1
|
Li Y, Yu M, Wei Y, Zhou Z, Guo Y, Yuan M, Jin J, Li J, Shen H, Wu D. Risk assessment of developmental and neurotoxicity by the flavoring agent perillaldehyde: NAC (N-acetylcysteine) mitigation of oxidative stress-mediated inhibition of the Nrf2 pathway. Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110071. [PMID: 39549861 DOI: 10.1016/j.cbpc.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Perillaldehyde (PAE), a prevalent flavoring agent, has raised safety concerns due to conflicting evidence regarding its toxicity. This study provides a comprehensive assessment of the developmental and neurotoxic effects of PAE in zebrafish, elucidating the underlying mechanisms of its toxicity. Results showed that PAE affected the viability and hatching rate of zebrafish at 96 h postfertilization with the 50 % lethal concentration (LC50) of 7.975 mg/L. Furthermore, exposed to a non-lethal concentration of 4 mg/L PAE induced a spectrum of morphological abnormalities, such as pericardial edema, delayed yolk sac absorption, reduced body length, and microphthalmia. Behavioral observations revealed that PAE reduced motor ability, and was accompanied by an increase in spontaneous turning angle and angular velocity. Using the TG(elav13:EGFP) transgenic model, we observed the number of newborn neurons was reduced, indicating that PAE induced obvious neurotoxic effects. Additionally, this concentration facilitated the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), concomitantly decreasing the activity of antioxidant enzymes. QRT-PCR analysis revealed that PAE down-regulated Nestin and Neurogenin1 gene expression, up-regulated Glipr1a and Nox1 gene expression, and inhibited the Nrf2/HO-1 pathway. Notably, co-administration of N-acetylcysteine (NAC), an inhibitor of oxidative stress, mitigated oxidative stress levels and partially ameliorated the neurotoxicity. These findings suggest that oxidative stress is the primary mediator of PAE-induced neurotoxicity. This study provides crucial insights for the safe application of PAE.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China. https://twitter.com/LiYueJMSU
| | - Manchun Yu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Ying Wei
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Zhuoshuo Zhou
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Yingxue Guo
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Min Yuan
- Science and Technology Innovation Center for College Students, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jiazheng Jin
- Science and Technology Innovation Center for College Students, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| | - Hongkuan Shen
- Jiamusi Inspection and Testing Center, Jiamusi, Heilongjiang 154007, PR China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| |
Collapse
|
2
|
Liu Y, Zhai Q, Lv J, Wu Y, Liu X, Zhang H, Wu X. Construction of a fusant bacterial strain simultaneously degrading atrazine and acetochlor and its application in soil bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178478. [PMID: 39818196 DOI: 10.1016/j.scitotenv.2025.178478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Application of herbicide-degrading bacteria is an effective strategy to remove herbicide in soil. However, the ability of bacteria to degrade a herbicide is often severely limited in the presence of other pesticide. In this study, the atrazine-degrading strain Klebsiella varicola FH-1 and acetochlor-degrading strain Bacillus Aryabhatti LY-4 were used as parent strains to construct the recombinant RH-92 strain through protoplast fusion technology. Compared with the parent strains, RH-92 exhibited enhanced ability to degrade herbicide mixture containing atrazine and acetochlor, exhibiting 63.16 % and 68.48 % higher degradation rates, respectively. RAPD analysis showed that gene rearrangement occurred during protoplast fusion, and the genetic similarity indexes of the fused strain RH-92 and the two parent strains were 0.5853 and 0.4240, respectively. HPLC-MS analysis confirmed that RH-92 shared similar degradation products and pathways with both parent strains but exhibited a novel metabolic pathway for the continuous degradation of CMEPA (degradation product of acetochlor) into MEA through amide bond hydrolysis. The activities of GSH, GST and SOD of RH-92 increased and the level of MDA decreased under the stress of compound herbicides. Strain RH-92 did not show a large number of bacterial apoptosis, and maintained good cell membrane integrity and permeability. The half-lives of atrazine and acetochlor were 4.9 d and 7.6 d when the parent strains FH-1 and LY-4 were applied in unsterilized soil containing herbicide mixture treatment,the application fusant RH-92 strain significantly reduced the half-life to 1.6 and 1.8 d, respectively. Furthermore, 16S rRNA sequencing indicated that RH-92 application effectively restored bacterial taxa with diminished relative abundances under herbicide mixture treatment, ameliorated phytotoxicity in soybean seedlings, and promoted enhanced vegetative growth in the roots and plant height. This study highlighted the application of fusant strains as a bioremediation strategy for combatting atrazine and acetochlor pollution in soil and provided theoretical insights.
Collapse
Affiliation(s)
- Yue Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Qianhang Zhai
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Jiaxu Lv
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yulin Wu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xuewei Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Xian Wu
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of Chin), Gongzhuling 136100, Jilin, China.
| |
Collapse
|
3
|
Wei Y, Meng Y, Jia K, Lu W, Huang Y, Lu H. Dimethomorph induces heart and vascular developmental defects by disrupting thyroid hormone in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117413. [PMID: 39693786 DOI: 10.1016/j.ecoenv.2024.117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Dimethomorph (DMT) is a widely-used selective active fungicide that effectively controls downy mildew, crown rot, and late blight in crops. The extensive application of DMT raises concerns about its ecological impact on non-target organisms in the environment. However, there is limited understanding of the toxicological properties of DMT on these organisms. In this study, we utilized zebrafish as an animal model to assess the toxicity of DMT induced by exposure 5.5-72 hours post-fertilization (hpf). During this period, we monitored and evaluated the development of the zebrafish heart and vascular system. Additionally, embryo samples were collected to perform molecular-level detection of PCNA, oxidative stress, and related genes. The results showed a concentration-dependent decrease in survival rate and hatching rate, shortened body length, slowed heart rate, and pericardial edema, body curvature and reduced eye size as DMT exposure concentration increased. Furthermore, DMT exposure led to impairments in the development of the heart, vascular, along with change in the expression levels of relevant genes. It also caused a decrease in cell proliferation and an increase in oxidative stress levels. Moreover, DMT disrupts the normal development of thyroid follicular cells, leading to a reduction in T3 levels. Thyroid hormone supplementation partially reverses the toxicity induced by DMT, increasing eye size, restoring body length, reducing spine curvature, and reducing pericardial edema. Therefore, we speculate that DMT likely affects the development of zebrafish embryos by disrupting normal thyroid follicle development.
Collapse
Affiliation(s)
- You Wei
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China; Center for drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yunlong Meng
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China; Center for drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Kun Jia
- Center for drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Weijian Lu
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Huiqiang Lu
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
4
|
Wang J, Yuan Q, Hu W, Ye Z, Zhang L, Wang Z, Liu J, Huang L, Liu F, Liao X, Xiao J, Zhang S, Cao Z. 3-Chloro-1,2-Propanediol Exposure Induces Cardiotoxicity and Behavioural Abnormalities in Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39648561 DOI: 10.1002/tox.24440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024]
Abstract
Numerous contemporary diseases are linked to food contamination. Pathogenic agents might stem from certain food ingredients or result from pollution stemming from food processing or packaging. One such contaminant is 3-Chloro-1,2-propanediol (3-MCPD), it has been previously reported to be produced during the preparation of chemical sauces, as well as during the heating of baked goods. Yet, uncertainty surrounds its potential to induce embryonic developmental toxicity. In this study, zebrafish were employed as the focal point to assess the impact of 3-MCPD on initial embryonic development, heart functionality, and behavior. The research unveiled that exposure of zebrafish embryos to 18, 36, and 54 mM 3-MCPD led to cardiac anomalies, including pericardial edema, reduced heart rate, and elongated SV-BA distance. Additionally, 3-MCPD exposure triggered aberrations in cardiac-related gene expression and an elevation in oxidative stress. Notably, behavioral changes were observed in 3-MCPD-exposed zebrafish embryos, while vascular development appeared unaffected. This study introduces a novel basis for comprehensive exploration of 3-MCPD toxicity.
Collapse
Affiliation(s)
- Jing Wang
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Qiang Yuan
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Weitao Hu
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Zhijun Ye
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Li Zhang
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Zhipeng Wang
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Jiejun Liu
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Ling Huang
- Affiliated Hospital of Jinggangshan University, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Ji'an, Jiangxi Province, China
| | - Fasheng Liu
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Xinjun Liao
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Zigang Cao
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| |
Collapse
|
5
|
Yuan Q, Zhang L, Li Y, Wang Z, Liu J, Hu W, Hu Y, Liu F, Zhang S, Liao X, Xiao J, Cao Z. Isavuconazonium sulfate induces heart development defects in zebrafish larvae by upregulation of oxidative stress. Chem Biol Interact 2024; 404:111267. [PMID: 39396720 DOI: 10.1016/j.cbi.2024.111267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Environmental pollution remains a pressing global concern, with a substantial number of annual fatalities attributed to pollution-induced diseases. One emerging facet of environmental pollution is drug contamination, whereby pharmaceutical compounds can readily infiltrate water sources during manufacturing or utilization, subsequently being detected in various aquatic ecosystems. Some drugs have been detected in many watersheds at concentrations that can cause toxicity to aquatic organisms. Isavuconazonium sulfate (ISAV-SF), a prevalent antifungal medication, is no exception, warranting an exploration of its potential toxicity. However, limited research has been conducted in this domain. In this investigation, zebrafish were employed as a model organism to scrutinize the cardiotoxicity of ISAV-SF. Exposure of zebrafish embryos to concentrations of 0.5, 0.75, and 1 mg/L of ISAV-SF resulted in noteworthy cardiac developmental aberrations. These anomalies encompassed enlarged pericardial area, diminished heart rate, alterations in SV-BA distance, and the detachment of cardiomyocytes from the endocardium. Exposure to ISAV-SF caused disruption of the expression of genes related to cardiac development (gata4, klf2a, nkx2.5, vmhc, tbx2b), especially in the high concentration group. Moreover, the Notch signaling pathway was inhibited and oxidative stress levels were upregulated in all exposed groups. Remarkably, the administration of the antioxidant astaxanthin effectively mitigated oxidative stress levels, thus ameliorating heart developmental impairments. These results suggest that ISAV-SF may contribute to cardiac developmental defects by upregulating oxidative stress. This study serves as a pivotal reference for the utilization of ISAV-SF within the market, emphasizing the necessity to curtail its introduction into aquatic environments during production and consumption and to evaluate its repercussions on aquatic organisms.
Collapse
Affiliation(s)
- Qiang Yuan
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Li Zhang
- Affiliated Hospital of Jinggangshan University, Clinical Research Center of Affiliated Hospital of Jinggangshan University, 343000, Ji'an, Jiangxi Province, China
| | - Yehao Li
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Zhipeng Wang
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Jiejun Liu
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Weitao Hu
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Yihui Hu
- Affiliated Hospital of Jinggangshan University, Clinical Research Center of Affiliated Hospital of Jinggangshan University, 343000, Ji'an, Jiangxi Province, China
| | - Fasheng Liu
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Xinjun Liao
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, 330006, Nanchang, Jiangxi, China
| | - Zigang Cao
- Affiliated Hospital of Jinggangshan University, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, 343009, Ji'an, China.
| |
Collapse
|
6
|
Zhang J, Mahmood A, Shao Y, Jarosiewicz P, Gonsior G, Cuellar-Bermudez SP, Chen Z, Stibany F, Schäffer A. Combined simulation on pesticides fate, toxicities and ecological risk in rice paddies for Sustainable Development Goals achievements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175552. [PMID: 39151632 DOI: 10.1016/j.scitotenv.2024.175552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
In order to assess the risk of pesticides to aquatic ecosystems, five single-dose pesticides including chlorpyrifos, pymetrozine, dinotefuran, azoxystrobin, and acetochlor that are frequently used in developing countries, were selected. Based on the principle of conservative risk assessment, application amounts for different dosage forms were recommended, the Top-Rice model and risk quotient method were used to evaluate the aquatic ecological risk of the aforementioned single-dose pesticide products. The results showed that predicted peak environmental concentration ranges after application on rice were 110.52-564.25 μg/L for chlorpyrifos, 20.79-114.6 μg/L for pymetrozine, 21.81-114.02 μg/L for dinotefuran, 16.52-56.94 μg/L for azoxystrobin, and 167.22-2184.01 μg/L for acetochlor in different seasons of Changsha, Hangzhou, Nanning in China, and Lahore and Faisalabad in Pakistan. Under the current conditions of registered administration, the acute and chronic risks posed by chlorpyrifos to fish and invertebrates were deemed alarming, and those by pymetrozine and dinotefuran were considered acceptable. The acute risk of exposure of azoxystrobin to vertebrates such as fish, and invertebrates such as daphnia and shrimp is alarming, whereas the chronic risk to vertebrates, invertebrates, and algae was acceptable. The acute exposure risk posed by acetochlor was deemed worrying, and in the case of chronic exposure, only 36 % of the simulation group exhibited a risk quotient below 1, indicating no risk. These findings imply that the ecological risks of using registered chlorpyrifos and acetochlor products on rice cannot be ignored. It should be noted that the analysis method and model employed in this study were intentionally conservative to ensure a comprehensive assessment of the potential risks associated with the use of registered pesticide products. However, the model failed to consider influential factors like photolysis of pesticides on the soil surface, thereby introducing a certain degree of conservativeness in the evaluation results.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400030, PR China
| | - Ahmad Mahmood
- Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400030, PR China
| | - Paweł Jarosiewicz
- European Regional Center for Ecohydrology of the Polish Academy of Sciences under the auspices of UNESCO, 3 Tylna Str., 90-364 Lodz, Poland
| | - Guido Gonsior
- GG BioTech Design GmbH, Neu-Ulrichstein 5, 35313 Homberg (Ohm), Germany
| | | | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400030, PR China.
| | - Felix Stibany
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas Schäffer
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400030, PR China; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
7
|
Liu X, Fan W, Lin S, Chen J, Zhang S, Li X, Jin M, He Q. Anti-Thrombotic Effect of Protoparaxotriol Saponins From Panax notoginseng Using Zebrafish Model. J Cardiovasc Pharmacol 2024; 84:528-538. [PMID: 39027983 DOI: 10.1097/fjc.0000000000001604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024]
Abstract
ABSTRACT Panax notoginseng has the effect of stimulating circulation to end stasis. Our study was designed to evaluate the anti-thrombotic effect of protoparaxotriol saponins (PTS) from P. notoginseng and the involved mechanisms. A thrombosis model was constructed, and the anti-thrombotic activity of PTS was determined by erythrocyte staining, heart rate, and blood flow velocity. In addition, quantitative real-time polymerase chain reaction was used to identify changes in the expression of genes related to coagulation, inflammation, and apoptosis. PTS alleviated arachidonic acid-induced caudal vein thrombosis, restored blood flow, and increased the area of cardiac erythrocyte staining, heart rate, and blood flow velocity. It reduced the ponatinib-induced cerebral thrombus area and decreased the intensity of erythrocyte staining. The quantitative polymerase chain reaction data showed that the anti-thrombotic effect of PTS was mediated by suppression of genes related to coagulation, inflammation, and apoptosis and also involved inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathways.
Collapse
Affiliation(s)
- Xin Liu
- Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ma T, Ma L, Wei R, Xu L, Ma Y, Chen Z, Dang J, Ma S, Li S. Physiology, Biochemistry, and Transcriptomics Jointly Reveal the Phytotoxicity Mechanism of Acetochlor on Pisum sativum L. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2005-2019. [PMID: 38988284 DOI: 10.1002/etc.5936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
Acetochlor, as a commonly used pre-emergent herbicide, can be toxic to crops and affect production if used improperly. However, the toxic mechanism of acetochlor on plants is not fully understood. The present study used a combination of transcriptomic analysis and physiological measurements to investigate the effects of short-term (15-day) exposure to different concentrations of acetochlor (1, 10, 20 mg/kg) on the morphology, physiology, and transcriptional levels of pea seedlings, aiming to elucidate the toxic response and resistance mechanisms in pea seedlings under herbicide stress. The results showed that the toxicity of acetochlor to pea seedlings was dose-dependent, manifested as dwarfing and stem base browning with increasing concentrations, especially at 10 mg/kg and above. Analysis of the antioxidant system showed that from the 1 mg/kg treatment, malondialdehyde, superoxide dismutase, peroxidase, and glutathione peroxidase in peas increased with increasing concentrations of acetochlor, indicating oxidative damage. Analysis of the glutathione (GSH) metabolism system showed that under 10 mg/kg treatment, the GSH content of pea plants significantly increased, and GSH transferase activity and gene expression were significantly induced, indicating a detoxification response in plants. Transcriptomic analysis showed that after acetochlor treatment, differentially expressed genes in peas were significantly enriched in the phenylpropane metabolic pathway, and the levels of key metabolites (flavonoids and lignin) were increased. In addition, we found that acetochlor-induced dwarfing of pea seedlings may be related to gibberellin signal transduction. Environ Toxicol Chem 2024;43:2005-2019. © 2024 SETAC.
Collapse
Affiliation(s)
- Tingfeng Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ruonan Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ling Xu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Yantong Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Zhen Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Junhong Dang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Shaoying Ma
- Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Sheng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
- Agronomy College, Gansu Agricultural University, Lanzhou, People's Republic of China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
9
|
Zheng C, Yang J, Wang Y, Ahmed W, Khan A, Li J, Weng J, Mehmood S, Li W. Comprehensive Assessment of Herbicide Toxicity on Navicula sp. Algae: Effects on Growth, Chlorophyll Content, Antioxidant System, and Lipid Metabolism. Mar Drugs 2024; 22:387. [PMID: 39330268 PMCID: PMC11433268 DOI: 10.3390/md22090387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
This study investigated the effects of herbicide exposure on Navicula sp. (MASCC-0035) algae, focusing on growth density, chlorophyll content, antioxidant system, and lipid metabolism. Navicula cultures were exposed to different concentrations of atrazine (ATZ), glyphosate (Gly), and acetochlor (ACT) for 96 h. Results showed a significant decrease in cell numbers, with higher herbicide concentrations having the most noticeable impacts. For instance, Gly-G2 had reduced cell populations by 21.00% at 96 h. Chlorophyll content varied, with Gly having a greater impact on chlorophyll a compared to ATZ and ACT. Herbicide exposure also affected the antioxidant system, altering levels of soluble sugar, soluble protein, and reactive oxygen species (ROS). Higher herbicide rates increased soluble sugar content (e.g., ATZ, Gly, and ACT-G2 had increased by 14.03%, 19.88%, and 19.83%, respectively, at 72 h) but decreased soluble protein content, notably in Gly-G2 by 11.40%, indicating cellular stress. Lipid metabolism analysis revealed complex responses, with changes in free proline, fatty acids, and lipase content, each herbicide exerting distinct effects. These findings highlight the multifaceted impacts of herbicide exposure on Navicula algae, emphasizing the need for further research to understand ecological implications and develop mitigation strategies for aquatic ecosystems.
Collapse
Affiliation(s)
- Chunyan Zheng
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Jie Yang
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Yunting Wang
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Waqas Ahmed
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Amir Khan
- Department of Medicine, Hainan Medical University, Haikou 571100, China
| | - Jiannan Li
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Jiechang Weng
- Hainan Provincial Ecological and Environmental Monitoring Center, Haikou 570228, China
| | - Sajid Mehmood
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Weidong Li
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Chen WJ, Chen SF, Song H, Li Z, Luo X, Zhang X, Zhou X. Current insights into environmental acetochlor toxicity and remediation strategies. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:356. [PMID: 39083106 DOI: 10.1007/s10653-024-02136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
Acetochlor is a selective pre-emergent herbicide that is widely used to control annual grass and broadleaf weeds. However, due to its stable chemical structure, only a small portion of acetochlor exerts herbicidal activity in agricultural applications, while most of the excess remains on the surfaces of plants or enters ecosystems, such as soil and water bodies, causing harm to the environment and human health. In recent years, researchers have become increasingly focused on the repair of acetochlor residues. Compared with traditional physical and chemical remediation methods, microorganisms are the most effective way to remediate chemical pesticide pollution, such as acetochlor, because of their rich species, wide distribution, and diverse metabolic pathways. To date, researchers have isolated and identified many high-efficiency acetochlor-degrading strains, such as Pseudomonas oleovorans, Klebsiella variicola, Bacillus subtilus, Rhodococcus, and Methylobacillus, among others. The microbial degradation pathways of acetochlor include dechlorination, hydroxylation, N-dealkylation, C-dealkylation, and dehydrogenation. In addition, the microbial enzymes, including hydrolase (ChlH), debutoxylase (Dbo), and monooxygenase (MeaXY), responsible for acetochlor biodegradation are also being investigated. In this paper, we review the migration law of acetochlor in the environment, its toxicity to nontarget organisms, and the main metabolic methods. Moreover, we summarize the latest progress in the research on the microbial catabolism of acetochlor, including the efficient degradation of microbial resources, biodegradation metabolic pathways, and key enzymes for acetochlor degradation. At the end of the article, we highlight the existing problems in the current research on acetochlor biodegradation, provide new ideas for the remediation of acetochlor pollution in the environment, and propose future research directions.
Collapse
Affiliation(s)
- Wen-Juan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Song
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zeren Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofang Luo
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xidong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
English CD, Ivantsova E, Avidan L, Kazi K, Valle EMA, Konig I, Martyniuk CJ. Neurotoxicity assessment of the herbicide pethoxamid in zebrafish (Danio rerio) embryos/larvae. Neurotoxicol Teratol 2024; 104:107369. [PMID: 38964665 DOI: 10.1016/j.ntt.2024.107369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Pethoxamid, a member of the chloroacetamide herbicide family, is a recently approved chemical for pre- or post-emergence weed control; however, toxicity data for sublethal effects in aquatic organisms exposed to pethoxamid are non-existent in literature. To address this, we treated zebrafish embryos/larvae to pethoxamid over a 7-day period post-fertilization and evaluated several toxicological endpoints associated with oxidative stress and neurotoxicity. Continuous pethoxamid exposure did not affect survival nor hatch success in embryos/larvae for 7 days up to 1000 μg L-1. Exposure to pethoxamid did not affect embryonic ATP-linked respiration, but it did reduce non-mitochondrial respiration at the highest concentration tested. We also noted a significant increase in both apoptosis and levels of reactive oxygen species (ROS) in larvae zebrafish following exposure to pethoxamid. Increases in apoptosis and ROS, however, were not correlated with any altered gene expression pattern for apoptotic and oxidative damage response transcripts. To assess neurotoxicity potential, we measured behavior and several transcripts implicated in neural processes in the central nervous system. While locomotor activity of larval zebrafish was affected by pethoxamid exposure (hyperactivity was observed at concentrations below 1 μg L-1, and hypoactivity was noted at higher exposures to 10 and 100 μg L-1 pethoxamid), there were no effects on steady state mRNA abundance for neurotoxicity-related transcripts tested. This data contributes to knowledge regarding exposure risks for chloroacetamide-based herbicides and is the first study investigating sublethal toxicity for this newly registered herbicide.
Collapse
Affiliation(s)
- Cole D English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Lev Avidan
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Kira Kazi
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Eliana Maira Agostini Valle
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Campus Diadema, Brazil
| | - Isaac Konig
- Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, FL 32611, USA.
| |
Collapse
|
12
|
Hernández Díaz M, Galar Martínez M, García Medina S, Cortés López A, Ruiz Lara K, Cano Viveros S, García Medina AL, Pérez-Pastén Borja R, Rosales Pérez KE, Gómez Oliván LM, Raldúa D, Bedrossiantz J. Polluted water from a storage dam (Villa Victoria, méxico) induces oxidative damage, AChE activity, embryotoxicity, and behavioral changes in Cyprinus carpio larvae. ENVIRONMENTAL RESEARCH 2024; 258:119282. [PMID: 38823611 DOI: 10.1016/j.envres.2024.119282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The Villa Victoria dam is one of the most important storage reservoirs in Mexico since it distributes water to more than 20 million inhabitants in the Metropolitan Zone of Mexico City. In this dam, the common carp (Cyprinus carpio) is an important food resource for the inhabitants, so the aim of this work was to evaluate the oxidative damage (lipoperoxidation, oxidized proteins, antioxidant enzymes activity and gene expression), AChE, embryotoxicity and behavioral changes in C. carpio embryos and larvae exposed to water from Villa Victoria dam for 24, 48, 72 and 96 h. The embryotoxicity was evaluated trough the General Morphology Score (GMS) and the teratogenic index. Behavioral changes in basal locomotor activity and thigmotaxis were evaluated in a DanioVision, Noldus ™. An increase in lipid and protein oxidation as well as modification of CAT, SOD and GPx enzymatic activity was observed during the exposure times. The GMS indicated a low development in the embryos, the teratogenic index was less than 1, however teratogenic effects as yolk edema, fin malformation, head malformation and scoliosis were observed. In parallel, an increase in AChE activity and gene expression was observed reflecting changes in distance traveled of the basal locomotor activity and thigmotaxis at the sampling points. In conclusion, pollutants in water from Villa Victoria dam caused oxidative damage, changes in SOD, CAT, GPx and AChE activity as well as embryotoxicity and modifications in the behavior of C. carpio larvae. This study demonstrates the need to implement restoration programs for this reservoir since, contamination in the Villa Victoria dam could eventually endanger aquatic life and human health.
Collapse
Affiliation(s)
- Misael Hernández Díaz
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Marcela Galar Martínez
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Sandra García Medina
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Alejandra Cortés López
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Karina Ruiz Lara
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Selene Cano Viveros
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Alba Lucero García Medina
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Ricardo Pérez-Pastén Borja
- Laboratory of Molecular Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738.
| | - Karina Elisa Rosales Pérez
- Laboratory of Environmental Toxicology, Faculty of Chemistry, Universidad Autónoma Del Estado de México, Intersección de Paseo Colón y Paseo Tollocan, Colonia Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Leobardo Manuel Gómez Oliván
- Laboratory of Environmental Toxicology, Faculty of Chemistry, Universidad Autónoma Del Estado de México, Intersección de Paseo Colón y Paseo Tollocan, Colonia Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Demetrio Raldúa
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, España, Mexico.
| | - Juliette Bedrossiantz
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, España, Mexico.
| |
Collapse
|
13
|
Wang X, Peng B, Zhang C, Wu M, Xu W, Cheng J, Tao L, Li Z, Zhang Y. Hepatic effects of acetochlor chiral isomers in zebrafish and L02 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169781. [PMID: 38176547 DOI: 10.1016/j.scitotenv.2023.169781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The pesticide acetochlor (ACT) is a chiral isomer commonly detected in the global environment, yet its specific impacts on liver function remain poorly understood. We utilized zebrafish and L02 cells as research models to comprehensively investigate how ACT and its chiral isomers affect the liver. Our investigations unveiled that the R, Rac, and S isomers of ACT disrupt hepatic lipid transport, catabolism, and synthesis, leading to delayed yolk sac absorption and the accumulation of lipids in zebrafish embryos. These isomers induce oxidative stress in the liver of zebrafish embryos, reducing antioxidant levels and enzyme activity. The accumulated lipids in the liver render it susceptible to oxidative stress, further exacerbating hepatocyte damage. Hepatocyte damage manifests as extensive vacuolization of liver cells and alterations in liver morphology, which are induced by R, Rac, and S. Furthermore, we elucidated the molecular mechanisms underpinning the disturbance of hepatic lipid metabolism by R, Rac, and S in L02 cells. These compounds stimulate lipid synthesis through the upregulation of the AMPK/SREBP-1c/FAS pathway while inhibiting lipolysis via downregulation of the PPAR-α/CPT-1a pathway. Remarkably, our results highlight that S exhibits significantly higher hepatotoxicity in comparison to R. This study provides valuable insights into the hepatic effects of ACT chiral isomers.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Peng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, TX 75390, United States
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
14
|
Zhang Y, Zhang E, Hou L, Lu H, Guo T, Wang R, Wang Y, Xing M. Assessing and mitigating foodborne acetochlor exposure induced ileum toxicity in broiler chicks: The role of omega-3 polyunsaturated fatty acids supplementation and molecular pathways analysis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105761. [PMID: 38458672 DOI: 10.1016/j.pestbp.2023.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 03/10/2024]
Abstract
Excessive acetochlor residues present ecological and food safety challenges. Here, broiler chicks were exposed to varied acetochlor doses to first assess its effects on the gut. Subsequent dietary supplementation with omega-3 was used to assess its anti-contamination effects. Pathologically, acetochlor induced notable ileal lesions including inflammation, barrier disruption, tight junction loss, and cellular anomalies. Mechanistically, acetochlor stimulated the TNFα/TNFR1 and TLR4/NF-κB/NLRP3 pathways, promoting RIPK1/RIPK3 complex formation, MLKL phosphorylation, NLRP3 inflammasome activation, Caspase-1 activation, and GSDMD shearing with inflammatory factor release. These mechanisms elucidate ileal cell death patterns essential for understanding chicken enteritis. Omega-3 supplementation showed promise in mitigating inflammation, though its precise counteractive role remains unclear. Our findings suggest early omega-3 intervention offered protective benefits against acetochlor's adverse intestinal effects, emphasizing its potential poultry health management role. Harnessing dietary interventions' therapeutic potential will be pivotal in ensuring sustainable poultry production and food safety despite persistent environmental contaminants.
Collapse
Affiliation(s)
- Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Enyu Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Ruoqi Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
15
|
Zhu H, Liao D, Mehmood MA, Huang Y, Yuan W, Zheng J, Ma Y, Peng Y, Tian G, Xiao X, Lan C, Li L, Xu K, Lu H, Wang N. Systolic heart failure induced by butylparaben in zebrafish is caused through oxidative stress and immunosuppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115692. [PMID: 37981439 DOI: 10.1016/j.ecoenv.2023.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Due to Butylparaben (BuP) widespread application in cosmetics, food, pharmaceuticals, and its presence as an environmental residue, human and animal exposure to BuP is common, potentially posing hazards to both human and animal health. Congenital heart disease is already a serious problem. However, the effects of BuP on the developing heart and its underlying mechanisms remain unclear. Here, zebrafish embryos were exposed to environmentally and human-relevant concentrations of BuP (0.6 mg/L, 1.2 mg/L, and 1.8 mg/L, calculated but not measured) at 6 h post-fertilization (hpf) and were treated until 72 hpf. Exposure to BuP led to cardiac morphological defects and cardiac dysfunction in zebrafish embryos, manifesting symptoms similar to systolic heart failure. The etiology of BuP-induced systolic heart failure in zebrafish embryos is multifactorial, including cardiomyocyte apoptosis, endocardial and atrioventricular valve damage, insufficient myocardial energy, impaired Ca2+ homeostasis, depletion of cardiac-resident macrophages, cardiac immune non-responsiveness, and cardiac oxidative stress. However, excessive accumulation of reactive oxygen species (ROS) in the cardiac region and cardiac immunosuppression (depletion of cardiac-resident macrophages and cardiac immune non-responsiveness) may be the predominant factors. In conclusion, this study indicates that BuP is a potential hazardous substance that can cause adverse effects on the developing heart and provides evidence and insights into the pathological mechanisms by which BuP leads to cardiac dysfunction. It may help to prevent the BuP-based congenital heart disease heart failure in human through ameliorating strategies and BuP discharge policies, while raising awareness to prevent the misuse of preservatives.
Collapse
Affiliation(s)
- Hui Zhu
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Wuliangye Group Co., Ltd., Yibin 644007, China; Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Dalong Liao
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330029, Jiangxi, China
| | - Wei Yuan
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jia Zheng
- Wuliangye Group Co., Ltd., Yibin 644007, China
| | - Yi Ma
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Yuyang Peng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Guiyou Tian
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoping Xiao
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Chaohua Lan
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Linman Li
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Kewei Xu
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China; Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, China.
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Chengdu Chongqing Shuangcheng economic circle (Luzhou) advanced technology research institute, Luzhou 646000, China; Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China.
| |
Collapse
|
16
|
Cui J, Tian S, Gu Y, Wu X, Wang L, Wang J, Chen X, Meng Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. CHEMOSPHERE 2023; 340:139825. [PMID: 37586498 DOI: 10.1016/j.chemosphere.2023.139825] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Pesticides inevitably enter aquatic environments, posing potential risks to organisms. The common aquatic model organism, zebrafish (Danio rerio), are widely used to evaluate the toxicity of pesticides. In this review, we searched the Web of Science database for articles published between 2012 and 2022, using the keywords "pesticide", "zebrafish", and "toxicity", retrieving 618 publications. Furthermore, we described the main pathways by which pesticides enter aquatic environments and the fate of their residues in these environments. We systematically reviewed the toxicity effects of pesticides on zebrafish, including developmental toxicity, endocrine-disrupting effects, reproductive toxicity, neurotoxicity, immunotoxicity, and genotoxicity. Importantly, we summarized the latest research progress on the toxicity mechanism of pesticides to zebrafish based on omics technologies, including transcriptomics, metabolomics, and microbiomics. Finally, we discussed future research prospects, focusing on the combined exposure of multiple pollutants including pesticides, the risk of multigenerational exposure to pesticides, and the chronic toxicity of aquatic nanopesticides. This review provides essential data support for ecological risk assessments of pesticides in aquatic environments, and has implications for water management in the context of pesticide pollution.
Collapse
Affiliation(s)
- Jiajia Cui
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuntong Gu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xinyi Wu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Lei Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Jianjun Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xiaojun Chen
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| | - Zhiyuan Meng
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| |
Collapse
|
17
|
Wang X, Chen F, Lu J, Wu M, Cheng J, Xu W, Li Z, Zhang Y. Developmental and cardiovascular toxicities of acetochlor and its chiral isomers in zebrafish embryos through oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165296. [PMID: 37406693 DOI: 10.1016/j.scitotenv.2023.165296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Acetochlor (ACT) is a widely used pesticide, yet the environmental and health safety of its chiral isomers remains inadequately evaluated. In this study, we evaluated the toxicity of ACT and its chiral isomers in a zebrafish model. Our findings demonstrate that ACT and its chiral isomers disrupt early zebrafish embryo development, inducing oxidative stress, abnormal lipid metabolism, and apoptosis. Additionally, ACT and its chiral isomers lead to cardiovascular damage, including reduced heart rate, decreased red blood cell (RBC) flow rate, and vascular damage. We further observed that (+)-S-ACT has a significant impact on the transcription of genes involved in cardiac and vascular development, including tbx5, hand2, nkx2.5, gata4, vegfa, dll4, cdh5, and vegfc. Our study highlights the potential risk posed by different conformations of chiral isomeric pesticides and raises concerns regarding their impact on human health. Overall, our results suggest that the chiral isomers of ACT induce developmental defects and cardiovascular toxicity in zebrafish, with (+)-S-ACT being considerably more toxic to zebrafish than (-)-R-ACT.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
18
|
Li Z, Wu Y, Li Z, Yu B, Mao X, Shi G. A lateral flow immunoassay method for the rapid detection of acetochlor and alachlor in vegetable oil by sensitivity enhancement by using dimethyl-β-cyclodextrin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5087-5094. [PMID: 37747357 DOI: 10.1039/d3ay01379k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Acetochlor is an endocrine disruptor. The acetochlor residue is strongly lipophilic and can be enriched into products during the manufacturing process. In this study, we found that dimethyl-β-cyclodextrin (DM-β-CD) solution could decrease the apparent oil/water partition coefficient (Koil-w) of acetochlor and increase the sensitivity of fluorescence lateral flow immunoassay (LFIA) for acetochlor simultaneously. Based on this, a simple LFIA method for the determination of acetochlor and alachlor residues in vegetable oil was established. The detection process only involves vortex mixing of an oil sample and dimethyl-β-cyclodextrin solution in a 1 : 3 (V/V) ratio, loading the water phase onto the immunoassay strips and reading the results. Under optimized conditions, the LOD for acetochlor in oil was 3.53 ng g-1, and the working range was 12.03-2000.00 ng g-1. The recoveries of spiked samples ranged from 91.69% ± 1.12% to 112.23% ± 2.20%. Meanwhile, the cross reactivity for alachlor was 108.22%, while for other investigated acetochlor analogues it was less than 1%, and the recoveries of alachlor were from 92.90% ± 8.03% to 113.53% ± 3.40%, which indicate that this method can detect acetochlor and alachlor simultaneously. Compared with the traditional detection method, the pre-treatment process of the proposed method is "green" and simple, and can be applied to the on-site rapid detection of acetochlor and alachlor in vegetable oil and can provide inspiration for the detection of other lipophilic pollutants.
Collapse
Affiliation(s)
- Zepeng Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yuxiang Wu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong Province, China
| | - Zijing Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Binger Yu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xinyi Mao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Guoqing Shi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
19
|
Jiao F, Zhao Y, Limbu SM, Kong L, Zhang D, Liu X, Yang S, Gui W, Rong H. Cyhexatin causes developmental toxic effects by disrupting endocrine system and inducing behavioral inhibition, apoptosis and DNA hypomethylation in zebrafish (Danio rerio) larvae. CHEMOSPHERE 2023; 339:139769. [PMID: 37562506 DOI: 10.1016/j.chemosphere.2023.139769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Cyhexatin (CYT), an organotin acaricide, is extensively utilized in developing countries to mitigate plant diseases caused by mites and minimize agricultural crop losses. However, the comprehensive mechanisms underlying the developmental stage of non-target organisms remain largely unexplored. In this study, zebrafish embryos were firstly exposed to CYT (0.06, 0.12, and 0.20 ng/mL, referred to as CYTL, CYTM, and CYTH, respectively) from 2 hpf (hours post fertilization) to 30 dpf (days post fertilization). No developmental toxicity was observed in the CYTL and CYTM groups, except for induced deformed phenotypes in the CYTM group at 120 hpf. However, exposure to CYTH resulted in significant reductions in spontaneous movement (24 hpf), heart rate (48 hpf), hatching rate (48 and 72 hpf), body weight (30 dpf), whole body length (30 dpf), and locomotion (30 dpf). Additionally, CYTH exposure induced morphological malformations, including spinal curvature, pericardial edema, and tail curvature in zebrafish larvae. Moreover, CYTH treatment induced apoptosis, increased reactive oxygen species (ROS) production, and resulted in significant reductions in free T3, cholesterol, estradiol, and testosterone levels in zebrafish larvae, while free T4 levels were increased. RNA-Seq analysis indicated that CYTH exposure led to significant alterations in the genome-wide gene expression profiles of zebrafish, particularly in the thyroid hormone and steroid biosynthesis signaling pathways, indicating endocrine disruption. Furthermore, CYTH exposure induced global DNA hypomethylation, reduced S-adenosylmethionine (SAM) levels and the SAM/S-adenosylhomocysteine (SAH) ratio, elevated SAH levels, and suppressed the mRNA expression of DNA methyltransferases (DNMTs) while also downregulating DNMT1 at both the gene and protein levels in zebrafish larvae. Overall, this study partially elucidated the developmental toxicity and endocrine disruption caused by CYT in zebrafish, providing evidence of the environmental hazards associated with this acaricide.
Collapse
Affiliation(s)
- Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China
| | - Yang Zhao
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, PR China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P. O. Box 60091, Dar es Salaam, Tanzania
| | - Lingfu Kong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Daitao Zhang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Xianghe Liu
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Sha Yang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| | - Hua Rong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China; Xiangyang Polytechnic, Xiangyang, 441050, PR China.
| |
Collapse
|
20
|
von Hellfeld R, Gade C, Baumann L, Leist M, Braunbeck T. The sensitivity of the zebrafish embryo coiling assay for the detection of neurotoxicity by compounds with diverse modes of action. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27662-2. [PMID: 37213015 DOI: 10.1007/s11356-023-27662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
In the aim to determine neurotoxicity, new methods are being validated, including tests and test batteries comprising in vitro and in vivo approaches. Alternative test models such as the zebrafish (Danio rerio) embryo have received increasing attention, with minor modifications of the fish embryo toxicity test (FET; OECD TG 236) as a tool to assess behavioral endpoints related to neurotoxicity during early developmental stages. The spontaneous tail movement assay, also known as coiling assay, assesses the development of random movement into complex behavioral patterns and has proven sensitive to acetylcholine esterase inhibitors at sublethal concentrations. The present study explored the sensitivity of the assay to neurotoxicants with other modes of action (MoAs). Here, five compounds with diverse MoAs were tested at sublethal concentrations: acrylamide, carbaryl, hexachlorophene, ibuprofen, and rotenone. While carbaryl, hexachlorophene, and rotenone consistently induced severe behavioral alterations by ~ 30 h post fertilization (hpf), acrylamide and ibuprofen expressed time- and/or concentration-dependent effects. At 37-38 hpf, additional observations revealed behavioral changes during dark phases with a strict concentration-dependency. The study documented the applicability of the coiling assay to MoA-dependent behavioral alterations at sublethal concentrations, underlining its potential as a component of a neurotoxicity test battery.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UK, UK.
- National Decommissioning Centre, Main Street, Ellon, AB41 6AA, UK.
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Christoph Gade
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UK, UK
- National Decommissioning Centre, Main Street, Ellon, AB41 6AA, UK
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
- Faculty of Science, Environmental Health & Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amersterdam, Netherlands
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitätsstraße 10, 78464, Constance, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| |
Collapse
|
21
|
Wang Q, Gu X, Liu Y, Liu S, Lu W, Wu Y, Lu H, Huang J, Tu W. Insights into the circadian rhythm alterations of the novel PFOS substitutes F-53B and OBS on adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130959. [PMID: 36860044 DOI: 10.1016/j.jhazmat.2023.130959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
As alternatives to perfluorooctane sulfonate (PFOS), 6:2 Cl-PFESA (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) are frequently detected in aquatic environments, but little is known about their neurotoxicity, especially in terms of circadian rhythms. In this study, adult zebrafish were chronically exposed to 1 μM PFOS, F-53B and OBS for 21 days taking circadian rhythm-dopamine (DA) regulatory network as an entry point to comparatively investigate their neurotoxicity and underlying mechanisms. The results showed that PFOS may affect the response to heat rather than circadian rhythms by reducing DA secretion due to disruption of calcium signaling pathway transduction caused by midbrain swelling. In contrast, F-53B and OBS altered the circadian rhythms of adult zebrafish, but their mechanisms of action were different. Specifically, F-53B might alter circadian rhythms by interfering with amino acid neurotransmitter metabolism and disrupting blood-brain barrier (BBB) formation, whereas OBS mainly inhibited canonical Wnt signaling transduction by reducing cilia formation in ependymal cells and induced midbrain ventriculomegaly, finally triggering imbalance in DA secretion and circadian rhythm changes. Our study highlights the need to focus on the environmental exposure risks of PFOS alternatives and the sequential and interactive mechanisms of their multiple toxicities.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xueyan Gu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wuting Lu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Huiqiang Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jing Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
22
|
Wu Y, Wang J, Xia Y, Tang K, Xu J, Wang A, Hu S, Wen L, Wang B, Yao W, Wang J. Toxic effects of isofenphos-methyl on zebrafish embryonic development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114723. [PMID: 36871354 DOI: 10.1016/j.ecoenv.2023.114723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Isofenphos-methyl (IFP) is widely used as an organophosphorus for controlling underground insects and nematodes. However, excessive use of IFP may pose potential risks to the environment and humans, but little information is available on its sublethal toxicity to aquatic organisms. To address this knowledge gap, the current study exposed zebrafish embryos to 2, 4, and 8 mg/L IFP within 6-96 h past fertilization (hpf) and measured mortality, hatching, developmental abnormalities, oxidative stress, gene expressions, and locomotor activity. The results showed that IFP exposure reduced the rates of heart and survival rate, hatchability, and body length of embryos and induced uninflated swim bladder and developmental malformations. Reduction in locomotive behavior and inhibition of AChE activity indicated that IFP exposure may induce behavioral defects and neurotoxicity in zebrafish larvae. IFP exposure also led to pericardial edema, longer venous sinus-arterial bulb (SV-BA) distance, and apoptosis of the heart cells. Moreover, IFP exposure increased the accumulation of reactive oxygen species (ROS) and the content of malonaldehyde (MDA), also elevated the levels of antioxidant enzymes of superoxide dismutase (SOD) and catalase (CAT), but decreased glutathione (GSH) levels in zebrafish embryos. The relative expressions of heart development-related genes (nkx2.5, nppa, gata4, and tbx2b), apoptosis-related genes (bcl2, p53, bax, and puma), and swim bladder development-related genes (foxA3, anxa5b, mnx1, and has2) were significantly altered by IFP exposure. Collectively, our results indicated that IFP induced developmental toxicity and neurotoxicity to zebrafish embryos and the mechanisms may be relevant to the activation of oxidative stress and reduction of acetylcholinesterase (AChE) content.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jiawen Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Yumei Xia
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Kaiqin Tang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jincheng Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Anli Wang
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, Zhejiang, China
| | - Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China.
| |
Collapse
|
23
|
Xiong G, Hu H, Zhang H, Zhang J, Cao Z, Lu H, Liao X. Cyhalofop-butyl exposure induces the severe hepatotoxicity and immunotoxicity in zebrafish embryos. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108644. [PMID: 36842639 DOI: 10.1016/j.fsi.2023.108644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Cyhalofop-butyl (CyB) is a highly effective herbicide and is widely used for weed control in paddy fields. Because CyB is easily residual in the aquatic environment, its potential harm to aquatic organisms has attracted much attention and has not been fully understood. In this study, we systematically explored the hepatotoxic and immunotoxic effects of CyB exposure in zebrafish embryos. Firstly, CyB induced a decrease in the survival rate of zebrafish and led to a series of developmental abnormalities. Meanwhile, CyB can significantly reduce the size of zebrafish liver tissue and the number of hepatocytes in a dose-dependent manner. Secondly, the number of macrophages and neutrophils significantly decreased but the antioxidant enzyme activities such as CAT and MDA were greatly elevated upon CyB exposure. Thirdly, RNA-Seq analysis identified 1, 402 differentially expressed genes (DEGs) including 621 up-regulated and 781 down-regulated in zebrafish embryos after CyB exposure. KEGG and GO functional analysis revealed that the metabolic pathways of drug metabolism-cytochrome P450, biosynthesis of antibiotics, and metabolism of xenobiotics, along with oxidation-reduction process, high-density lipoprotein particle and cholesterol transport activity were significantly enriched after CyB exposure. Besides, hierarchical clustering analysis suggested that the genes involved in lipid metabolism, oxidative stress and innate immunity were largely activated in CyB-exposed zebrafish. Moreover, CyB induced zebrafish liver injury and increased hepatocyte apoptosis, which increased the protein expression levels of Bax, TLR4, NF-kB p65 and STAT3 in zebrafish. Finally, specific inhibition of TLR signaling pathway by TLR4 knock-down could significantly reduce the expression of inflammatory cytokines induced by CyB exposure. Taken together, these informations demonstrated that CyB could induce the hepatotoxicity and immunotoxicity in zebrafish embryos, and the expression levels of many genes involved in lipid metabolism and immune inflammation were obtained by RNA-Seq analysis. This study provides valuable information for future elucidating the aquatic toxicity of herbicide in aquatic ecosystems.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China; College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| | - Hongmei Hu
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Haiyan Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Jun'e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Zigang Cao
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
24
|
Luo Q, Tang S, Xiao X, Wei Y, Cheng B, Huang Y, Zhong K, Tian G, Lu H. Benomyl-induced development and cardiac toxicity in zebrafish embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33090-33100. [PMID: 36471152 DOI: 10.1007/s11356-022-24213-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Benomyl is a highly effective broad-spectrum fungicide widely used worldwide to control vegetable, fruit, and oil crop diseases. However, the mechanism of its toxicity to aquatic organisms and humans remains unknown. In this study, zebrafish were used to determine the toxicity of benomyl. It was found to be highly toxic, with a 72-h post-fertilization (hpf) lethal concentration 50 (LC50) of 1.454 mg/L. Benomyl induced severe developmental toxicity, including shorter body length, slower heart rate, and a reduced yolk absorption rate. Benomyl also increased oxidative stress in zebrafish, especially in the heart and head, as well as increasing malondialdehyde (MDA) content and decreasing catalase (CAT) and superoxide dismutase (SOD) activities. This indicates that benomyl induced reactive oxygen species (ROS) production and cell membrane peroxidation in vivo. Acridine orange (AO) staining and apoptosis factor detection further indicated that benomyl induced apoptosis in zebrafish. Overall, these findings demonstrate that benomyl disrupts cellular homeostasis by activating oxidative stress in zebrafish, resulting in an imbalance of cardiac development-related gene expression and apoptosis, which causes severe developmental toxicity and cardiac dysfunction. This study evaluated the in vivo toxicity of benomyl, which is a potential threat to aquatic organisms and humans. Possible toxicity mechanisms are explored, providing a valuable reference for the safe use of benomyl.
Collapse
Affiliation(s)
- Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuqiong Tang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoping Xiao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
- Provincal Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Guiyou Tian
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
25
|
Prostaglandin Metabolome Profiles in Zebrafish ( Danio rerio) Exposed to Acetochlor and Butachlor. Int J Mol Sci 2023; 24:ijms24043488. [PMID: 36834899 PMCID: PMC9963763 DOI: 10.3390/ijms24043488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Prostaglandins (PGs) are critically important signaling molecules that play key roles in normal and pathophysiological processes. Many endocrine-disrupting chemicals have been found to suppress PG synthesis; however, studies about the effects of pesticides on PGs are limited. The effects of two known endocrine disrupting herbicides, acetochlor (AC) and butachlor (BC), on PG metabolites in zebrafish (Danio rerio) females and males were studied using widely targeted metabolomics analysis based on ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). In total, 40 PG metabolites were detected in 24 zebrafish samples, including female and male samples, with and without exposure to AC or BC at the sub-lethal concentration of 100 μg/L for 96 h. Among them, 19 PGs significantly responded to AC or BC treatment, including 18 PGs that were upregulated. The enzyme-linked immunosorbent assay (ELISA) test in zebrafish showed BC could cause significant upregulation of an isoprostane metabolite, 5-iPF2a-VI, which is positively related to the elevated level of reactive oxygen species (ROS). The present study guides us to conduct a further study to determine whether PG metabolites, including isoprostanes, could be potential biomarkers for chloracetamide herbicides.
Collapse
|
26
|
Zhu R, Liu C, Wang J, Zou L, Yang F, Chi X, Zhu J. Nano-TiO 2 aggravates bioaccumulation and developmental neurotoxicity of difenoconazole in zebrafish larvae via oxidative stress and apoptosis: Protective role of vitamin C. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114554. [PMID: 36682185 DOI: 10.1016/j.ecoenv.2023.114554] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) could enhance the bioavailability and toxicity of coexisting organic contaminants in the aquatic environment. This study attempted to investigate the combined effects of n-TiO2 and difenoconazole (DIF) on the neurodevelopment of zebrafish and the underlying mechanisms. In this study, zebrafish embryos were exposed to n-TiO2 (100 μg/L), DIF (0, 0.1 and 0.5 mg/L) and their mixtures from 4 to 96 h post fertilization (hpf) and neurotoxicity was evaluated. Our results indicated that n-TiO2 adsorbed DIF into the brain of zebrafish and significantly enhanced the bioaccumulation of DIF and n-TiO2 in the 0.5 mg/L co-exposure group. 100 μg/L n-TiO2 was not developmentally toxic to the zebrafish larvae, but it exacerbated DIF-induced neurobehavioral alterations in the zebrafish larvae. n-TiO2 also aggravated DIF-induced suppression of central nervous system (CNS) neurogenesis in Tg (HuC:egfp) zebrafish, motor neuron axon length in Tg (hb9:egfp) zebrafish, and downregulation of neurodevelopmental genes (elavl3, ngn1, gap43, gfap and mbp). In addition, DIF elevated oxidative stress by accumulation of reactive oxygen species (ROS) and inhibition of antioxidant enzymes, and triggered apoptosis by upregulation of p53, bax, bcl-2 and caspase-3, which were markedly intensified in the presence of n-TiO2. Moreover, vitamin C (VC) ameliorated n-TiO2/DIF-induced abnormal locomotor behaviors and neurotoxicity by inhibiting oxidative stress and apoptosis, indicating that oxidative stress and apoptosis are involved in n-TiO2/DIF-induced neurotoxicity. Taken together, our data indicated that n-TiO2 enhanced the accumulation of DIF and heightened oxidative stress and apoptosis, thereby inducing neurotoxicity. This study exemplifies the importance of the toxicity assessment of chemical mixtures and novel insights to mitigate their combined toxicity.
Collapse
Affiliation(s)
- Renfei Zhu
- Department of Hepatobiliary Surgery, Affiliated Nantong Third Hospital of Nantong University, Nantong 226001, PR China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jingyu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China
| | - Li Zou
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China
| | - Fan Yang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong 226011, PR China.
| | - Xia Chi
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China.
| | - Jiansheng Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China.
| |
Collapse
|
27
|
Chen T, Chen H, Wang A, Yao W, Xu Z, Wang B, Wang J, Wu Y. Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. TOXICS 2023; 11:84. [PMID: 36668810 PMCID: PMC9866970 DOI: 10.3390/toxics11010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Methyl parathion (MP) has been widely used as an organophosphorus pesticide for food preservation and pest management, resulting in its accumulation in the aquatic environment. However, the early developmental toxicity of MP to non-target species, especially aquatic vertebrates, has not been thoroughly investigated. In this study, zebrafish embryos were treated with 2.5, 5, or 10 mg/L of MP solution until 72 h post-fertilization (hpf). The results showed that MP exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Astaxanthin could rescue MP-induced heart development defects by down-regulating oxidative stress. These findings suggest that MP induces cardiac developmental toxicity and provides additional evidence of MP toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Haoze Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Anli Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| |
Collapse
|
28
|
Chang K, Zeng N, Ding Y, Zhao X, Gao C, Li Y, Wang H, Liu X, Niu Y, Sun Y, Li T, Shi Y, Wu C, Li Z. Cinnamaldehyde causes developmental neurotoxicity in zebrafish via the oxidative stress pathway that is rescued by astaxanthin. Food Funct 2022; 13:13028-13039. [PMID: 36449017 DOI: 10.1039/d2fo02309a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Toxicology studies provide a reliable dose range for the use of compounds. Zebrafish show unique advantages in toxicology research. Cinnamaldehyde (Cin) is one of the main active compounds isolated from Cinnamon trees and other species of the genus Cinnamomum. In this study, we investigated the developmental neurotoxicity of cinnamaldehyde in zebrafish and preliminarily explored its underlying mechanism. Cinnamaldehyde causes developmental neurotoxicity in zebrafish, as evidenced by the damage to ventricular structures, eye malformations, shortened body length, trunk curvature, decreased neuronal fluorescence, and pericardial oedema. Moreover, it can induce abnormal behaviour and gene expression in zebrafish. After treatment with the oxidative stress inhibitor astaxanthin, the behaviour and abnormal gene expression were reversed. All of these data demonstrated that the developmental neurotoxicity of cinnamaldehyde might be attributed to oxidative stress. In addition, this study also confirmed that zebrafish is a reliable model for toxicity studies.
Collapse
Affiliation(s)
- Kaihui Chang
- School of Basic Medicine, Qingdao University, Qingdao, China.,The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yonghe Ding
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiangzhong Zhao
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Chengwen Gao
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yafang Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haoxu Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoyu Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yujuan Niu
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yuanchao Sun
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Teng Li
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yongyong Shi
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Chuanhong Wu
- School of Basic Medicine, Qingdao University, Qingdao, China.,The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zhiqiang Li
- School of Basic Medicine, Qingdao University, Qingdao, China.,The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
29
|
Wuliangye Baijiu but not ethanol reduces cardiovascular disease risks in a zebrafish thrombosis model. NPJ Sci Food 2022; 6:55. [PMID: 36470888 PMCID: PMC9723178 DOI: 10.1038/s41538-022-00170-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding how Baijiu facilitates blood circulation and prevents blood stasis is crucial for revealing the mechanism of Baijiu for cardiovascular disease (CVD) risk reduction. Here we established a zebrafish thrombosis model induced using arachidonic acid (AA) to quantitatively evaluate the antithrombotic effect of Wuliangye Baijiu. The prevention and reduction effects of aspirin, Wuliangye, and ethanol on thrombosis were compared using imaging and molecular characterization. Wuliangye Baijiu reduces thrombotic risks and oxidative stress in the AA-treated zebrafish, while ethanol with the same concentration has no similar effect. The prevention and reduction effects of Wuliangye on thrombosis are attributed to the change in the metabolic and signaling pathways related to platelet aggregation and adhesion, oxidative stress and inflammatory response.
Collapse
|
30
|
Li X, Liao X, Chen C, Zhang L, Sun S, Wan M, Liu J, Huang L, Yang D, Hu H, Ma X, Zhong Z, Liu F, Xiong G, Lu H, Chen J, Cao Z. Propranolol hydrochloride induces neurodevelopmental toxicity and locomotor disorders in zebrafish larvae. Neurotoxicology 2022; 93:337-347. [DOI: 10.1016/j.neuro.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
31
|
Guo D, Luo L, Kong Y, Kuang Z, Wen S, Zhao M, Zhang W, Fan J. Enantioselective neurotoxicity and oxidative stress effects of paclobutrazol in zebrafish (Danio rerio). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 185:105136. [PMID: 35772839 DOI: 10.1016/j.pestbp.2022.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Paclobutrazol is a widely used chiral plant growth regulator and its enantioselective toxicity in aquatic organisms is less explored till now. Herein, the enantioselective neurotoxicity of paclobutrazol mediated by oxidative stress in zebrafish were investigated. The oxidative stress parameters and neurotoxic biomarkers changed significantly in each exposure group, and paclobutrazol showed enantioselective toxicity in zebrafish. Firstly, (2R, 3R)-paclobutrazol exhibited a stronger oxidative stress in zebrafish than (2S, 3S)-enantiomer (P < 0.05). Then, activities of acetylcholinesterase, calcineurin, and total nitric oxide synthase in (2R, 3R)-paclobutrazol treatments were 0.61-0.89, 1.24-1.53, and 1.21-1.35-fold stronger (P < 0.05) than those in (2S, 3S)-enantiomer treatments, respectively. Next, the content variations of four neurotransmitters in zebrafish exposed to (2R, 3R)-paclobutrazol were significantly larger than those in (2S, 3S)-enantiomer treatments (P < 0.05). Moreover, (2R, 3R)-paclobutrazol had stronger binding with the receptors than (2S, 3S)-enantiomer through molecular docking. The integrated biomarker response values further demonstrated that (2R, 3R)-paclobutrazol showed stronger toxicity to zebrafish than (2S, 3S)-enantiomer. Furthermore, the neurotoxicity of paclobutrazol can be interpreted as the mediating effect of oxidative stress in zebrafish through correlation analysis, and an adverse outcome pathway for the nervous system in zebrafish induced by paclobutrazol was proposed. This work will greatly extend our understanding on the enantioselective toxic effects of paclobutrazol in aquatic organisms.
Collapse
Affiliation(s)
- Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Lulu Luo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Yuan Kong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhiyang Kuang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Siyi Wen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weiguang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China.
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
32
|
Saleh SMM, Mohamed IA, Fathy M, Sayed AEDH. Neuro-hepatopathological changes in juvenile Oreochromis niloticus exposed to sublethal concentrations of commercial herbicides. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103871. [PMID: 35500867 DOI: 10.1016/j.etap.2022.103871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
The current study estimates the impact of different common herbicides on antioxidant defenses and histological structure of liver and spinal cord of juvenile tilapia. Eighty-four fish were divided into seven groups: group 1 fish acted as controls and the remaining fish were exposed to sublethal concentrations of acetochlor, bispyribac-sodium, bentazon, bensulfuron-methyl, halosulfuron-methyl, or quinclorac at sublethal concentrations 2.625, 0.800, 36.00, 2.50, 1.275, and 11.250 mg/l, respectively, for 96 h. Antioxidant parameters changed in response to some test herbicides and the greatest effects were caused by exposure to acetochlor and quinelorac for all antioxidant measurements. Prominent histological changes in liver tissue included loss of liver architecture and the appearance of fatty liver cells, necrotic areas, foci of leukocytic infiltration and many apoptotic cells. The most obvious changes in the spinal cord in all treated fish were degradation of myelinated white matter fibers with the emergence of empty spaces, large aggregation of pyknotic neuroglial nuclei, and damaged areas in the dorsal horn of gray matter. Collectively, the harmful effect of tested herbicides on antioxidant capacity and significant alterations in histological structures of liver and spinal cord of Oreochromis niloticus.
Collapse
Affiliation(s)
- Shaimaa M M Saleh
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Ibrahim A Mohamed
- Plant protection Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Mohamed Fathy
- Plant protection Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
33
|
Tresnakova N, Kubec J, Stara A, Zuskova E, Faggio C, Kouba A, Velisek J. Chronic Toxicity of Primary Metabolites of Chloroacetamide and Glyphosate to Early Life Stages of Marbled Crayfish Procambarus virginalis. BIOLOGY 2022; 11:biology11060927. [PMID: 35741448 PMCID: PMC9219952 DOI: 10.3390/biology11060927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/16/2022]
Abstract
Degradation products of herbicides, alone and in combination, may affect non-target aquatic organisms via leaching or runoff from the soil. The effects of 50-day exposure of primary metabolites of chloroacetamide herbicide, acetochlor ESA (AE; 4 µg/L), and glyphosate, aminomethylphosphonic acid (AMPA; 4 µg/L), and their combination (AMPA + AE; 4 + 4 µg/L) on mortality, growth, oxidative stress, antioxidant response, behaviour, and gill histology of early life stages of marbled crayfish (Procambarus virginalis) were investigated. While no treatment effects were observed on cumulative mortality or early ontogeny, growth was significantly lower in all exposed groups compared with the control group. Significant superoxide dismutase activity was observed in exposure groups, and significantly higher glutathione S-transferase activity only in the AMPA + AE group. The gill epithelium in AMPA + AE-exposed crayfish showed swelling as well as numerous unidentified fragments in interlamellar space. Velocity and distance moved in crayfish exposed to metabolites did not differ from controls, but increased activity was observed in the AMPA and AE groups. The study reveals the potential risks of glyphosate and acetochlor herbicide usage through their primary metabolites in the early life stages of marbled crayfish.
Collapse
Affiliation(s)
- Nikola Tresnakova
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic; (N.T.); (J.K.); (A.S.); (E.Z.); (A.K.); (J.V.)
| | - Jan Kubec
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic; (N.T.); (J.K.); (A.S.); (E.Z.); (A.K.); (J.V.)
| | - Alzbeta Stara
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic; (N.T.); (J.K.); (A.S.); (E.Z.); (A.K.); (J.V.)
| | - Eliska Zuskova
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic; (N.T.); (J.K.); (A.S.); (E.Z.); (A.K.); (J.V.)
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-348-404-2634
| | - Antonin Kouba
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic; (N.T.); (J.K.); (A.S.); (E.Z.); (A.K.); (J.V.)
| | - Josef Velisek
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic; (N.T.); (J.K.); (A.S.); (E.Z.); (A.K.); (J.V.)
| |
Collapse
|
34
|
Lu J, Wang W, Xu W, Zhang C, Zhang C, Tao L, Li Z, Zhang Y. Induction of developmental toxicity and cardiotoxicity in zebrafish embryos by Emamectin benzoate through oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154040. [PMID: 35196543 DOI: 10.1016/j.scitotenv.2022.154040] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Emamectin benzoate (EMB) is a widely used pesticide in agriculture, but its potential risks to the environment and health have not been fully evaluated. In this study, we evaluated the toxicity of Emamectin benzoate using zebrafish model, and found that it affected early embryonic development, such as malformations and delayed hatching. Mechanistically, Emamectin benzoate increased oxidative stress by excessive production of reactive oxygen species (ROS) and abnormal activities of the antioxidant enzymes. Moreover, Emamectin benzoate exposure caused abnormalities in zebrafish heart morphology and function, such as long SV-BA distance and slow heart rate. Alterations were induced in the transcription of heart development-related genes (nkx2.5, tbx5, gata4 and myl7). In summary, our data showed that Emamectin benzoate induces developmental toxicity and cardiotoxicity in zebrafish. Our research provides new evidence on the Emamectin benzoate's toxicity and potential risk in human health.
Collapse
Affiliation(s)
- Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chenggong Zhang
- Institute of Forensic Science Shanghai Municipal Public Security Bureau, Shanghai Municipal Bureau of Public Security, Shanghai 200437, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
35
|
Pentachloronitrobenzene Reduces the Proliferative Capacity of Zebrafish Embryonic Cardiomyocytes via Oxidative Stress. TOXICS 2022; 10:toxics10060299. [PMID: 35736907 PMCID: PMC9231182 DOI: 10.3390/toxics10060299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022]
Abstract
Pentachloronitrobenzene (PCNB) is an organochlorine protective fungicide mainly used as a soil and seed fungicide. Currently, there are few reports on the toxicity of PCNB to zebrafish embryo. Here, we evaluated the toxicity of PCNB in aquatic vertebrates using a zebrafish model. Exposure of zebrafish embryos to PCNB at concentrations of 0.25 mg/L, 0.5 mg/L, and 0.75 mg/L from 6 hpf to 72 hpf resulted in abnormal embryonic development, including cardiac malformation, pericardial edema, decreased heart rate, decreased blood flow velocity, deposition at yolk sac, shortened body length, and increased distance between venous sinus and arterial bulb (SV-BA). The expression of genes related to cardiac development was disordered. However, due to the unstable embryo status in the 0.75 mg/L exposure concentration group, the effect of PCNB on the expression levels of cardiac-related genes was not concentration-dependent. We found that PCNB increased reactive oxygen species stress levels in zebrafish, increased malondialdehyde (MDA) content and catalase (CAT) activity, and decreased superoxide dismutase (SOD) activity. The increased level of oxidative stress reduced the proliferation ability of zebrafish cardiomyocytes, and the expressions of zebrafish proliferation-related genes such as cdk-2, cdk-6, ccnd1, and ccne1 were significantly down-regulated. Astaxanthin (AST) attenuates PCNB-induced reduction in zebrafish cardiomyocyte proliferation by reducing oxidative stress levels. Our study shows that PCNB can cause severe oxidative stress in zebrafish, thereby reducing the proliferative capacity of cardiomyocytes, resulting in zebrafish cardiotoxicity.
Collapse
|
36
|
Mahmood Y, Hussain R, Ghaffar A, Ali F, Nawaz S, Mehmood K, Khan A. Acetochlor Affects Bighead Carp ( Aristichthys Nobilis) by Producing Oxidative Stress, Lowering Tissue Proteins, and Inducing Genotoxicity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9140060. [PMID: 35655481 PMCID: PMC9152400 DOI: 10.1155/2022/9140060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
Acetochlor is persistently used in the agroproduction sector to control broadleaf weeds. Due to frequent and continuous applications, this herbicide can reach nearby water bodies and may induce deleterious changes in aquatic life. Therefore, investigation of harmful impacts of different environmental pollutants, including herbicides, is vital to knowing the mechanisms of toxicity and devising control strategies. The current experiment included bighead carp (n = 80) to estimate adverse impacts. Fish were randomly placed in 4 different experimental groups (T0-T3) and were treated for 36 days with acetochlor at 0, 300, 400, and 500 μg/L. Fresh blood without any anticoagulant was obtained and processed for nuclear and morphological changes in erythrocytes. At the same time, various visceral organs, including the gills, liver, brain, and kidneys, were removed and processed on days 12, 24, and 36 to determine oxidative stress and various antioxidant biomarkers. Comet assays revealed significantly increased DNA damage in isolated cells of the liver, kidneys, brain, and gills of treated fish. We recorded increased morphological and nuclear changes (P ≤ 0.05) in the erythrocyte of treated fish. The results on oxidative stress showed a higher quantity of oxidative biomarkers and a significantly (P ≤ 0.05) low concentration of cellular proteins in the gills, liver, brain, and kidneys of treated fish compared to unexposed fish. Our research findings concluded that acetochlor renders oxidative stress in bighead carp.
Collapse
Affiliation(s)
- Yasir Mahmood
- Department of Zoology, Islamia University of Bahawalpur, 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur-63100, Pakistan
| | - Abdul Ghaffar
- Department of Zoology, Islamia University of Bahawalpur, 63100, Pakistan
| | - Farah Ali
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur-63100, Pakistan
| | - Sadia Nawaz
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur-63100, Pakistan
| | - Ahrar Khan
- Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
- Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
| |
Collapse
|
37
|
Zheng Y, Zhang D, Sun Z, Yang Q, Liu Y, Cao T, Chen R, Dzakpasu M, Wang XC. Stereoselective degradation pathway of amide chiral herbicides and its impacts on plant and bacterial communities in integrated vertical flow constructed wetlands. BIORESOURCE TECHNOLOGY 2022; 351:126997. [PMID: 35292382 DOI: 10.1016/j.biortech.2022.126997] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This study demonstrates the stereoselective degradation patterns and biodegradation mechanisms of metolachlor (MET) and napropamide (NAP) in integrated vertical flow constructed wetlands (IVCW). The higher interphase transferability of NAP resulted in higher degradation rates of 90.60 ± 4.09%. The enantiomeric fraction (EF) values of 0.38 ± 0.02 and 0.54 ± 0.03, respectively, recorded for the enantiomers S-MET and R-NAP, with higher herbicidal activities, demonstrated their highly selective biodegradation patterns. The antioxidant enzyme activities and fluorescence parameters of plants showed positive correlations with the degradation efficiency and enantioselectivity of MET and NAP. Adaptive regulations by plants promoted the proliferation of microbial genera like Enterobacter and unclassified_Burkholderiales, which could facilitate plant growth. Moreover, enrichment of the herbicide-degrading functional bacteria Terrimonas (5.10%), Comamonas (4.05%) Pseudoxanthomonas (4.49%) and Mycobacterium (1.42%) demonstrably promoted the preferential degradation of S-MET and R-NAP. Furthermore, the abundance of Ferruginibacter favored the use of R-NAP as carbon source to achieve co-removal of R-NAP and NO3--N.
Collapse
Affiliation(s)
- Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Dongxian Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Zhuanzhuan Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qian Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ying Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ting Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
38
|
Zhao X, Shi X, Liu Q, Li X. Tea polyphenols alleviates acetochlor-induced apoptosis and necroptosis via ROS/MAPK/NF-κB signaling in Ctenopharyngodon idellus kidney cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106153. [PMID: 35381412 DOI: 10.1016/j.aquatox.2022.106153] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Overuse of acetochlor pollutes soil and rivers, causing threats to the ecosystem. Studies found that acetochlor exposure could damage multiple organs and tissues in fish and mammal. Tea polyphenols (TP), a natural antioxidant that extracted from tea, has been widely used in food and feed additions. However, the mechanism by which acetochlor causes tissue damage is unclear, and its mitigating agent has yet to be developed. Therefore, we established acetochlor exposure and TP mitigation models by treating Ctenopharyngodon idellus kidney (CIK) cells with 20 μM acetochlor and/or 2.5 μg/mL TP for 24 h, and detected the programmed cell death and its related pathways. The results showed that acetochlor exposure modified antioxidant enzyme activities, induced oxidative stress, resulted in the decline of MMP and ATP levels, enhanced glycolysis and lactate accumulation, and triggered apoptosis and necroptosis in CIK cells. However, TP could inhibit CYP450s expression, activate Nrf2 pathway, enhance antioxidant capacity, further effectively alleviate acetochlor-induced CIK cell death. Overall, the present study proved that acetochlor exposure triggered mitochondrial damage and lactate accumulation-mediated apoptosis and necroptosis through CYP450s/ROS/MAPK/NF-κB pathway. Furthermore, TP could alleviate effectively cell death through relieving oxidative stress and lightening Warburg-like effect.
Collapse
Affiliation(s)
- Xia Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; College of Agriculture, Liaocheng University, Liaocheng 252000, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qingqing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
39
|
Xu R, Huang Y, Lu C, Lv W, Hong S, Zeng S, Xia W, Guo L, Lu H, Chen Y. Ticlopidine induces cardiotoxicity in zebrafish embryos through AHR-mediated oxidative stress signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113138. [PMID: 34995907 DOI: 10.1016/j.ecoenv.2021.113138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Ticlopidine has inhibitory effects on platelet aggregation via ADP (adenosine diphosphate), platelet release reaction and depolymerization. In clinical practice, it is commonly used to prevent heart, cerebrovascular and other thromboembolic diseases. However, ticlopidine has also been reported to have teratogenic effects on the heart, though its specific molecular mechanism remains unclear. In this study, zebrafish embryos were used as model organisms to examine the toxicity effect of ticlopidine. Zebrafish embryos exposed to 6, 7.5, and 9 mg/L ticlopidine solutions manifested several abnormalities, including body curvature, smaller eyes, slower absorption of the vitella sac, pericardial edema, slower heart rate, increased mortality, longer venous sinus - arterial ball (SV-BA) distance, and increased oxidative stress, which indicated developmental and cardiac toxicity. Abnormal expression of key genes related to heart development was observed, and the level of apoptotic gene expression was up-regulated. Further experiments revealed up-regulation of embryonic oxidative stress following ticlopidine exposure, leading to a decrease in cardiomyocyte proliferation. Conversely, the aromatic hydrocarbon receptor (AHR) inhibitor CH223191 protected embryos from the cardiotoxicity effect of ticlopidine, confirming further the role of up-regulated oxidative stress as the molecular mechanism of ticlopidine-induced cardiotoxicity in zebrafish. In conclusion, ticlopidine exposure leads to developmental and cardiotoxicity in zebrafish embryos. Therefore, further studies are warranted to ascertain such potential harms of ticlopidine in humans, which are vital in providing guidance in the safe use of drugs in clinical practice.
Collapse
Affiliation(s)
- Rong Xu
- Medical College of Soochow University, Suzhou 215123, Jiangsu, P.R.China; The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Chen Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Weiming Lv
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Shihua Hong
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Shuqin Zeng
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Wenyan Xia
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Li Guo
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China.
| | - Yijian Chen
- Medical College of Soochow University, Suzhou 215123, Jiangsu, P.R.China; The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China.
| |
Collapse
|
40
|
Huang T, Wang S, Souders CL, Ivantsova E, Wengrovitz A, Ganter J, Zhao YH, Cheng H, Martyniuk CJ. Exposure to acetochlor impairs swim bladder formation, induces heat shock protein expression, and promotes locomotor activity in zebrafish (Danio rerio) larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112978. [PMID: 34794026 DOI: 10.1016/j.ecoenv.2021.112978] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Acetochlor is one of the most widely used herbicides in the world, however, there are few data on the sub-lethal effects of acetochlor on early developmental stages of fish. To address this, we measured survival, deformity, swim bladder formation, embryo oxygen consumption rates, reactive oxygen species (ROS) levels, transcripts (related to swim bladder formation, oxidative damage response, and apoptosis) and behavior responses following exposure to acetochlor (0.001 µM up to 125 µM). Exposure to acetochlor at concentrations 50 µM and above exerted 100% mortality after 3 dpf, and significantly reduced the size of the swim bladder (25 µM). In embryos, basal respiration, oligomycin-induced ATP production, and maximal respiration were decreased 30-60% following a 24 h exposure to 125 μM acetochlor. Acetochlor did not affect ROS levels up to 25 µM in larvae with acute exposure. Acetochlor at 25 µM increased mRNA levels of bax1, hsp70, and hsp90a by ~4-fold in larval zebrafish. In both the visual motor response and light-dark preference test, 25 µM acetochlor increased locomotor activity of larval fish. At lower exposure concentrations, 100 and 1000 nM acetochlor increased the mean time spent in the dark zone, suggesting promotion of anxiolytic behavior. This study presents a comprehensive evaluation of sublethal effects of acetochlor, spanning molecular responses to behavior, which can be used to refine risk assessment decisions for aquatic environments.
Collapse
Affiliation(s)
- Tao Huang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Shuo Wang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew Wengrovitz
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jade Ganter
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Hongguang Cheng
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
41
|
Wang K, Deng Y, Zhang J, Cheng B, Huang Y, Meng Y, Zhong K, Xiong G, Guo J, Liu Y, Lu H. Toxicity of thioacetamide and protective effects of quercetin in zebrafish (Danio rerio) larvae. ENVIRONMENTAL TOXICOLOGY 2021; 36:2062-2072. [PMID: 34227734 DOI: 10.1002/tox.23323] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Quercetin is a flavonoid compound with a variety of biological properties that is widely distributed throughout the plant kingdom. Studies have found that quercetin has anti-inflammatory, antioxidant, and liver-protective effects, while thioacetamide (TAA) can cause inflammation and liver damage in zebrafish larvae. The purpose of this study was to evaluate whether quercetin can prevent TAA-induced inflammation and liver damage in zebrafish larvae and to investigate the molecular mechanisms involved. Zebrafish Tg transgenic lines were used as the experimental animals. Behavioral, oxidative stress level, proliferative antigen chromogenic antibody, and western blot analyses were carried out on zebrafish larvae in the control group and groups treated with TAA and 12 μM quercetin. The results indicated that quercetin promoted the development of zebrafish larvae damaged by TAA, exhibited antioxidant and anti-inflammatory properties, and promoted cell proliferation. Quercetin reduced the expression of p53 protein in zebrafish larvae injured by TAA, resulting in decreased levels of Bax and increased levels of Bcl-2. The findings suggested quercetin has antiapoptotic action. Quercetin reduced the expression of DKK1 and DKK2 genes related to the Wnt signaling pathway in zebrafish larvae damaged by TAA and increased the expression of Lef1 and wnt2bb. Quercetin may regulate the development of zebrafish larvae damaged by TAA through the Wnt signaling pathway. This study provides the scientific basis for the development and utilization of quercetin and the development of new related drugs.
Collapse
Affiliation(s)
- Kexin Wang
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Yunyun Deng
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - June Zhang
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Bo Cheng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yong Huang
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yunlong Meng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Keyuan Zhong
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Jing Guo
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yi Liu
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Huiqiang Lu
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| |
Collapse
|
42
|
Zhong K, Meng Y, Wu J, Wei Y, Huang Y, Ma J, Lu H. Effect of flupyradifurone on zebrafish embryonic development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117323. [PMID: 34091267 DOI: 10.1016/j.envpol.2021.117323] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Evaluation of the toxicity of pesticide residues on non-target organisms in the ecosystem is an important part of pesticide environmental risk assessment. Flupyradifurone is a new type of butenolide insecticide produced by Bayer, who claims it to be "low toxic" to non-target organisms in the environment. However, there is little evidence in the literature to show how flupyradifurone affects aquatic organism development. In the current study, zebrafish embryos were treated with 0.1, 0.15, and 0.2 mg/mL of flupyradifurone within 6.0-72 h past fertilization (hpf). We found that the half-lethal concentration (LC50) of flupyradifurone for zebrafish embryos at 96 hpf was 0.21 mg/mL. Flupyradifurone decreases the heart rate, survival rate, and body length of zebrafish embryos. The flupyradifurone treatment also led to the failure of heart looping, and pericardial edema. Moreover, flupyradifurone increased the level of reactive oxygen species (ROS) and decreased the enzymatic catalysis of catalase (CAT) and superoxide dismutase (SOD). Alterations were induced in the transcription of apoptosis-related genes (bcl-2, bax, bax/bcl-2, p53 and caspase-9) and the heart development-related genes (gata4, myh6, nkx2.5, nppa, tbx2b, tbx5 and vmhc). In the current study, new evidences have been provided regarding the toxic effects of flupyradifurone and the risk of its residues in agricultural products and the environment.
Collapse
Affiliation(s)
- Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Juan Wu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
43
|
Kurnia KA, Santoso F, Sampurna BP, Audira G, Huang JC, Chen KHC, Hsiao CD. TCMacro: A Simple and Robust ImageJ-Based Method for Automated Measurement of Tail Coiling Activity in Zebrafish. Biomolecules 2021; 11:1133. [PMID: 34439799 PMCID: PMC8391278 DOI: 10.3390/biom11081133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Tail coiling is a reflection response in fish embryos that can be used as a model for neurotoxic analysis. The previous method to analyze fish tail coiling is largely based on third-party software. In this study, we aim to develop a simple and cost-effective method called TCMacro by using ImageJ macro to reduce the operational complexity. The basic principle of the current method is based on the dynamic change of pixel intensity in the region of interest (ROI). When the fish tail is moving, the average intensity is increasing. In time when the fish freeze, the peak of mean intensity is maintaining at a relatively low level. By using the optimized macro settings and excel VBA scripts, all the tail coiling measurement processes can be archived with few operation steps with high precision. Three major endpoints of tail coiling counts, tail coiling duration and tail coiling intervals can be obtained in batch. To validate this established method, we tested the potential neurotoxic activity of Tricaine (methanesulfonate, MS-222) and psychoactive compound of caffeine. Zebrafish embryos after Tricaine exposure displayed significantly less tail coiling activity in a dose-dependent manner, and were comparable to manual counting through the Wilcoxon test and Pearson correlation double validation. Zebrafish embryos after caffeine exposure displayed significantly high tail coiling activity. In conclusion, the TCMacro method presented in this study provides a simple and robust method that is able to measure the relative tail coiling activities in zebrafish embryos in a high-throughput manner.
Collapse
Affiliation(s)
- Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (K.A.K.); (F.S.); (B.P.S.); (G.A.)
| | - Fiorency Santoso
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (K.A.K.); (F.S.); (B.P.S.); (G.A.)
- Master Program in Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Bonifasius Putera Sampurna
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (K.A.K.); (F.S.); (B.P.S.); (G.A.)
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (K.A.K.); (F.S.); (B.P.S.); (G.A.)
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (K.A.K.); (F.S.); (B.P.S.); (G.A.)
- Master Program in Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|
44
|
Ma J, Huang Y, Jiang P, Liu Z, Luo Q, Zhong K, Yuan W, Meng Y, Lu H. Pyridaben induced cardiotoxicity during the looping stages of zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105870. [PMID: 34107429 DOI: 10.1016/j.aquatox.2021.105870] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Pyridaben is a widely used acaricide in agriculture and reaches a high concentration (97 μg/L) in paddy water for a short time when pyridaben was applied to rice. However, its toxicity to aquatic organisms is still poorly understood. Therefore, we assessed the pyridaben cardiotoxicity to aquatic organisms using the zebrafish (Danio rerio) model. We found that pyridaben is highly toxic to aquatic organisms, and LC50 of pyridaben for zebrafish at 72 hpf was 100.6 μg/L. Pyridaben caused severe cardiac malformations and functional abnormalities. Morphologic abnormity included severe pericardial edema, cardiomegaly, decreased cardiomyocytes, thinning of the myocardial layer, linear heart, and increased the distance between sinus venous and bulbus arteriosus (SV-BA). Functional failure included arrhythmia, heart failure, and reduced pumping efficiency. The genes involved in heart development, WNT signaling, BMP signaling, ATPase, and cardiac troponin C were abnormally expressed in the pyridaben treatment group. Exposure to pyridaben increased oxidative stress and induced cell apoptosis. The above causes may lead to cardiac toxicity. The results suggest that pyridaben exposure induced elevated oxidative stress through the WNT signaling pathway, which in turn led to apoptosis in the heart and cardiotoxicity. Besides, pyridaben exposure at the critical stage of cardiac looping (24-36 hpf) resulted in the greatest cardiotoxicity. The chorion reduced the entry of pyridaben and protected zebrafish embryos, resulting in cardiotoxicity second only to the stage of cardiac looping. The study should provide valuable information that pyridaben exposure causes cardiotoxicity in zebrafish embryos and have potential health risks for other aquatic organisms and humans.
Collapse
Affiliation(s)
- Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Ping Jiang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Zhou Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
45
|
Ma X, Zhang Y, Guan M, Zhang W, Tian H, Jiang C, Tan X, Kang W. Genotoxicity of chloroacetamide herbicides and their metabolites in vitro and in vivo. Int J Mol Med 2021; 47:103. [PMID: 33907828 PMCID: PMC8054635 DOI: 10.3892/ijmm.2021.4936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
The toxicity of chloroacetamide herbicide in embryo development remains unclear. Acetochlor (AC) is a chloroacetamide that metabolizes into 2‑ethyl‑6‑methyl-2-chloroacetanilide (CMEPA) and 6‑ethyl‑o‑toluidine (MEA). The present study determined the potential effect of AC and its metabolites on embryo development. Both HepG2 cells and zebrafish embryos were exposed to AC, CMEPA and MEA in the presence or absence of co‑treatment with anti‑reactive oxygen species (ROS) reagent N‑acetylcysteine. The generation of ROS, levels of superoxide dismutase (SOD) and glutathione (GSH) in HepG2 cells and lactate dehydrogenase (LDH) leakage from HepG2 cells were investigated. The effects of AC, CMEPA and MEA on DNA breakage, MAPK/ERK pathway activity, viability and apoptosis of HepG2 cells were examined by comet assay, western blotting, MTT assay and flow cytometry, respectively. Levels of LDH, SOD and GSH in zebrafish embryos exposed to AC, CMEPA and MEA were measured. The hatching and survival rates of zebrafish embryos exposed to AC, CMEPA and MEA, were determined, and apoptosis of hatched fish was investigated using acridine orange staining. The present data showed AC, CMEPA and MEA induced generation of ROS and decreased levels of SOD and GSH in HepG2 cells, which in turn promoted DNA breakage and LDH leakage from cells, ultimately inhibiting cell viability and inducing apoptosis, as well as phosphorylation of JNK and P38. However, co‑treatment with N‑acetylcysteine alleviated the pro‑apoptosis effect of AC and its metabolites. Moreover, exposure to AC, CMEPA and MEA lead to toxicity of zebrafish embryos with decreased SOD and GSH and increased LDH levels and cell apoptosis, ultimately decreasing the hatching and survival rates of zebrafish, all of which was attenuated by treatment with N‑acetylcysteine. Therefore, AC and its metabolites (CMEPA and MEA) showed cytotoxicity and embryo development toxicity.
Collapse
Affiliation(s)
- Xinyan Ma
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Ying Zhang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei 050011, P.R. China
| | - Mingyang Guan
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei 050011, P.R. China
| | - Weidong Zhang
- The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Huifang Tian
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei 050011, P.R. China
| | - Caixiao Jiang
- Hebei Center for Disease Control and Prevention, Shijiazhuang, Hebei 050021, P.R. China
| | - Xiaoxin Tan
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Weijun Kang
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
46
|
Zhang N, Xie F, Guo QN, Yang H. Environmental disappearance of acetochlor and its bioavailability to weed: A general prototype for reduced herbicide application instruction. CHEMOSPHERE 2021; 265:129108. [PMID: 33277001 DOI: 10.1016/j.chemosphere.2020.129108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/15/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The consecutive application of herbicide acetochlor has resulted in the widespread drug resistance of weeds and the high risks to environment and human health. To assess environmental behaviors and minimal dosage of acetochlor application in the realistic soil, we systematically investigated the acetochlor adsorption/desorption, mobility, leaching, degradation, weed bioavailability and lethal dosage of acetochlor in three soil types including Nanjing (NJ), Yancheng (YC) and Yingtan (YT). Under the same conditions (60% moisture and darkness), acetochlor had a half-life of disappearance 3 days in NJ, 4.9 days in YC and 25.7 days in YT soils. The HRLC-Q-TOF-MS/MS analyses identified ten metabolites and eight conjugates generated through dealkylation, hydroxylation, thiol conjugation and glycosylation pathways. The acetochlor adsorption to soils ranked in the order of YT > YC > NJ and was committed to the Freundlich model. By examining the effects of soil moisture, microbial activity, illumination/darkness, etc. on acetochlor degradation in soils, we showed that the chemical metabolisms could undergo multiple processes through soil microbial degradation, hydrolysis or photolysis-mediated mechanisms. The longitudinal migration assay revealed that acetochlor leaching ability in the three soils was YT > YC > NJ, which was negatively associated with the order of adsorption behavior. Four kinds of weed were grown in the acetochlor-contaminated NJ soil. The lethal concentrations for the weed plantlets were 0.16-0.3 mg/kg, much lower than the dosage of realistic field application. Overall, our work provided novel insights into the mechanism for acetochlor behaviors in soils, the natural degradation process in the environment, and the lethal concentration to the tested weed plants.
Collapse
Affiliation(s)
- Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Xie
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Nan Guo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
47
|
Shen C, Zuo Z. Zebrafish (Danio rerio) as an excellent vertebrate model for the development, reproductive, cardiovascular, and neural and ocular development toxicity study of hazardous chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43599-43614. [PMID: 32970263 DOI: 10.1007/s11356-020-10800-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
In the past decades, the type of chemicals has gradually increased all over the world, and many of these chemicals may have a potentially toxic effect on human health. The zebrafish, as an excellent vertebrate model, is increasingly used for assessing chemical toxicity and safety. This review summarizes the efficacy of zebrafish as a model for the study of developmental toxicity, reproductive toxicity, cardiovascular toxicity, neurodevelopmental toxicity, and ocular developmental toxicity of hazardous chemicals, and the transgenic zebrafish as biosensors are used to detect the environmental pollutants.
Collapse
Affiliation(s)
- Chao Shen
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China
| | - Zhenghong Zuo
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361002, Fujian, China.
| |
Collapse
|
48
|
Duan X, Sui X, Wang Q, Wang W, Li N, Chang L. Electrocatalytic oxidation of PCP-Na by a novel nano-PbO 2 anode: degradation mechanism and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43656-43669. [PMID: 32737782 DOI: 10.1007/s11356-020-10289-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
This study aims at investigating the electrocatalytic oxidation of sodium pentachlorophenate (PCP-Na) using a novel nano-PbO2 powder anode. The nano-PbO2 powder (marked as HL-PbO2) was prepared by a simple hydrolysis process, and hydrothermal treatment was followed to improve the activity of HL-PbO2. The HL-PbO2 treated for 24 h by hydrothermal process (HL/HT-PbO2-24) was confirmed to possess higher crystallinity, higher oxygen evolution potential, and more active sites, resulting in stronger OH radical generation capacity and higher electrochemical activity. Compared with conventional electrodeposited PbO2 (ED-PbO2) anode, the HL/HT-PbO2-24 anode showed higher PCP-Na degradation rate. Under the same operating conditions, the mineralization current efficiency at HL/HT-PbO2-24 was 2.7 times than that at ED-PbO2. Five intermediates were detected in PCP-Na degradation solution and possible degradation mechanism of PCP-Na was discussed. In addition, the acute toxicity of PCP-Na degradation solution to zebrafish embryos and the oxidative stress induced in zebrafish embryos/larvae were studied to evaluate the ecological security of electrocatalytic oxidation of PCP-Na.
Collapse
Affiliation(s)
- Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China.
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Xinyu Sui
- Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China
| | - Qian Wang
- Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China
| | - Weiyi Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Na Li
- Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| |
Collapse
|
49
|
Zhang J, Deng Y, Cheng B, Huang Y, Meng Y, Zhong K, Xiong G, Guo J, Liu Y, Lu H. Protective effects and molecular mechanisms of baicalein on thioacetamide-induced toxicity in zebrafish larvae. CHEMOSPHERE 2020; 256:127038. [PMID: 32470728 DOI: 10.1016/j.chemosphere.2020.127038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Baicalein is a flavonoid that is widely found in plants. Studies have shown that baicalein has anti-inflammatory, anti-cancer, and liver-protective effects. However, the effects of baicalein on TAA-induced toxicity and the underlying molecular mechanisms in zebrafish larvae are still unknown. Here, we investigated the effects of baicalein on liver development and its anti-inflammatory effects in zebrafish larvae. The results showed that baicalein has significant anti-embryonic developmental toxicity and significant antioxidant and anti-inflammatory capabilities in TAA-induced zebrafish larvae and promotes liver development and cell proliferation, reduces the expression of apoptotic proteins, and induces the expression of anti-apoptotic proteins. At the molecular level of TAA-treated zebrafish larvae, there was a decrease in the relative expression levels of mRNAs of three subfamilies, P38, ERK1, and ERK2, of the MAPK-signaling pathway and of the products of peroxisome proliferator-activated receptor (PPAR)α. Compared with TAA-treated zebrafish larvae, zebrafish larvae treated with baicalein showed an increase in the relative expression levels of P38, ERK1, and ERK2 mRNAs and the downstream products of PPARα. When MAPK signal inhibitor (SB203580) was added, it was found that liver development was inhibited and baicalin had no protective effect on TAA induced hepatotoxicity in zebrafish larvae. The results showed baicalein can protect the zebrafish larvae against toxicity induced by TAA through MAPK signal pathway. Several molecular mechanisms discovered in this study may help in the development of new drugs.
Collapse
Affiliation(s)
- June Zhang
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Yunyun Deng
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Bo Cheng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Yong Huang
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Yunlong Meng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Keyuan Zhong
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Jing Guo
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Yi Liu
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Huiqiang Lu
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
50
|
Huang Y, Ma J, Meng Y, Wei Y, Xie S, Jiang P, Wang Z, Chen X, Liu Z, Zhong K, Cao Z, Liao X, Xiao J, Lu H. Exposure to Oxadiazon-Butachlor causes cardiac toxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114775. [PMID: 32504889 DOI: 10.1016/j.envpol.2020.114775] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Oxadiazon-Butachlor (OB) is a widely used herbicide for controlling most annual weeds in rice fields. However, its potential toxicity in aquatic organisms has not been evaluated so far. We used the zebrafish embryo model to assess the toxicity of OB, and found that it affected early cardiac development and caused extensive cardiac damage. Mechanistically, OB significantly increased oxidative stress in the embryos by inhibiting antioxidant enzymes that resulted in excessive production of reactive oxygen species (ROS), eventually leading to cardiomyocyte apoptosis. In addition, OB also inhibited the WNT signaling pathway and downregulated its target genes includinglef1, axin2 and β-catenin. Reactivation of this pathway by the Wnt activator BML-284 and the antioxidant astaxanthin rescued the embryos form the cardiotoxic effects of OB, indicating that oxidative stress, and inhibition of WNT target genes are the mechanistic basis of OB-induced damage in zebrafish. Our study shows that OB exposure causes cardiotoxicity in zebrafish embryos and may be potentially toxic to other aquatic life and even humans.
Collapse
Affiliation(s)
- Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuling Xie
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ping Jiang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ziqin Wang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaobei Chen
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zehui Liu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|