1
|
Song X, Shan Y, Cao L, Zhong X, Wang X, Gao Y, Wang K, Wang W, Zhu T. Decolorization and detoxication of malachite green by engineered Saccharomyces cerevisiae expressing novel thermostable laccase from Trametes trogii. BIORESOURCE TECHNOLOGY 2024; 399:130591. [PMID: 38490463 DOI: 10.1016/j.biortech.2024.130591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Malachite Green (MG) is a widely used industrial dye that is hazardous to health. Herein, the decolourisation and detoxification of MG were achieved using the engineered Saccharomyces cerevisiae expressing novel thermostable laccase lcc1 from Trametes trogii. The engineered strain RCL produced a high laccase activity of 121.83 U L-1. Lcc1 was stable at temperatures ranging from 20 ℃ to 60 ℃ and showed a high tolerance to organic solvents. Moreover, Lcc1 could decolorize different kinds of dyes (azo, anthraquinone and triphenylmethane), among which, the decolorization ability of MG is the highest, reaching 95.10 %, and the decolorization rate of other triphenylmethane dyes also over 50 %. The RCL decolorized about 95 % of 50 mg L-1 of MG dye in 10 h at 30 ℃. The MG degradation products were analyzed. The industrial application potential of the RCL was evaluated by treating industrial wastewater and the decolourisation rates were over 90 %.
Collapse
Affiliation(s)
- Xiaofei Song
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, China
| | - Yudong Shan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, China
| | - Longyu Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, China
| | - Xiuwen Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, China
| | - Xikai Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, China
| | - Yan Gao
- Hangzhou Biocom Co., Ltd, Hangzhou 310014, Zhejiang Province, China
| | - Kun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, China
| | - Weixia Wang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, China.
| |
Collapse
|
2
|
Chmelová D, Ondrejovič M, Miertuš S. Laccases as Effective Tools in the Removal of Pharmaceutical Products from Aquatic Systems. Life (Basel) 2024; 14:230. [PMID: 38398738 PMCID: PMC10890127 DOI: 10.3390/life14020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
This review aims to provide a comprehensive overview of the application of bacterial and fungal laccases for the removal of pharmaceuticals from the environment. Laccases were evaluated for their efficacy in degrading pharmaceutical substances across various categories, including analgesics, antibiotics, antiepileptics, antirheumatic drugs, cytostatics, hormones, anxiolytics, and sympatholytics. The capability of laccases to degrade or biotransform these drugs was found to be dependent on their structural characteristics. The formation of di-, oligo- and polymers of the parent compound has been observed using the laccase mediator system (LMS), which is advantageous in terms of their removal via commonly used processes in wastewater treatment plants (WWTPs). Notably, certain pharmaceuticals such as tetracycline antibiotics or estrogen hormones exhibited degradation or even mineralization when subjected to laccase treatment. Employing enzyme pretreatment mitigated the toxic effects of degradation products compared to the parent drug. However, when utilizing the LMS, careful mediator selection is essential to prevent potential increases in environment toxicity. Laccases demonstrate efficiency in pharmaceutical removal within WWTPs, operating efficiently under WWTP conditions without necessitating isolation.
Collapse
Affiliation(s)
- Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (D.C.); (M.O.)
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (D.C.); (M.O.)
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (D.C.); (M.O.)
- ICARST n.o., Jamnického 19, SK-84101 Bratislava, Slovakia
| |
Collapse
|
3
|
Kim M, Njaramba LK, Yoon Y, Jang M, Park CM. Thermally-activated gelatin-chitosan-MOF hybrid aerogels for efficient removal of ibuprofen and naproxen. Carbohydr Polym 2024; 324:121436. [PMID: 37985070 DOI: 10.1016/j.carbpol.2023.121436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most frequently used drugs and have been frequently detected in aquatic environments. This paper demonstrates a thermally-activated gelatin-chitosan and amine-functionalized metal-organic framework (UiO-66-NH2) aerogel (CGC-MOF), which was successfully synthesized for the efficient removal of ibuprofen (IBP) and naproxen (NPX). Various characterization tools were used to systematically analyze the microstructure and physicochemical properties of the synthesized aerogel. In addition, the effect of key reaction parameters as well as batch and continuous-flow fixed-bed column experiments were carried out to elucidate the adsorption process. Several functional groups in the biopolymer network, combined with excellent MOF properties, synergistically couple to form an adsorbent with great performance. The mesoporous aerogel activated at 200 °C (CGC-MOF200) exhibited a high specific surface area (819.6 m2/g) that is valuable in providing abundant adsorption active sites that facilitate the efficient adsorption of IBP and NPX. CGC-MOF200 exhibited an excellent removal of IBP and NPX, accounting to 99.28 % and 96.39 %, respectively. The adsorption process followed the pseudo-second-order kinetics and the Freundlich isotherm models, suggesting heterogeneous and chemisorption adsorption processes. Overall, this work provides new and valuable insights into the development of a promising biopolymer-MOF composite aerogel for environmental remediation.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA; Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
4
|
Lin JY, Zhang Y, Bian Y, Zhang YX, Du RZ, Li M, Tan Y, Feng XS. Non-steroidal anti-inflammatory drugs (NSAIDs) in the environment: Recent updates on the occurrence, fate, hazards and removal technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166897. [PMID: 37683862 DOI: 10.1016/j.scitotenv.2023.166897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Non-steroidal Anti-inflammatory Drugs (NSAIDs) are extensively utilized pharmaceuticals worldwide. However, owing to the improper discharge and disposal practices, they have emerged as significant contaminants that are widely distributed in water, soils, and sewage sediments. This ubiquity poses a substantial threat to the ecosystem and human health. Consequently, it is imperative to develop rapid, cost-effective, efficient and reliable approaches for containing these substance in order to mitigate the deleterious impact of NSAIDs. This research provides a comprehensive review of the occurrence, fate, and hazards associated with NSAIDs in the general environment. Additionally, various removal technologies, including advanced oxidation processes, biodegradation, and adsorption, were systematically summarized. The study also presents a comparative analysis of the benefits and drawbacks of different removal technologies while interpreting challenges related to NSAIDs' removal and proposing strategies for future development.
Collapse
Affiliation(s)
- Jia-Yuan Lin
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Rong-Zhu Du
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
5
|
Coman C, Hădade N, Pesek S, Silaghi-Dumitrescu R, Moț AC. Removal and degradation of sodium diclofenac via radical-based mechanisms using S. sclerotiorum laccase. J Inorg Biochem 2023; 249:112400. [PMID: 37844532 DOI: 10.1016/j.jinorgbio.2023.112400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The recently isolated Sclerotinia sclerotiorum laccase was used for the degradation of sodium diclofenac, a nonsteroidal anti-inflammatory drug widely found in the aquatic environment. The Michaelis-Menten parameters, half-life of diclofenac at different pH values in presence of this enzyme and potential inhibitors were evaluated. Diclofenac-based radicals formed in presence of laccase were spin-trapped and detected using EPR spectroscopy. Almost complete diclofenac degradation (> 96%) occurred after a 30-h treatment via radical-based generated oligomers and their rapid precipitation, thus ensuring an unprecedented green formula suitable not only for degradation but also for straightforward removal of the degradation products. High performance liquid chromatography coupled with atmospheric pressure chemical ionization-ion trap mass spectrometry (HPLC-APCI-MS) analyses of the degradation products of diclofenac in aqueous dosage revealed the presence of at least seven products while HR Orbitrap MS analysis showed that the enzymatic treatment produced high molecular weight metabolites through a radical oligomerization mechanism of diclofenac. The enzymatically formed products precipitated and its constituting components were also characterized using UV-vis spectroscopy, infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA).
Collapse
Affiliation(s)
- Cristina Coman
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| | - Niculina Hădade
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| | - Szilárd Pesek
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| | - Radu Silaghi-Dumitrescu
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania.
| | - Augustin C Moț
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| |
Collapse
|
6
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fern'andez-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology-A review. Int J Biol Macromol 2023:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational frameworks, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fern'andez-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanizaci'on El Bosque, 28670 Villaviciosa de Od'on, Spain; Grupo de Investigaci'on en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
7
|
Bhardwaj P, Kaur N, Selvaraj M, Ghramh HA, Al-Shehri BM, Singh G, Arya SK, Bhatt K, Ghotekar S, Mani R, Chang SW, Ravindran B, Awasthi MK. Laccase-assisted degradation of emerging recalcitrant compounds - A review. BIORESOURCE TECHNOLOGY 2022; 364:128031. [PMID: 36167178 DOI: 10.1016/j.biortech.2022.128031] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The main objective of this review is to provide up to date, brief, irrefutable, organized data on the conducted experiments on a range of emerging recalcitrant compounds such as Diclofenac (DCF), Chlorophenols (CPs), tetracycline (TCs), Triclosan (TCS), Bisphenol A (BPA) and Carbamazepine (CBZ). These compounds were selected from the categories of pharmaceutical contaminants (PCs), endocrine disruptors (EDs) and personal care products (PCPs) on the basis of their toxicity and concentration retained in the environment. In this context, detailed mechanism of laccase mediated degradation has been conversed that laccase assisted degradation occurs by one electron oxidation involving redox potential as underlying element of the process. Further, converging towards biotechnology, laccase immobilization increased removal efficiency, storage and reusability through various experimentally conducted studies. Laccase is being considered noteworthy as mediators facilitate laccase in oxidation of non-phenolic compounds and thereby increasing its substrate range which is being discussed in further in the review. The laccase assisted degradation mechanism of each compound has been elucidated but further studies to undercover proper degradation mechanisms needs to be performed.
Collapse
Affiliation(s)
- Priyanka Bhardwaj
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3# Shaanxi, Yangling 712100, China; Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Naviljyot Kaur
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hamed A Ghramh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Badria M Al-Shehri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249404, Uttarakhand, India
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science, University of Mumbai, Silvassa 396 230, Dadra and Nagar Haveli (UT), India
| | - Ravi Mani
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
8
|
Current Challenges for Biological Treatment of Pharmaceutical-Based Contaminants with Oxidoreductase Enzymes: Immobilization Processes, Real Aqueous Matrices and Hybrid Techniques. Biomolecules 2022; 12:biom12101489. [PMID: 36291698 PMCID: PMC9599273 DOI: 10.3390/biom12101489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The worldwide access to pharmaceuticals and their continuous release into the environment have raised a serious global concern. Pharmaceuticals remain active even at low concentrations, therefore their occurrence in waterbodies may lead to successive deterioration of water quality with adverse impacts on the ecosystem and human health. To address this challenge, there is currently an evolving trend toward the search for effective methods to ensure efficient purification of both drinking water and wastewater. Biocatalytic transformation of pharmaceuticals using oxidoreductase enzymes, such as peroxidase and laccase, is a promising environmentally friendly solution for water treatment, where fungal species have been used as preferred producers due to their ligninolytic enzymatic systems. Enzyme-catalyzed degradation can transform micropollutants into more bioavailable or even innocuous products. Enzyme immobilization on a carrier generally increases its stability and catalytic performance, allowing its reuse, being a promising approach to ensure applicability to an industrial scale process. Moreover, coupling biocatalytic processes to other treatment technologies have been revealed to be an effective approach to achieve the complete removal of pharmaceuticals. This review updates the state-of-the-art of the application of oxidoreductases enzymes, namely laccase, to degrade pharmaceuticals from spiked water and real wastewater. Moreover, the advances concerning the techniques used for enzyme immobilization, the operation in bioreactors, the use of redox mediators, the application of hybrid techniques, as well as the discussion of transformation mechanisms and ending toxicity, are addressed.
Collapse
|
9
|
Hejna M, Kapuścińska D, Aksmann A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7717. [PMID: 35805373 PMCID: PMC9266021 DOI: 10.3390/ijerph19137717] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
The pollution of the aquatic environment has become a worldwide problem. The widespread use of pesticides, heavy metals and pharmaceuticals through anthropogenic activities has increased the emission of such contaminants into wastewater. Pharmaceuticals constitute a significant class of aquatic contaminants and can seriously threaten the health of non-target organisms. No strict legal regulations on the consumption and release of pharmaceuticals into water bodies have been implemented on a global scale. Different conventional wastewater treatments are not well-designed to remove emerging contaminants from wastewater with high efficiency. Therefore, particular attention has been paid to the phycoremediation technique, which seems to be a promising choice as a low-cost and environment-friendly wastewater treatment. This technique uses macro- or micro-algae for the removal or biotransformation of pollutants and is constantly being developed to cope with the issue of wastewater contamination. The aims of this review are: (i) to examine the occurrence of pharmaceuticals in water, and their toxicity on non-target organisms and to describe the inefficient conventional wastewater treatments; (ii) present cost-efficient algal-based techniques of contamination removal; (iii) to characterize types of algae cultivation systems; and (iv) to describe the challenges and advantages of phycoremediation.
Collapse
Affiliation(s)
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.H.); (D.K.)
| |
Collapse
|
10
|
Sharma A, Vázquez LAB, Hernández EOM, Becerril MYM, Oza G, Ahmed SSSJ, Ramalingam S, Iqbal HMN. Green remediation potential of immobilized oxidoreductases to treat halo-organic pollutants persist in wastewater and soil matrices - A way forward. CHEMOSPHERE 2022; 290:133305. [PMID: 34929272 DOI: 10.1016/j.chemosphere.2021.133305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 02/08/2023]
Abstract
The alarming presence of hazardous halo-organic pollutants in wastewater and soils generated by industrial growth, pharmaceutical and agricultural activities is a major environmental concern that has drawn the attention of scientists. Unfortunately, the application of conventional technologies within hazardous materials remediation processes has radically failed due to their high cost and ineffectiveness. Consequently, the design of innovative and sustainable techniques to remove halo-organic contaminants from wastewater and soils is crucial. Altogether, these aspects have led to the search for safe and efficient alternatives for the treatment of contaminated matrices. In fact, over the last decades, the efficacy of immobilized oxidoreductases has been explored to achieve the removal of halo-organic pollutants from diverse tainted media. Several reports have indicated that these enzymatic constructs possess unique properties, such as high removal rates, improved stability, and excellent reusability, making them promising candidates for green remediation processes. Hence, in this current review, we present an insight of green remediation approaches based on the use of immobilized constructs of phenoloxidases (e.g., laccase and tyrosinase) and peroxidases (e.g., horseradish peroxidase, chloroperoxidase, and manganese peroxidase) for sustainable decontamination of wastewater and soil matrices from halo-organic pollutants, including 2,4-dichlorophenol, 4-chlorophenol, diclofenac, 2-chlorophenol, 2,4,6-trichlorophenol, among others.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, 76130, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, 76130, Mexico
| | | | | | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico Querétaro S/n, Sanfandila. Pedro Escobedo, Querétaro, 76703, Mexico
| | - Shiek S S J Ahmed
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
11
|
Cheng CM, Patel AK, Singhania RR, Tsai CH, Chen SY, Chen CW, Dong CD. Heterologous expression of bacterial CotA-laccase, characterization and its application for biodegradation of malachite green. BIORESOURCE TECHNOLOGY 2021; 340:125708. [PMID: 34391187 DOI: 10.1016/j.biortech.2021.125708] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Malachite green (MG) is used as fungicide/parasiticide in aquaculture, its persistence is detrimental as it exhibits carcinogenic effects to aquatic organisms. Bacterial laccase evaluated as the best enzyme at extreme condition for aquatic MG removal. Study aims to increase laccase concentration, CotA-laccase from Bacillus subtilis was cloned and overexpressed in Escherichia coli. Optimal catalysis for purified CotA-laccase were at pH 5.0, 60 °C, and 1 mM of (2,2-azino-di-[3-ethylbenzothiazoline-sulphonate-(6)]) with Km and Kcat 0.087 mM and 37.64 S-1 respectively. MG biodegradation by CotA-laccase in clam and tilapia pond wastewaters and cytotoxic effect of biodegraded products in grouper fin-1 cells were determined. MG degradation by CotA-laccase was equally efficient, exhibiting upto 90-94% decolorization at freshwater and saline conditions and treated solution was non-toxic to GF-1 cells. Thus, recombinant-CotA-laccase could be an environmentally-friendly enzyme for aquaculture to remove MG, thereby effective to reduce its accumulation in aquatic organisms and ensuring safe aquaculture products.
Collapse
Affiliation(s)
- Chiu-Min Cheng
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Cheng-Hsian Tsai
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Shen-Yi Chen
- Department of Safety, Health, and Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan.
| |
Collapse
|
12
|
Sun Y, Liu ZL, Hu BY, Chen QJ, Yang AZ, Wang QY, Li XF, Zhang JY, Zhang GQ, Zhao YC. Purification and Characterization of a Thermo- and pH-Stable Laccase From the Litter-Decomposing Fungus Gymnopus luxurians and Laccase Mediator Systems for Dye Decolorization. Front Microbiol 2021; 12:672620. [PMID: 34413835 PMCID: PMC8369832 DOI: 10.3389/fmicb.2021.672620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
An extracellular laccase (GLL) was purified from fermentation broth of the litter-decomposing fungus Gymnopus luxurians by four chromatography steps, which resulted in a high specific activity of 118.82 U/mg, purification fold of 41.22, and recovery rate of 42.05%. It is a monomeric protein with a molecular weight of 64 kDa and N-terminal amino acid sequence of AIGPV TDLHI, suggesting that GLL is a typical fungal laccase. GLL demonstrated an optimum temperature range of 55°C-65°C and an optimum pH 2.2 toward 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). It displayed considerably high thermostability and pH stability with about 63% activity retained after 24 h at 50°C, and 86% activity retained after 24 h at pH 2.2, respectively. GLL was significantly enhanced in the presence of K+, Na+, and Mg2+ ions. It demonstrated K m of 539 μM and k cat /K m of 140 mM-1⋅s-1 toward ABTS at pH 2.2 and 37°C. Acetosyringone (AS) and syringaldehyde (SA) were the optimal mediators of GLL (0.4 U/ml) for dye decolorization with decolorization rates of about 60%-90% toward 11 of the 14 synthetic dyes. The optimum reaction conditions were determined to be mediator concentration of 0.1 mM, temperature range of 25°C -60°C, and pH 4.0. The purified laccase was the first laccase isolated from genus Gymnopus with high thermostability, pH stability, and effective decolorization toward dyes, suggesting that it has potentials for textile and environmental applications.
Collapse
Affiliation(s)
- Yue Sun
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zi-Lu Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Bo-Yang Hu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Qing-Jun Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ai-Zhen Yang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Qiu-Ying Wang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Xiao-Feng Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Jia-Yan Zhang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Guo-Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yong-Chang Zhao
- Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
13
|
Girelli AM, Quattrocchi L, Scuto FR. Design of bioreactor based on immobilized laccase on silica-chitosan support for phenol removal in continuous mode. J Biotechnol 2021; 337:8-17. [PMID: 34144093 DOI: 10.1016/j.jbiotec.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/07/2022]
Abstract
A silica-chitosan support was employed for laccase immobilization. The hybrid support was obtained using calcium ion as linking agent that coordinates silanol and hydroxyl groups of chitosan. The insoluble biocatalyst was then packed in a column and used in a flow system for phenol removal. The immobilized enzyme reactor (IMER) showed a good storage stability (70 % of activity in 70 days) and good reusability (90-50 % of catalytic activity at the 4th reuse in function of chitosan type). The best performance for the phenol removal was obtained with a low molecular weight chitosan from crab shells at pH 5 and with a flow rate of 0.7 mL/min. The apparent Michaelis-Menten (Vmaxapp, Kmapp) and the inherent (Vmaxinh, Kminh) constants were also determined to evaluate the influence of the phenol structure on the performance of the system. The enzymatic oxidation of a phenol mixture (4-methylcatechol, catechol, caffeic acid, syringic acid, vanillic acid, p-coumaric acid, and tyrosol) was followed for 21 h in a continuous mode by HPLC. The phenol mixture removal of 90 % was also confirmed by Folin-Ciocalteu assay.
Collapse
Affiliation(s)
- A M Girelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - L Quattrocchi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - F R Scuto
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
14
|
Girelli AM, Scuto FR. Spent grain as a sustainable and low-cost carrier for laccase immobilization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 128:114-121. [PMID: 33984682 DOI: 10.1016/j.wasman.2021.04.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Spent grain is promising lignocellulosic by-product support for laccase immobilization. The waste digestion with two different approaches (HCl/NaOH and H2SO4/NaOH) was performed. Different procedures (soaking and dropping), based on chemical and physical reactions, were also used to obtain the highest immobilized activity. Results showed that H2SO4/NaOH digestion guaranteed an immobilized activity five times higher than HCl/NaOH digestion. The best immobilization conditions with physical dropping procedure resulted in the highest immobilized activity on digested spent grain (2500 U/Kg). Good reusability (42% of activity retained after four cycles), and lower catalytic efficiency (Vmax/Km) of 0.053 min-1 than free laccase (0.14 min-1) with ABTS as substrate, were also obtained. Besides, when 20 mg of biocatalyst (0.02 U) were tested for syringic acid removal, complete oxidation of the phenol was achieved in just 4 h.
Collapse
Affiliation(s)
- A M Girelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - F R Scuto
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Masjoudi M, Golgoli M, Ghobadi Nejad Z, Sadeghzadeh S, Borghei SM. Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes. CHEMOSPHERE 2021; 263:128043. [PMID: 33297058 DOI: 10.1016/j.chemosphere.2020.128043] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
The presence of pharmaceutical micropollutants in water and wastewater is considered a serious environmental issue. To eliminate these pollutants, biodegradation of pharmaceuticals using enzymes such as laccase, is proposed as a green method. In this study, immobilized laccase was used for the removal of two model pharmaceutical compounds, carbamazepine and diclofenac. Polyvinylidene fluoride (PVDF) membrane modified with multi-walled carbon nanotubes (MWCNTs) were synthesized as a tailor-made support for enzyme immobilization. Covalently immobilized laccase from Trametes hirsuta exhibited remarkable activity and activity recovery of 4.47 U/cm2 and 38.31%, respectively. The results also indicated improvement in the operational and thermal stability of the immobilized laccase compared to free laccase. Finally, by using immobilized laccase in a mini-membrane reactor, removal efficiencies of 27% in 48 h and 95% in 4 h were obtained for carbamazepine and diclofenac, respectively. The findings suggest that immobilized laccase on PVDF/MWCNT membranes is a promising catalyst for large-scale water and wastewater treatment which is also compatible with existing treatment facilities.
Collapse
Affiliation(s)
- Mahsa Masjoudi
- Chemical & Petroleum Engineering Department, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran
| | - Mitra Golgoli
- Chemical & Petroleum Engineering Department, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran
| | - Zahra Ghobadi Nejad
- Biochemical & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran
| | - Sadegh Sadeghzadeh
- Chemical & Petroleum Engineering Department, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran
| | - Seyed Mehdi Borghei
- Chemical & Petroleum Engineering Department, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran; Biochemical & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran.
| |
Collapse
|
16
|
Girelli AM, Scuto FR. Eggshell membrane as feedstock in enzyme immobilization. J Biotechnol 2020; 325:241-249. [PMID: 33068695 DOI: 10.1016/j.jbiotec.2020.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Eggshell membrane, an eco-compatible, safe and cheap by-product was employed as carrier for the laccase from Trametes versicolor immobilization. In order to evaluate the best protocol to apply for the syringic acid degradation, two different types of laccase loading on eggshell membrane were used by incubation in solution or by enzyme-dropping. Chemicals (covalent) and physicals (adsorption) immobilizations were tested for both procedure using native or periodate-oxidized laccase. It is shown that immobilization of periodate-oxidized laccase on NiCl2-pretreated eggshell membrane was the best method for the first procedure (immobilized activity 1300 U/Kg, a residual activity of 30 % for 6 reuse). For the enzyme-dropping protocol a covalent method with the bifunctional cross linker (glutaraldehyde) was the best method (immobilized activity 3500 U/Kg, a residual activity of 45 % for 6 reuse).
Collapse
Affiliation(s)
- A M Girelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - F R Scuto
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
17
|
Girelli AM, Astolfi ML, Scuto FR. Agro-industrial wastes as potential carriers for enzyme immobilization: A review. CHEMOSPHERE 2020; 244:125368. [PMID: 31790990 DOI: 10.1016/j.chemosphere.2019.125368] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
This review provides a general overview of the suitability of different agro-industrial wastes for enzyme immobilization. For the purposes of this literary study, the support materials are divided into two main groups, called lignocellulosic (coconut fiber, corn cob, spent grain, spent coffee, husk, husk ash, and straw rice, soybean and wheat bran) and not lignocellulosic by-products (eggshell and eggshell membranes). The study pointed out that all of these wastes are materials of great potentiality for enzyme immobilization even if coconut fiber is preferred. This result is of significant interest due to the low cost and great availability of such wastes, which actually are underused and cause significant environmental problems for improper storage. In addition, the development of economic biocatalysts more sustainable, besides reduce environmental impacts, improve the application of enzymatic technology in industry. Therefore, the enzyme immobilization reaction and the application of biocatalysts are reviewed and discussed.
Collapse
Affiliation(s)
- Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Francesca Romana Scuto
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
18
|
Mohit E, Tabarzad M, Faramarzi MA. Biomedical and Pharmaceutical-Related Applications of Laccases. Curr Protein Pept Sci 2020; 21:78-98. [DOI: 10.2174/1389203720666191011105624] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/07/2022]
Abstract
The oxidation of a vast range of phenolic and non-phenolic substrates has been catalyzed by
laccases. Given a wide range of substrates, laccases can be applied in different biotechnological applications.
The present review was conducted to provide a broad context in pharmaceutical- and biomedical-
related applications of laccases for academic and industrial researchers. First, an overview of biological
roles of laccases was presented. Furthermore, laccase-mediated strategies for imparting antimicrobial
and antioxidant properties to different surfaces were discussed. In this review, laccase-mediated
mechanisms for endowing antimicrobial properties were divided into laccase-mediated bio-grafting of
phenolic compounds on lignocellulosic fiber, chitosan and catheters, and laccase-catalyzed iodination.
Accordingly, a special emphasis was placed on laccase-mediated functionalization for creating antimicrobials,
particularly chitosan-based wound dressings. Additionally, oxidative bio-grafting and oxidative
polymerization were described as the two main laccase-catalyzed reactions for imparting antioxidant
properties. Recent laccase-related studies were also summarized regarding the synthesis of antibacterial
and antiproliferative agents and the degradation of pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| |
Collapse
|
19
|
Abstract
There is a high number of well characterized, commercially available laccases with different redox potentials and low substrate specificity, which in turn makes them attractive for a vast array of biotechnological applications. Laccases operate as batteries, storing electrons from individual substrate oxidation reactions to reduce molecular oxygen, releasing water as the only by-product. Due to society’s increasing environmental awareness and the global intensification of bio-based economies, the biotechnological industry is also expanding. Enzymes such as laccases are seen as a better alternative for use in the wood, paper, textile, and food industries, and they are being applied as biocatalysts, biosensors, and biofuel cells. Almost 140 years from the first description of laccase, industrial implementations of these enzymes still remain scarce in comparison to their potential, which is mostly due to high production costs and the limited control of the enzymatic reaction side product(s). This review summarizes the laccase applications in the last decade, focusing on the published patents during this period.
Collapse
|
20
|
Feng Y, Shen M, Wang Z, Liu G. Transformation of atenolol by a laccase-mediator system: Efficiencies, effect of water constituents, and transformation pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109555. [PMID: 31419699 DOI: 10.1016/j.ecoenv.2019.109555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
In this study, we investigated the transformation of atenolol (ATL) by the naturally occurring laccase from Trametes versicolor in aqueous solution. Removal efficiency of ATL via laccase-catalyzed reaction in the presence of various laccase mediators was examined, and found that only the mediator 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO) was able to greatly promote ATL transformation. The influences of TEMPO concentration, laccase dosage, as well as solution pH and temperature on ATL transformation efficiency were tested. As TEMPO concentrations was increased from 0 to 2000 μM, ATL transformation efficiency first increased and then decreased, and the optimal TEMPO concentration was determined as 500 μM. ATL transformation efficiency was gradually increased with increasing laccase dosage. ATL transformation was highly pH-dependent with an optimum pH of 7.0, and it was almost constant over a temperature range of 25-50 °C. Humic acid inhibited ATL transformation through competition reaction with laccase. The presence of anions HCO3- and CO32- reduced ATL transformation due to both anions enhanced solution pHs, while Cl-, SO42-, and NO3- at 10 mM showed no obvious influence. The main transformation products were identified, and the potential transformation pathways were proposed. After enzymatic treatment, the toxicity of ATL and TEMPO mixtures was greatly reduced. The results of this study might present an alternative clean strategy for the remediation of ATL contaminated water matrix.
Collapse
Affiliation(s)
- Yiping Feng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Mengyao Shen
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhu Wang
- Research Institute of Environmental Studies at Greater Bay, Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Guoguang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
21
|
Bian X, Xia Y, Zhan T, Wang L, Zhou W, Dai Q, Chen J. Electrochemical removal of amoxicillin using a Cu doped PbO 2 electrode: Electrode characterization, operational parameters optimization and degradation mechanism. CHEMOSPHERE 2019; 233:762-770. [PMID: 31200136 DOI: 10.1016/j.chemosphere.2019.05.226] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
This work investigated the electrochemical degradation of amoxicillin (AMX) in aqueous solution with Cu-PbO2 electrode. The main influence factors on the degradation of AMX, such as Na2SO4 concentration, initial AMX concentration, current density and initial pH value, were analyzed in detail. Under the optimal conditions, the removal rates of AMX and chemical oxygen demand (COD) reached 99.4% and 46.3% after 150 min treatment. The results indicated that the electrochemical degradation of AMX fitted pseudo-first-order reaction kinetics. Compared with undoped PbO2 electrode, Cu-PbO2 electrode had a smaller crystal size, more proportion of hydroxyl oxygen species, greater AMX and chemical oxygen demand (COD) removal efficiency, higher average current efficiency (ACE) and lower electrical efficiency per log order (EE/O). Electrochemical oxidation using Cu-PbO2 electrodes was an effective way to eliminate amoxicillin in aqueous solution. Moreover, a possible degradation pathway including ring open and mineralization was proposed by intermediate products determined by GC-MS method. This paper could provide basic data and technique reference for the amoxicillin wastewater pollution control.
Collapse
Affiliation(s)
- Xinze Bian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yi Xia
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Tingting Zhan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Lin Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|