1
|
Ferrara F, Valacchi G. Role of microbiota in the GUT-SKIN AXIS responses to outdoor stressors. Free Radic Biol Med 2024; 225:894-909. [PMID: 39505118 DOI: 10.1016/j.freeradbiomed.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Beside the respiratory tract, the skin and the gut represent the first defensive lines of our body against the external insults displaying many important biochemical features able to maintain the epithelial barrier integrity and to regulate the tissue immune responses. The human microbiome is essential in maintaining the tissue homeostasis and its dysregulation may lead to tissue conditions including inflammatory pathologies. Among all external insults, air pollutants have been shown to cause oxidative stress damage within the target tissues via an OxInflammatory response. Dysregulation of the gut microbiome (dysbiosis) by outdoor stressors, including air pollutants, may promote the exacerbation of the skin tissue damage via the interplay between the gut-skin axis. The intent of this review is to highlight the ability of exogenous stressors to modulate the human gut-skin axis via a redox regulated mechanism affecting the microbiome and therefore contributing to the development and aggravation of gut and skin conditions.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceuticals and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy; Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC, 28081, USA; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea.
| |
Collapse
|
2
|
Jiang T, Hou L, Rahman SM, Gong Z, Bai X, Vulpe C, Fasullo M, Gu AZ. Amplified and distinctive genotoxicity of titanium dioxide nanoparticles in transformed yeast reporters with human cytochrome P450 (CYP) genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134850. [PMID: 38850947 DOI: 10.1016/j.jhazmat.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
Titanium dioxide nanoparticles (nTiO2) have been considered a possible carcinogen to humans, but most existing studies have overlooked the role of human enzymes in assessing the genotoxicity of nTiO2. Here, a toxicogenomics-based in vitro genotoxicity assay using a GFP-fused yeast reporter library was employed to elucidate the genotoxic potential and mechanisms of nTiO2. Moreover, two new GFP-fused yeast reporter libraries containing either human CYP1A1 or CYP1A2 genes were constructed by transformation to investigate the potential modulation of nTiO2 genotoxicity in the presence of human CYP enzymes. This study found a lack of appreciable nTiO2 genotoxicity as indicated by the yeast reporter library in the absence of CYP expression but a significantly elevated indication of genotoxicity in either CYP1A1- or CYP1A2-expressing yeast. The intracellular reactive oxygen species (ROS) measurement indicated significantly higher ROS in yeast expressing either enzyme. The detected mitochondrial DNA damage suggested mitochondria as one of the target sites for oxidative damage by nTiO2 in the presence of either one of the CYP enzymes. The results thus indicated that the genotoxicity of nTiO2 was enhanced by human CYP1A1 or CYP1A2 enzyme and was associated with elevated oxidative stress, which suggested that the similar mechanisms could occur in human cells.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA; Utah Water Research Laboratory, Utah State University, Logan, UT 84322, USA
| | - Sheikh Mokhlesur Rahman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; Department of Civil Engineering, Bangladesh University of Engineering and Technology, BUET Central Road, Dhaka 1000, Bangladesh
| | - Zixuan Gong
- Department of Materials, Imperial College London, London LND SW7 2AZ, UK
| | - Xueke Bai
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - Christopher Vulpe
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Michael Fasullo
- Department of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Xie B, Liu Y, Chen C, Velkov T, Tang S, Shen J, Dai C. Colistin Induces Oxidative Stress and Apoptotic Cell Death through the Activation of the AhR/CYP1A1 Pathway in PC12 Cells. Antioxidants (Basel) 2024; 13:827. [PMID: 39061896 PMCID: PMC11273690 DOI: 10.3390/antiox13070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Colistin is commonly regarded as the "last-resort" antibiotic for combating life-threatening infections caused by multidrug-resistant (MDR) gram-negative bacteria. Neurotoxicity is a potential adverse event associated with colistin application in clinical settings, yet the exact molecular mechanisms remain unclear. This study examined the detrimental impact of colistin exposure on PC12 cells and the associated molecular mechanisms. Colistin treatment at concentrations of 0-400 μM decreased cell viability and induced apoptotic cell death in both time- and concentration-dependent manners. Exposure to colistin triggered the production of reactive oxygen species (ROS) and caused oxidative stress damage in PC12 cells. N-acetylcysteine (NAC) supplementation partially mitigated the cytotoxic and apoptotic outcomes of colistin. Evidence of mitochondrial dysfunction was observed through the dissipation of membrane potential. Additionally, colistin treatment upregulated the expression of AhR and CYP1A1 mRNAs in PC12 cells. Pharmacological inhibition of AhR (e.g., using α-naphthoflavone) or intervention with the CYP1A1 gene significantly decreased the production of ROS induced by colistin, subsequently lowering caspase activation and cell apoptosis. In conclusion, our findings demonstrate, for the first time, that the activation of the AhR/CYP1A1 pathway contributes partially to colistin-induced oxidative stress and apoptosis, offering insights into the cytotoxic effects of colistin.
Collapse
Affiliation(s)
- Baofu Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yue Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chunhong Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University Clayton, Melbourne, VIC 3800, Australia
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Wang C, Liu X, Zhai J, Zhong C, Zeng H, Feng L, Yang Y, Li X, Ma M, Luan T, Deng J. Effect of oxidative stress induced by 2,3,7,8- tetrachlorodibenzo-p-dioxin on DNA damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134485. [PMID: 38701725 DOI: 10.1016/j.jhazmat.2024.134485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic persistent organic pollutant (POP) that can induce DNA damage within cells. Although oxidative stress is one of the primary mechanisms causing DNA damage, its role in the process of TCDD-induced DNA damage remains unclear. In this study, the TCDD-induced production of reactive oxygen species (ROS) and the occurrence of DNA damage at the AP site were monitored simultaneously. Further investigation revealed that TCDD impaired the activities of superoxide dismutase (SOD) and catalase (CAT), compromising the cellular antioxidant defense system. Consequently, this led to an increase in the production of O2.- and NO, thus inducing DNA damage at the AP site under oxidative stress. Our findings were further substantiated by the upregulation of key genes in the base excision repair (BER) pathway and the absence of DNA AP site damage after inhibiting O2.- and NO. In addition, transcriptome sequencing revealed that TCDD induces DNA damage by upregulating genes associated with oxidative stress in the mitogen-activated protein kinase (MAPK), cyclic adenosine monophosphate (cAMP), and breast cancer pathways. This study provides important insights into the toxicity mechanisms of TCDD.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoxin Liu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chunfei Zhong
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Haishen Zeng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Longkuan Feng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yunyun Yang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Xinyan Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Jiewei Deng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Wang H, Fan Q, Liang Q, Wu Y, Ye Z, Wu H, Sun Q, Tang H, Liu Y, Liu Q, Chen Y. Human CYP1A1-activated aneugenicity of aflatoxin B1 in mammalian cells and its combined effect with benzo(a)pyrene. Chem Biol Interact 2024; 392:110923. [PMID: 38382706 DOI: 10.1016/j.cbi.2024.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin and a proven human carcinogen that requires metabolic activation, known by cytochrome P450 (CYP) 1A2 and 3A4. Previous evidence showed that AFB1 is activated by human recombinant CYP1A1 expressed in budding yeast. Yet, the toxicity, in particular the genotoxicity of the reactive metabolites formed from AFB1 remains unclear. Humans could be exposed to both AFB1 and benzo(a)pyrene (BaP) simultaneously, thus we were interested in their combined genotoxic effects subsequent to metabolic activation by CYP1A1. In this study, molecular docking of AFB1 to human CYP1A1 indicated that AFB1 is valid as a substrate. In the incubations with AFB1 in human CYP1A1-expressed microsomes, AFM1 as a marking metabolite of AFB1 was detected. Moreover, AFB1 induced micronucleus formation in a Chinese hamster V79-derived cell line and in a human lung epithelial BEAS-2B cell line, both expressing recombinant human CYP1A1, V79-hCYP1A1 and 2B-hCYP1A1 cells, respectively. Immunofluorescence of centromere protein B stained micronuclei was dominant in AFB1-treated BEAS-2B cells exposed to AFB1, suggesting an aneugenic effect. Moreover, AFB1 elevated the levels of ROS, 8-OHdG, AFB1-DNA adduct, and DNA breaks in 2B-hCYP1A1 cells, compared with those in the parental BEAS-2B cells. Meanwhile, AFB1 increased CYP1A1, RAD51, and γ-H2AX protein levels in 2B-hCYP1A1 cells, which were attenuated by the CYP1A1 inhibitor bergamottin. Co-exposure of AFB1 with BaP increased 8-OHdG, RAD51, and γ-H2AX levels (indicating DNA damage). In conclusion, AFB1 could be activated by human CYP1A1 for potent aneugenicity, which may be further enhanced by co-exposure to BaP.
Collapse
Affiliation(s)
- Huanhuan Wang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Qin Fan
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Qian Liang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yao Wu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Zhongming Ye
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Haipeng Wu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Qian Sun
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China
| | - Qizhan Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China; Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
6
|
Geng P, Jin Q, Zhou X, Zhu F. Effects of environmental pollutant benzop[α]yrene on the innate immunity of Scylla paramamosain and its mechanism. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109228. [PMID: 37967729 DOI: 10.1016/j.fsi.2023.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Benzo[α]pyrene (BaP), a polycyclic aromatic hydrocarbon, is present in the aquatic environment and may be harmful to aquatic animals. We exposed the mud crab Scylla paramamosain to BaP for 7 days, the of superoxide dismutase (SOD), catalase (CAT), phenoloxidase (PO), lysozyme (LZM), glutathione (GSH), glutathione-S-transferase (GST), and acid phosphatase (ACP) activities in the hemolymph of mud crab were reduced. Additionally, the reactive oxygen species content was increased in mud crabs after exposed to BaP. When BaP concentration was increased, the total hemocyte count (THC), the survival rate of hemocytes and their proliferation were decreased. Histopathology analysis revealed damaged hepatopancreas cells, which indicating that BaP exposure is cytotoxic to crab hemocytes. However, the degree of DNA damage did not worsen with increasing BaP concentration. The expression levels of p53, MCM7, Caspase-3, and Myosin were changed with increasing concentration of BaP, which indicated that BaP exposure may affect apoptosis and phagocytosis in mud crabs. As BaP concentration was increased, the apoptosis rate of hemocytes was increased and the phagocytosis was decreased. These results confirmed that BaP exposure inhibited the innate immune response of mud crabs. A possible explanation for this effect is that BaP reduces the antioxidant enzyme activity and increases the reactive oxygen species content in mud crabs, thereby oxidizing and damaging hemocytes, which stimulates phagocytosis and apoptosis and negatively affects the innate immunity of S. paramamosain.
Collapse
Affiliation(s)
- Peilin Geng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Qingri Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Xiujuan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
7
|
Hiéronimus L, Huaux F. B-1 cells in immunotoxicology: Mechanisms underlying their response to chemicals and particles. FRONTIERS IN TOXICOLOGY 2023; 5:960861. [PMID: 37143777 PMCID: PMC10151831 DOI: 10.3389/ftox.2023.960861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Since their discovery nearly 40 years ago, B-1 cells have continued to challenge the boundaries between innate and adaptive immunity, as well as myeloid and lymphoid functions. This B-cell subset ensures early immunity in neonates before the development of conventional B (B-2) cells and respond to immune injuries throughout life. B-1 cells are multifaceted and serve as natural- and induced-antibody-producing cells, phagocytic cells, antigen-presenting cells, and anti-/pro-inflammatory cytokine-releasing cells. This review retraces the origin of B-1 cells and their different roles in homeostatic and infectious conditions before focusing on pollutants comprising contact-sensitivity-inducing chemicals, endocrine disruptors, aryl hydrocarbon receptor (AHR) ligands, and reactive particles.
Collapse
|
8
|
Shen C, Tang C, Zhu K, He C, Yang C, Zuo Z. Toxicity and ecological risk assessment for two AhR agonistic pesticides mepanipyrim and cyprodinil and their metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58944-58955. [PMID: 37002518 DOI: 10.1007/s11356-023-26735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
Mepanipyrim and cyprodinil are widely used to control and/or prevent fungal diseases in fruit culture. They are frequently detected in the aquatic environment and some food commodities. Different from TCDD, mepanipyrim and cyprodinil are more easily metabolised in the environments. However, the risk of their metabolites to the ecological environment is unclear and needs to be further confirmed. In this study, we investigated the temporal pattern of mepanipyrim- and cyprodinil-induced CYP1A and AhR2 expression and EROD enzyme activity at different time frames during zebrafish embryonic and larval development. Then, we assessed the ecological risk of mepanipyrim, cyprodinil, and their metabolites to aquatic organisms. Our results showed that mepanipyrim and cyprodinil exposure could increase the expression level of cyp1a and ahr2 genes and EROD activity by a dynamic pattern in different developmental stages of zebrafish. Besides, their several metabolites showed strong AhR agonistic activity. Importantly, these metabolites could cause potential ecological risks to aquatic organisms and should be paid more attention to. Our results would provide an important reference value for environmental pollution control and the use management of mepanipyrim and cyprodinil.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
9
|
Wang W, Xiang T, Yang Y, Wang Z, Xie J. E3 ubiquitin ligases STUB1/CHIP contributes to the Th17/Treg imbalance via the ubiquitination of aryl hydrocarbon receptor in rheumatoid arthritis. Clin Exp Immunol 2022; 209:280-290. [PMID: 35943876 PMCID: PMC9521662 DOI: 10.1093/cei/uxac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 01/25/2023] Open
Abstract
STIP1-homologous U-Box containing protein 1 (STUB1) is involved in the development of immune pathologies and the regulation of T cell. However, the potential role of STUB1 in the pathogenesis of rheumatoid arthritis (RA), especially in the regulation of T cells, remains elusive. Here we show that STUB1 promotes the imbalance of Th17/Treg cells through non-degradative ubiquitination of aryl hydrocarbon receptor (AHR). Using Western blot and flow cytometry analysis, we observe that the level of STUB1 was increased in RA patients compared with healthy controls. In particular, the expression of STUB1 protein was different in Th17 cells and Treg cells of RA patients. We also demonstrated that STUB1 facilitates Th17/Treg imbalance by up- or downregulating the expression of STUB1. In a subsequent series of in vitro experiments, we revealed that STUB1 promoted the imbalance of Th17 and Treg cells through non-degradative ubiquitination of AHR. Both knockdown of the AHR expression by siRNA and assays of CYP1A1 enzymatic activity by ethoxyresorufin-O-deethylase (EROD) supported this conclusion. Furthermore, we explored the ubiquitination sites of AHR responsible for STUB1-mediated ubiquitination and revealed that STUB1 promotes ubiquitination of AHR via K63 chains. Together, STUB1 may induce the imbalance of Th17/Treg cells via ubiquitination of AHR and serve as a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Wen Wang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Xiang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yachen Yang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zitao Wang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianmin Xie
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Farris PK, Valacchi G. Ultraviolet Light Protection: Is It Really Enough? Antioxidants (Basel) 2022; 11:1484. [PMID: 36009203 PMCID: PMC9405175 DOI: 10.3390/antiox11081484] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Our current understanding of the pathogenesis of skin aging includes the role of ultraviolet light, visible light, infrared, pollution, cigarette smoke and other environmental exposures. The mechanism of action common to these exposures is the disruption of the cellular redox balance by the directly or indirectly increased formation of reactive oxygen species that overwhelm the intrinsic antioxidant defense system, resulting in an oxidative stress condition. Altered redox homeostasis triggers downstream pathways that contribute to tissue oxinflammation (cross-talk between inflammation and altered redox status) and accelerate skin aging. In addition, both ultraviolet light and pollution increase intracellular free iron that catalyzes reactive oxygen species generation via the Fenton reaction. This disruption of iron homeostasis within the cell further promotes oxidative stress and contributes to extrinsic skin aging. More recent studies have demonstrated that iron chelators can be used topically and can enhance the benefits of topically applied antioxidants. Thus, an updated, more comprehensive approach to environmental or atmospheric aging protection should include sun protective measures, broad spectrum sunscreens, antioxidants, chelating agents, and DNA repair enzymes.
Collapse
Affiliation(s)
- Patricia K. Farris
- Department of Dermatology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Animal Science Department, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| |
Collapse
|
11
|
Zhou BB, Liu D, Qian JC, Tan RX. Vegetable-derived indole enhances the melanoma-treating efficacy of chemotherapeutics. Phytother Res 2022; 36:4278-4292. [PMID: 35883268 DOI: 10.1002/ptr.7565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022]
Abstract
Food-drug interaction is an important but overlooked issue. For example, little is known concerning whether or not the chemotherapy of cancers is affected by the well-defined dietary chemicals such as 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1) derived from daily consumed cruciferous vegetables. This work, inspired by the described melanogenesis reduction by certain indoles, presents that LTr1 mitigates the melanogenesis and thus potentiates the in vitro and in vivo anti-melanoma effectiveness of different chemotherapeutic agents including dacarbazine, vemurafenib, and sorafenib. In B16 melanoma cells, LTr1 was shown to inhibit the melanogenesis by acting towards the regulatory (R) subunit of protein kinase A (PRKAR1a) associated with the phosphorylation of cAMP-response element binding protein (CREB). This allows LTr1 to reduce the expression of melanogenesis-related enzymes such as tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2). Furthermore, LTr1 was addressed to bind to the aryl hydrocarbon receptor (AhR) and up-regulate the expression of CYP1A1 encoding cytochrome P450 1A1, leading to the escalation of reactive oxygen species (ROS) level. The increased ROS generation promotes the cysteine-to-cystine transformation to inhibit the pheomelanogenesis in melanomas. Collectively, the work identifies LTr1 as a new melanogenesis inhibitor that modulates the PKA/CREB/MITF and AhR/CYP1A1/ROS pathways, thereby providing a new option for (re)sensitizing melanomas to chemotherapeutics.
Collapse
Affiliation(s)
- Bei Bei Zhou
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan Liu
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Cheng Qian
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Chen H, Qiu W, Yang X, Chen F, Chen J, Tang L, Zhong H, Magnuson JT, Zheng C, Xu EG. Perfluorooctane Sulfonamide (PFOSA) Induces Cardiotoxicity via Aryl Hydrocarbon Receptor Activation in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8438-8448. [PMID: 35652794 DOI: 10.1021/acs.est.1c08875] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perfluorooctane sulfonamide (PFOSA), a precursor of perfluorooctanesulfonate (PFOS), is widely used during industrial processes, though little is known about its toxicity, particularly to early life stage organisms that are generally sensitive to xenobiotic exposure. Here, following exposure to concentrations of 0.01, 0.1, 1, 10, and 100 μg/L PFOSA, transcriptional, morphological, physiological, and biochemical assays were used to evaluate the potential effects on aquatic organisms. The top Tox functions in exposed zebrafish were related to cardiac diseases predicted by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Ingenuity Pathway Analysis (IPA) analysis. Consistent with impacts predicted by transcriptional changes, abnormal cardiac morphology, disordered heartbeat signals, as well as reduced heart rate and cardiac output were observed following the exposure of 0.1, 1, 10, or 100 μg/L PFOSA. Furthermore, these PFOSA-induced cardiac effects were either prevented or alleviated by supplementation with an aryl hydrocarbon receptor (AHR) antagonist or ahr2-morpholino knock-down, uncovering a seminal role of AHR in PFOSA-induced cardiotoxicity. Our results provide the first evidence in fish that PFOSA can impair proper heart development and function and raises concern for PFOSA analogues in the natural environment.
Collapse
Affiliation(s)
- Honghong Chen
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuanjun Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaying Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hanbing Zhong
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
| | - Chunmiao Zheng
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| |
Collapse
|
13
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
14
|
Zhang W, Xie HQ, Li Y, Zhou M, Zhou Z, Wang R, Hahn ME, Zhao B. The aryl hydrocarbon receptor: A predominant mediator for the toxicity of emerging dioxin-like compounds. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128084. [PMID: 34952507 PMCID: PMC9039345 DOI: 10.1016/j.jhazmat.2021.128084] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 06/01/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcription factors and has broad biological functions. Early after the identification of the AHR, most studies focused on its roles in regulating the expression of drug-metabolizing enzymes and mediating the toxicity of dioxins and dioxin-like compounds (DLCs). Currently, more diverse functions of AHR have been identified, indicating that AHR is not just a dioxin receptor. Dioxins and DLCs occur ubiquitously and have diverse health/ecological risks. Additional research is required to identify both shared and compound-specific mechanisms, especially for emerging DLCs such as polyhalogenated carbazoles (PHCZs), polychlorinated diphenyl sulfides (PCDPSs), and others, of which only a few investigations have been performed at present. Many of the toxic effects of emerging DLCs were observed to be predominantly mediated by the AHR because of their structural similarity as dioxins, and the in vitro TCDD-relative potencies of certain emerging DLC congeners are comparable to or even greater than the WHO-TEFs of OctaCDD, OctaCDF, and most coplanar PCBs. Due to the close relationship between AHR biology and environmental science, this review begins by providing novel insights into AHR signaling (canonical and non-canonical), AHR's biochemical properties (AHR structure, AHR-ligand interaction, AHR-DNA binding), and the variations during AHR transactivation. Then, AHR ligand classification and the corresponding mechanisms are discussed, especially the shared and compound-specific, AHR-mediated effects and mechanisms of emerging DLCs. Accordingly, a series of in vivo and in vitro toxicity evaluation methods based on the AHR signaling pathway are reviewed. In light of current advances, future research on traditional and emerging DLCs will enhance our understanding of their mechanisms, toxicity, potency, and ecological impacts.
Collapse
Affiliation(s)
- Wanglong Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxi Zhou
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA; Boston University Superfund Research Program, Boston University, Boston, MA 02118, USA
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Liang Y, Wu B, Zhang Y, Liu H. Oxidative stress and EROD activity in Caco-2 cells upon exposure to chlorinated hydrophobic organic compounds from drinking water reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150015. [PMID: 34509843 DOI: 10.1016/j.scitotenv.2021.150015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Our previous studies showed hydrophobic organic compounds (HOCs) in the sediments of drinking water reservoirs caused DNA damage in human cells (Caco-2) after chlorination. However, the main mechanisms remained unclear. This study compared oxidative damage and EROD activity in Caco-2 cells upon exposure to chlorinated HOCs, and the role of antioxidants (catalase, vitamin C and epigallocatechin gallate (EGCG)) in reducing the toxicities was examined. The result showed that chlorinated HOCs induced a 4-fold increase in production of reactive oxygen species (ROS) compared with HOCs. Antioxidants supplement significantly reduced ROS yields and DNA peroxidation. HOCs with relatively higher TEQbio were greatly reduced (about 98%) after chlorination, indicating dioxin-like toxicity is not the main factor inducing oxidative damage by chlorinated HOCs. Yet, ROS and the associated oxidative damage seem to be more responsible for causing DNA damage in the cells. Antioxidants including catalase, Vitamin C and EGCG showed protective effect against chlorination.
Collapse
Affiliation(s)
- Yan Liang
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Binbin Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Centre for Cardiovascular Genomics and Medicine, The Chinese University of Hong Kong (CUHK), HKSAR, China
| | - Yanling Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hailong Liu
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
16
|
Liu Y, Jia X, Zhu H, Zhang Q, He Y, Shen Y, Xu X, Li J. The effects of exposure to microplastics on grass carp (Ctenopharyngodon idella) at the physiological, biochemical, and transcriptomic levels. CHEMOSPHERE 2022; 286:131831. [PMID: 34411925 DOI: 10.1016/j.chemosphere.2021.131831] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are pollutants that are widely distributed in the aquatic environment. Fish are directly exposed to water and are at risk of ingesting a large amount of MPs. In the present study, the grass carp were exposed to two concentrations of MPs (1000 and 100 μg/L) and fluorescence signals were detected in the liver digestion solution. Grass carp exposed to MPs for 21-days showed liver cytoplasmic vacuolation and inhibited growth. At the end of the exposure period, the fish treated with MPs exhibited inhibition of the antioxidant system and enhancement oxidative stress in comparison with the control group. The transcriptome analysis of grass carp was then performed to reveal the molecular mechanism of the response to MPs. In total, 1554 differentially expressed genes (DEGs) were identified. The results of GO and KEGG pathway analysis of the DEGs identified energy metabolism-related pathways and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Taken together, the present study not only highlighted oxidative stress and metabolism disorders related to MP ingestion, but also determined the risk of MP exposure to teleost.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xuewen Jia
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing, China
| | - Qingjing Zhang
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing, China
| | - Yan He
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
17
|
Xiao C, Zhang Y, Zhu F. Immunotoxicity of polychlorinated biphenyls (PCBs) to the marine crustacean species, Scylla paramamosain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118229. [PMID: 34582922 DOI: 10.1016/j.envpol.2021.118229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants in environments, and they can negatively affect aquatic animal health. After 7 days of PCBs exposure, the activities of catalase, phenoloxidase, and superoxide dismutase and the total hemocyte count in the haemolymph were significantly decreased and the reactive oxygen species (ROS) content and phagocytic rate of hemocytes were significantly increased in mud crab Scylla paramamosain. Additionally, serum lysozyme, glutathione, glutathione-S-transferase, and glutathione peroxidase activities were significantly down-regulated in mud crab after PCBs exposure. The survival rate of crab hemocytes significantly declined as the PCBs concentration increased, indicating that PCBs had a cytotoxic effect on hemocytes. Exposure to increasing concentrations of PCBs also increased the degree of DNA damage in crab hemocytes. After PCBs exposure, the expression levels of P53 and caspase-3 in hemocytes were significantly up-regulated, which suggests that apoptosis was occurring. The apoptosis rate of hemocytes was up-regulated as the PCBs concentration increased, indicating that apoptosis was induced by the PCBs-activated caspase-3 pathway. These data suggest that exposure to PCBs hampered the immune response of mud crabs, most likely by (1) inducing ROS, causing DNA damage, and reducing the viability of hemocytes, (2) reducing the activities of antioxidant enzymes, and (3) inducing phagocytosis and apoptosis of hemocytes. And the final result of PCBs-induced immunotoxicity to mud crabs is the reduced bacterial disease resistance and survival rate of crabs under Vibrio alginolyticus challenge.
Collapse
Affiliation(s)
- Chongyang Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yunfei Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
18
|
Wang Y, Yu Z, Fan Z, Fang Y, He L, Peng M, Chen Y, Hu Z, Zhao K, Zhang H, Liu C. Cardiac developmental toxicity and transcriptome analyses of zebrafish (Danio rerio) embryos exposed to Mancozeb. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112798. [PMID: 34592528 DOI: 10.1016/j.ecoenv.2021.112798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Mancozeb (MZ), an antibacterial pesticide, has been linked to reproductive toxicity, neurotoxicity, and endocrine disruption. However, whether MZ has cardiactoxicity is unclear. In this study, the cardiotoxic effects of exposure to environment-related MZ concentrations ranging from 1.88 μM to 7.52 μM were evaluated at the larval stage of zebrafish. Transcriptome sequencing predicted the mechanism of MZ-induced cardiac developmental toxicity in zebrafish by enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Consistent with morphological changes, the osm, pfkfb3, foxh1, stc1, and nrarpb genes may effect normal development of zebrafish heart by activating NOTCH signaling pathways, resulting in pericardial edema, myocardial fibrosis, and congestion in the heart area. Moreover, differential gene expression analysis indicated that cyp-related genes (cyp1c2 and cyp3c3) were significantly upregulated after MZ treatment, which may be related to apoptosis of myocardial cells. These results were verified by real-time quantitative RT-qPCR and acridine orange staining. Our findings suggest that MZ-mediated cardiotoxic development of zebrafish larvae may be related to the activation of Notch and apoptosis-related signaling pathways.
Collapse
Affiliation(s)
- Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Zhiquan Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Liting He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Meili Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Zhiyong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| |
Collapse
|
19
|
Ghaffarian-Bahraman A, Arabnezhad MR, Keshavarzi M, Davani-Davari D, Jamshidzadeh A, Mohammadi-Bardbori A. Influence of cellular redox environment on aryl hydrocarbon receptor ligands induced melanogenesis. Toxicol In Vitro 2021; 79:105282. [PMID: 34856342 DOI: 10.1016/j.tiv.2021.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
Many environmental pollutants, natural compounds, as well as endogenous chemicals exert their biological/toxicological effects by reacting with the aryl hydrocarbon receptor (AhR). Previous evidence shed new light on the role of AhR in skin physiology by regulating melanin production. In this study, we investigated the effect of oxidative imbalance induced by AhR ligands on the melanogenesis process in B16 murine melanoma cells. Exposure to 6-formylindolo[3,2-b] carbazole (FICZ) or benzo-α-pyrene (BαP) led to enhanced expression of CTNNB1, MITF, and TYR genes following increased tyrosinase enzyme activity and melanin content in an AhR-dependent manner. Analysis of the presence of reactive oxygen species (ROS) as well as reduced glutathione (GSH) / oxidized glutathione (GSSG) ratio revealed that treatment with AhR ligands is associated with oxidative stress which can be ameliorated with NAC (N-acetyl cysteine) or diphenyleneiodonium chloride (DPI). On the other hand, NAC and DPI enhanced melanogenesis induced by AhR ligands by reducing the level of ROS. We have shown for the first time that a cellular redox status is a critical event during AhR ligand-induced melanogenesis.
Collapse
Affiliation(s)
- Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mohammad-Reza Arabnezhad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Keshavarzi
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Dorna Davani-Davari
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Akram Jamshidzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.
| |
Collapse
|
20
|
The Role of AhR in the Hallmarks of Brain Aging: Friend and Foe. Cells 2021; 10:cells10102729. [PMID: 34685709 PMCID: PMC8534784 DOI: 10.3390/cells10102729] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, has been considered to be involved in aging phenotypes across several species. This receptor is a highly conserved biosensor that is activated by numerous exogenous and endogenous molecules, including microbiota metabolites, to mediate several physiological and toxicological functions. Brain aging hallmarks, which include glial cell activation and inflammation, increased oxidative stress, mitochondrial dysfunction, and cellular senescence, increase the vulnerability of humans to various neurodegenerative diseases. Interestingly, many studies have implicated AhR signaling pathways in the aging process and longevity across several species. This review provides an overview of the impact of AhR pathways on various aging hallmarks in the brain and the implications for AhR signaling as a mechanism in regulating aging-related diseases of the brain. We also explore how the nature of AhR ligands determines the outcomes of several signaling pathways in brain aging processes.
Collapse
|
21
|
Sen A, Anakk S. Jekyll and Hyde: nuclear receptors ignite and extinguish hepatic oxidative milieu. Trends Endocrinol Metab 2021; 32:790-802. [PMID: 34481730 PMCID: PMC8464172 DOI: 10.1016/j.tem.2021.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
Nuclear receptors (NRs) are ligand-binding transcription factors that regulate gene networks and physiological responses. Often oxidative stress precedes the onset of liver diseases, and Nrf2 is a key regulator of antioxidant pathways. NRs crosstalk with Nrf2, since NR activation can influence the oxidative milieu by modulating reductive cellular processes. Diet and xenobiotics also regulate NR expression and activity, suggesting a feedback loop. Depending on the tissue context and cues, NRs either increase or decrease toxicity and oxidative damage. Many FDA-approved drugs target NRs, and one could potentially repurpose them to ameliorate reactive oxygen species (ROS). Here, we discuss how several NRs modulate oxidative stress subsequent to diet, organic pollutants, and drug-induced injury to the liver.
Collapse
Affiliation(s)
- Anushna Sen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
22
|
Tanaka K, Adachi H, Akasaka H, Tamaoki J, Fuse Y, Kobayashi M, Kitazawa T, Teraoka H. Oxidative stress inducers potentiate 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated pre-cardiac edema in larval zebrafish. J Vet Med Sci 2021; 83:1050-1058. [PMID: 34024870 PMCID: PMC8349820 DOI: 10.1292/jvms.21-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We reported the involvement of oxidative stress and prostaglandins including thromboxane and prostacyclin in pre-cardiac edema (early edema) caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While the involvement of oxidative stress in TCDD-induced toxicity has been frequently reported, the mechanism of its action is still unclear. In the present study, oxidative stress inducers including paraquat, hydrogen peroxide (H2O2) and rotenone augmented early edema (edema) induced by a low concentration of TCDD (0.1 ppb) at 55 hr post fertilization (hpf), while each of them alone did not cause edema. Edema caused by TCDD plus oxidative stress inducers was almost abolished by antioxidants, an antagonist for thromboxane receptor (ICI-192,605) and an agonist for prostacyclin receptor (beraprost), suggesting that the site of action of these inducers was in the regular signaling pathway after activation of aryl hydrocarbon receptor type 2 (AHR2) by TCDD. Oxidative stress inducers also enhanced edema caused by an agonist for the thromboxane receptor (U46619), and the enhancement was also inhibited by antioxidants. Sulforaphane and auranofin, activators of Nrf2 that is a master regulator of anti-oxidative response, did not affect U46619-evoked edema but almost abolished TCDD-induced edema and potentiation by paraquat in both TCDD- and U46619-induced edema. Taken together, the results suggest that oxidative stress augments pre-cardiac edema caused by TCDD via activation of thromboxane receptor-mediated signaling in developing zebrafish. As paraquat and other oxidative stress inducers used also are environmental pollutants, interaction between dioxin-like compounds and exogenous source of oxidative stress should also be considered.
Collapse
Affiliation(s)
- Katsuki Tanaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hikaru Adachi
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hironobu Akasaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuji Fuse
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
23
|
Karimian M, Behjati M, Barati E, Ehteram T, Karimian A. CYP1A1 and GSTs common gene variations and presbycusis risk: a genetic association analysis and a bioinformatics approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42600-42610. [PMID: 32712936 DOI: 10.1007/s11356-020-10144-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Antioxidant enzymes such as glutathione S-transferases (GSTs) and cytochromes P450 (CYPs) are involved in the metabolism and detoxification of cytotoxic compounds, as well as the elimination of reactive oxygen species (ROS). Therefore, alterations in the structure of these enzymes could result in prolonged production of ROS with subsequent risk of development of disorders such as presbycusis. This study aimed to investigate the association between CYP1A1 (rs4646903, rs1048943) and GSTs (GSTM1-deletion, GSTT1-deletion, GSTP1-rs1695) with presbycusis risk in an Iranian population which was followed by an in silico approach. In a case-control study, 280 subjects including 140 cases with presbycusis and 140 healthy controls were enrolled. Genotypes of single-nucleotide polymorphisms (SNPs) were detected by PCR-RFLP method and the genotype of the above mentioned deletions was determined by touchdown PCR. Some bioinformatics tools were employed to evaluate the impact of SNPs on the gene function. SNP analysis revealed that there are significant associations between rs1048943 (AG vs. AA: OR = 2.46, 95%CI = 1.30-4.65, p = 0.006; GG + AG vs. AA: OR = 2.53, 95%CI = 1.36-4.69, p = 0.003; G vs. A: OR = 2.36, 95%CI = 1.33-4.17, p = 0.003) and rs4646903 (C vs. T: OR = 1.45, 95%CI = 1.02-2.06, p = 0.040) variations and increased risk of presbycusis. However, there was no significant association between rs1695 and presbycusis risk. Also, significant associations were observed between GSTM1 (OR = 4.28, 95%CI = 1.18-15.52, p = 0.027) and GSTT1 (OR = 1.64, 95%CI = 1.02-2.65, p = 0.041) deletions and elevated risk of presbycusis. Moreover, the combination analysis revealed a significant association between GSTM1+/GSTT1- genotype and presbycusis susceptibility (OR = 1.63, 95%CI = 1.00-2.67, p = 0.049). In silico analysis revealed that the rs1048943 SNP could influence significantly on the RNA structure of CYP1A1 (distance: 0.1454; p value: 0.1799). Based on our findings, the rs4646903, rs1048943 SNPs as well as GSTM1 and GSTT1 deletions could be considered as genetic risk factors for the development and progression of presbycusis.
Collapse
Affiliation(s)
- Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| | - Mohaddeseh Behjati
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Erfaneh Barati
- Department of Anatomy, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Tayyebeh Ehteram
- Department of ENT, School of Medicine, Kashan University of Medical Science, Qotb-e Ravandi Blvd, Kashan, 8715988141, Iran
| | - Ali Karimian
- Department of Anatomy, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
24
|
Ochiai M, Kurihara N, Hirano M, Nakata A, Iwata H. In Vitro Cytotoxicity and Risk Assessments of Environmental Pollutants Using Fibroblasts of a Stranded Finless Porpoise ( Neophocaena asiaeorientalis). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6832-6841. [PMID: 32337981 DOI: 10.1021/acs.est.9b07471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cetaceans accumulate high levels of environmental pollutants, yet their toxicological studies have been difficult due to technical and ethical issues. It is essential to identify and fill the current knowledge gaps in the in vitro assays available for cetaceans. The present study establishes a novel in vitro assay that uses the fibroblasts of a finless porpoise (Neophocaena asiaeorientalis) (FF) stranded in the Seto Inland Sea (SIS) to answer questions about the cytotoxicity and risks of environmental pollutants. FF were treated with 17 compounds including polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane and their metabolites (DDTs) and evaluated for cytotoxicity, viability, and apoptosis. The results of FF were compared with those of human fibroblasts (HF). The relative potencies of the test compounds were comparable between the two species, as EC50 of these compounds significantly correlated for FF and HF. Exposure-activity ratios (EARs) revealed that accumulation of PCBs and DDTs are likely to pose adverse effects at the cellular level in the SIS finless porpoises, as their tissue concentrations exceeded EC50 values obtained in this study. This study successfully evaluated the risks of environmental pollutants using cetacean fibroblasts isolated by a non-invasive method that may be applied to various cetacean species and compounds.
Collapse
Affiliation(s)
- Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577 Japan
| | - Nozomi Kurihara
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi City, Yamaguchi 753-8515, Japan
| | - Masashi Hirano
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577 Japan
| | - Akifumi Nakata
- Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577 Japan
| |
Collapse
|
25
|
Wang X, Li Y, Xiao H, Zhang M, Bao T, Luo X, Chen S. Genotoxicity of microcystin-LR in mammalian cells: Implication from peroxynitrite produced by mitochondria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110408. [PMID: 32179236 DOI: 10.1016/j.ecoenv.2020.110408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MC-LR) is a widely known hepatotoxin which could induce the occurrence and metastasis of hepatocellular carcinoma. In recent years, with the frequent outbreak of cyanobacteria, the harm of MC-LR has gradually attracted more attention. Hence, this study focused on the effect of MC-LR on DNA damage in HepG2 cells, identifying the types and sources of free radicals that make an important function on this issue. Our data suggested that MC-LR induced concentration- and time-dependent increasement of DNA double-strand breaks (DSBs). After exposure to 1 μM MC-LR for 3 days, the protein expression and immunofluorescence staining of γ-H2AX was significantly increased. Using a scavenger of mitochondrial O2.- (4-hydroxy-tempo), a inhibitor of mitochondrial NOS (7-nitroindazole), and a scavenger of ONOO- (uric acid), it was revealed that ONOO- originated from mitochondria made a significant contribution to the genotoxicity of MC-LR. Moreover, a significant decreasement of mitochondrial membrane potential (MMP) was observed. These findings suggested that peroxynitrite targeting mitochondria plays a vital role in the MC-LR-induced genotoxic response in mammalian cells.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Yintao Li
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Hourong Xiao
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Min Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Teng Bao
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Xun Luo
- School of Biological Engineering, Huainan Normal University, Huainan, 232001, China
| | - Shaopeng Chen
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
26
|
Ren F, Ji C, Huang Y, Aniagu S, Jiang Y, Chen T. AHR-mediated ROS production contributes to the cardiac developmental toxicity of PM2.5 in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:135097. [PMID: 31837856 DOI: 10.1016/j.scitotenv.2019.135097] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/03/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Recent studies have shown an association between maternal exposure to ambient fine particle matter (PM2.5) and congenital heart defects in the offspring, but the underlying molecular mechanisms are yet to be elucidated. Previously, we demonstrated that extractable organic matter (EOM) from PM2.5 induced heart defects in zebrafish embryos by activating the aromatic hydrocarbon receptor (AHR). Hence, we hypothesized that AHR mediates excessive reactive oxygen species (ROS) production, leading to the cardiac developmental toxicity of PM2.5. To test our hypothesis, we examined AHR activity and ROS levels in the heart of zebrafish embryos under a fluorescence microscope. mRNA expression levels were then quantified using qPCR whereas DNA damage and apoptosis were detected by immunofluorescence. Our results showed that the AHR inhibitor, CH223191 (CH) as well as the ROS scavenger, N-Acetyl-L-cysteine (NAC), significantly mitigated the PM2.5-induced cardiac malformations in zebrafish embryos. Furthermore, both CH and NAC diminished the EOM-elevated ROS generation, DNA damage and apoptosis in the test system. Incidentally, both CH and NAC attenuated the EOM-induced changes in the mRNA expression of genes involved in cardiac development (nkx2.5, sox9b), oxidative stress (nrf2a, nrf2b, gstp1, gstp2, sod2, ho1, cat) and apoptosis (p53, bax). We further confirmed that AHR activity is a necessary condition for EOM-induced ROS generation, DNA damage and apoptosis, through AHR knockdown. However, the ROS scavenger NAC did not counteract the EOM-induced AHR activity. In conclusion, our findings suggest that AHR mediates EOM-induced oxidative stress, resulting in DNA damage and apoptosis, thereby contributing to the cardiac developmental toxicity of PM2.5.
Collapse
Affiliation(s)
- Fei Ren
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- Medical College of Soochow University, Suzhou, China
| | - Yujie Huang
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
27
|
Antagonizing Effects of Clematis apiifolia DC. Extract against Benzo[a]pyrene-Induced Damage to Human Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2386163. [PMID: 31885779 PMCID: PMC6925742 DOI: 10.1155/2019/2386163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Abstract
Background. Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon present in the atmosphere, has cytotoxic and carcinogenic effects. There have been no reports to demonstrate involvement of Clematis apiifolia DC. extract (CAE) in B[a]P-induced effects. This study was conducted to investigate the effect of CAE on B[a]P-induced effects and to elucidate its mechanism of action in HaCaT human keratinocytes. CAE inhibited aryl hydrocarbon receptor (AhR) signaling by decreasing both XRE reporter activity and expression of cytochrome P450 1A1 (CYP1A1) induced by B[a]P treatment in HaCaT cells. We also found that B[a]P-induced nuclear translocation of AhR and production of reactive oxygen species (ROS) and proinflammatory cytokines were attenuated by CAE treatment. CAE treatment suppressed B[a]P-induced phosphorylation of Src (Tyr416). In addition, dasatinib, a Src inhibitor, also inhibited B[a]P-induced nuclear translocation of AhR, similar to CAE treatment. In addition, CAE activated antioxidant response element (ARE) signaling by increasing ARE luciferase reporter activity and expression of ARE-dependent genes such as nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase [quinone] 1 (NQO1), and heme oxygenase-1 (HO-1). Nuclear translocation of Nrf2 by CAE was demonstrated by Western blot analysis and immunocytochemistry. The effects of CAE on ARE signaling were attenuated by knockdown of the Nrf2 gene. Inhibition of AhR signaling and activation of antioxidant activity by CAE operated in a reciprocally independent manner as evidenced by AhR and Nrf2 siRNA experiments. These findings indicate that CAE exerts protective effects against B[a]P by inhibiting AhR signaling and activating Nrf2-mediated signaling, suggesting its potential in protection from harmful B[a]P-containing pollutants.
Collapse
|
28
|
Moyano P, Ruiz M, García JM, Frejo MT, Anadon Baselga MJ, Lobo M, García J, Del Pino J. Oxidative stress and cell death induction by amitraz and its metabolite BTS-27271 mediated through cytochrome P450 and NRF2 pathway alteration in primary hippocampal cell. Food Chem Toxicol 2019; 129:87-96. [PMID: 31029719 DOI: 10.1016/j.fct.2019.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 11/28/2022]
Abstract
Amitraz is a neurotoxic formamidine pesticide that induces cell death in hippocampal neurons, although its mechanisms are unknown. Amitraz produces reactive oxygen species (ROS), which could lead to cell death. Amitraz was shown to induce different cytochrome P450 (CYP) isoenzymes involved with ROS and apoptotic cell death induction. Finally, amitraz was described to decrease the activity of antioxidant enzymes regulated through KEAP1/NRF2 pathway, thus likely leading to a reduction of ROS elimination and to cell death induction. We evaluated the effect of amitraz or BTS-27271 co-treatment with or without the antioxidant N-acetylcysteine and/or the unspecific CYP inhibitor 1-aminobenzotriazole on cell viability and its related mechanisms in wild type and silenced primary hippocampal neurons after 24 h treatment. We observed that amitraz produced oxidative stress and CYPs induction leading to apoptotic cell death. ROS generation was partially mediated by CYPs induction and downregulation of NRF2-pathway through KEAP1 overexpression. These data could help explain the mechanism by which amitraz induces cell death and oxidative stress and provide a therapeutic strategy to protect against this effect in case of poisoning.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Matilde Ruiz
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María José Anadon Baselga
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Margarita Lobo
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|