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, 1142, New Zealand
| | - Yashika De Costa
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, 1142, New Zealand
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
37
|
Zarei-Baygi A, Harb M, Wang P, Stadler LB, Smith AL. Evaluating Antibiotic Resistance Gene Correlations with Antibiotic Exposure Conditions in Anaerobic Membrane Bioreactors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3599-3609. [PMID: 30810034 DOI: 10.1021/acs.est.9b00798] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Anaerobic membrane bioreactors (AnMBRs) are an emerging technology with potential to improve energy efficiency and effluent reuse in mainstream wastewater treatment. However, their contribution to the proliferation of contaminants of emerging concern, such as antibiotic resistance genes (ARGs), remains largely unknown. The purpose of this study was to determine the effect of select influent antibiotics at varying concentrations on the presence and abundance of ARGs in an AnMBR system and its effluent. Quantification of targeted ARGs revealed distinct profiles in biomass and effluent, with genes conferring resistance to different antibiotic classes dominating in biomass (macrolides) and effluent (sulfonamides). Effluent sul1 gene abundance was strongly correlated with abundance of intl1, signifying the potential importance of mobile genetic elements in ARG release from AnMBR systems. The addition of specific antibiotics also affected normalized abundances of their related ARGs, exemplifying the potential impact of selective pressures at both low (10 μg/L) and high (250 μg/L) influent antibiotic concentrations.
Collapse
Affiliation(s)
- Ali Zarei-Baygi
- Astani Department of Civil and Environmental Engineering , University of Southern California , 3620 South Vermont Avenue , Los Angeles , California 90089 , United States
| | - Moustapha Harb
- Astani Department of Civil and Environmental Engineering , University of Southern California , 3620 South Vermont Avenue , Los Angeles , California 90089 , United States
| | - Phillip Wang
- Astani Department of Civil and Environmental Engineering , University of Southern California , 3620 South Vermont Avenue , Los Angeles , California 90089 , United States
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering , Rice University , 6100 Main Street , Houston , Texas 77005 , United States
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering , University of Southern California , 3620 South Vermont Avenue , Los Angeles , California 90089 , United States
| |
Collapse
|
38
|
Wang H, Hu C, Shen Y, Shi B, Zhao D, Xing X. Response of microorganisms in biofilm to sulfadiazine and ciprofloxacin in drinking water distribution systems. CHEMOSPHERE 2019; 218:197-204. [PMID: 30471500 DOI: 10.1016/j.chemosphere.2018.11.106] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Effects of sulfadiazine and ciprofloxacin on microorganisms in biofilm of drinking water distribution systems (DWDSs) were studied. The results verified that the increases of 16S rRNA for total bacteria and bacterial genus Hyphomicrobium were related to the promotion of antibiotic resistance genes (ARGs) and class 1 integrons (int1) in DWDSs with sulfadiazine and ciprofloxacin. Moreover, the bacteria showed higher enzymatic activities in DWDSs with sulfadiazine and ciprofloxacin, which resulted in more production of extracellular polymeric substances (EPS). The higher contents of EPS proteins and secondary structure β-sheet promoted bacterial aggregation and adsorption onto surface of pipelines to form biofilm. EPS can serve as a barrier for the microorganisms in biofilm. Therefore, the biofilm bacterial communities shifted and the 16S rRNA for total bacteria increased in DWDSs with antibiotics, which also drove the ARGs promotion. Furthermore, the two antibiotics exhibited stronger combined effects than that caused by sulfadiazine and ciprofloxacin alone.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chun Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China.
| | - Yi Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| | - Xueci Xing
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
39
|
Li B, Qiu Y, Li J, Liang P, Huang X. Removal of antibiotic resistance genes in four full-scale membrane bioreactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:112-119. [PMID: 30408659 DOI: 10.1016/j.scitotenv.2018.10.305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Antibiotic resistance genes (ARGs) discharged through wastewater treatment plants (WWTPs) has aroused growing public concern for its risk to human health and ecological safety. Membrane bioreactor (MBR) has been recognized as an effective approach to remove ARGs in full-scale WWTPs, but its advantage over traditional processes was not clearly quantified. To address this, we investigated four full-scale WWTPs containing parallel MBR and traditional processes (oxidation ditch or sequencing batch reactor) to compare the reduction of eight types of ARGs (blaTEM, ermB, tetW, tetO, sul1, sul2, addD, and qnrS) and int1. In general, MBRs reduced the ARGs (1.1-7.3 log removal) better than parallel processes (0.4-4.2 log removal). Notably, the dominant ARGs in the influent, such as ermB, sul1 and int1 (106.39-107.79 copies/mL), were more effectively reduced by MBRs (1.5-7.3 log removal) than traditional processes (0.8-3.4 log removal). Meanwhile, the distribution of those ARGs in activated sludge was not significantly different between aforementioned processes (p > 0.05). The separation coefficient (Ksw) was proposed to represent the contribution of solid separation on ARG removal, subsequent analysis revealed surprisingly strong correlation between Ksw values of dominant ARGs (ermB, sul1 and int1) and their log removal by MBR (R = 0.79-0.96, p < 0.05), while such correlation was much weaker in traditional process (R = 0.33-0.37), indicating solid separation was the major pathway for removal of dominant ARGs and int1. According to the canonical correlation analysis between process operation and ARG removal in MBR, sludge retention time (SRT) seemed to be the major factor affecting removal of dominant ARGs and int1. This comparative study can be helpful for further understanding and operating MBR process to reduce the ARGs in effluent.
Collapse
Affiliation(s)
- Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yong Qiu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Ji Li
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi City, Jiangsu Province 214122, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Chen J, Xie S. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1465-1477. [PMID: 30021313 DOI: 10.1016/j.scitotenv.2018.06.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Sulfonamide antibiotics have aroused increasing concerns due to their ability to enhance the resistance of pathogenic bacteria and promote the spread of antibiotic resistance. Biodegradation plays an important role in sulfonamide dissipation in both natural and engineered ecosystems. In this article, we provided an overview of sulfonamide biodegradation in different systems and summarized the relevant sulfonamide-degrading species and metabolic pathways. The removal of sulfonamides depends on a variety of factors, such as the type and initial concentration of sulfonamides, the properties of water or soil, and treatment process. The removal efficiency of sulfonamides by engineered ecosystems can be improved by optimizing their operating conditions. Much higher sulfonamide removal was also observed in upgraded or advanced treatment systems than in conventional activated sludge systems. Ammonia oxidation might promote sulfonamide biodegradation. In addition, sulfonamide-degraders from different bacterial genera have been isolated and classified, but no bioaugmentation practice has been reported. Different pathways have been detected in sulfonamide biodegradation. Further efforts will be necessary to elucidate in-situ degraders and the metabolic pathways and functional genes of sulfonamide biodegradation.
Collapse
Affiliation(s)
- Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
41
|
Jong MC, Su JQ, Bunce JT, Harwood CR, Snape JR, Zhu YG, Graham DW. Co-optimization of sponge-core bioreactors for removing total nitrogen and antibiotic resistance genes from domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1417-1423. [PMID: 29710641 DOI: 10.1016/j.scitotenv.2018.04.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Inadequate sanitation can lead to the spread of infectious diseases and antimicrobial resistance (AMR) via contaminated water. Unfortunately, wastewater treatment is not universal in many developing and emerging countries, especially in rural and peri-urban locations that are remote from central sewers. As such, small-scale, more sustainable treatment options are needed, such as aerobic-Denitrifying Downflow Hanging Sponge (DDHS) bioreactors. In this study, DDHS reactors were assessed for such applications, and achieved over 79% and 84% removal of Chemical Oxygen Demand and Ammonium, respectively, and up to 71% removal of Total Nitrogen (TN) from domestic wastes. Elevated TN removals were achieved via bypassing a fraction of raw wastewater around the top layer of the DDHS system to promote denitrification. However, it was not known how this bypass impacts AMR gene (ARG) and mobile genetic element (MGE) levels in treated effluents. High-throughput qPCR was used to quantify ARG and MGE levels in DDHS bioreactors as a function of percent bypass (0, 10, 20 and 30% by volume). All systems obtained over 90% ARG reduction, although effluent ARG and TN levels differed among bypass regimes, with co-optimal reductions occurring at ~20% bypass. ARG removal paralleled bacterial removal rate, although effluent bacteria tended to have greater genetic plasticity based on higher apparent MGE levels per cell. Overall, TN removal increased and ARG removal decreased with increasing bypass, therefore co-optimization is needed in each DDHS application to achieve locally targeted TN and AMR effluent levels.
Collapse
Affiliation(s)
- Mui-Choo Jong
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Science, Xiamen, China
| | - Joshua T Bunce
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Colin R Harwood
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jason R Snape
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK; AstraZeneca UK Limited, Global Environment, Alderley Park, UK; School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Science, Xiamen, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|