1
|
Davies B, Paul R, Osselton D, Woolley T. Analysis of crude wastewater from two treatment plants in South Wales for 35 new psychoactive substances and cocaine, and cannabis. Sci Rep 2024; 14:20129. [PMID: 39209963 PMCID: PMC11362326 DOI: 10.1038/s41598-024-70378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigates the presence of new psychoactive substances (NPS) and their metabolites in two wastewater treatment plants (WWTPs) situated in South Wales, UK (WWTP-1 and WWTP-2). Analysis was conducted for 35 NPS and metabolites, along with the inclusion of benzoylecgonine (main cocaine metabolite) and cannabis, the most detected illicit substances. Benzoylecgonine was identified as the predominant substance in both WWTPs. Epidemiological calculations revealed the average population consumption of cocaine to be 3.88 mg/d/1000 inhabitants around WWTP-1 and 1.97 mg/d/1000 inhabitants for WWTP-2. The removal efficiency of benzoylecgonine across both WWTPs was observed at an average of 73%. Subsequent qualitative analyses on randomly selected wastewater samples detected medicinal compounds including buprenorphine, methadone, and codeine in both WWTPs. An additional experiment employing enzymatic hydrolysis revealed the presence of morphine, an increased presence of codeine, and 11-Nor-9-Carboxy-THC (THC-COOH) post-hydrolysis. These findings underscore the significant presence of illicit substances and medicinal compounds in wastewater systems with the absence of NPS within the South Wales area, highlighting the necessity for enhanced monitoring and treatment strategies to address public health and environmental concerns.
Collapse
Affiliation(s)
- Bethan Davies
- Bournemouth University, Fern Barrow, Poole, BH12 5BB, UK.
| | - Richard Paul
- Bournemouth University, Fern Barrow, Poole, BH12 5BB, UK
| | - David Osselton
- Bournemouth University, Fern Barrow, Poole, BH12 5BB, UK
| | - Timothy Woolley
- Inuvi Diagnostics Ltd, Churcham Business Park, Gloucester, GL28AX, UK
| |
Collapse
|
2
|
Švecová H, Vojs Staňová A, Klement A, Kodešová R, Grabic R. LC-HRMS method for study of pharmaceutical uptake in plants: effect of pH under aeroponic condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96219-96230. [PMID: 37566327 PMCID: PMC10482775 DOI: 10.1007/s11356-023-29035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Global climate changes cause water scarcity in many regions, and the sustainable use of recycled water appears crucial, especially in agriculture. However, potentially hazardous compounds such as pharmaceuticals can enter the food chain and pose severe risks. This paper aims to study the presence of selected pharmaceutical active compounds (PhACs) and their metabolites in crops grown in aeroponic conditions and evaluate the potential of PhAC plant uptake. A solvent extraction with an acidified mixture of acetonitrile and water followed by LC-HRMS was developed and validated for quantifying nine pharmaceuticals and their nine metabolites in three plants. We aimed for a robust method with a wide linear range because an extensive concentration range in different matrices was expected. The developed method proved rapid and reliable determination of selected pharmaceuticals in plants in the wide concentration range of 10 to 20,000 ng g-1 and limit of detection range 0.4 to 9.0 ng g-1. The developed method was used to study the uptake and translocation of pharmaceuticals and their metabolites in plant tissues from an aeroponic experiment at three different pH levels. Carbamazepine accumulated more in the leaves of spinach than in arugula. On the other hand, sulfamethoxazole and clindamycin evinced higher accumulation in roots than in leaves, comparable in both plants. The expected effect of pH on plants' uptake was not significant.
Collapse
Affiliation(s)
- Helena Švecová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| | - Andrea Vojs Staňová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
- Faculty of Natural Sciences, Department of Analytical Chemistry, Comenius University in Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Aleš Klement
- Faculty of Agrobiology, Food and Natural Resources, Department of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Suchdol, Czech Republic
| | - Radka Kodešová
- Faculty of Agrobiology, Food and Natural Resources, Department of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Suchdol, Czech Republic
| | - Roman Grabic
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
3
|
Žabka D, Vojs Staňová A, Horáková I, Butor Škulcová A, Grabic R, Špalková V, Gál M, Mackuľak T. Bioaccumulation as a method of removing psychoactive compounds from wastewater using aquatic plants. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1223:123717. [PMID: 37148853 DOI: 10.1016/j.jchromb.2023.123717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 05/08/2023]
Abstract
Since WWTPs are not able to eliminate all psychoactive pharmaceuticals, these compounds become a part of the aquatic ecosystem. Our results indicate that compounds such as codeine or citalopram are eliminated with low efficiency (<38%), and compounds such as venlafaxine, oxazepam, or tramadol even with almost no efficiency. Lower elimination efficiency may be caused by the accumulation of these compounds in the wastewater treatment process. This study is focused on the possibility to remove problematic psychoactive compounds using aquatic plants. HPLC-MS analysis of the leaf extract obtained from studied plants showed that the amount of accumulated methamphetamine was highest in Pistia stratiotes and lower in the leaves of Limnophila sessiliflora and Cabomba caroliniana. However, tramadol and venlafaxine were accumulated considerably only in Cabomba caroliniana. Our study demonstrates that especially these three compounds - tramadol, venlafaxine, and methamphetamine, are accumulated in aquatic plants and can be removed from the aquatic environment. In our study was also observed that helophytic aquatic plants show a higher ability to remove psychoactive compounds from wastewater. Iris pseudacorus showed the best results in selected pharmaceuticals removal with no bioaccumulation effect in leaves or roots.
Collapse
Affiliation(s)
- D Žabka
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic.
| | - A Vojs Staňová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovak Republic; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - I Horáková
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| | - A Butor Škulcová
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| | - R Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - V Špalková
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic; Department of Zoology and Fisheries, Czech University of Life Sciences, Prague, Czech Republic
| | - M Gál
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| | - T Mackuľak
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| |
Collapse
|
4
|
Krishnan RY, Manikandan S, Subbaiya R, Biruntha M, Balachandar R, Karmegam N. Origin, transport and ecological risk assessment of illicit drugs in the environment - A review. CHEMOSPHERE 2023; 311:137091. [PMID: 36356815 DOI: 10.1016/j.chemosphere.2022.137091] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Illicit drugs are a novel group of emerging pollutants. A growing global environmental load and ecological risk is created by the ongoing release of these toxins into the environment. Conventional water processing plants fail to completely remove drugs of abuse from both surface water and wastewater. The origin, environmental fate and ecological repercussions of illicit drugs, despite their detection in surface waterways around the world, are not well understood. In this review, illicit drug detections in potable water, surface water and wastewater globally have been studied during the past 15 years in order to establish a baseline for future years. The most common drugs with abuse potential detected in different sources of potable and surface water were methadone (0.12-22.7 ng/L), cocaine (0.05-506.6 ng/L), benzoylecgonine (0.07-1019 ng/L), amphetamine (1.4-342.6 ng/L), and codeine (0.002-42 ng/L). The bulk of research only looked at a small number of drugs of abuse, indicating that despite widespread use, a large spectrum of these intoxicants has yet to be detected. This review focuses on the origin of illicit drug contaminants in water bodies, air, and soil, their persistence in the environment, and the typical concentrations at which they occur in the environment. The impact of these drugs on aquatic organisms like Elliptio complanata mussels, crayfish and zebrafish has also been reviewed.
Collapse
Affiliation(s)
- R Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam, 686 518, Kerala, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105. Tamil Nadu, India.
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - M Biruntha
- Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Balachandar
- Department of Biotechnology, Prathyusha Engineering College, Chennai, 602 025, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
5
|
Qu H, Wang F, Barrett H, Wang B, Han J, Wu J, Huang X, Hu Y, Yu G. Synthetical effect of microplastics and chiral drug amphetamine on a primary food source algae Chlorella pyrenoids. Food Chem Toxicol 2022; 169:113415. [PMID: 36096289 DOI: 10.1016/j.fct.2022.113415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/08/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]
Abstract
The biological effects and fate of the chiral illicit drug amphetamine in the presence and absence of microplastics on freshwater algae (Chlorella pyrenoids), including acute toxicity, growth inhibition, photosynthetic pigment content, oxidative stress, lipid peroxidation, and enantioselective fate were assessed. An agglomeration and the shading effects of microplastics in algae suspension were also determined. Microplastics were observed to increase the toxicity of amphetamine to algae and reduce algae cell growth. Exposed Chlorella pyrenoids exhibited a reduced algae cell counts in an agglomeration test, wherein algae cells decreased between 18% and 56% among treatment groups exposed to 5-50 mg L-1 of microplastics. The agglomeration test suggested that microplastics might significantly increase the adverse effect on algae. Furthermore, our experiments demonstrated enantioselective degradation of amphetamine in algae, and demonstrated that the S-enantiomer was preferably degraded by algae cells. Adding microplastics to the algae suspension significantly reduced the enantioselectivity, with an EF value of 0.41 compared with amphetamine-alone group (0.34) after 21 d exposure. These results demonstrated the first evidence of microplastics acting as a vehicle to enhance amphetamine toxicity to Chlorella pyrenoids, as well as provided new insights into the co-effect of microplastics and organic contaminants on food source.
Collapse
Affiliation(s)
- Han Qu
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China
| | - Fang Wang
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Bin Wang
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China.
| | - Jiajun Han
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Junxue Wu
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Xiaochen Huang
- School of Agriculture, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yongxia Hu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Gang Yu
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Aydın S, Ulvi A, Aydın ME. Monitoring and ecological risk of illegal drugs before and after sewage treatment in an area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:294. [PMID: 35332403 DOI: 10.1007/s10661-022-09974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
In this study, the occurrence of illicit drugs and their metabolites in the sewerage systems and in the influent and effluent of wastewater treatment plant (WWTP) in Konya, Turkey, was presented. The drug removal efficiencies of the central WWTP were investigated. Potential ecotoxicological risks for algae, fish, and Daphnia magna in the receiving environments were also evaluated. The highest estimated mean illicit drug use was obtained for cannabis (marijuana) at 280 ± 12 mg/day/1000 inhabitants and 430 ± 20 g/day/1000 inhabitants (15-64 years). Amphetamine was found to be the second most consumed drug of abuse. While cannabis and ecstasy consumption values were higher during the weekend, cocaine use dominated on weekdays. The removal efficiencies for THC-COOH and THC-OH were 100% in the WWTP. The average removal of cocaine, amphetamine, methamphetamine, MDMA, MDA, and methadone varied between 46 ± 7 and 87 ± 3%. The maximum concentration level of MDMA found can pose some low risk for Daphnia magna. The rest of the compounds detected in effluents did not show any toxic effects on fish, Daphnia magna, or algae. However, when the cumulative estimated risk quotient values were evaluated, there might be a low risk for Daphnia magna and algae in the receiving environment.
Collapse
Affiliation(s)
- Senar Aydın
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| | - Arzu Ulvi
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Emin Aydın
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
7
|
Huizer M, Ter Laak TL, de Voogt P, van Wezel AP. Wastewater-based epidemiology for illicit drugs: A critical review on global data. WATER RESEARCH 2021; 207:117789. [PMID: 34731667 DOI: 10.1016/j.watres.2021.117789] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/30/2021] [Accepted: 10/16/2021] [Indexed: 05/14/2023]
Abstract
Illicit drug use is complex, hidden and often highly stigmatized behaviour, which brings a vast challenge for drug surveillance systems. Drug consumption can be estimated by measuring human excretion products in untreated wastewater, known as wastewater-based epidemiology (WBE). Over the last decade, the application of wastewater-based epidemiology to monitor illicit drug loads increased and WBE is currently applied on a global scale. Studies from over the globe are evaluated with regard to their sampling method, analytical accuracy and consumption calculation, aiming to further reduce relevant uncertainties in order to make reliable comparisons on a global level. Only a limited number is identified as high-quality studies, so further standardization of the WBE approach for illicit drugs is desired especially with regard to the sampling methodology. Only a fraction of the reviewed papers explicitly reports uncertainty ranges for their consumption data. Studies which had the highest reliability are recently published, indicating an improvement in reporting WBE data. Until now, WBE has not been used in large parts of Africa, nor in the Middle East and Russia. An overview of consumption data across the continents on commonly studied drugs (cocaine, MDMA, amphetamine and methamphetamine) is provided. Overall, high consumption rates are confirmed in the US, especially for cocaine and methamphetamine, while relatively low illicit drug consumption is reported in Asia.
Collapse
Affiliation(s)
- Marit Huizer
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
| | - Thomas L Ter Laak
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands; KWR, Nieuwegein, the Netherlands
| | - Pim de Voogt
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands; KWR, Nieuwegein, the Netherlands
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Langa I, Gonçalves R, Tiritan ME, Ribeiro C. Wastewater analysis of psychoactive drugs: Non-enantioselective vs enantioselective methods for estimation of consumption. Forensic Sci Int 2021; 325:110873. [PMID: 34153554 DOI: 10.1016/j.forsciint.2021.110873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023]
Abstract
The consumption of licit and illicit psychoactive drugs (PAD) is ubiquitous in all communities and a serious public health problem. Measuring drug consumption is difficult but essential for health-care professionals, risk assessment and policymakers. Different sources of information have been used for a comprehensive analysis of drug consumption. Among them, Wastewater based epidemiology (WBE) emerged as an essential and complementary methodology for estimating licit and illicit drugs consumption. This methodology can be used for quantification of unchanged drugs or their human-specific metabolites in wastewater for estimation of consumption or screening of new PAD. Although some limitations are still being pointed out (e.g., estimation of the population size, use of suitable biomarkers or pharmacokinetics studies), the non-invasive and potential for monitoring real-time data on geographical and temporal trends in drug use have been showing its capacity as a routine and complementary tool. Chromatographic methods, both non-enantioselective and enantioselective are the analytical tools used for quantification of PAD in wastewaters and further estimation of consumption. Therefore, this manuscript aims to summarize and critically discuss the works used for wastewater analysis of PAD based on WBE using non-enantioselective and enantioselective methods for estimation of consumption. Non-enantioselective methods are among the most reported including for chiral PAD. Nevertheless, a trend has been seen towards the development of enantioselective methods as most PAD are chiral and determination of the enantiomeric fraction can provide additional information (e.g., distinction between consumption or direct disposal, or manufacture processes) and fulfill some WBE gaps.
Collapse
Affiliation(s)
- Ivan Langa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Ricardo Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Maria Elizabeth Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Cláudia Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| |
Collapse
|
9
|
Devault DA, Amalric L, Bristeau S, Cruz J, Tapie N, Karolak S, Budzinski H, Lévi Y. Removal efficiency of emerging micropollutants in biofilter wastewater treatment plants in tropical areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10940-10966. [PMID: 33105006 DOI: 10.1007/s11356-020-10868-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
We studied the removal of 61 emerging micropollutants, including illicit drugs, in a biofilter wastewater treatment plant located in the French Indies (Martinique). Raw wastewater concentrations were the highest for paracetamol followed by caffeine, naproxen, ibuprofen, its metabolite 2-hydroxyibuprofen, atenolol, ketoprofen, furosemide, methylparaben, cocaine, benzoylecgonine, and 11-nor-delta-9-carboxytetrahydrocannabinol (THC-COOH). The calculated removals were better than those reported in the literature, while the cumulative removal efficacy (i.e., removal of the total mass load) was estimated to be 92 ± 4%. However, this good performance may be partly explained by the removal of paracetamol (also named acetaminophen) and caffeine, which represented 86.4% of the total mass load. Our results point to the adsorption of some molecules on sludge, thus raising the question about local soil pollution from sludge spreading.
Collapse
Affiliation(s)
- Damien Alain Devault
- Département Sciences et Technologies, Centre Universitaire de Formation et de Recherche, RN3 BP 53, 97660, Dembeni, Mayotte, France.
- Public Health and Environment Laboratory Group, UMR 8079 Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, University of Paris-Saclay, 5 rue Jean Baptiste Clément, 92290, Chatenay-Malabry, France.
| | - Laurence Amalric
- Division Laboratoires, BRGM, 3 Avenue Claude Guillemin, 45060, Orleans Cedex 2, France
| | - Sébastien Bristeau
- Division Laboratoires, BRGM, 3 Avenue Claude Guillemin, 45060, Orleans Cedex 2, France
| | - Justine Cruz
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| | - Nathalie Tapie
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| | - Sara Karolak
- Public Health and Environment Laboratory Group, UMR 8079 Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, University of Paris-Saclay, 5 rue Jean Baptiste Clément, 92290, Chatenay-Malabry, France
| | - Hélène Budzinski
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| | - Yves Lévi
- Public Health and Environment Laboratory Group, UMR 8079 Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, University of Paris-Saclay, 5 rue Jean Baptiste Clément, 92290, Chatenay-Malabry, France
| |
Collapse
|
10
|
Assis RC, Mageste AB, de Lemos LR, Orlando RM, Rodrigues GD. Application of aqueous two-phase system for selective extraction and clean-up of emerging contaminants from aqueous matrices. Talanta 2020; 223:121697. [PMID: 33303149 DOI: 10.1016/j.talanta.2020.121697] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/24/2022]
Abstract
This review approaches how aqueous two-phase systems (ATPS), in their various compositions (e.g., polymer + salt, copolymer + salt, ionic liquid + salt, acetonitrile + salt), can be efficiently used for extraction, preconcentration, and clean-up of analytes in aqueous samples to determine the compounds classified as emerging contaminants (ECs). In the literature, there are some studies using ATPS applied to ECs, like pesticides, pharmaceuticals, illicit drugs, personal care products, alkaloids, and hormones, even when in trace concentrations. The ATPS is an alternative to the conventional liquid-liquid extraction technique. However, it is predominantly composed of water and do not generally use organic solvents and, therefore, is based on the principles of green chemistry. An ATPS approach has a unique advantage because it can extract neutral, anionic, cationic, polar, and nonpolar compounds, even when present simultaneously in the same sample. This review covers how this simple and low environmental impact technique has been employed for the analysis of different classes of emerging contaminants.
Collapse
Affiliation(s)
- Roberta C Assis
- Universidade Federal de Minas Gerais, DQ/ICEX, Belo Horizonte, MG, 31.270-901, Brazil
| | - Aparecida B Mageste
- Universidade Federal de Ouro Preto, DQUI/ICEB, Ouro Preto, MG, 35.450-000, Brazil
| | - Leandro R de Lemos
- Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, DEQUI, Diamantina, MG, 39.100-000, Brazil
| | - Ricardo M Orlando
- Universidade Federal de Minas Gerais, DQ/ICEX, Belo Horizonte, MG, 31.270-901, Brazil
| | - Guilherme D Rodrigues
- Universidade Federal de Minas Gerais, DQ/ICEX, Belo Horizonte, MG, 31.270-901, Brazil.
| |
Collapse
|
11
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
12
|
Sulej-Suchomska AM, Klupczynska A, Dereziński P, Matysiak J, Przybyłowski P, Kokot ZJ. Urban wastewater analysis as an effective tool for monitoring illegal drugs, including new psychoactive substances, in the Eastern European region. Sci Rep 2020; 10:4885. [PMID: 32184422 PMCID: PMC7078280 DOI: 10.1038/s41598-020-61628-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/27/2020] [Indexed: 11/26/2022] Open
Abstract
The use of illicit drugs causes unquestionable societal and economic damage. To implement actions aimed at combating drug abuse, it is necessary to assess illicit drug consumption patterns. The purpose of this paper was to develop, optimize, validate and apply a procedure for determining new psychoactive substances (NPSs) and classic drugs of abuse and their main metabolites in wastewater samples by using solid phase extraction (SPE) and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Moreover, detailed validation of the procedure was conducted. The developed SPE–HPLC-MS/MS procedure (within the sewage-based epidemiology strategy) allowed for the simultaneous, selective, very sensitive, accurate (recoveries ≥ 80.1%) and precise (CV ≤ 8.1%) determination of new and classic psychoactive substances in wastewater samples. This study is characterized by new scientific elements, especially in terms of the freeze-thaw and post-preparative stability of the selected psychoactive substances. This is the first time that NPSs (mephedrone and ketamine), the main metabolites of heroin (6-acetylmorphine, 6-AM) and marijuana (11-nor-9-carboxy-Δ9-tetrahydrocannabinol, THC-COOH) have been detected and monitored in Poland. This study is also the first to corroborate the data available from the EMCDDA and EUROPOL report and indicates that the retail market for cocaine is expanding in Eastern Europe.
Collapse
Affiliation(s)
- Anna Maria Sulej-Suchomska
- Gdynia Maritime University, Faculty of Entrepreneurship and Quality Science, Department of Commodity and Quality Science, 81-87, Morska Str., 81-225, Gdynia, Poland.
| | - Agnieszka Klupczynska
- Poznan University of Medical Sciences, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 6, Grunwaldzka Str., 60-780, Poznań, Poland
| | - Paweł Dereziński
- Poznan University of Medical Sciences, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 6, Grunwaldzka Str., 60-780, Poznań, Poland
| | - Jan Matysiak
- Poznan University of Medical Sciences, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 6, Grunwaldzka Str., 60-780, Poznań, Poland
| | - Piotr Przybyłowski
- Gdynia Maritime University, Faculty of Entrepreneurship and Quality Science, Department of Commodity and Quality Science, 81-87, Morska Str., 81-225, Gdynia, Poland
| | - Zenon J Kokot
- Poznan University of Medical Sciences, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 6, Grunwaldzka Str., 60-780, Poznań, Poland
| |
Collapse
|
13
|
Monitoring consumption of methadone and heroin in major Chinese cities by wastewater-based epidemiology. Drug Alcohol Depend 2019; 205:107532. [PMID: 31683242 DOI: 10.1016/j.drugalcdep.2019.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Methadone maintenance treatment (MMT) services have been used in China for treatment of heroin dependence. But no study has been conducted to assess the appropriateness of MMT distribution and the potential abuse of methadone in China. This study aims to do that through a nationwide estimation of methadone consumption in China via wastewater-based epidemiology and subsequently compare it with MMT data and level of heroin abuse. METHODS Wastewater samples were collected from 53 wastewater treatment plants in 27 major cities that cover all geographic regions of China. Methadone and pure heroin consumptions were estimated based on influent concentrations of methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), morphine and codeine. RESULTS Drug residues were detected in most samples. The ratio of EDDP/methadone was around 2 in influents and methadone and EDDP loads were strongly correlated, indicating that they originated from human consumption. Both influent methadone and EDDP loads in Southwest and Northwest China were significantly higher than those in other regions. The highest estimated consumptions of methadone and heroin in China were 22.0 ± 2.1 mg/1000 in./d and 263.9 ± 115.9 mg/1000 in./d, respectively. There was a significant positive correlation between methadone and heroin consumptions. CONCLUSIONS Consumption of methadone in China was primarily from MMT services. The use of methadone and heroin displayed a clear geographical pattern: it is higher in the western inland regions than in the eastern regions. This study has shown that the distribution of MMT services is reflective of the level of heroin abuse in different regions of China.
Collapse
|
14
|
Yadav MK, Short MD, Gerber C, Awad J, van den Akker B, Saint CP. Removal of emerging drugs of addiction by wastewater treatment and water recycling processes and impacts on effluent-associated environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 680:13-22. [PMID: 31100664 DOI: 10.1016/j.scitotenv.2019.05.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Drugs of addiction, have been recognized as potential contaminants of concern to the environment. Effluent wastewater discharge is a major source of contamination to aquatic receiving environments. A year-long monitoring program was undertaken in Australia to characterise the fate of four emerging drugs of addiction: methamphetamine; MDMA; pharmaceutical opioids: codeine and morphine and a metabolite: benzoylecgonine in four wastewater treatment plants operating with different secondary treatment technologies: conventional activated sludge (CAS), membrane bioreactors (MBR), integrated fixed-film AS (IFAS) and sequencing batch reactor (SBR). The effect of subsequent tertiary treatment (coagulation/flocculation) on the removal efficiency was also assessed. Drugs were detected in influent and effluent samples (mean concentration ranged from 43-4777 and 17-1721 ng/L, respectively). Treated effluents had noticeably lower levels compared to raw influents. Removal efficiency of compounds depended on the secondary treatment employed, with IFAS and MBR performing the best with significant removal of compounds (≈90%) followed by CAS (54-96%) and lastly SBR (42-83%). Despite the low levels of drugs measured after the secondary treatment, near complete removal after tertiary treatment (≈99%) was recorded, which demonstrated the effectiveness of using the coagulation/flocculation process as an effective step for enhancing the removal efficiency. The levels of drugs were at a low level in the effluents released into the environment and used for recycling and all posed a low environmental risk in urban water courses based on the risk assessment. The information given here provides new and useful information to the water industry and regulators on the efficiency of drug removal in a range of wastewater treatment configurations.
Collapse
Affiliation(s)
- Meena K Yadav
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Michael D Short
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Cobus Gerber
- School of Pharmacy and Medical Science, City East Campus, Adelaide, SA 5000, Australia
| | - John Awad
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Ben van den Akker
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia; SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Christopher P Saint
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; Division of Information Technology, Engineering and the Environment, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
15
|
Centazzo N, Frederick BM, Jacox A, Cheng SY, Concheiro-Guisan M. Wastewater analysis for nicotine, cocaine, amphetamines, opioids and cannabis in New York City. Forensic Sci Res 2019; 4:152-167. [PMID: 31304444 PMCID: PMC6609350 DOI: 10.1080/20961790.2019.1609388] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 01/26/2023] Open
Abstract
According to current surveys and overdoses data, there is a drug crisis in the USA. Wastewater-based epidemiology (WBE) is an evolving discipline that analyses wastewater samples to detect drugs and metabolites to estimate drug consumption in a certain community. This study demonstrates how drug relative presence could be tracked by testing wastewater, providing real-time results, in different boroughs in New York City throughout 1 year. We developed and fully validated two analytical methods, one for 21 drugs and metabolites, including nicotine, cocaine, amphetamines, opioids and cannabis markers; and another for the normalization factor creatinine. Both methods were performed by liquid chromatography tandem mass spectrometry (LC-MS/MS) using positive electrospray ionization, achieving a limit of quantification of 5–10 ng/L for drugs and metabolites, and 0.01 mg/L for creatinine. These methods were applied to 48 one-time grab wastewater samples collected from six wastewater treatment plants in New York City (Manhattan, The Bronx, Queens and Brooklyn), eight different times throughout 2016, before and after major holidays, including Memorial Day, 4th of July, Labour Day and New Year’s. In this study, the drug group normalized concentrations present in the wastewater samples, in decreasing order, were cocaine, nicotine, opioids, cannabis and amphetamines. When looking at individual compounds, the one with the highest normalized concentration was benzoylecgonine (BE), followed by cotinine, morphine and 11-nor-9-carboxy-tetrahydrocannabinol (THCCOOH). To estimate community use, these concentrations were multiplied by the corresponding correction factor, and the most present were THCCOOH, followed by BE, cotinine and morphine. When comparing the treatment plants by drug group (nicotine, cocaine, amphetamines, opioids and cannabis), samples collected from The Bronx had the highest normalized concentrations for nicotine, cocaine and opioids; The Bronx and Manhattan for cannabis; and Manhattan and Queens for amphetamines. In most of the cases, no effect due to holiday was observed. This study provides the first snapshot of drug use in New York City and how that changes between key calendar dates employing wastewater analysis.
Collapse
Affiliation(s)
- Nicole Centazzo
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA
| | - Bonnie-Marie Frederick
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA
| | - Alethea Jacox
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA
| | - Shu-Yuan Cheng
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA
| | - Marta Concheiro-Guisan
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA
| |
Collapse
|
16
|
Peña-Guzmán C, Ulloa-Sánchez S, Mora K, Helena-Bustos R, Lopez-Barrera E, Alvarez J, Rodriguez-Pinzón M. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:408-423. [PMID: 30822645 DOI: 10.1016/j.jenvman.2019.02.100] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 05/12/2023]
Abstract
Emerging pollutants (EP) are increasingly studied and characterized worldwide to improve the understanding of their environmental and toxicological impacts and their occurrence and behaviors in different environmental systems. Latin America has been subject to both environmental and toxicological impacts due to EP. To better understand these impacts, studies concerning pollutants have increased for the last ten years. The current study presents a critical review on the occurrence of different emerging pollutants in various components of the urban water cycle (UWC) in Latin America. The review is based on studies performed in 11 different countries between 1999 and 2018. The countries where the higher number of investigations were conducted are Brazil (53%) and Mexico (15%). The EP most often studied within the literature are pharmaceuticals, followed by personal care products. The most common EP reported were 17β-estradiol, bisphenol A and estrone; The UWC component with the greatest number of measurements in the reported studies were effluents from wastewater treatment plants.
Collapse
Affiliation(s)
- Carlos Peña-Guzmán
- INAM-USTA Group, Program of Environmental Engineering, St. Thomas University, Bogotá, Colombia.
| | - Stefanie Ulloa-Sánchez
- INAM-USTA Group, Program of Environmental Engineering, St. Thomas University, Bogotá, Colombia
| | - Karen Mora
- Institute of Water and Environmental Sciences, University of Alicante, Alicante, Spain
| | - Rosa Helena-Bustos
- Evidence-Based Therapeutics Group, Clinical Pharmacology, Universidad de La Sabana, Chía, Colombia
| | - Ellie Lopez-Barrera
- Institute of Environmental Studies and Services, Program of Environmental Engineering, Sergio Arboleda University, Bogotá, Colombia
| | - Johan Alvarez
- INAM-USTA Group, Program of Environmental Engineering, St. Thomas University, Bogotá, Colombia
| | - Manuel Rodriguez-Pinzón
- École Supérieure D'aménagement Du Territoire et de Développement Régional, Université Laval, Québec, Canada
| |
Collapse
|
17
|
Yan JH, Xiao Y, Tan DQ, Shao XT, Wang Z, Wang DG. Wastewater analysis reveals spatial pattern in consumption of anti-diabetes drug metformin in China. CHEMOSPHERE 2019; 222:688-695. [PMID: 30735969 DOI: 10.1016/j.chemosphere.2019.01.151] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/04/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Metformin has been widely used as an oral drug for the treatment of diabetes mellitus. However, its consumption can be influenced by many economic and social factors. In this study, we investigated the spatial consumption pattern of metformin in China through wastewater-based epidemiology (WBE) approach. Influent wastewater samples were collected from 21 wastewater treatment plants (WWTPs) in 19 cities of the northeast China. A method using solid-phase extraction combined with N-Methyl-bis (trifluoroacetamide) derivatization for GC-MS detection was applied for metformin analysis. In 21 days, metformin showed high stability in wastewater at 24 °C and -20 °C. The mean concentrations of metformin in all WWTPs ranged from 2.42 μg L-1 to 53.6 μg L-1. The consumption of metformin was 0.66-15.6 mg d-1 capita-1 with the mean value of 5.54 ± 4.28 mg d-1 capita-1. The prevalence of metformin ranged from 0.09% to 2.10% with an average of 0.74%. Both the consumption and prevalence of metformin displays significant spatial variations in northeast China. A statistical correlation analysis indicated that the consumption of metformin increases with the decrease of per capita disposable income of urban residents. To further predict the use of metformin in China, we developed a regress model and depicted a consumption map. The annual consumption of urban residents in Chinese provinces range from 1085-63,828 kg yr-1 with mean value of 25,347 kg yr-1, which would provide a certain reference value for public health care and diabetes control.
Collapse
Affiliation(s)
- Ji-Hao Yan
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, China
| | - Yang Xiao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, China
| | - Dong-Qin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, China.
| | - Xue-Ting Shao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, China
| | - Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, China.
| |
Collapse
|
18
|
Removal of a cannabis metabolite from human urine in microbial fuel cells generating electricity. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Kostanjevecki P, Petric I, Loncar J, Smital T, Ahel M, Terzic S. Biodegradation study of methadone by adapted activated sludge: Elimination kinetics, transformation products and ecotoxicological evaluation. CHEMOSPHERE 2019; 214:719-728. [PMID: 30293025 DOI: 10.1016/j.chemosphere.2018.09.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The biotransformation study of difficult-to-degrade opioid analgesic methadone (MTHD) was performed by activated sludge culture adapted to high concentration of methadone (10 mg/L). The study included determination of elimination kinetics of the parent compound, taxonomic characterization of microbial culture, identification of biotransformation products (TPs) and assessment of ecotoxicological effects of biotransformation processes. The chemical analyses were performed by ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry, whereas the ecotoxicological assessment was made based on determinations of toxicity to freshwater algae. Changes of the adapted sludge culture during the experiment were followed using the 16S rRNA gene amplicon sequencing. Depending on the experimental conditions, the elimination efficiency of methadone (10 mg/L) varied from 9% to 93% with the corresponding half-lives from 11.4 days to 1.5 days. A significantly faster elimination (t1/2 from 1.5 days to 5.8 days) was achieved at cometabolic conditions, using glucose-containing media, as compared to the experiments with MTHD as a single organic carbon source (t1/2 = 11.4 days). Moreover, increased biotransformation rate following the additional supplementation of ammonia, revealed a possible importance of nitrogen availability for the transformation at cometabolic conditions. The elimination of parent compound was associated with the formation of 3 different TPs, two of which were identical to main human metabolites of MTHD, 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) and 2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline (EMDP). EDDP represented over 90% of the total TP concentration at the end of experiment. The biodegradation of MTHD was associated with a pronounced drop in algal toxicity, confirming a rather positive ecotoxicological outcome of the achieved biotransformation processes.
Collapse
Affiliation(s)
- Petra Kostanjevecki
- Division of Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia
| | - Ines Petric
- Division of Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia
| | - Jovica Loncar
- Division of Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia
| | - Tvrtko Smital
- Division of Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia
| | - Marijan Ahel
- Division of Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia
| | - Senka Terzic
- Division of Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia.
| |
Collapse
|
20
|
Daglioglu N, Guzel EY, Kilercioglu S. Assessment of illicit drugs in wastewater and estimation of drugs of abuse in Adana Province, Turkey. Forensic Sci Int 2019; 294:132-139. [DOI: 10.1016/j.forsciint.2018.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
|