1
|
Che CA, Van Geem KM, Heynderickx PM. Enhancing sustainable waste management: Hydrothermal carbonization of polyethylene terephthalate and polystyrene plastics for energy recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174110. [PMID: 38909789 DOI: 10.1016/j.scitotenv.2024.174110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Hydrothermal carbonization (HTC) of single plastic polymers such as polyethylene terephthalate (PET) and polystyrene (PS) has not yet been explored on a large scale, particularly their thermal behavior, chemical transformations under subcritical conditions, and the energy properties of the resultant hydrochar. This study investigated these aspects by employing techniques, such as thermogravimetric analysis (TGA), Fourier transformed infrared spectroscopy (FTIR), elemental and calorific analysis. The results show that PET hydrochar has a superior energy densification (1.37) and energy yield (89 %) compared to PS hydrochar (1.13, 54 %). Hydrothermal carbonization modifies the chemical structure of the polymers by increasing the number of carbonyl groups (CO) in PET and forming new ones in PS, and by enhancing hydroxyl groups (OH) in PET while retaining them in PS. Both materials preserve their aromatic and aliphatic structures, with the introduction of alkenes groups (CC) in the PET hydrochar. PET hydrochar begins to decompose at lower temperatures (150-270 °C) than PS hydrochar (242-283 °C) but reaches higher peak temperatures (420-585 °C vs. 390-470 °C), with both types achieving similar burnout temperatures (650-800 °C). PET hydrochar recorded a higher activation energy (121-126 kJ/mol) than PS hydrochar (67-74 kJ/mol) with the Mampel first-order reaction model as the best fit.
Collapse
Affiliation(s)
- Clovis Awah Che
- Center for Green Chemistry and Environmental Biotechnology (GREAT), Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Kevin M Van Geem
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark Zwijnaarde 125, B-9052 Zwijnaarde, Belgium
| | - Philippe M Heynderickx
- Center for Green Chemistry and Environmental Biotechnology (GREAT), Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
2
|
Azman DQ, Wan Daud WMA, Abdul Patah MF, Amir Z, Saw PA. Plastic waste management through liquefaction in hydrogen donating solvents: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120961. [PMID: 38696851 DOI: 10.1016/j.jenvman.2024.120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/23/2024] [Accepted: 04/19/2024] [Indexed: 05/04/2024]
Abstract
Plastic pollution poses a significant environmental threat, particularly to marine ecosystems, as conventional plastics persist without degradation, accumulating plastic waste in landfills and natural environments. A promising alternative to address this issue involves the use of hydrogen donor solvents in plastic liquefaction, offering a dual benefit of waste reduction and the generation of valuable liquid products with diverse industrial applications. This review delves into plastic recycling methods with a specific focus on liquefaction using hydrogen donating solvents as an innovative approach to waste management. Liquefaction, conducted at moderate to high temperatures (280-450 °C) and pressures (7-30 MPa), yields high oil conversion using various solvents. This study examined the performance of hydrogen-donating solvents, including water, alcohols, decalin, and cyclohexane, in enhancing the oil yield while minimising the oxygen content. Supercritical water, recognised for its effective plastic degradation and chemical production capabilities, and alcohols, with their alkylating and hydrogen-donating properties, have emerged as key solvents in plastic liquefaction. The use of hydrogen donor solvents stabilizes the free radicals, enhancing the conversion of plastic waste into valuable products. In addition, this review addresses the economic efficiency of the liquefaction process.
Collapse
Affiliation(s)
- Dania Qarrina Azman
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wan Mohd Ashri Wan Daud
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Muhamad Fazly Abdul Patah
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Zulhelmi Amir
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Poh Ai Saw
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Xiu FR, Bai Q, Qi Y, Lei X, Yang R, Wang S, Wang Y, Wang J, Zhan L, Zhou H, Shao W. An alkali-enhanced subcritical water treatment strategy of short-chain chlorinated paraffins: Dechlorination and hydrocarbons recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166574. [PMID: 37647949 DOI: 10.1016/j.scitotenv.2023.166574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
As persistent organic pollutants, short-chain chlorinated paraffins (SCCPs) have attracted wide attention in the field of environmental health risk and hazardous waste management. Efficient dechlorination of high content of SCCPs in plastic waste is the committed step for its detoxification and safety treatment. In this study, a high-efficiency and low-temperature process for dechlorination and hydrocarbons recovery from typical SCCPs (52#SCCPs) by subcritical water (SubCW) with alkali enhancer was developed. The introduction of alkali enhancer in the SubCW process had significantly enhanced effect on the dechlorination of 52#SCCPs, and the order of the enhanced effect of alkali enhancer for the dechlorination was NaOH > Na2CO3 > NaHCO3 > NH3·H2O > KOH. The dechlorination behaviors of 52#SCCPs in the NaOH-enhanced SubCW process were studied systematically under different conditions including temperature, residence time, alkali concentration, and volume ratio. The results showed that high-efficiency dechlorination (100 %) of 52#SCCPs could be achieved by the NaOH-enhanced SubCW process at low temperature for a short time (250 °C, 5 min). All of the chlorine released from the molecular chain of 52#SCCPs was transferred to the aqueous phase in the form of inorganic chlorine. The continuous HCl elimination reaction was the primary dechlorination mechanism for 52#SCCPs in the NaOH-enhanced SubCW process. After the dechlorination of 52#SCCPs, high value-added hydrocarbons such as 2,4-hexadiyne (31.74 %) could be obtained. The alkali-enhanced SubCW process proposed in this study is believed to be an environmentally friendly and high-efficiency method for dechlorination/detoxification and resource recovery of SCCPs.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Qingyun Bai
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China.
| | - Xinyue Lei
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Ruiqi Yang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Siyi Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Yixiao Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Jiali Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Longsheng Zhan
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Haipeng Zhou
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Wenting Shao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| |
Collapse
|
4
|
Yan S, Xia D, Lai NC, Jiang B, Liu X. New insight into the synergistic reactions involved in the hydrothermal co-liquefaction of synthetic polymer wastes by molecular dynamics and DFT methods. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131032. [PMID: 36821896 DOI: 10.1016/j.jhazmat.2023.131032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Coliquefying synthetic aliphatic and aromatic polymer wastes using supercritical water has drawn considerable research attention. However, the mechanisms of chemical reactions between different types of polymers are ambiguous. Herein, depolymerization mechanisms for individual polymers and reaction mechanisms for binary polymer mixtures were investigated using molecular dynamics and density functional theory (DFT). The innovative approach showed that the production of oil from individual polymers during HTL was hindered by (1) volatile C1-C4 molecules emitted from aliphatic polymers and (2) polycyclic aromatic hydrocarbons (PAHs) produced from aromatic polymers. Interestingly, synergistic reactions among these byproducts from different polymers could promote oil production during coliquefaction. Specifically, the synergistic radical-related reactions included (1) the ring-opening of PAHs caused by C2H2 molecules emitted from aliphatic polymers and (2) the recombination of PHA branches and short-chain aliphatics. A considerable synergy between aromatic polymers with higher benzene ring contents and aliphatic polymers with lower H/C atomic ratios was observed near the critical temperature of 649 K. This work provides new insights into the synergistic reactions involved in the coliquefaction of synthetic polymers and gives useful guidance for realizing efficient oil production from mixed organic wastes.
Collapse
Affiliation(s)
- Shuo Yan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dehong Xia
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China.
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Binfan Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangjun Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Chen H, Zou Z, Tang M, Yang X, Tsang YF. Polycarbonate microplastics induce oxidative stress in anaerobic digestion of waste activated sludge by leaching bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130158. [PMID: 36257110 DOI: 10.1016/j.jhazmat.2022.130158] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Polycarbonate (PC) microplastics are frequently detected in waste activated sludge. However, understanding the potential impact of PC microplastics on biological sludge treatment remains challenging. By tracking the changes in methane production under different concentrations of PC microplastics, a dose-dependent effect of PC microplastics on anaerobic digestion of sludge was observed. PC microplastics at 10-60 particles/g total solids (TS) improved methane production by up to 24.7 ± 0.1 % (at 30 particles/g TS), while 200 particles/g TS PC microplastics reduced methane production by 8.09 ± 0.1 %. Bisphenol A (BPA) leached from 30 particles/g TS PC microplastics (1.26 ± 0.18 mg/L) down-regulated intracellular reactive oxygen species (ROS) production, thereby enhancing enzyme activity, biomass viability, and abundance of methanogenic (Methanobacterium sp. and Methanosarcina sp.), ultimately boosting methane production. Conversely, BPA leached from 200 particles/g TS PC microplastics (4.02 ± 0.15 mg/L) stimulated ROS production, resulting in decreased biomass viability and even apoptosis. Modulation of oxidative stress by leaching monomeric BPA is an underappreciated transformative mechanism for improving the mastery of the potential behavior of microplastics in biological sludge treatment.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Zhiming Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mengge Tang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, China
| |
Collapse
|
6
|
Effect of Acidic Hydrochar on Plastic Crude Oil Produced from Hydrothermal Liquefaction of Waste PVC. Processes (Basel) 2022. [DOI: 10.3390/pr10122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In this study, the effect of hydrothermal liquefaction (HTL) of waste PVC was investigated in the presence of acidic hydrochar. The hydrochar was prepared by hydrothermal carbonization of pineapple waste at 250 °C and at 1 h in the presence of citric acid. Hydrochar was acidic, stable, and porous and contained acidic functional groups. Hydrochar was co-fed with PVC during HTL to enhance HTL conversion and quality of the plastic crude oil. HTL experiments were performed at 300–350 °C, 0.25–4 h of reaction times, and 0–20 wt% hydrochar-to-PVC ratio. The plastic crude oil was separated from the solid residue to evaluate HTL conversion and to analyze elemental compositions, boiling point distribution, alteration of chemical bonds, and chemical compositions. The results showed that acidic hydrochar enhances HTL conversion with a maximum value of 28.75 at 5 wt% hydrochar content at 350 °C and 0.5 h. Furthermore, plastic crude oils contained no chloride but contained significantly high carbon and hydrogen, resulting in a higher heating value of up to 36.43 MJ/kg. The major component of the plastic crude oil was 3, 5 dimethylphenol produced ranging from 61.4 to 86.4% (percentage of total identified area) according to gas chromatography mass spectroscopy (GCMS) data.
Collapse
|
7
|
Čolnik M, Kotnik P, Knez Ž, Škerget M. Chemical Recycling of Polyolefins Waste Materials Using Supercritical Water. Polymers (Basel) 2022; 14:polym14204415. [PMID: 36297994 PMCID: PMC9609547 DOI: 10.3390/polym14204415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/30/2022] Open
Abstract
In the following work, the hydrothermal degradation of polypropylene waste (PP) using supercritical water (SCW) has been studied. The procedure was carried out in a high-pressure, high-temperature batch reactor at 425 °C and 450 °C from 15 to 240 min. The results show a high yield of the oil (up to 95%) and gas (up to 20%) phases. The gained oil phase was composed of alkanes, alkenes, cycloalkanes, aromatic hydrocarbons, and alcohols. Alkanes and alcohols predominated at 425 °C and shorter reaction times, while the content of aromatic hydrocarbons sharply increased at higher temperatures and times. The higher heating values (HHVs) of oil phases were in the range of liquid fuel (diesel, gasoline, crude and fuel oil), and they were between 48 and 42 MJ/kg. The gas phase contained light hydrocarbons (C1–C6), where propane was the most represented component. The results for PP degradation obtained in the present work were compared to the results of SCW degradation of colored PE waste, and the potential degradation mechanism of polyolefins waste in SCW is proposed. The results allowed to conclude that SCW processing technology represents a promising and eco-friendly tool for the liquefaction of polyolefin (PE and PP) waste into oil with a high conversion rate.
Collapse
Affiliation(s)
- Maja Čolnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Petra Kotnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Department for Chemistry, Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Department for Chemistry, Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | - Mojca Škerget
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
8
|
Zheng Q, Li Z, Watanabe M. Production of Solid Fuels by Hydrothermal Treatment of Wastes of Biomass, Plastic, and Biomass/Plastic Mixtures: A Review. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022] Open
|
9
|
Jiang C, Ni BJ, Zheng X, Lu B, Chen Z, Gao Y, Zhang Y, Zhang S, Luo G. The changes of microplastics' behavior in adsorption and anaerobic digestion of waste activated sludge induced by hydrothermal pretreatment. WATER RESEARCH 2022; 221:118744. [PMID: 35728495 DOI: 10.1016/j.watres.2022.118744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Waste activated sludge (WAS) contains high concentrations of microplastics (MPs), which could serve as vectors of various organic pollutants and heavy metals, causing synergistic transportation and pollution. The application of combined hydrothermal pretreatment (HTP) and anaerobic digestion (AD) has raised growing concerns since the low-temperature hydrothermal treatment could enhance the biogas production of WAS. However, the changes in physicochemical properties, adsorption performances, and effects on AD of MPs by HTP have not been studied. The study used three typical MPs in WAS, and it was found that the HTP (170°C & 30min) increased MPs' specific surface area and carbonyl index (CI) while decreasing the relative crystallinity. The adsorption capacity to Cd increased through the carbonylation for polyethylene microplastic (PE-MP) and polystyrene microplastic (PS-MP) while decreasing by the dechlorination for polyvinyl chloride microplastic (PVC-MP). Meanwhile, increased hydrophilicity reduced the adsorption capacities of all three typical MPs for ofloxacin. The above results indicated that the HTP could be worth blocking the adsorption of polar MPs for polar pollutants. For the pristine MPs, only PVC-MP at the highest concentration (0.5 g kg-1 VS) significantly (p < 0.05) reduced methane production by 16.2 ± 3.3% of WAS without the HTP. However, the HTP resulted in significant (p < 0.05) inhibition of methane production of WAS at high concentrations of PE-MP and PVC-MP (e.g., 0.1 and 0.5 g kg-1 VS), which was due to the acceleration of the released toxic plastic additives (dibutyl phthalate, dimethyl phthalate, and bisphenol-A). Microbial analysis showed the abundances of vital anaerobes, such as acid-producing bacteria (Acetoanerrobium and Mesotoga), proteolytic bacteria (Proteiniborus), and methanogens (Methanosaeta) clearly decreased with the PE-MP and PVC-MP after the HTP, which might result in the decreased methane production. The study provided deep-insight of MPs' behaviors during the combined HTP-AD process.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Xiaowei Zheng
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Bei Lu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Zheng Chen
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Yang Gao
- Bruker (Beijing) Scientific Technology Co. Ltd., Shanghai 200233, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
10
|
Yang RX, Jan K, Chen CT, Chen WT, Wu KCW. Thermochemical Conversion of Plastic Waste into Fuels, Chemicals, and Value-Added Materials: A Critical Review and Outlooks. CHEMSUSCHEM 2022; 15:e202200171. [PMID: 35349769 DOI: 10.1002/cssc.202200171] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Plastic waste is an emerging environmental issue for our society. Critical action to tackle this problem is to upcycle plastic waste as valuable feedstock. Thermochemical conversion of plastic waste has received growing attention. Although thermochemical conversion is promising for handling mixed plastic waste, it typically occurs at high temperatures (300-800 °C). Catalysts can play a critical role in improving the energy efficiency of thermochemical conversion, promoting targeted reactions, and improving product selectivity. This Review aims to summarize the state-of-the-art of catalytic thermochemical conversions of various types of plastic waste. First, general trends and recent development of catalytic thermochemical conversions including pyrolysis, gasification, hydrothermal processes, and chemolysis of plastic waste into fuels, chemicals, and value-added materials were reviewed. Second, the status quo for the commercial implementation of thermochemical conversion of plastic waste was summarized. Finally, the current challenges and future perspectives of catalytic thermochemical conversion of plastic waste including the design of sustainable and robust catalysts were discussed.
Collapse
Affiliation(s)
- Ren-Xuan Yang
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01851, USA
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10607, Taiwan
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1 Sec. 3, Chung-Hsiao E. Rd., Taipei, 106344, Taiwan
| | - Kalsoom Jan
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01851, USA
| | - Ching-Tien Chen
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10607, Taiwan
| | - Wan-Ting Chen
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01851, USA
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10607, Taiwan
| |
Collapse
|
11
|
Zhang Z, Wang Y, Zhang Y, Shen B, Ma J, Liu L. Stabilization of heavy metals in municipal solid waste incineration fly ash via hydrothermal treatment with coal fly ash. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:285-293. [PMID: 35427900 DOI: 10.1016/j.wasman.2022.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The environmental risk of heavy metals in hazardous municipal solid waste incineration fly ash (FA) is one of the most important concerns for its safely treating and disposing. This study investigated the stabilization behavior of heavy metals in FA using coal fly ash (CFA) as an additive via hydrothermal treatment. The effects of water washing pre-treatment and FA/CFA ratio on leaching behavior, speciation evolution, and risk assessment of heavy metals were studied. The results showed that 96.6-98.0 % of Cl can be effectively removed by water washing pre-treatment and hydrothermal treatment. Most heavy metals (Cr, Cu, Ni, Pb and Zn) (>91.5 %) were stabilized in the hydrothermal product, rather than transferred to liquid phase. Tobermorite can be synthesized by adjusting Ca/Si ratio with the addition of CFA. The heavy metals were transferred into more stable residue fractions with increasing CFA addition, which resulted in the significant reduction of leaching concentrations and risk assessment code (RAC) of heavy metals. Among, the product with 30% CFA exhibited the most superior performance with the lowest leaching concentrations of heavy metals and RAC was at no risk level (<1). In addition, the economic performance of hydrothermal treatment exhibited a potential advantage by comparing with FA-to-cement, FA-to-glass slags and FA-to-chelating agent & cement solidification/stabilization. Therefore, the hydrothermal treatment coupled with water washing pre-treatment would be a promising method for the detoxification of FA, as well as synergistic treatment of FA and CFA.
Collapse
Affiliation(s)
- Zhikun Zhang
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin 300401, PR China
| | - Yanli Wang
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin 300401, PR China
| | - Yuqi Zhang
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin 300401, PR China
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, PR China.
| | - Jiao Ma
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin 300401, PR China
| | - Lina Liu
- College of Environmental Science and Engineering, MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
12
|
Darzi R, Dubowski Y, Posmanik R. Hydrothermal processing of polyethylene-terephthalate and nylon-6 mixture as a plastic waste upcycling treatment: A comprehensive multi-phase analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 143:223-231. [PMID: 35279014 DOI: 10.1016/j.wasman.2022.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Accumulation of plastic waste is harming eco-systems and it is time to move towards a circular plastic economy. Sustainable production and recycling processes for plastics are challenged mostly by the lack of renewable building blocks. This study investigates hydrothermal processing (HTP) as a platform for depolymerization of two commonly used plastic polymers. Subcritical water (300 °C; 10 MPa) was tested as a solvent to treat polyethylene terephthalate (PET) and nylon-6 individually and in a mixture for a short reaction time of 90 min. Monomer recovery, gaseous emissions, and the effect of polymer mixture were evaluated by comprehensive analyses of all reaction products. Terephthalic acid (TPA), one of two monomers of PET was recovered as a solid product with a mass yield of 75%. ε-caprolactam (CPL), the single monomer of nylon-6 was recovered as a liquid product with a mass yield of 92.5%. Following PET + nylon-6 co-processing, TPA recovery decreased by 20%, whereas CPL recovery was not affected. Since TPA and CPL were recovered in different phases, an easy separation can likely be created for co-processing of PET and nylon-6. While most HTP studies neglect analysis of the gas phase, acetaldehyde and cyclopentene emissions were detected during HTP of PET and nylon-6, respectively. As shown here, gaseous emissions, which may be toxic, should be addressed in future developments of HTP for plastics. The results presented here can contribute to developing HTP processes for plastic recycling, that will be part of a circular plastic economy and a more sustainable future.
Collapse
Affiliation(s)
- Ran Darzi
- Faculty of Civil and Environmental Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel; Institute of Soil, Water and Environmental Science, Agricultural Research Organization (ARO) - Volcani Institute, Newe Ya'ar Research Center, Ramat Yishai 30095, Israel
| | - Yael Dubowski
- Faculty of Civil and Environmental Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Roy Posmanik
- Institute of Soil, Water and Environmental Science, Agricultural Research Organization (ARO) - Volcani Institute, Newe Ya'ar Research Center, Ramat Yishai 30095, Israel.
| |
Collapse
|
13
|
Abstract
With the increase in demand for plastic use, waste plastic (WP) management remains a challenge in the contemporary world due to the lack of sustainable efforts to tackle it. The increment in WPs is proportional to man’s demand and use of plastics, and these come along with environmental challenges. This increase in WPs, and the resulting environmental consequences are mainly due to the characteristic biodegradation properties of plastics. Landfilling, pollution, groundwater contamination, incineration, and blockage of drainages are common environmental challenges associated with WPs. The bulk of these WPs constitutes polyethene (PE), polyethene terephthalate (PET) and polystyrene (PS). Pyrolysis is an eco-friendly thermo-chemical waste plastic treatment solution for valuable product recovery, preferred over landfilling and incineration solutions. In this extensive review, a critical investigation on waste plastic catalytic pyrolysis (WPCP) is performed, including catalyst and non-catalyst applications to sustainably tackle WP management. Current catalysis techniques are revealed, and some comparisons are made where necessary. Common pyrolytic products and common shortcomings and errors related to WP catalysis were also identified. The benefits of catalysts and their applications to augment and optimise thermal pyrolysis are emphasised. With all these findings, and more, this paper provides reassurance on the significance of catalysis to industrial-scale applications and products and supports related WPCP research work concerning the environment and other beneficiaries.
Collapse
|
14
|
Abstract
Post-consumer plastic management, otherwise termed waste plastic (WP) management, is a great challenge in today’s world, mainly because of its characteristic biodegradation properties. The quantity of waste plastics correspondingly increases with the increase in demand for plastic use. Research has shown that this demand increases yearly. Most of these waste plastics include high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyethylene terephthalate (PET) and polystyrene (PS). Potentially, these wastes are a wealth, and studies have explored that pyrolysis is a reputable mechanism to accomplish this. In this critical review, an extensive investigation on waste plastics thermal pyrolysis (WPTP) is carried out. The factors that affect the product’s yield and selectivity are discussed, and a comparative quality guarantee of WPTP is examined. This paper presents an assurance into the current findings of WPTP and reveals some common gaps and misconceptions surrounding this field, which are recommendable towards the support of further research work. The significant role of co-pyrolysis of plastics with biomass in this field is also emphasised, and a glimpse into the influence of mixed waste plastics in pyrolysis is presented.
Collapse
|
15
|
Majder-Łopatka M, Węsierski T, Ankowski A, Ratajczak K, Duralski D, Piechota-Polanczyk A, Polanczyk A. Thermal Analysis of Plastics Used in the Food Industry. MATERIALS (BASEL, SWITZERLAND) 2021; 15:248. [PMID: 35009394 PMCID: PMC8746179 DOI: 10.3390/ma15010248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/12/2023]
Abstract
Fires in landfills, where used plastic packaging waste is discarded, have shown how great a fire hazard these types of materials pose. In this study, the course of thermo-oxidation of samples made of polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) based plastics was determined. Based on an analysis of the dissociation energy of bonds between atoms in a polymer molecule, the mechanisms responsible for the character and course of degradation were observed. It was found that the degradation rate of PP and PS could be a result of the stability of C-H bonds on the tertiary carbon atom. In the case of PS, due to facilitated intramolecular hydrogen transfer, stabilization of hydroperoxide, and formation of a stable tertiary alcohol molecule, the onset of degradation is shifted towards higher temperatures than in the case of PP. Notably, the PP fragmentation occurs to a greater extent due to the easier course of β-scission. In addition, it was found that during a fire, the least amount of heat would be generated by thermo-oxidation of PS-based plastics. This is a result of the formation of a styrene molecule during decomposition that, due to the high stability of bonds in the aromatic ring, escapes from the combustion zone without oxidation. It has been proven that the greatest thermal effect accompanies PET decomposition, during which a phenyl radical is produced, where the C-H bonds break more easily in comparison with the bonds of an intact ring.
Collapse
Affiliation(s)
- Małgorzata Majder-Łopatka
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Slowackiego Street, 01-629 Warsaw, Poland; (T.W.); (A.A.)
| | - Tomasz Węsierski
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Slowackiego Street, 01-629 Warsaw, Poland; (T.W.); (A.A.)
| | - Artur Ankowski
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Slowackiego Street, 01-629 Warsaw, Poland; (T.W.); (A.A.)
| | - Kamil Ratajczak
- Faculty of Safety Engineering and Civil Protection, The Main School of Fire Service, 52/54 Slowackiego Street, 01-629 Warsaw, Poland; (K.R.); (A.P.)
| | - Dominik Duralski
- Institute of Internal Security, The Main School of Fire Service, 52/54 Slowackiego Street, 01-629 Warsaw, Poland;
| | - Aleksandra Piechota-Polanczyk
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Gronostajowa 7 Street, 30-387 Krakow, Poland;
| | - Andrzej Polanczyk
- Faculty of Safety Engineering and Civil Protection, The Main School of Fire Service, 52/54 Slowackiego Street, 01-629 Warsaw, Poland; (K.R.); (A.P.)
| |
Collapse
|
16
|
Rietzler B, Manian AP, Rhomberg D, Bechtold T, Pham T. Investigation of the decomplexation of polyamide/
CaCl
2
complex toward a green, nondestructive recovery of polyamide from textile waste. J Appl Polym Sci 2021. [DOI: 10.1002/app.51170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Barbara Rietzler
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| | - Avinash P. Manian
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| | - Dorian Rhomberg
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| | - Thomas Bechtold
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| | - Tung Pham
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| |
Collapse
|
17
|
Akan OD, Udofia GE, Okeke ES, Mgbechidinma CL, Okoye CO, Zoclanclounon YAB, Atakpa EO, Adebanjo OO. Plastic waste: Status, degradation and microbial management options for Africa. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112758. [PMID: 34030015 DOI: 10.1016/j.jenvman.2021.112758] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
This paper presents a review of synthetic polymer (notably plastic) wastes profiles in Africa, their current management status, and better options. Data revealed that of the approximated 86.14 million metric tonnes and 31.5 million metric tonnes of primary polymers and plastics, respectively, and an estimated 230 million metric tonnes of plastic components imported between 1990 and 2017, about 17 million metric tonnes are mismanaged. Leading African nations on the plastic wastes generator table in increasing order are Tunisia (6.9%), Morocco (9.6%), Algeria (11.2%), South Africa (11.6%), Nigeria (16.9%), and the chief is Egypt (18.4%). The volume of plastic wastes generated in Africa directly correlates with her increasing population status, however, the current treatment options have major drawbacks (high energy and technological input, high demand for space, and creation of obnoxious by-products). Ineffective regulations, poor monitoring, and slow adoption of veritable practices by governments are responsible for the steady increase in plastic volume in the African landscapes and environments. In Nigeria, only about 9% and 12% of the total generated wastes are recycled and incinerated. The remainder bulk is either discarded into waste dumps (and a few available landfills) or natural environments. There is a paucity of standard plastic biodegradative work by African scientists, and only a few works show detection of competent synthetic plastic degrading microbes globally. Asides from the ills of possible omission of core degraders, there is a need for researchers to follow standard degradation procedures to arrive at efficient, reproducible, and generally accepted outcomes utilizable on a larger scale. Thus, metagenomic search on the vast African urban and rural plastisphere is the best isolation option.
Collapse
Affiliation(s)
- Otobong Donald Akan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 41004, China; Microbiology Department, Faculty of Biological Science, Akwa-Ibom State University, Ikot Akpaden, Mkpat Enin LGA, Uyo P.M.B., 1167, Akwa-Ibom State, Nigeria.
| | - Godwin Evans Udofia
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo PMB, 1017, Nigeria
| | - Emmanuel Sunday Okeke
- Environmental Chemistry and Toxicology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies University of Nigeria, Nsukka, 410001, Nigeria.
| | - Chiamaka Linda Mgbechidinma
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State, 200243, Nigeria
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Yedomon Ange Bovys Zoclanclounon
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, 54896, South Korea; Department of Management of Environment, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 POB 2009, Cotonou, Benin
| | | | | |
Collapse
|
18
|
Das P, Gabriel JCP, Tay CY, Lee JM. Value-added products from thermochemical treatments of contaminated e-waste plastics. CHEMOSPHERE 2021; 269:129409. [PMID: 33388566 DOI: 10.1016/j.chemosphere.2020.129409] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The rise of electronic waste (e-waste) generation around the globe has become a major concern in recent times and its recycling is mostly focused on the recovery of valuable metals, such as gold, silver, and copper, etc. However, e-waste consists of a significant weight fraction of plastics (25-30%) which are either discarded or incinerated. There is a growing need for recycling of these e-waste plastics. The majority of them are made from high-quality polymers (composites), such as acrylonitrile butadiene styrene (ABS), high impact polystyrene (HIPS), polycarbonate (PC), polyamide (PA), polypropylene (PP) and epoxies. These plastics are often contaminated with hazardous materials, such as brominated flame retardants (BFRs) and heavy metals (such as Pb and Hg). Under any thermal stress (thermal degradation), the Br present in the e-waste plastics produces environmentally hazardous pollutants, such as hydrogen bromide or polybrominated diphenyl ethers/furans (PBDE/Fs). The discarded plastics can lead to the leaching of toxins into the environment. It is important to remove the toxins from the e-waste plastics before recycling. This review article gives a detailed account of e-waste plastics recycling and recovery using thermochemical processes, such as extraction (at elevated temperature), incineration (combustion), hydrolysis, and pyrolysis (catalytic/non catalytic). A basic framework of the existing processes has been established by reviewing the most interesting findings in recent times and the prospects that they open in the field recycling of e-waste plastics.
Collapse
Affiliation(s)
- Pallab Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| | | | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
19
|
Ma C, Min J, Gong J, Liu X, Mu X, Chen X, Tang T. Transforming polystyrene waste into 3D hierarchically porous carbon for high-performance supercapacitors. CHEMOSPHERE 2020; 253:126755. [PMID: 32464775 DOI: 10.1016/j.chemosphere.2020.126755] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 05/24/2023]
Abstract
Polystyrene (PS) is usually discarded as a solid waste after a short lifespan. Thus the disposal of waste PS is an inevitably worldwide issue because of their stable and non-biodegradable nature. Herein, a facile method was proposed to carbonize PS waste into novel three-dimensional (3D) hierarchically porous carbon using Fe2O3 particles as both catalyst and template. Furthermore, KOH activation was applied to generate microporous and mesopores on the wall of macropores. As a result, the obtained 3D hierarchically porous carbon exhibits a high specific capacitance of 284.1 F g-1 at 0.5 A g-1 and good rate performance of 198 F g-1 at 20 A g-1 in a three-electrode device. Moreover, the assembled symmetrical capacitor displays a high energy density of 19.2 W h kg-1 at the power density of 200.7 W kg-1 in aqueous electrolyte. Therefore, the present research develops a sustainable way to recycle waste plastics into 3D hierarchically porous carbon for supercapacitors.
Collapse
Affiliation(s)
- Changde Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China
| | - Jiakang Min
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jiang Gong
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoguang Liu
- Nanomaterials Physicochemistry Department, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Xueying Mu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xuecheng Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Nanomaterials Physicochemistry Department, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland.
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
20
|
Comparative Assessment of Thermo-Syngas Fermentative and Liquefaction Technologies as Waste Plastics Repurposing Strategies. AGRIENGINEERING 2020. [DOI: 10.3390/agriengineering2030026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study comparatively investigates the potential of waste plastic utilization as a feedstock for the production of liquid fuels to satisfy the rising liquid fuel demands of the transportation industry while simultaneously resolving the global plastic waste pollution challenge. For the first time, therefore, conceptual models simulating the production of transportation fuels of ethanol and gasoline from waste plastics via the technologies of thermo-syngas fermentation and hydrothermal liquefaction were assessed using classic technoeconomic assessment methods. The conceptual models were developed based on existing experimental data as obtained from the literature and simulated using ASPEN Plus as the preferred process simulation tool. This study demonstrated the technical viability of both conversion pathways with the hydrothermal liquefaction (HTL) of waste plastics for gasoline production shown to constitute a more economically preferable pathway. This was because the HTL of waste plastics presented a higher internal rate of return (IRR) value and a lower unit processing cost of 51.3% and USD 0.38 per kg compared to the thermo-syngas fermentation pathway that presented an IRR value and a unit processing cost value of 22.2% and USD 0.42 per kg, respectively. Payback periods of 5 years and 2 years were also determined as vital to recoup initial capital invested in the thermo-syngas fermentation project and the HTL project, respectively. Therefore, this study provides a basis for further work regarding waste plastic management strategies while offering a useful guide for policy makers in determining the most cost-effective way to utilize waste plastic and thus promote favorable environmental outcomes.
Collapse
|
21
|
Zhan L, Zhao X, Ahmad Z, Xu Z. Leaching behavior of Sb and Br from E-waste flame retardant plastics. CHEMOSPHERE 2020; 245:125684. [PMID: 31875573 DOI: 10.1016/j.chemosphere.2019.125684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The improper disposal of E-waste flame retardant plastics laden with antimony (Sb) and bromine (Br) has brought enormous environmental hazards, however, rare information on the effective removal of Sb and Br is available. In this study, through building an alkaline sulfide system under hydrothermal conditions, Sb and Br were simultaneously extracted from flame retardant plastic with high efficiency of 85.60% and 90.13%, respectively. Sulfur ion through mass transfer reacted with encapsulated Sb2O3 to form safe and non-toxic SbS33-. Alkaline solution trapped the Br through substitution or neutralization reaction to inhibit the formation of brominated organic compounds. The results showed that the optimum temperature, residence time, Na2S and NaOH concentration for hydrothermal removal of Sb and Br were 220 °C, 2 h, 50 g/L and 20 g/L. The results also revealed that both Na2S and NaOH played an interrelated role in the process of Sb removal. However, NaOH was the only factor controlling the process of debromination. Moreover, the FTIR structure of plastic after alkaline sulfide hydrothermal treatment remained unchanged, which implies that the treated plastic can be reused, and is an added advantage of this technology. The TG-DTG analysis proved the effectiveness of alkaline sulfide hydrothermal treatment in removing Sb and Br.
Collapse
Affiliation(s)
- Lu Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Road, Shanghai, 200092, China.
| | - Xuyuan Zhao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zahoor Ahmad
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Department of Soil Science, University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Road, Shanghai, 200092, China
| |
Collapse
|
22
|
Zhang CC, Zhang FS. Enhanced dehalogenation and coupled recovery of complex electronic display housing plastics by sub/supercritical CO 2. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121140. [PMID: 31518770 DOI: 10.1016/j.jhazmat.2019.121140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Electronic display housing plastics contain a high amount of halogenated compounds such as brominated flame retardants (BFRs) and polyvinyl chloride (PVC). Compared with moderate critical conditions of conventional eco-friendly sub/supercritical carbon dioxide (Sc-CO2), a novel and sustainable procedure by using improved Sc-CO2 was developed for disposal of this type of plastic. The main merit of the process was that complex halogen-containing plastics were safely disposed and halogen-free products were recycled without using catalysts or additives. It was discovered that additive BFRs were initially extracted by Sc-CO2 technique and then it decomposed accompanied with PVC rapidly to form HBr and HCl, which could be separated by traditional bromine stripping techniques from seawater. Based on response surface methodology (RSM), the maximum debromination and dechlorination efficiencies were achieved at 99.51% and 99.12% respectively. After the treatment, halogen-free products such as solid carbon materials and organic chemical feedstocks were obtained. Mechanism study elucidated that free radicals reaction involving chain initiation, growth and termination induced the polymer decomposition to form these products. This study provides an applicable and green approach for disposal and recovery of halogen-containing plastics.
Collapse
Affiliation(s)
- Cong-Cong Zhang
- Department of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China.
| | - Fu-Shen Zhang
- Department of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Wang S, Zhou Z, Li F, Ye J, Cai Y, Zhang P, Nabi M. Thermal effects. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1097-1102. [PMID: 31408917 DOI: 10.1002/wer.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/04/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
This review focuses on the research literature published in 2018 relating to thermal effects in wastewater and solid waste treatment. This review is divided into the following sections: treatment of wastewater and sludge, removal and recovery of nitrogen and phosphorus, reduction and recovery of heavy metals, membrane technology, and treatment and disposal of solid wastes. PRACTITIONER POINTS: Thermal effect plays an important role in the treatment of wastewater and sewage sludge. Recovery of nitrogen and phosphorus from wastewater and sewage sludge offers an excellent feedstock for soil amendment. Increase of treatment temperature facilitates removal and recovery of heavy metals from water and soil environment.
Collapse
Affiliation(s)
- Siqi Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Zeyan Zhou
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Fan Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Junpei Ye
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yajing Cai
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Mohammad Nabi
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
24
|
Pola L, Collado S, Oulego P, Díaz M. Production of carboxylic acids from the non-lignin residue of black liquor by hydrothermal treatments. BIORESOURCE TECHNOLOGY 2019; 284:105-114. [PMID: 30927647 DOI: 10.1016/j.biortech.2019.03.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
The present study assesses, for the first time, the use of the non-lignin residue from Kraft black liquor as a renewable source of carboxylic acids. For this purpose, the liquid fraction obtained after separating the lignin from the black liquor by acid precipitation was subjected to different hydrothermal treatments. It was found that the formation of carboxylic acids can be maximized at 190 °C, 70 bar and under an inert atmosphere, with concentrations after 2 h of 29.0 g/l of oxalic acid, 1.8 g/L of malic acid, 10.0 g/L of lactic acid, 4.1 g/L of formic acid, 11.8 g/L of acetic acid and 3.4 g/L of propionic acid. The presence of an oxidizing atmosphere generated a less concentrated, but more purified, stream of acids than that obtained by thermal hydrolysis, simplifying the subsequent downstream processing.
Collapse
Affiliation(s)
- Lucía Pola
- Department of Chemical and Environmental Engineering, University of Oviedo, 33071 Oviedo, Spain
| | - Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, 33071 Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, 33071 Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, 33071 Oviedo, Spain.
| |
Collapse
|
25
|
Bai B, Jin H, Fan C, Cao C, Wei W, Cao W. Experimental investigation on liquefaction of plastic waste to oil in supercritical water. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 89:247-253. [PMID: 31079737 DOI: 10.1016/j.wasman.2019.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/03/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
In order to solve the problem of low thermal conductivity and high viscous molten liquid reaction product in the process of plastic liquefaction, the experiments of high impact polystyrene (HIPS) plastic liquefaction were carried out in supercritical water. In this paper, the effects of different operating conditions (temperature, time, feedstock concentration and pressure) on liquid products were studied. It is found that the novel phenomenon that the liquid products of HIPS plastic were mainly toluene and ethylbenzene rather than styrene, which was a product of polystyrene. The experimental results showed that plastic first depolymerized to form styrene and 1,3-diphenylpropane, which were then converted to toluene and ethylbenzene. The increase in temperature promoted this transformation process and some traces of polycyclic aromatic hydrocarbons also produced. At 490 °C, the maximum carbon liquefaction rate of 77.0 wt% was obtained, which was 6 times higher than the conventional pyrolysis, and the content of toluene and ethylbenzene were 14 wt% and 51.3 wt%, respectively. Increasing the reaction pressure and prolonging the reaction time all promoted the progress of the plastic liquefaction reaction, while increasing the feedstock concentration caused the carbon liquefaction rate to increase first and then slightly decrease.
Collapse
Affiliation(s)
- Bin Bai
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Hui Jin
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, Shaanxi, China.
| | - Chao Fan
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Changqing Cao
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Wenwen Wei
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Wen Cao
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| |
Collapse
|