1
|
Zhang T, Aimuzi R, Lu X, Liu B, Lu H, Luo K, Yan J. Exposure to organophosphate esters and early menopause: A population-based cross-sectional study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124684. [PMID: 39116924 DOI: 10.1016/j.envpol.2024.124684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/07/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Organophosphate esters (OPEs), increasingly used as new flame retardants and plasticizers in various products, have been found to have reproductive toxicity with overt endocrine disruption potential, yet the relationship between OPEs and early menopause remains unexplored. In the present study, we included 2429 women who participated in the U.S. National Health and Nutrition Examination Survey data (2011-2020) and had data of five urinary OPE metabolite levels and information of menopause characteristics, to investigate the associations of OPEs exposure with premature ovarian insufficiency (POI) and age of menopause. Multivariable adjusted linear and logistic regression were used to assess the associations of urinary OPE metabolites with age of menopause and POI, respectively. Quantile g computation (QGC) models were used to assess the relative contribution of individual metabolites to associations of OPE metabolites mixture. After adjusting for covariates, urinary bis(2-chloroethyl) phosphate (BCEP) concentration was inversely associated with menopause age (β = - 0.21; 95% confidence interval (CI): 0.41, - 0.002). Higher urinary BCEP level (>median) was associated with earlier age at menopause (β = -1.14, 95% CI: 1.83, - 0.46), and elevated odds of having POI (OR = 1.93; 95% CI: 1.02, 3.66). These associations were robust to the further adjustment of cardiometabolic diseases and related traits (e.g., body mass index). Further QGC analyses confirmed that BCEP was the dominant metabolite contributing most to the associations of OPEs mixture with age of menopause (weight = 49.5%) and POI (weight = 75.1%). No significant associations were found for the other four OPE metabolites. In this cross-sectional study, urinary BCEP level was associated with earlier menopause and increased odds of POI, highlighting the potential negative impacts of this chemical and its parent compound tris(2-chloroethyl) phosphate on ovarian function. Further studies are required to validate our findings and reveal potential underlying mechanisms.
Collapse
Affiliation(s)
- Ting Zhang
- Reproductive Medicine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruxianguli Aimuzi
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Xiaowei Lu
- Reproductive Medicine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Liu
- Reproductive Medicine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Lu
- Reproductive Medicine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Junkai Yan
- Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
2
|
Jin X, Yao R, Yao S, Yu X, Tang J, Huang J, Yao R, Jin L, Liang Q, Sun J. Metabolic perturbation and oxidative damage induced by tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-ethylhexyl) phosphate (TEHP) on Escherichia coli through integrative analyses of metabolome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116797. [PMID: 39067080 DOI: 10.1016/j.ecoenv.2024.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Organophosphate esters (OPEs) are one of the emerging environmental threats, causing the hazard to ecosystem safety and human health. Yet, the toxic effects and metabolic response mechanism after Escherichia coli (E.coli) exposed to TDCIPP and TEHP is inconclusive. Herein, the levels of SOD and CAT were elevated in a concentration-dependent manner, accompanied with the increase of MDA contents, signifying the activation of antioxidant response and occurrence of lipid peroxidation. Oxidative damage mediated by excessive accumulation of ROS decreased membrane potential and inhibited membrane protein synthesis, causing membrane protein dysfunction. Integrative analyses of GC-MS and LC-MS based metabolomics evinced that significant perturbation to the carbohydrate metabolism, nucleotide metabolism, lipids metabolism, amino acid metabolism, organic acids metabolism were induced following exposure to TDCIPP and TEHP in E.coli, resulting in metabolic reprogramming. Additionally, metabolites including PE(16:1(5Z)/15:0), PA(17:0/15:1(9Z)), PC(20:2(11Z,14Z)/12:0), LysoPC(18:3(6Z,9Z,12Z)/0:0) were significantly upregulated, manifesting that cell membrane protective molecule was afforded by these differential metabolites to improve permeability and fluidity. Overall, current findings generate new insights into the molecular toxicity mechanism by which E.coli respond to TDCIPP and TEHP stress and supply valuable information for potential ecological risks of OPEs on aquatic ecosystems.
Collapse
Affiliation(s)
- Xu Jin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Runlin Yao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Siyu Yao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China.
| | - Jin Tang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China
| | - Jiaxing Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China
| | - Ruipu Yao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Qianwei Liang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China.
| |
Collapse
|
3
|
Jin X, Yao R, Yu X, Wu H, Liu H, Huang J, Dai Y, Sun J. Global responses to tris(1-chloro-2-propyl) phosphate and tris(2-butoxyethyl) phosphate in Escherichia coli: Evidences from biomarkers, and metabolic disturbance using GC-MS and LC-MS metabolomics analyses. CHEMOSPHERE 2024; 358:142177. [PMID: 38679182 DOI: 10.1016/j.chemosphere.2024.142177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-butoxyethyl) phosphate (TBEP) as pollutants of emerging concern have aroused the rising attention due to their potential risks on aquatic ecosystem and public health. Nevertheless, there is a lack of toxicological mechanisms exploration of TCPP and TBEP at molecular levels. Herein, the toxicity effects and molecular mechanism of them were fully researched and summarized on Escherichia coli (E.coli). Acute exposure to them significantly activated antioxidant defense system and caused lipid peroxidation, as proved by the changes of antioxidant enzymes and MDA. The ROS overload resulted in the drop of membrane potential as well as the downregulated synthesis of ATPase, endorsing that E. coli cytotoxicity was ascribed to oxidative stress damage induced by TCPP and TBEP. The combination of GC-MS and LC-MS based metabolomics validated that TCPP and TBEP induced metabolic reprogramming in E.coli. More specifically, the responsive metabolites in carbohydrate metabolism, lipids metabolism, nucleotide metabolism, amino acid metabolism, and organic acids metabolism were significantly disturbed by TCPP and TBEP, confirming the negative effects on metabolic functions and key bioprocesses. Additionally, several biomarkers including PE(16:1(5Z)/15:0), PA(17:1(9Z)/18:2(9Z,12Z)), PE(19:1(9Z)/0:0), and LysoPE(0:0/18:1(11Z)) were remarkably upregulated, verifying that the protection of cellular membrane was conducted by regulating the expression of lipids-associated metabolites. Collectively, this work sheds new light on the potential molecular toxicity mechanism of TCPP and TBEP on aquatic organisms, and these findings using GC-MS and LC-MS metabolomics generate a fresh insight into assessing the effects of OPFRs on target and non-target aquatic organisms.
Collapse
Affiliation(s)
- Xu Jin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Runlin Yao
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| | - Haochuan Wu
- School of Housing, Building and Planning, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Hang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Yicheng Dai
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| |
Collapse
|
4
|
Yun K, Jeon H, Kho Y, Ji K. Potential adverse outcome pathway of neurodevelopmental toxicity, inflammatory response, and oxidative stress induction mediated by three alkyl organophosphate flame retardants in zebrafish larvae. CHEMOSPHERE 2024; 356:141901. [PMID: 38583538 DOI: 10.1016/j.chemosphere.2024.141901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Following restrictions on polybrominated flame retardants, trimethyl phosphate (TMP), triethyl phosphate (TEP), and tris(2-butoxyethyl) phosphate (TBEP) have been frequently used as plasticizers for fire-resistant plastics. This study investigated the neurodevelopmental effects, inflammatory response, and oxidative stress induction of three alkyl organophosphate flame retardants using a zebrafish embryo/larvae model. After exposure of zebrafish embryos to TMP, TEP, and TBEP (0, 0.02, 0.2, 2, 20, and 200 μg L-1) for 96 h, survival, development, swimming behavior, changes in acetylcholinesterase (AChE) activity, dopamine, tumor necrosis factor-alpha (TNF-α), interleukin (IL), reactive oxygen species (ROS), and antioxidant enzyme activities were observed. Concentrations of TMP, TEP, and TBEP were also measured in the whole body of exposed larvae. Our results showed that exposure to 200 μg L-1 TEP and ≥20 μg L-1 TBEP significantly reduced larval body length; however, TMP had no significant effects on developmental parameters up to 200 μg L-1. After 96 h of exposure to TBEP, total distance moved, mean velocity, AChE, and dopamine concentrations were significantly decreased. Exposure to TEP and TBEP decreased the expression of genes that regulate central nervous system development (e.g. gap43 and mbpa), whereas ROS, antioxidant enzymes, TNF-α, and IL-1β concentrations were significantly increased. Notably, pretreatment with an antioxidant N-acetylcysteine reduced neurotoxicity and oxidative stress caused by TEP and TBEP. The results of this study demonstrated that exposure to TEP and TBEP causes oxidative stress and has adverse effects on the neurobehavioral and immune system of zebrafish, leading to hypoactivity and ultimately impairing development.
Collapse
Affiliation(s)
- Kijeong Yun
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea
| | - Hyeri Jeon
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea.
| |
Collapse
|
5
|
Liu B, Li P, Du RY, Wang CL, Ma YQ, Feng JX, Liu L, Li ZH. Long-term tralopyril exposure results in endocrinological and transgenerational toxicity: A two-generation study of marine medaka (Oryzias melastigma). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169344. [PMID: 38097088 DOI: 10.1016/j.scitotenv.2023.169344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
This study aims to investigate the impact of tralopyril, a newly developed marine antifouling agent, on the reproductive endocrine system and developmental toxicity of offspring in marine medaka. The results revealed that exposure to tralopyril (0, 1, 20 μg/L) for 42 days resulted in decreased reproductive capacity in marine medaka. Moreover, it disrupted the levels of sex hormones E2 and T, as well as the transcription levels of genes related to the HPG axis, such as cyp19b and star. Sex-dependent differences were observed, with females experiencing more pronounced effects. Furthermore, intergenerational toxicity was observed in F1 offspring, including increased heart rate, changes in retinal morphology and cartilage structure, decreased swimming activity, and downregulation of transcription levels of relevant genes (HPT axis, GH/IGF axis, cox, bmp4, bmp2, runx2, etc.). Notably, the disruption of the F1 endocrine system by tralopyril persisted into adulthood, indicating a transgenerational effect. Molecular docking analysis suggested that tralopyril's RA receptor activity might be one of the key factors contributing to the developmental toxicity observed in offspring. Overall, our study highlights the potential threat posed by tralopyril to the sustainability of fish populations, as it can disrupt the endocrine system and negatively impact aquatic organisms for multiple generations.
Collapse
Affiliation(s)
- Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ren-Yan Du
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cun-Long Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yu-Qing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jian-Xue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
6
|
Jiang D, Xu Y, Han X, Yang L, Li Q, Yang Y, Wang Y, Guo A, Li H, Fan Z, Chao L. Cresyl Diphenyl Phosphate exposure induces reproductive functional defects in men and male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116003. [PMID: 38286103 DOI: 10.1016/j.ecoenv.2024.116003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Cresyl Diphenyl Phosphate (CDP), as a novel organophosphate esters (OPEs), achieves widely used and exposed in multiple industries. However, its male reproductive toxicity and underlying mechanism remains unclear. In vivo, male mice were gavaged with CDP (0, 4, 20, or 100 mg/kg/d) for 8 weeks. And we treated TM3, TM4 and GC-2 cells with 0, 10, 25, and 50 μM CDP for 24 h to detect its reproductive toxicity effect in vitro. In our study, we revealed that CDP inhibited proliferation and induced apoptosis in mice testis and GC-2 cells, thereby leading to the decreased sperm quality. In mechanism, CDP trigger the oxidative stress and ROS production, thus partially causing DNA damage and cell apoptosis. Moreover, CDP exposure causes injury to Ledyig cells and Sertoli cells, thus disturbing the testicular microenvironment and inhibiting spermatogonia proliferation. In conclusion, this research reveals multiple adverse impacts of CDP on the male reproductive system and calls for further study of the toxicological effects of CDP on human health.
Collapse
Affiliation(s)
- Danni Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Yang Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China; Department of Reproductive Medicine, Linyi People's Hospital, Shandong University, No. 27, East Section of Jiefang Road, Lin'yi, Shandong 276003, China
| | - Xiaojuan Han
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Lin Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Qianni Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Ying Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Anliang Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Huihui Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Zhihao Fan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China.
| |
Collapse
|
7
|
Tan Y, Fu Y, Yao H, Li H, Wu X, Guo Z, Liang X, Kuang M, Tan L, Jing C. The relationship of organophosphate flame retardants with hyperuricemia and gout via the inflammatory response: An integrated approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168169. [PMID: 37918745 DOI: 10.1016/j.scitotenv.2023.168169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Evidence regarding the relationships between organophosphate flame retardants (OPFRs) and hyperuricemia and gout as well as the underlying mechanisms remains scarce, but some evidence indicates that inflammation might play a key role. OBJECTIVES Using an integrated approach, we aim to elucidate the associations of urinary metabolite OPFRs (m-OPFRs) with hyperuricemia and gout. METHODS Cross-sectional analyses using data from the National Health and Nutrition Examination Survey were performed to reveal the associations. Adults with complete data on five m-OPFRs with high detection frequencies and outcomes were enrolled. We used multivariate logistic regression, restricted cubic spline (RCS), and Bayesian kernel machine regression (BKMR) methods to account for single, nonlinear, and joint effects. The mediating effect of the inflammatory response was also estimated. Moreover, adverse outcome pathways (AOPs) based on network analysis were further constructed to reveal the underlying mechanism. RESULTS Multivariate logistic models revealed that bis(2-chloroethyl) phosphate (BCEP) significantly increased risk of hyperuricemia (OR [95 % CI]: 1.165 [1.047, 1.296]) in the fully adjusted model. Elevated levels of bis(1-chloro-2-propyl) phosphate were associated with gout (OR [95 % CI]: 1.293 [1.015, 1.647]). No nonlinear relationship was observed in RCS. There was a positive association between mixed m-OPFRs and hyperuricemia risk in BMKR, with bis(1,3-dichloro-2-propyl) phosphate and BCEP being the main contributors (PIP > 0.5). We found that the inflammatory response significantly mediated the association between BCEP and hyperuricemia (P < 0.05). Network topology analysis identified seven genes and six phenotypes related to OPFR exposure and hyperuricemia. The AOP framework suggested that the inflammatory response, especially the activation of the TNF pathway, played a core role in the above relationships. CONCLUSION Our results first revealed that individual and mixed OPFRs were associated with hyperuricemia, in which the inflammatory response plays an important role. Further longitudinal studies are warranted to consolidate or refute our main findings.
Collapse
Affiliation(s)
- Yuxuan Tan
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Yingyin Fu
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Huojie Yao
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Haiying Li
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Xiaomei Wu
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Ziang Guo
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Xiao Liang
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Mincong Kuang
- Center for Disease Control and Prevention of Doumen District, Zhuhai 519125, Guangdong, PR China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
8
|
Oh J, Buckley JP, Li X, Gachigi KK, Kannan K, Lyu W, Ames JL, Barrett ES, Bastain TM, Breton CV, Buss C, Croen LA, Dunlop AL, Ferrara A, Ghassabian A, Herbstman JB, Hernandez-Castro I, Hertz-Picciotto I, Kahn LG, Karagas MR, Kuiper JR, McEvoy CT, Meeker JD, Morello-Frosch R, Padula AM, Romano ME, Sathyanarayana S, Schantz S, Schmidt RJ, Simhan H, Starling AP, Tylavsky FA, Volk HE, Woodruff TJ, Zhu Y, Bennett DH. Associations of Organophosphate Ester Flame Retardant Exposures during Pregnancy with Gestational Duration and Fetal Growth: The Environmental influences on Child Health Outcomes (ECHO) Program. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17004. [PMID: 38262621 PMCID: PMC10805613 DOI: 10.1289/ehp13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Widespread exposure to organophosphate ester (OPE) flame retardants with potential reproductive toxicity raises concern regarding the impacts of gestational exposure on birth outcomes. Previous studies of prenatal OPE exposure and birth outcomes had limited sample sizes, with inconclusive results. OBJECTIVES We conducted a collaborative analysis of associations between gestational OPE exposures and adverse birth outcomes and tested whether associations were modified by sex. METHODS We included 6,646 pregnant participants from 16 cohorts in the Environmental influences on Child Health Outcomes (ECHO) Program. Nine OPE biomarkers were quantified in maternal urine samples collected primarily during the second and third trimester and modeled as log 2 -transformed continuous, categorized (high/low/nondetect), or dichotomous (detect/nondetect) variables depending on detection frequency. We used covariate-adjusted linear, logistic, and multinomial regression with generalized estimating equations, accounting for cohort-level clustering, to estimate associations of OPE biomarkers with gestational length and birth weight outcomes. Secondarily, we assessed effect modification by sex. RESULTS Three OPE biomarkers [diphenyl phosphate (DPHP), a composite of dibutyl phosphate and di-isobutyl phosphate (DBUP/DIBP), and bis(1,3-dichloro-2-propyl) phosphate] were detected in > 85 % of participants. In adjusted models, DBUP/DIBP [odds ratio (OR) per doubling = 1.07 ; 95% confidence interval (CI): 1.02, 1.12] and bis(butoxyethyl) phosphate (OR for high vs. nondetect = 1.25 ; 95% CI: 1.06, 1.46), but not other OPE biomarkers, were associated with higher odds of preterm birth. We observed effect modification by sex for associations of DPHP and high bis(2-chloroethyl) phosphate with completed gestational weeks and odds of preterm birth, with adverse associations among females. In addition, newborns of mothers with detectable bis(1-chloro-2-propyl) phosphate, bis(2-methylphenyl) phosphate, and dipropyl phosphate had higher birth weight-for-gestational-age z -scores (β for detect vs. nondetect = 0.04 - 0.07 ); other chemicals showed null associations. DISCUSSION In the largest study to date, we find gestational exposures to several OPEs are associated with earlier timing of birth, especially among female neonates, or with greater fetal growth. https://doi.org/10.1289/EHP13182.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Public Health Sciences, University of California Davis (UC-Davis), Davis, California, USA
| | - Jessie P. Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, North Carolina, USA
| | - Xuan Li
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kennedy K. Gachigi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, Division of Environmental Health Sciences, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Wenjie Lyu
- Department of Pediatrics, New York University (NYU) Grossman School of Medicine, New York, New York, USA
- Department of Environmental Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Jennifer L. Ames
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Theresa M. Bastain
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Claudia Buss
- Department of Medical Psychology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, UC-Irvine School of Medicine, Orange, California, USA
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University (NYU) Grossman School of Medicine, New York, New York, USA
- Department of Environmental Medicine, NYU Grossman School of Medicine, New York, New York, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
| | - Julie B. Herbstman
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Ixel Hernandez-Castro
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California Davis (UC-Davis), Davis, California, USA
- Medical Investigations of Neurodevelopmental Disorders Institute, UC-Davis, Sacramento, California, USA
| | - Linda G. Kahn
- Department of Pediatrics, New York University (NYU) Grossman School of Medicine, New York, New York, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Jordan R. Kuiper
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Cindy T. McEvoy
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management and School of Public Health, UC-Berkeley, Berkeley, California, USA
| | - Amy M. Padula
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Megan E. Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington and Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Susan Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California Davis (UC-Davis), Davis, California, USA
- Medical Investigations of Neurodevelopmental Disorders Institute, UC-Davis, Sacramento, California, USA
| | - Hyagriv Simhan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anne P. Starling
- Department of Epidemiology, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Frances A. Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Heather E. Volk
- Department of Mental Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tracey J. Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California Davis (UC-Davis), Davis, California, USA
| | | |
Collapse
|
9
|
Cheng FJ, Wang CH, Pan HY, Chen CC, Huang WT, Li SH, Wang LJ, Wang CC, Lee WC, Tsai KF, Ou YC, Kung CT. Levels of organophosphate flame retardants and their metabolites among 391 volunteers in Taiwan: difference between adults and children. Front Public Health 2023; 11:1186561. [PMID: 37711251 PMCID: PMC10499440 DOI: 10.3389/fpubh.2023.1186561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Background Organophosphate flame retardants (OPFRs) are ubiquitous in the environment. The compositions and concentrations of different OPFRs metabolites vary in different environments depending on different human activities. The objective of the present study was to evaluate the exposure of different age groups to OPFRs in Taiwan. Methods Volunteers provided urine samples and responded to questionnaires including demographic factors, underlying disease, lifestyle information, and occupation from October 2021 to January 2022. OPFR measurements were performed using a Waters Acquity Ultra-Performance Liquid Chromatography system coupled with a Waters Xevo TQ-XS mass spectrometer. Results A total of 391 volunteers (74 children and 317 adults) were enrolled in this study. The concentrations (presented as μg/g creatinine) of bis(1,3-dichloro-2-propyl) phosphate (BDCPP, p = 0.029) and tri-n-butyl phosphate (TNBP, p = 0.008) were higher in the adult group, while the concentrations of bis-2-chloroethyl phosphate (BCEP, p = 0.024), diphenyl phosphate (DPHP, p < 0.001), tris(1,3-dichloro-2-propyl) phosphate (TDCPP, p = 0.009), and Tris(2-butoxyethyl) phosphate (TBEP, p = 0.007) were higher in the child group. Compared with school age children (>6 years), the concentration of di(2-n-butoxyethyl) phthalate (DBEP, 1.14 vs. 0.20 μg/g creatinine, p = 0.001), DPHP (1.23 vs. 0.54 μg/g creatinine, p = 0.036), TBEP (1.63 vs. 0.29 μg/g creatinine, p < 0.001), and the sum of OPFR metabolites (ΣOPFRs, 6.58 vs. 2.04 μg/g creatinine, p < 0.001) were statistically higher in preschool-aged children. After adjusting for confounding factors, pre-school age [odds ratio (OR): 4.579, 95% confidence interval (CI): 1.389-13.115] and current smoker (OR: 5.328, 95%CI: 1.858-14.955) were independently associated with the risk of ΣOPFRs higher than 90 percentile. Conclusion This study revealed the distribution of different OPFRs metabolites in children and adults. DBEP, DPHP, TBEP, and ΣOPFR were higher in preschool-aged children. Pre-school age and current smoking status were independent risk factors for ΣOPFRs higher than 90 percentile.
Collapse
Affiliation(s)
- Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Hwa Wang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Section of Neonatology, Pediatrics Department, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Lin L, Huang Y, Wang P, Chen CC, Qian W, Zhu X, Xu X. Environmental occurrence and ecotoxicity of aquaculture-derived plastic leachates. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132015. [PMID: 37437480 DOI: 10.1016/j.jhazmat.2023.132015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Plastic products such as fishing nets and foam buoys have been widely used in aquaculture. To enhance the desirable characteristics of the final equipment, plastic gear for aquaculture is mixed with a wide range of additives. Recent studies have shown that additives could be leached out to the environment with a long-term use of aquaculture plastics, forming aquaculture-derived plastic leachates. It should be emphasized that some leachates such as phthalic acid esters (PAEs) and organophosphate esters (OPEs) are endocrine disruptors, which could increase the exposure risk of aquatic products and subsequently display potential threats to human health via food chain. However, systematic studies on the release, occurrence, bioaccumulation, and toxic effects of aquaculture-derived plastic leachates are missing, overlooking their potential sources and ecotoxicological risks in aquatic environments. We have reviewed and compared the concentrations of major plastic leachates in the water environment and organisms of global aquaculture and non-farmed areas, confirming that aquaculture leachate is an important source of contaminants in the environment. Moreover, the toxic effects of aquaculture-derived plastic additives and the related mechanisms are summarized with fish as a representative, revealing their potential health risk. In addition, we proposed current challenges and future research needs, which provides scientific guidance for the use and management of plastic products in aquaculture industries.
Collapse
Affiliation(s)
- Lin Lin
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuxiong Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Pu Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ciara Chun Chen
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China
| | - Wei Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Guangdong Laboratory of Southern Ocean Science and Engineering (Zhuhai), Zhuhai 519000, China; College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
11
|
Bonnefille B, Karlsson O, Rian MB, Raqib R, Parvez F, Papazian S, Islam MS, Martin JW. Nontarget Analysis of Polluted Surface Waters in Bangladesh Using Open Science Workflows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6808-6824. [PMID: 37083417 PMCID: PMC10157886 DOI: 10.1021/acs.est.2c08200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nontarget mass spectrometry has great potential to reveal patterns of water contamination globally through community science, but few studies are conducted in low-income countries, nor with open-source workflows, and few datasets are FAIR (Findable, Accessible, Interoperable, Reusable). Water was collected from urban and rural rivers around Dhaka, Bangladesh, and analyzed by liquid chromatography high-resolution mass spectrometry in four ionization modes (electrospray ionization ±, atmospheric pressure chemical ionization ±) with data-independent MS2 acquisition. The acquisition strategy was complementary: 19,427 and 7365 features were unique to ESI and APCI, respectively. The complexity of water pollution was revealed by >26,000 unique molecular features resolved by MS-DIAL, among which >20,000 correlated with urban sources in Dhaka. A major wastewater treatment plant was not a dominant pollution source, consistent with major contributions from uncontrolled urban drainage, a result that encourages development of further wastewater infrastructures. Matching of deconvoluted MS2 spectra to public libraries resulted in 62 confident annotations (i.e., Level 1-2a) and allowed semiquantification of 42 analytes including pharmaceuticals, pesticides, and personal care products. In silico structure prediction for the top 100 unknown molecular features associated with an urban source allowed 15 additional chemicals of anthropogenic origin to be annotated (i.e., Level 3). The authentic MS2 spectra were uploaded to MassBank Europe, mass spectral data were openly shared on the MassIVE repository, a tool (i.e., MASST) that could be used for community science environmental surveillance was demonstrated, and current limitations were discussed.
Collapse
Affiliation(s)
- Bénilde Bonnefille
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Oskar Karlsson
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - May Britt Rian
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Unit, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Stefano Papazian
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - M Sirajul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Jonathan W Martin
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| |
Collapse
|
12
|
Ju J, Wu X, Mao W, Zhang C, Ge W, Wang Y, Ma S, Zhu Y. The growth toxicity and neurotoxicity mechanism of waterborne TBOEP to nematodes: Insights from transcriptomic and metabolomic profiles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106401. [PMID: 36736151 DOI: 10.1016/j.aquatox.2023.106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Tris(2-butoxy) ethyl phosphate (TBOEP) is a typical organophosphorus flame retardant (OPFR), which has been detected in natural water bodies and drinking water and has reached a certain concentration. As a new type of organic pollutant, the environmental health risk of TBOEP needs to be assessed urgently. Here, Caenorhabditis elegans were exposed to 0, 50, 500, and 5000 ng/L TBOEP in water for 72 h. The results showed that TBOEP exposure caused concentration-dependent inhibition to the growth of nematodes, while exposure to 5000 ng/L TBOEP significantly inhibited the locomotor behavior of nematodes. Transcriptomic and metabolomic analysis showed that the disturbances in neurotransmitter transmission and amino acid, carbohydrate, and lipid metabolism were the reason for the neurotoxicity and growth toxicity of TBOEP to nematodes. These results provide basic data and a theoretical basis for evaluating the environmental health risks of organophosphorus flame retardants.
Collapse
Affiliation(s)
- Jingjuan Ju
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Weiya Mao
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chenran Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wenjie Ge
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yiran Wang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Siyang Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ya Zhu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
13
|
Yan W, Li G, Lu Q, Hou J, Pan M, Peng M, Peng X, Wan H, Liu X, Wu Q. Molecular Mechanisms of Tebuconazole Affecting the Social Behavior and Reproduction of Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3928. [PMID: 36900939 PMCID: PMC10002025 DOI: 10.3390/ijerph20053928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to explore the underlying mechanism of adverse effects caused by tebuconazole (TEB) on the reproduction of aquatic organisms In the present study, in order to explore the effects of TEB on reproduction, four-month-old zebrafish were exposed to TEB (0, DMSO, 0.4 mg/L, 0.8 mg/L, and 1.6 mg/L) for 21 days. After exposure, the accumulations of TEB in gonads were observed and the cumulative egg production was evidently decreased. The decline of fertilization rate in F1 embryos was also observed. Then the changes in sperm motility and histomorphology of gonads were discovered, evaluating that TEB had adverse effects on gonadal development. Additionally, we also found the alternations of social behavior, 17β-estradiol (E2) level, and testosterone (T) level. Furthermore, the expression levels of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis and social behavior were remarkably altered. Taken together, it could be concluded that TEB affected the egg production and fertilization rate by interfering with gonadal development, sex hormone secretion, and social behavior, which were eventually attributed to the disruption of the expressions of genes associated with the HPG axis and social behavior. This study provides a new perspective to understanding the mechanism of TEB-induced reproductive toxicity.
Collapse
Affiliation(s)
- Wei Yan
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiqi Lu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Maomin Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xitian Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hui Wan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| |
Collapse
|
14
|
Wang S, Zheng N, Sun S, Ji Y, An Q, Li X, Li Z, Zhang W. Bioaccumulation of organophosphorus flame retardants in marine organisms in Liaodong Bay and their potential ecological risks based on species sensitivity distribution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120812. [PMID: 36473644 DOI: 10.1016/j.envpol.2022.120812] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Although organophosphorus flame retardants (OPFRs) in aquatic environments have received increasing concern, little information is available on their bioaccumulation and trophic transfer in marine food webs. Consequently, the risks of OPFRs to marine ecosystems are unknown. In this study, seven OPFR compounds in marine biological samples collected from Liaodong Bay, Bohai Sea, were analyzed to evaluate their level and biological amplification effect in the marine food web. The total OPFRs of marine organisms in Liaodong Bay ranged from 2.60 to 776 ng/g ww, and lipids were critical factors affecting the concentration of OPFRs in marine species. Tris (2-ethylhexyl) phosphate (TEHP) and tris(1-chloro-2-propyl) phosphate (TCIPP) were the OPFRs most frequently detected in marine species. Still, tris(2-chloroethyl) phosphate (TCEP) was dominant in most marine species (16/24), and the content of chlorinated OPFRs was highest. At the same time, alkyl OPFRs and aryl OPFRs accounted for the same proportion. No correlation between OPFR concentration and the trophic level was observed in marine organisms from Liaodong Bay. It was shown in the results of the species sensitivity distribution that TCIPP in Chinese seawater does not pose a potential ecological risk to marine species. However, much work remains to be done on accumulating information and the ecological risks of OPFRs in different marine food webs.
Collapse
Affiliation(s)
- Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China.
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Zimeng Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Wenhui Zhang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| |
Collapse
|
15
|
Sulukan E, Baran A, Kankaynar M, Kızıltan T, Bolat İ, Yıldırım S, Ceyhun HA, Ceyhun SB. Global warming and glyphosate toxicity (II): Offspring zebrafish modelling with behavioral, morphological and immunohistochemical approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158903. [PMID: 36419276 DOI: 10.1016/j.scitotenv.2022.158903] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The increase in temperature due to global warming greatly affects the toxicity produced by pesticides in the aquatic ecosystem. Studies investigating the effects of such environmental stress factors on next generations are important in terms of the sustainability of ecosystems. In this study, the effects of parental synergistic exposure to glyphosate and temperature increase on the next generation were investigated in a zebrafish model. For this purpose, adult zebrafish were exposed to 1 ppm and 5 ppm glyphosate for 96 h at four different temperatures (28.5, 29.0, 29.5, 30.0 °C). At the end of this period, some of the fish were subjected to the recovery process for 10 days. At the end of both treatments, a new generation was taken from the fish and morphological, physiological, molecular and behavioral analysis were performed on the offspring. According to the results, in parallel with the 0.5-degree temperature increase applied to the parents with glyphosate exposure, lower survival rate, delay in hatching, increased body malformations and lower blood flow and heart rate were detected in the offspring. In addition, according to the results of whole mouth larva staining, increased apoptosis, free oxygen radical formation and lipid accumulation were detected in the offspring. Moreover, it has been observed that the temperature increases to which the parents are exposed affects the light signal transmission and serotonin pathways in the offspring, resulting in more dark/light locomotor activity and increased thigmotaxis.
Collapse
Affiliation(s)
- Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Tuğba Kızıltan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Hacer Akgül Ceyhun
- Department of Psychiatry, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
16
|
Cheng R, Zhang Z, Zhan C, Qin T, Wang L, Zhang X. Environmentally relevant concentrations of selenite trigger reproductive toxicity by affecting oocyte development and promoting larval apoptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120648. [PMID: 36375579 DOI: 10.1016/j.envpol.2022.120648] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
As a trace element, selenium (Se) has been widely added to food to maintain the physiological homeostasis of the organism. The adverse effects of Se on the reproduction of zebrafish have been investigated, however, the effects of Se on the maturation and apoptosis of zebrafish oocytes remain unclear. In this study, zebrafish embryos (2 h post fertilization, hpf) were exposed to 0, 12.5, 25, 50, and 100 μg Se/L for 120 days. The results demonstrated that exposure to selenite decreased the gonad-somatic index (GSI) and cumulative production of eggs, inhibited oocyte maturation (OM), and increased oocyte apoptosis in females. Exposure to selenite decreased the contents of sex hormones (E2) in the serum and increased the levels of reactive oxygen species (ROS) and cyclic adenosine monophosphate (cAMP) in the ovary. Furthermore, exposure to selenite downregulated the transcription level of genes on the HPG axis, decreased the phosphorylation level of CyclinB and the protein content of cAMP-dependent protein kinase (Pka), and upregulated the expression of genes (eif2s1a and chop) and proteins (Grp78, Chop) related to endoplasmic reticulum stress (ERS) and apoptosis. Moreover, maternal exposure to selenite resulted in the apoptosis of offspring and upregulated the content of ROS and the transcription level of genes related to ERS and apoptosis.
Collapse
Affiliation(s)
- Rui Cheng
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, MWR & CAS, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhiming Zhang
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, MWR & CAS, Wuhan, 430070, China
| | - Chunhua Zhan
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Tianlong Qin
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Li Wang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
17
|
Pan HY, Cheng FJ, Huang KC, Kung CT, Huang WT, You HL, Li SH, Wang CC, Lee WC, Hsu PC. Exposure to tris(2-butoxyethyl) phosphate induces abnormal sperm morphology and testicular histopathology in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113718. [PMID: 35660377 DOI: 10.1016/j.ecoenv.2022.113718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Tris(2-butoxyethyl) phosphate (TBEP) is one of the most abundant organophosphate flame retardants in the environment. This study aimed to evaluate the effect of TBEP exposure during adolescence on male reproductive function in adult rats. Male Sprague-Dawley rats were treated with 20 and 200 mg/kg body weight of TBEP or corn oil from postnatal day (PND) 42 to PND 105. A significant increase in the proportion of sperm with abnormal morphology (flattened head and bent tail) and superoxide anion (O2-.) production in the sperm of the 200 mg/kg treated group was observed (p < 0.05). Excessive production of sperm hydrogen peroxide (H2O2) was found in both the 20 and 200 mg/kg treatment groups (p < 0.05). Disruption of testicular structure was observed in the 20 and 200 mg/kg treated groups and seminiferous tubule degeneration was observed in the 200 mg/kg treated group. Our study demonstrated the adverse effects of TBEP on male reproductive function in rats.
Collapse
Affiliation(s)
- Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan; Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan
| | - Kuo-Chen Huang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan.
| |
Collapse
|
18
|
Meng Y, Xu X, Xie G, Zhang Y, Chen S, Qiu Y, Zhu Z, Zhang H, Yin D. Alkyl organophosphate flame retardants (OPFRs) induce lung inflammation and aggravate OVA-simulated asthmatic response via the NF-кB signaling pathway. ENVIRONMENT INTERNATIONAL 2022; 163:107209. [PMID: 35358787 DOI: 10.1016/j.envint.2022.107209] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Alkyl organophosphate flame retardants (OPFRs), tri-n-butyl phosphate (TnBP) and tris(2-butoxyethyl) phosphate (TBOEP), are ubiquitously detected in indoor and outdoor environments and their inhalation may result in lung damage. This study examined pulmonary toxicity after exposure to TnBP or TBOEP and investigated aggravation of inflammation and immunoreaction by TnBP in an ovalbumin (OVA)-induced mice model. Transcriptomics were used to further reveal the underlying mechanism. Exposure to TnBP or TBOEP resulted in pathological damage, including edema and thickened alveolar septum. In comparison with the control, enhanced levels of superoxide dismutase (SOD) (p < 0.01 in TnBP (High) group and p < 0.05 in TBOEP (High) group), glutathione peroxidase (GSH-px) (p < 0.05), malondialdehyde (MDA) (p < 0.01), and cytokines under a dose-dependent relationship were noted, and the expression of the Fkbp5/Nos3/MAPK/NF-кB signaling pathway (p < 0.01) was upregulated in the TnBP and TBOEP groups. Moreover, the combined exposure of TnBP and OVA exacerbated the allergic inflammatory response, including airway hyperresponsiveness, leukocytosis, cellular exudation and infiltration, secretion of inflammatory mediators, and higher expression of IgE (p < 0.01). Transcriptomics results demonstrated that the PI3K/Akt/NF-кB signal pathway was involved in TnBP-aggravated asthmatic mice. Exposure to TnBP or TBOEP resulted in oxidative damage and leukocyte-induced lung injury. TnBP can further facilitate OVA-induced asthma through an inflammatory response. This study is the first to reveal the pulmonary toxicity and potential mechanism induced by OPFRs through an in-vivo model.
Collapse
Affiliation(s)
- Yuan Meng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Guangming Xie
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yunwei Zhang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Shiyan Chen
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Hua Zhang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
19
|
Meng Y, Xu X, Niu D, Xu Y, Qiu Y, Zhu Z, Zhang H, Yin D. Organophosphate flame retardants induce oxidative stress and Chop/Caspase 3-related apoptosis via Sod1/p53/Map3k6/Fkbp5 in NCI-1975 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153160. [PMID: 35051466 DOI: 10.1016/j.scitotenv.2022.153160] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been ubiquitously detected in dust and air which could cause damage to human health through inhalation. Currently the understanding of their adverse effects and potential mechanisms on the lung are still limited. In this study, human non-small cell lung cancer cell line NCI-H1975 was used to investigate the cytotoxicity, oxidative stress, cellular apoptosis of 9 typical OPFRs with concentrations varied from 0 to 200 μM, and their toxic mechanism associated with molecular structure was compared. After 72 h, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) displayed the highest cytotoxicity, followed by 2-ethylhexyl diphenyl phosphate (EHDPP), tris(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroisopropyl) phosphate (TCIPP), while tris(2-chloroethyl) phosphate (TCEP) and tris(2-ethylhexyl) phosphate (TEHP) exhibited the least suppression on cell viability. These results indicated that the variation of cytotoxicity on OPFRs could only be partially explained by their ester linkage. Moreover, the overexpression of intracellular reactive oxygen species (ROS), free Ca2+ and cellular apoptosis suggested that exposure to OPFRs can lead to apoptosis related to oxidative stress. Six genes associated with oxidative stress and apoptosis were upregulated dramatically compared with the control, demonstrating OPFRs induced Chop/Caspase 3-related apoptosis by activating Sod1/p53/Map3k6/Fkbp5 expression in NCI-H1975 cells. This is the first study to investigate cytotoxicity and related mechanism on commonly-used OPFRs in NCI-H1975 cells.
Collapse
Affiliation(s)
- Yuan Meng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Dong Niu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yangjie Xu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Hua Zhang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
20
|
Sutha J, Anila PA, Gayathri M, Ramesh M. Long term exposure to tris (2-chloroethyl) phosphate (TCEP) causes alterations in reproductive hormones, vitellogenin, antioxidant enzymes, and histology of gonads in zebrafish (Danio rerio): In vivo and computational analysis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109263. [PMID: 35032655 DOI: 10.1016/j.cbpc.2021.109263] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/24/2023]
Abstract
In aquatic milieus, tris (2-chloroethyl) phosphate (TCEP) was detected as an emerging environmental contaminant. In this study, in vivo experiment and in-silico docking was integrated systematically to explore the toxic mechanisms of TCEP using zebrafish (Danio rerio). Fish (mean weight of 0.24 ± 0.02 g) were exposed to 100 and 1500 μg L-1 concentrations of TCEP for 28 days under the static renewal method. During chronic exposure, plasma steroid hormones such as testosterone (T) and 17β estradiol (E2), plasma vitellogenin (Vtg) and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and lipid peroxidation (LPO) in gonads were significantly (P < 0.05) altered in TCEP exposed group (1500 μg L-1) compared to the control group. However, the alterations of these parameters were not significant on the 14th day (except Vtg and GR in testis) in 100 μg L-1 of TCEP exposed groups. There were no significant differences (p > 0.05) in the growth parameters comparing TCEP exposed groups with the control group. The gonads of fish exposed to TCEP showed significant histopathological changes when compared to the control groups. A docking study observed that TCEP possessed binding affinity with the estrogen receptor (ERβ) and androgen receptor (AR). These data indicate that TCEP at tested concentrations adversely affects the aquatic organisms.
Collapse
Affiliation(s)
- Jesudass Sutha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Pottanthara Ashokan Anila
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Murugesh Gayathri
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| |
Collapse
|
21
|
Ou-Yang K, Feng T, Han Y, Li G, Li J, Ma H. Bioaccumulation, metabolism and endocrine-reproductive effects of metolachlor and its S-enantiomer in adult zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149826. [PMID: 34455281 DOI: 10.1016/j.scitotenv.2021.149826] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The aim of the present study was to evaluate the enantioselective bioaccumulation, metabolism, and toxic effects of metolachlor and S-metolachlor in zebrafish. Five-month-old zebrafish were exposed to metolachlor and S-metolachlor for 28 days, then transferred to clean water and purified for 7 days. In the uptake phase, S-metolachlor was preferentially accumulated at low concentrations, while metolachlor was preferentially accumulated at high concentrations. The two chemicals were metabolized by >70% in zebrafish on the first day and showed same metabolic process. At the accumulation endpoint, S-metolachlor had no significant inhibitory effect on the enzymes activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and developmental indicators of zebrafish. However, 300 μg/L metolachlor significantly inhibited the enzymes activities of SOD, CAT and GST and affected the liver development. The preferential enrichment of metolachlor at the high concentration may be the reason for its higher toxicity to zebrafish. Further research demonstrated that metolachlor significantly altered the expression of hypothalamic-pituitary-gonadal (HPG) axis-related genes, including gnrh2, gnrh3, lhβ, 17βhsd and cyp19a, thereby reducing the levels of testosterone (T) in females and sex hormones (estradiol and testosterone) in males. S-metolachlor increased the levels of estradiol (E2) in females by altering the expression of HPG axis-related genes such as fshβ, cyp17, 17βhsd and cyp19a. The mechanism of metolachlor and S-metolachlor on the endocrine disrupting effects of zebrafish is different, which may be sex-specific. 7 days after transferring the exposed zebrafish to clean water, most of the enzymes activities, sex hormone levels and related gene expression levels returned to normal, which may be related to the rapid metabolism of the two chemicals.
Collapse
Affiliation(s)
- Kang Ou-Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tangqi Feng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifang Han
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongju Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
Zhang H, Liu T, Song X, Zhou Q, Tang J, Sun Q, Pu Y, Yin L, Zhang J. Study on the reproductive toxicity and mechanism of tri-n-butyl phosphate (TnBP) in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112896. [PMID: 34673412 DOI: 10.1016/j.ecoenv.2021.112896] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Tri-n-butyl phosphate (TnBP), a typical alkyl organophosphate ester is widely used as an emerging flame retardant for polybrominated diphenyl ethers alternatives, but the potential toxicity and mechanism are unclear. In this study, the reproductive toxicity of TnBP and its related mechanisms were explored using the Caenorhabditis elegans (C. elegans) model. After TnBP (100-1000 μg/L) exposure, brood size and the number of fertilized eggs in the uterus in C. elegans were significantly reduced, the relative area of gonad arm and the number of total germline cells in C. elegans were significantly reduced, germ cell apoptosis and germ cell DNA damage in C. elegans were significantly increased, the level of ROS in C. elegans was significantly increased. Furthermore, TnBP exposure caused abnormal gene expressions of cell apoptosis (ced-9, ced-4 and ced-3), DNA damage (hus-1, clk-2, cep-1 and egl-1) and oxidative stress (mev-1 and gas-1). TnBP exposure can lead to reproductive ability decreased and gonad development impaired in C. elegans, the mechanism of TnBP reduced reproductive ability may be related to germ cell apoptosis, germ cell DNA damage and oxidative stress. Environmental exposure to TnBP may have potential reproductive toxicity.
Collapse
Affiliation(s)
- Hongdan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tongtong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xuelong Song
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qinyu Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jielin Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qianyu Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
23
|
Wang SC, Gao ZY, Liu FF, Chen SQ, Liu GZ. Effects of polystyrene and triphenyl phosphate on growth, photosynthesis and oxidative stress of Chaetoceros meülleri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149180. [PMID: 34311354 DOI: 10.1016/j.scitotenv.2021.149180] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The toxicity of microplastics to marine organisms has attracted much attention; however, studies of their effects on marine microalgae remain limited. Here, the effects of the single and combined toxicity of polystyrene (PS) and triphenyl phosphate (TPhP) on the cell growth, photosynthesis, and oxidative stress of Chaetoceros meülleri were investigated. PS inhibited growth of the algae cells and caused a dose-dependent effect on oxidative stress. The significantly high production of reactive oxygen species (ROS) induced severe cell membrane damage, as confirmed by high fluorescence polarization. However, there was no obvious decrease in chlorophyll a content, and 80 mg/L of PS significantly promoted chlorophyll a synthesis. The TPhP also inhibited cell growth, except at low concentrations (0.2-0.8 mg/L), which stimulated algae growth over 48 h. Moreover, no obvious decrease in chlorophyll a and maximal photochemical efficiency of PSII was found in the TPhP experimental groups except for 3.2 mg/L TPhP, where the rapid light curves showed a significantly reduced photosynthetic capacity of algae. In addition, TPhP caused high ROS levels at 96 h, resulting in cell membrane damage. Using the additive index and independent action methods, the combined toxic effects of PS and TPhP on the algae were evaluated as antagonistic; however, cell membrane damage caused by high ROS levels was still noticeable. This study has shown the potential toxicity of PS and TPhP to marine microalgae, and provided insights into the combined risk assessment of TPhP and microplastics in the marine environment.
Collapse
Affiliation(s)
- Su-Chun Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Zhi-Yin Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Fei-Fei Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China.
| | - Shi-Qiang Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Guang-Zhou Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
24
|
Shi Q, Guo W, Shen Q, Han J, Lei L, Chen L, Yang L, Feng C, Zhou B. In vitro biolayer interferometry analysis of acetylcholinesterase as a potential target of aryl-organophosphorus flame-retardants. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124999. [PMID: 33454525 DOI: 10.1016/j.jhazmat.2020.124999] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Organophosphorus flame retardants (OPFRs) have been implicated as neurotoxicants, but their potential neurotoxicity and mechanisms remain poorly understood. Herein, we investigated the neurotoxicity of selected OPFRs using zebrafish as a model organism. Environmentally relevant concentrations (3-1500 nM) of three classes of OPFRs (aryl-OPFRs, chlorinated-OPFRs, and alkyl-OPFRs) were tested in zebrafish larvae (2-144 h post-fertilisation) alongside the neurotoxic chemical chlorpyrifos (CPF) that inhibits acetylcholinesterase (AChE). Exposure to aryl-OPFRs and CPF inhibited AChE activities, while chlorinated- and alkyl-OPFRs did not inhibit these enzymes. Biolayer interferometry (BLI) was used to probe interactions between OPFRs and AChE. The association and dissociation response curves showed that, like CPF, all three selected aryl-OPFRs, triphenyl phosphate (TPHP), tricresyl phosphate (TCP) and cresyl diphenyl phosphate (CDP), bound directly to AChE. The affinity constant (KD) for TPHP, TCP, CDP and CPF was 2.18 × 10-4, 5.47 × 10-5, 1.05 × 10-4 and 1.70 × 10-5 M, respectively. In addition, molecular docking revealed that TPHP, TCP, CDP and CPF bound to AChE with glide scores of - 7.8, - 8.3, - 8.1 and - 7.3, respectively. Furthermore, the calculated binding affinity between OPFRs and AChE correlated well with the KD values measured by BLI. The present study revealed that aryl-OPFRs can act as potent AChE inhibitors, and may therefore present a significant ecological risk to aquatic organisms.
Collapse
Affiliation(s)
- Qipeng Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wei Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Center for Life Sciences, Yunnan University, Kunming 650091, China
| | - Qiancheng Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
25
|
Wang X, Chen P, Zhao L, Zhu L, Wu F. Transplacental Behaviors of Organophosphate Tri- and Diesters Based on Paired Human Maternal and Cord Whole Blood: Efficiencies and Impact Factors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3091-3100. [PMID: 33397100 DOI: 10.1021/acs.est.0c06095] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organophosphate tri- and diesters (tri-OPEs and di-OPEs) were quantified in 63 paired maternal and cord whole blood samples collected in Hubei, China, in which tri-o-cresyl phosphate (ToCP) was predominant. The transplacental transfer efficiencies (expressed as cord blood to maternal blood (C:M) concentration ratios) of aryl-tri-OPEs, such as ToCP (1.61) and triphenyl phosphate (TPHP) (1.06), were higher than those of alkyl-tri-OPEs (0.66-0.76). For the target tri-OPEs and some traditional organic compounds, the C:M ratios first increased with log Kow in the range of 1.63-5.23 and then decreased, showing a parabolic relationship. However, ToCP, with a log Kow of 6.34, deviated from this relationship and displayed the highest C:M ratio (1.61). Molecular docking indicated a very strong binding affinity between ToCP and transthyretin, suggesting that ToCP might be actively transported by transthyretin in the placenta. The di-OPE levels in the blood samples were significantly lower than the corresponding tri-OPE levels, and those in the cord blood were influenced not only by their transplacental behaviors but also by their low excretion rates and the metabolic characteristics of their parent compounds in the fetus. This study provides useful information for accurately assessing the health risks posed by tri-OPEs to pregnant women and fetuses.
Collapse
Affiliation(s)
- Xiaolei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Pengyu Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| |
Collapse
|
26
|
Xiong H, Huang Y, Mao Y, Liu C, Wang J. Inhibition in growth and cardiotoxicity of tris (2-butoxyethyl) phosphate through down-regulating Wnt signaling pathway in early developmental stage of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111431. [PMID: 33069947 DOI: 10.1016/j.ecoenv.2020.111431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
As a common organophosphorus flame retardant, tris (2-butoxyethyl) phosphate (TBOEP) is detected in water environment and aquatic animals extensively. Despite previous researches have reported the developmental toxicity of TBOEP in zebrafish (Danio rerio) larvae, few research focused on its underlying mechanisms. In this study, zebrafish embryos were exposed to 0, 20, 200, 1000 and 2000 µg/L TBOEP from 2 until 120 h post-fertilization (hpf) to determine potential mechanisms of developmental toxicity of this compound. Early developmental stage parameters such as body length, survival rate, hatching rate and heart rate were decreased, while malformation rate was ascended. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay was carried out at 12, 24, 72 and 120 hpf to demonstrate alterations in expression of genes of Wnt signaling pathway. The results indicated that axin1 was significantly up-regulated, while β-catenin, pkc and wnt11 were down-regulated. Correlation analysis indicated that expression of these genes was significantly correlated with body length. Furthermore, apoptosis was detected in heart region by acridine orange (AO) staining and terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labeling (TUNEL) assay. In addition, at 120 hpf, occurrence of oxidative stress was observed in zebrafish larvae. Moreover, 6-Bromoindirubin-3'-oxime (BIO), an activator of Wnt pathway, was found to alleviate the inhibiting effects of TBOEP on zebrafish growth. The overall outcomes offered novel viewpoints in toxic effects of TBOEP, and down-regulating Wnt signaling pathway were able to reveal some potential mechanisms of developmental toxicity of TBOEP in zebrafish larvae.
Collapse
Affiliation(s)
- Hao Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangyang Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuchao Mao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Lu J, Wu Q, Yang Q, Li G, Wang R, Liu Y, Duan C, Duan S, He X, Huang Z, Peng X, Yan W, Jiang J. Molecular mechanism of reproductive toxicity induced by beta-cypermethrin in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108894. [PMID: 32949816 DOI: 10.1016/j.cbpc.2020.108894] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Beta-cypermethrin, a type II synthetic pyrethroid insecticide, is widely used in pest control. Several studies have demonstrated that beta-cypermethrin can affect the reproductive system of mammals. However, there is still a scarcity of information about the reproductive toxicity to fish induced by beta-cypermethrin and its molecular mechanism. Therefore, this study was conducted to address this scientific question, in which the adult zebrafish were exposed to 0 (blank control), 0 (acetone solvent control), 0.1, 0.5, and 2.5 μg/L of beta-cypermethrin for 21 days. A decrease in cumulative egg production of zebrafish was observed, indicating that beta-cypermethrin had a negative impact on reproductive capacity of zebrafish. Regarding the histomorphological analysis of gonads, the delay of gonadal development was observed after exposure for 21 days. In addition, significant changes in plasma 17β-estradiol (E2) and testosterone (T) were found in zebrafish. Further exploration showed that the transcription levels of hypothalamic-pituitary-gonadal (HPG) axis-related genes were remarkably changed, which corresponded well with the alterations of hormone levels. These results demonstrated that beta-cypermethrin might have an adverse effect on the reproduction system of zebrafish through delaying gonadal development, disturbing sex hormone secretion, and affecting HPG axis gene expression. This study suggests that beta-cypermethrin poses a potential threat to the reproduction of fish populations, and the toxicity assessment of beta-cypermethrin plays a vital role in the environmental risk assessment of pesticides.
Collapse
Affiliation(s)
- Juanli Lu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Cihu Road, Huangshigang District, Huangshi 435002, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqi Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingxin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Cunyu Duan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyun Duan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuanyi He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuo Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xitian Peng
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
28
|
Wang X, Zhu J, Xue Z, Jin X, Jin Y, Fu Z. The environmental distribution and toxicity of short-chain chlorinated paraffins and underlying mechanisms: Implications for further toxicological investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133834. [PMID: 31416033 DOI: 10.1016/j.scitotenv.2019.133834] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 05/20/2023]
Abstract
Short-chain chlorinated paraffin (SCCP) pollution has become a global threat. Much attention has been paid to their environmental occurrence and toxicity. In this review, we summarized the wide distribution of SCCPs in various environmental matrices and biota, including human beings. Toxicokinetics and the toxicities of SCCPs, including lethality, hepatotoxicity, developmental toxicity, carcinogenicity, endocrine- and metabolism-disrupting effects, and immunomodulatory effects have been considered. The mechanisms of SCCP toxicity are mainly related to oxidative stress, metabolic disturbance, endocrine disruption and binding to biomacromolecules. In the future, further studies of SCCPs should focus on searching for their novel toxicity targets, and uncovering their toxic effects using transcriptomics, proteomics, metabolomics, and mutigenerational toxicity.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zimeng Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xini Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
29
|
Mo A, Wang J, Yuan M, Zhao D, Gu Z, Liu Y, Huang H, Yuan YC. Effect of sub-chronic dietary L-selenomethionine exposure on reproductive performance of Red Swamp Crayfish, (Procambarus clarkii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:749-758. [PMID: 31344537 DOI: 10.1016/j.envpol.2019.07.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The effect of selenium (Se) on the reproductive system has been investigated in both humans and vertebrates, but few studies of female fertility and reproduction in invertebrate have been reported. This study is aimed to investigate the effect of SeMet on growth performance and reproductive system after crayfish were fed with graded levels of dietary SeMet (0, 1.49, 3.29, 10.02, 30.27 or 59.8 μg Se/g dry weight) for 60 days. Crayfish treated with the high levels of SeMet (10.02, 30.27 and 59.76 μg Se/g) exhibited decreasing FW and CL in both male and female. Interestingly, Se accumulation was higher in ovary than in other tissues, suggesting that ovary may serve as a target organ for Se accumulation. We found that dietary Se concentration of 10.02 μg Se/g significantly improved the spawning rate, promoted the synchronized spawning, and up-regulated the expressions of mRNA of cdc2 and vitellogenin, with significantly increased E2 and VTG concentrations in hemolymph of female crayfish. However, a marked decrease of the E2 contents and spawning rate was observed in the groups treated with 30.27 and 59.76 μg Se/g diets. In conclusion, the results of this study indicated that the Se had maximum accumulation in ovary, affecting the reproductive capacity by intervening the expression of cdc2 and vitellogenin in the reproductive system. The LOAEL to induce FW was observed in crayfish fed with 10.02 μg Se/g diet, and its value can cause toxicity within the range of natural concentration, so the addition of Se in the feed should be within 10.02 μg Se/g.
Collapse
Affiliation(s)
- Aijie Mo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianghua Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingrui Yuan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dengxiao Zhao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zemao Gu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ya Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hongying Huang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yong Chao Yuan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shuangshui Shuanglu Institute, Huazhong Agricultural University, Wuhan 430070, China; National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|