1
|
Wu Y, Wang Y, Tong Z, Xie W, Wang A, Song C, Yao W, Wang J. Pyraclostrobin induces developmental toxicity and cardiotoxicity through oxidative stress and inflammation in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124490. [PMID: 38960114 DOI: 10.1016/j.envpol.2024.124490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Pyraclostrobin, a typical representative of strobilurin fungicides, is extensively used in agriculture to control fungi and is often detected in water bodies and food. However, the comprehensive toxicological molecular mechanism of pyraclostrobin requires further study. To assess the toxic effects and underlying mechanisms of pyraclostrobin on aquatic organisms, zebrafish embryos were exposed to pyraclostrobin (20, 40, and 60 μg/L) until 96 h post fertilization (hpf). These results indicated that exposure to pyraclostrobin induces morphological alterations, including spinal curvature, shortened body length, and smaller eyes. Furthermore, heart developmental malformations, such as pericardial edema and bradycardia, were observed. This indicated severe cardiotoxicity induced by pyraclostrobin in zebrafish embryos, which was confirmed by the dysregulation of genes related to heart development. Besides, our findings also demonstrated that pyraclostrobin enhanced the contents of reactive oxygen species (ROS) and malondialdehyde (MDA), up-regulated catalase (CAT) activity, but inhibited superoxide dismutase (SOD) activity. Subsequently, the NF-κb signaling pathway was further studied, and the results indicated that the up-regulation of tnf-α, tlr-4, and myd88 activated the NF-κb signaling pathway and up-regulated the relative expression level of pro-inflammatory cytokines, such as cc-chemokine, ifn-γ, and cxcl-clc. Collectively, this study revealed that pyraclostrobin exposure induces developmental toxicity and cardiotoxicity, which may result from a combination of oxidative stress and inflammatory responses. These findings provide a basis for continued evaluation of the effects and ecological risks of pyraclostrobin on the early development of aquatic organisms.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yijing Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Zan Tong
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Weihong Xie
- Hangzhou Criminal Science and Technology Institute, Hangzhou, 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chian Song
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
2
|
Liu Y, Shi X, Lu C, Kou G, Wu X, Meng X, Lv Y, Luo J, Cui W, Yang X. Acute indomethacin exposure impairs cardiac development by affecting cardiac muscle contraction and inducing myocardial apoptosis in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116976. [PMID: 39216225 DOI: 10.1016/j.ecoenv.2024.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The accumulation of the active pharmaceutical chemical in the environment usually results in environmental pollution to increase the risk to human health. Indomethacin is a non-steroidal anti-inflammatory drug that potentially causes systemic and developmental toxicity in various tissues. However, there have been few studies for its potential effects on cardiac development. In this study, we systematically determined the cardiotoxicity of acute indomethacin exposure in zebrafish at different concentrations with morphological, histological, and molecular levels. Specifically, the malformation and dysfunction of cardiac development, including pericardial oedema, abnormal heart rate, the larger distance between the venous sinus and bulbus arteriosus (SV-BA), enlargement of the pericardial area, and aberrant motor capability, were determined after indomethacin exposure. In addition, further investigation indicated that indomethacin exposure results in myocardial apoptosis in a dose-dependent manner in zebrafish at early developmental stage. Mechanistically, our results revealed that indomethacin exposure mainly regulates key cardiac development-related genes, especially genes related to the cardiac muscle contraction-related signaling pathway, in zebrafish embryos. Thus, our findings suggested that acute indomethacin exposure might cause cardiotoxicity by disturbing the cardiac muscle contraction-related signaling pathway and inducing myocardial apoptosis in zebrafish embryos.
Collapse
Affiliation(s)
- Yi Liu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Xiaoling Shi
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Chunjiao Lu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Guanhua Kou
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Xuewei Wu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Xin Meng
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Yuhang Lv
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Juanjuan Luo
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Wei Cui
- College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China.
| | - Xiaojun Yang
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China.
| |
Collapse
|
3
|
Nayak SPRR, Boopathi S, Almutairi BO, Arokiyaraj S, Kathiravan MK, Arockiaraj J. Indole-3-acetic acid induced cardiogenesis impairment in in-vivo zebrafish via oxidative stress and downregulation of cardiac morphogenic factors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104479. [PMID: 38821154 DOI: 10.1016/j.etap.2024.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Plant growth regulators (PGRs) are increasingly used to promote sustainable agriculture, but their unregulated use raises concerns about potential environmental risks. Indole-3-acetic acid (IAA), a commonly used PGR, has been the subject of research on its developmental toxicity in the in-vivo zebrafish model. IAA exposure to zebrafish embryos caused oxidative stress, lipid peroxidation, and cellular apoptosis. The study also revealed that critical antioxidant genes including sod, cat, and bcl2 were downregulated, while pro-apoptotic genes such as bax and p53 were upregulated. IAA exposure also hampered normal cardiogenesis by downregulating myl7, amhc, and vmhc genes and potentially influencing zebrafish neurobehavior. The accumulation of IAA was confirmed by HPLC analysis of IAA-exposed zebrafish tissues. These findings underscore the need for further study on the potential ecological consequences of IAA use and the need for sustainable agricultural practices.
Collapse
Affiliation(s)
- S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, South Korea
| | - M K Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
4
|
Zhang X, Shi J, Wang R, Ma J, Li X, Cai W, Li T, Zou W. Acute exposure to tris(2,4-di-tert-butylphenyl)phosphate elicits cardiotoxicity in zebrafish (Danio rerio) larvae via inducing ferroptosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134389. [PMID: 38669931 DOI: 10.1016/j.jhazmat.2024.134389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Tris(2,4-di-tert-butylphenyl)phosphate (AO168 =O), a novel organophosphate ester, is prevalent and abundant in the environment, posing great exposure risks to ecological and public health. Nevertheless, the toxicological effects of AO168 =O remain entirely unknown to date. The results in this study indicated that acute exposure to AO168 =O at 10 and 100 μg/L for 5 days obviously impaired cardiac morphology and function of zebrafish larvae, as proofed by decreased heartbeat, stroke volume, and cardiac output and the occurrence of pericardial edema and ventricular hypertrophy. Transcriptomics, polymerase chain reaction, and molecular docking revealed that the strong interaction of AO168 =O and transferrin receptor 1 activated the transportation of ferric iron into intracellular environment. The release of free ferrous ion to cytoplasmic iron pool also contributed to the iron overload in heart region, thus inducing ferroptosis in larvae via generation of excessive reactive oxygen species, glutathione peroxidase 4 inhibition, glutathione depletion and lipid peroxidation. Ferroptosis inhibitor (Fer-1) co-exposure effectively relieved the cardiac dysfunctions of zebrafish, verifying the dominant role of ferroptosis in the cardiotoxicity caused by AO168 =O. This research firstly reported the adverse impact and associated mechanisms of AO168 =O in cardiomyogenesis of vertebrates, underlining the urgency of concerning the health risks of AO168 =O.
Collapse
Affiliation(s)
- Xingli Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Jing Shi
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Ruonan Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| | - Wenwen Cai
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Tengfei Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
5
|
Guo Y, Zhang T, Wang X, Zhang J, Miao W, Li QX, Fan Y. Toxic effects of the insecticide tolfenpyrad on zebrafish embryos: Cardiac toxicity and mitochondrial damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2583-2595. [PMID: 38205909 DOI: 10.1002/tox.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Tolfenpyrad, a highly effective and broad-spectrum insecticide and acaricide extensively utilized in agriculture, presents a potential hazard to nontarget organisms. This study was designed to explore the toxic mechanisms of tolfenpyrad on zebrafish embryos. Between 24 and 96 h after exposure of the fertilized embryos to tolfenpyrad at concentrations ranging from 0.001 to 0.016 mg/L (96 h-LC50 = 0.017 mg/L), lethal effects were apparent, accompanied with notable anomalies including pericardial edema, increased pericardial area, diminished heart rate, and an elongated distance between the venous sinus and the arterial bulb. Tolfenpyrad elicited noteworthy alterations in the expression of genes pertinent to cardiac development and apoptosis, with the most pronounced changes observed in the cardiac development-related genes of bone morphogenetic protein 2b (bmp2b) and p53 upregulated modulator of apoptosis (puma). The findings underscore that tolfenpyrad induces severe cardiac toxicity and mitochondrial damage in zebrafish embryos. This data is imperative for a comprehensive assessment of tolfenpyrad risks to aquatic ecosystems, particularly considering the limited knowledge regarding its detrimental impact on aquatic vertebrates.
Collapse
Affiliation(s)
- Yuzhao Guo
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Taiyu Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Xinyu Wang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| |
Collapse
|
6
|
Moreno CM, Moreno JN, Valdez MC, Baldwin MP, Vallor AC, Carvalho PB. Fungal-Mediated Biotransformation of the Plant Growth Regulator Forchlorfenuron by Cunninghamella elegans. Metabolites 2024; 14:101. [PMID: 38392993 PMCID: PMC10890479 DOI: 10.3390/metabo14020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The synthetic cytokinin forchlorfenuron (FCF), while seemingly presenting relatively low toxicity for mammalian organisms, has been the subject of renewed scrutiny in the past few years due to its increasing use in fruit crops and potential for bioaccumulation. Despite many toxicological properties of FCF being known, little research has been conducted on the toxicological effects of its secondary metabolites. Given this critical gap in the existing literature, understanding the formation of relevant FCF secondary metabolites and their association with mammalian metabolism is essential. To investigate the formation of FCF metabolites in sufficient quantities for toxicological studies, a panel of four fungi were screened for their ability to catalyze the biotransformation of FCF. Of the organisms screened, Cunninghamella elegans (ATCC 9245), a filamentous fungus, was found to convert FCF to 4-hydroxyphenyl-forchlorfenuron, the major FCF secondary metabolite identified in mammals, after 26 days. Following the optimization of biotransformation conditions using a solid support system, media screening, and inoculation with a solid pre-formed fungal mass of C. elegans, this conversion time was significantly reduced to 7 days-representing a 73% reduction in total reaction time as deduced from the biotransformation products and confirmed by LC-MS, NMR spectroscopic data, as well as a comparison with synthetically prepared metabolites. Our study provides the first report of the metabolism of FCF by C. elegans. These findings suggest that C. elegans can produce FCF secondary metabolites consistent with those produced via mammalian metabolism and could be used as a more efficient, cost-effective, and ethical alternative for producing those metabolites in useful quantities for toxicological studies.
Collapse
Affiliation(s)
- Charles M Moreno
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78212, USA
| | - Jaclyn N Moreno
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78212, USA
| | - Matthew C Valdez
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78212, USA
| | - Melinda P Baldwin
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78212, USA
| | - Ana C Vallor
- Department of Biology, School of Mathematics, Science, and Engineering, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Paulo B Carvalho
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78212, USA
| |
Collapse
|
7
|
Li J, Weng H, Liu S, Li F, Xu K, Wen S, Chen X, Li C, Nie Y, Liao B, Wu J, Kantawong F, Xie X, Yu F, Li G. Embryonic exposure of polystyrene nanoplastics affects cardiac development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167406. [PMID: 37769743 DOI: 10.1016/j.scitotenv.2023.167406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Micro- and nanoplastics have recently been detected in human blood and placentas, indicating inevitable embryonic exposure to these particles. However, their influence on human embryogenesis and the underlying mechanisms are still unknown. In this study, the effects of polystyrene nanoplastics (PS-NPs) exposure on cardiac differentiation of human embryonic stem cells (hESCs) were evaluated. Uptake of PS-NPs not only caused cellular injury, but also regulated cardiac-related pathways as revealed by RNA-sequencing. Consequently, the efficiency of cardiomyocyte differentiation from hESCs was compromised, leading to immature of cardiomyocytes and smaller cardiac organoids with impaired contractility. Mechanistically, PS-NPs promoted mitochondrial oxidative stress, activated P38/Erk MAPK signaling pathway, blocked autophagy flux, and eventually reduced the pluripotency of hESCs. Consistently, in vivo exposure of PS-NPs from cleavage to gastrula period of zebrafish embryo led to reduced cardiac contraction and blood flow. Collectively, this study suggests that PS-NPs is a risk factor for fetal health, especially for heart development.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Fan Li
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ke Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Shan Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Xi Chen
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Chang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Yongmei Nie
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bin Liao
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Xiang Xie
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
8
|
Wang Q, Li X, Wang H, Li S, Zhang C, Chen X, Dong J, Shao H, Wang J, Jin F. Spatial Distribution and Migration Characteristic of Forchlorfenuron in Oriental Melon Fruit by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Foods 2023; 12:2858. [PMID: 37569126 PMCID: PMC10417659 DOI: 10.3390/foods12152858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Forchlorfenuron is a widely used plant growth regulator to support the pollination and fruit set of oriental melons. It is critical to investigate the spatial distribution and migration characteristics of forchlorfenuron among fruit tissues to understand its metabolism and toxic effects on plants. However, the application of imaging mass spectrometry in pesticides remains challenging due to the usually extremely low residual concentration and the strong interference from plant tissues. In this study, a matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) method was developed for the first time to obtain the dynamic images of forchlorfenuron in oriental melon. A quantitative assessment has also been performed for MALDI-MSI to characterize the time-dependent permeation and degradation sites of forchlorfenuron in oriental melon. The majority of forchlorfenuron was detected in the exocarp and mesocarp regions of oriental melon and decreased within two days after application. The degradation rate obtained by MALDI-MSI in this study was comparable to that obtained by HPLC-MS/MS, indicating that the methodology and quantification approach based on the MALDI-MSI was reliable and practicable for pesticide degradation study. These results provide an important scientific basis for the assessment of the potential risks and effects of forchlorfenuron on oriental melons.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Xiaohui Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Hongping Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Simeng Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Chen Zhang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Xueying Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Jing Dong
- Shimadzu China MS Center, Beijing 100020, China
| | - Hua Shao
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Fen Jin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| |
Collapse
|
9
|
Fang C, Fang L, Di S, Yu Y, Wang X, Wang C, Jin Y. Characterization of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD)-induced cardiotoxicity in larval zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163595. [PMID: 37094682 DOI: 10.1016/j.scitotenv.2023.163595] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is a type of p-phenylenediamine (PPD), which is widely used in the manufacture of rubber tires owing to its excellent antiozonant properties. In this study, the developmental cardiotoxicity of 6PPD was evaluated in zebrafish larvae, and the LC50 was approximately 737 μg/L for the larvae at 96 h post fertilization (hpf). In the 6PPD treatment of 100 μg/L, the accumulation concentrations of 6PPD were up to 2658 ng/g in zebrafish larvae, and 6PPD induced significant oxidative stress and cell apoptosis in the early developmental stages of zebrafish. Transcriptome analysis showed that 6PPD exposure could potentially cause cardiotoxicity in larval zebrafish by affecting the transcription of the genes related to the calcium signal pathway and cardiac muscle contraction. The genes related to calcium signaling pathway (slc8a2b, cacna1ab, cacna1da, and pln) were verified by qRT-PCR, which were significantly downregulated in larval zebrafish after exposing to 100 μg/L of 6PPD. Simultaneously, the mRNA levels of the genes related to cardiac functions (myl7, sox9, bmp10, and myh71) also respond accordingly. H&E staining and heart morphology investigation indicated that cardiac malformation occurred in zebrafish larvae exposed to 100 μg/L of 6PPD. Furthermore, the phenotypic observation of transgenic Tg (myl7: EGFP) zebrafish also confirmed that 100 μg/L of 6PPD exposure could change the distance of atria and ventricles of the heart and inhibit some key genes (cacnb3a, ATP2a1l, ryr1b) related to cardiac function in larval zebrafish. These results revealed the toxic effects of 6PPD on the cardiac system of zebrafish larvae.
Collapse
Affiliation(s)
- Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liya Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yundong Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
10
|
Shan Y, He T, Li Y, Zhu J, Yue X, Yang Y. A Magnetic-Bead-Based Immunoassay with a Newly Developed Monoclonal Antibody for Rapid and Highly Sensitive Detection of Forchlorfenuron. BIOSENSORS 2023; 13:593. [PMID: 37366958 DOI: 10.3390/bios13060593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Forchlorfenuron (CPPU) is a widely used plant growth regulator in agriculture, and CPPU residue in food can cause harm to human health. Thus, it is necessary to develop a rapid and sensitive detection method for CPPU monitoring. In this study, a new monoclonal antibody (mAb) against CPPU with high affinity was prepared by a hybridoma technique, and a magnetic bead (MB)-based analytical method was established for the determination of CPPU by a one-step procedure. Under optimized conditions, the detection limit of the MB-based immunoassay was as low as 0.0004 ng/mL, which was five times more sensitive than the traditional indirect competitive ELISA (icELISA). In addition, the detection procedure took less than 35 min, a significant improvement over the 135 min required for icELISA. The selectivity test of the MB-based assay also showed negligible cross-reactivity with five analogues. Furthermore, the accuracy of the developed assay was assessed by the analysis of spiked samples, and the results agreed well with those obtained by HPLC. The excellent analytical performance of the proposed assay suggests its great potential for routine screening of CPPU, and it provides a basis for promoting the application of more immunosensors in the quantitative detection of low concentrations of small organic molecules in food.
Collapse
Affiliation(s)
- Yubao Shan
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiali Yue
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan 430074, Hubei, China
| |
Collapse
|
11
|
Xu S, Yu Y, Qin Z, Wang C, Hu Q, Jin Y. Effects of 2-ethylhexyl diphenyl phosphate exposure on the glucolipid metabolism and cardiac developmental toxicity in larval zebrafish based on transcriptomic analysis. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109578. [PMID: 36822296 DOI: 10.1016/j.cbpc.2023.109578] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP) is an organophosphorus type of flame retardant. It is mainly used as a flame-retardant plasticizer in the production of flexible polyvinyl chloride. EHDPP is widely present in environment, particularly in aquatic environment. In this study, we reported that EHDPP exposure significantly affected glucose and lipid metabolism in zebrafish larvae, which was reflected by changes in the transcription of relevant genes and decreased levels of glucose, pyruvate, and triglycerides. In addition, the transcriptomic analysis revealed that the differentially expressed genes could enrich various endpoints in zebrafish larvae. Interestingly, EHDPP exposure could not only change the transcription of genes related to glucolipid metabolism but also cause cardiotoxicity by affecting the transcription of genes related to calcium signaling pathways in zebrafish larvae. To support these findings, we confirmed that these genes involved in cardiac morphology and development were significantly upregulated in zebrafish larvae after EHDPP exposure. More importantly, the distance and overlapping area of the atrium and ventricle were also changed in the EHDPP-exposed zebrafish larvae of transgenic Tg (myl7: EGFP). Overall, our study revealed that EHDPP exposure could affect various endpoints related to glucolipid metabolism and cardiac development in the early developmental stages of zebrafish.
Collapse
Affiliation(s)
- Siyi Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Yixin Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Zhen Qin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China.
| |
Collapse
|
12
|
Koczurkiewicz-Adamczyk P, Grabowska K, Karnas E, Piska K, Wnuk D, Klaś K, Galanty A, Wójcik-Pszczoła K, Michalik M, Pękala E, Fuchs H, Podolak I. Saponin Fraction CIL1 from Lysimachia ciliata L. Enhances the Effect of a Targeted Toxin on Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15051350. [PMID: 37242592 DOI: 10.3390/pharmaceutics15051350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Saponins are plant metabolites that possess multidirectional biological activities, among these is antitumor potential. The mechanisms of anticancer activity of saponins are very complex and depend on various factors, including the chemical structure of saponins and the type of cell they target. The ability of saponins to enhance the efficacy of various chemotherapeutics has opened new perspectives for using them in combined anticancer chemotherapy. Co-administration of saponins with targeted toxins makes it possible to reduce the dose of the toxin and thus limit the side effects of overall therapy by mediating endosomal escape. Our study indicates that the saponin fraction CIL1 of Lysimachia ciliata L. can improve the efficacy of the EGFR-targeted toxin dianthin (DE). We investigated the effect of cotreatment with CIL1 + DE on cell viability in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, on proliferation in a crystal violet assay (CV) and on pro-apoptotic activity using Annexin V/7 Actinomycin D (7-AAD) staining and luminescence detection of caspase levels. Cotreatment with CIL1 + DE enhanced the target cell-specific cytotoxicity, as well as the antiproliferative and proapoptotic properties. We found a 2200-fold increase in both the cytotoxic and antiproliferative efficacy of CIL1 + DE against HER14-targeted cells, while the effect on control NIH3T3 off-target cells was less profound (6.9- or 5.4-fold, respectively). Furthermore, we demonstrated that the CIL1 saponin fraction has a satisfactory in vitro safety profile with a lack of cytotoxic and mutagenic potential.
Collapse
Affiliation(s)
- Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Karolina Grabowska
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Katarzyna Klaś
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Hendrik Fuchs
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| |
Collapse
|
13
|
Shen C, He J, Zhu K, Zheng N, Yu Y, He C, Yang C, Zuo Z. Mepanipyrim induces cardiotoxicity of zebrafish (Danio rerio) larvae via promoting AhR-regulated COX expression pathway. J Environ Sci (China) 2023; 125:650-661. [PMID: 36375947 DOI: 10.1016/j.jes.2022.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 06/16/2023]
Abstract
The wide use of pesticides has seriously threatened human health and the survival of beneficial organisms. The fungicide mepanipyrim is widely used in viticulture practices. Studies of mepanipyrim-induced toxicity in organisms are still scarce, especially studies on cardiotoxicity. In this study, we aimed to investigate mepanipyrim-induced cardiotoxicity in zebrafish (Danio rerio) larvae. We found that mepanipyrim could induce cardiotoxicity by altering the heart rate and cardiomyocyte diameter of larvae. Meanwhile, RNA sequencing and RT-qPCR data indicated that mepanipyrim exposure could dramatically alter the mRNA expression of calcium signaling pathway-, cardiac muscle contraction-, and oxidative respiratory chain-related genes. Interestingly, by the CALUX cell bioassay, we found that most cytochrome c oxidase (COX) family genes exhibited potential AhR-regulated activity, suggesting that mepanipyrim induced cardiotoxicity via a novel AhR-regulated manner in larvae. Additionally, the AhR antagonist CH223191 could effectively prevent mepanipyrim-induced cardiotoxicity in zebrafish larvae. In conclusion, the AhR agonist mepanipyrim could induce cardiotoxicity in a novel unreported AhR-regulated manner, which could specifically affect the expression of COX family genes involved in the mitochondrial oxidative respiratory chain. Our data will help explain the toxic effects of mepanipyrim on organisms and provide new insight into the AhR agonistic activity pesticide-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Jing He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yue Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
14
|
Xiong Y, Wang C, Dong M, Li M, Hu C, Xu X. Chlorphoxim induces neurotoxicity in zebrafish embryo through activation of oxidative stress. ENVIRONMENTAL TOXICOLOGY 2023; 38:566-578. [PMID: 36331003 DOI: 10.1002/tox.23702] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
It is known that chlorphoxim is a broad-spectrum and high-effective pesticide. With the wide use in agricultural practice, chlorphoxim residue is also frequently detected in water, but its potential toxicity to aquatic life is still unclear. In this study, zebrafish is used as a model to detect the toxicity of chlorphoxim. Our results showed that exposure of high concentration of chlorphoxim at 96 h post-fertilization (hpf) resulted in a high mortality and pericardium edema rate, a low hatchability rate and heart rate. The nervous system damage, swimming behavior alteration and acetylcholinesterase (AChE) inhibition were measured in zebrafish embryos after a 6 days post-fertilization (dpf) of chlorphoxim exposure. The expression of neural-related genes is abnormal in zebrafish embryos. Chlorphoxim exposure significantly increases oxidative stress in zebrafish embryos by inhibiting antioxidant enzyme (SOD and CAT) and activating reactive oxygen species (ROS). As expected, chlorphoxim exposure induces apoptosis by enhancing the expression of apoptotic genes (Bax, Bcl2, and p53). Astaxanthin (ATX), an effective antioxidant, was found to be able to rescue the neurotoxicity of chlorphoxim through relieving oxidative stress and apoptosis. Altogether, the results showed that chlorphoxim exposure led to severe neurotoxicity to zebrafish embryos, which was contributed to a more comprehensive understanding of the safety use of the organophosphorus pesticide.
Collapse
Affiliation(s)
- Yanxia Xiong
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi, China
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Chengyuan Wang
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi, China
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Mengyi Dong
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi, China
| | - Meifeng Li
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaowen Xu
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi, China
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Lei X, Abd El-Aty AM, Xu L, Zhao J, Li J, Gao S, Zhao Y, She Y, Jin F, Wang J, Zheng L, Jin M, Hammock BD. Production of a Monoclonal Antibody for the Detection of Forchlorfenuron: Application in an Indirect Enzyme-Linked Immunosorbent Assay and Immunochromatographic Strip. BIOSENSORS 2023; 13:bios13020239. [PMID: 36832005 PMCID: PMC9954037 DOI: 10.3390/bios13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 05/03/2023]
Abstract
In this study, a monoclonal antibody (mAb) specific to forchlorfenuron (CPPU) with high sensitivity and specificity was produced and designated (9G9). To detect CPPU in cucumber samples, an indirect enzyme-linked immunosorbent assay (ic-ELISA) and a colloidal gold nanobead immunochromatographic test strip (CGN-ICTS) were established using 9G9. The half-maximal inhibitory concentration (IC50) and the LOD for the developed ic-ELISA were determined to be 0.19 ng/mL and 0.04 ng/mL in the sample dilution buffer, respectively. The results indicate that the sensitivity of the antibodies prepared in this study (9G9 mAb) was higher than those reported in the previous literature. On the other hand, in order to achieve rapid and accurate detection of CPPU, CGN-ICTS is indispensable. The IC50 and the LOD for the CGN-ICTS were determined to be 27 ng/mL and 6.1 ng/mL. The average recoveries of the CGN-ICTS ranged from 68 to 82%. The CGN-ICTS and ic-ELISA quantitative results were all confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with 84-92% recoveries, which indicated the methods developed herein are appropriate for detecting CPPU in cucumber. The CGN-ICTS method is capable of both qualitative and semiquantitative analysis of CPPU, which makes it a suitable alternative complex instrument method for on-site detection of CPPU in cucumber samples since it does not require specialized equipment.
Collapse
Affiliation(s)
- Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua 321000, China
| | - Song Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (L.Z.); (M.J.); Tel.: +86-10-8210-6567 (L.Z.); +86-10-8210-6570 (M.J.)
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Research Center of Quality Standards for Agro-Products, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- Correspondence: (L.Z.); (M.J.); Tel.: +86-10-8210-6567 (L.Z.); +86-10-8210-6570 (M.J.)
| | - Bruce D. Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
16
|
The Plant Growth Regulator 14-OH BR Can Minimize the Application Content of CPPU in Kiwifruit (Actinidia chinensis) ‘Donghong’ and Increase Postharvest Time without Sacrificing the Yield. Processes (Basel) 2022. [DOI: 10.3390/pr10112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The application of the plant growth regulator 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU) is extensively used for red-fleshed kiwifruits or ‘Donghong’, but it has toxicological properties. Extra plant growth regulators (PGRs) were screened for partial substitution of CPPU (10 mg L−1) to the crops to minimize the CPPU content. The results showed that CPPU at a concentration of 5 mg L−1 plus 14-hydroxylated brassinosteroid (14-OH BR) at a concentration of 0.15 mg L−1 has a nearly equal effect to CPPU at a concentration of 10 mg L−1; it maintains the kiwifruit yields and quality as well as increases the postharvest time. Transcriptome sequencing data revealed that the regulation of 14-OH BR on kiwifruit growth acts mainly by activating Brassinosteroid (BR) signaling to synergistically and antagonistically stimulate the signaling of other endogenous growth regulators, including auxin (IAA), abscisic acid (ABA), cytokinin (CK), gibberellin (GA), jasmonic acid (JA) and ethylene (ET).
Collapse
|
17
|
Cardiotoxicity of Zebrafish Induced by 6-Benzylaminopurine Exposure and Its Mechanism. Int J Mol Sci 2022; 23:ijms23158438. [PMID: 35955574 PMCID: PMC9369308 DOI: 10.3390/ijms23158438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
6-BA is a common plant growth regulator, but its safety has not been conclusive. The heart is one of the most important organs of living organisms, and the cardiogenesis process of zebrafish is similar to that of humans. Therefore, based on wild-type and transgenic zebrafish, we explored the development of zebrafish heart under 6-BA exposure and its mechanism. We found that 6-BA affected larval cardiogenesis, inducing defective expression of key genes for cardiac development (myl7, vmhc, and myh6) and AVC differentiation (bmp4, tbx2b, and notch1b), ultimately leading to weakened cardiac function (heart rate, diastolic speed, systolic speed). Acridine orange staining showed that the degree of apoptosis in zebrafish hearts was significantly increased under 6-BA, and the expression of cell-cycle-related genes was also changed. In addition, HPA axis assays revealed abnormally expressed mRNA levels of genes and significantly increased cortisol contents, which was also consistent with the observed anxiety behavior in zebrafish at 3 dpf. Transcriptional abnormalities of pro- and anti-inflammatory factors in immune signaling pathways were also detected in qPCR experiments. Collectively, we found that 6-BA induced cardiotoxicity in zebrafish, which may be related to altered HPA axis activity and the onset of inflammatory responses under 6-BA treatment.
Collapse
|
18
|
Chen H, Qiu W, Yang X, Chen F, Chen J, Tang L, Zhong H, Magnuson JT, Zheng C, Xu EG. Perfluorooctane Sulfonamide (PFOSA) Induces Cardiotoxicity via Aryl Hydrocarbon Receptor Activation in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8438-8448. [PMID: 35652794 DOI: 10.1021/acs.est.1c08875] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perfluorooctane sulfonamide (PFOSA), a precursor of perfluorooctanesulfonate (PFOS), is widely used during industrial processes, though little is known about its toxicity, particularly to early life stage organisms that are generally sensitive to xenobiotic exposure. Here, following exposure to concentrations of 0.01, 0.1, 1, 10, and 100 μg/L PFOSA, transcriptional, morphological, physiological, and biochemical assays were used to evaluate the potential effects on aquatic organisms. The top Tox functions in exposed zebrafish were related to cardiac diseases predicted by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Ingenuity Pathway Analysis (IPA) analysis. Consistent with impacts predicted by transcriptional changes, abnormal cardiac morphology, disordered heartbeat signals, as well as reduced heart rate and cardiac output were observed following the exposure of 0.1, 1, 10, or 100 μg/L PFOSA. Furthermore, these PFOSA-induced cardiac effects were either prevented or alleviated by supplementation with an aryl hydrocarbon receptor (AHR) antagonist or ahr2-morpholino knock-down, uncovering a seminal role of AHR in PFOSA-induced cardiotoxicity. Our results provide the first evidence in fish that PFOSA can impair proper heart development and function and raises concern for PFOSA analogues in the natural environment.
Collapse
Affiliation(s)
- Honghong Chen
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuanjun Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaying Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hanbing Zhong
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
| | - Chunmiao Zheng
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| |
Collapse
|
19
|
Pentachloronitrobenzene Reduces the Proliferative Capacity of Zebrafish Embryonic Cardiomyocytes via Oxidative Stress. TOXICS 2022; 10:toxics10060299. [PMID: 35736907 PMCID: PMC9231182 DOI: 10.3390/toxics10060299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022]
Abstract
Pentachloronitrobenzene (PCNB) is an organochlorine protective fungicide mainly used as a soil and seed fungicide. Currently, there are few reports on the toxicity of PCNB to zebrafish embryo. Here, we evaluated the toxicity of PCNB in aquatic vertebrates using a zebrafish model. Exposure of zebrafish embryos to PCNB at concentrations of 0.25 mg/L, 0.5 mg/L, and 0.75 mg/L from 6 hpf to 72 hpf resulted in abnormal embryonic development, including cardiac malformation, pericardial edema, decreased heart rate, decreased blood flow velocity, deposition at yolk sac, shortened body length, and increased distance between venous sinus and arterial bulb (SV-BA). The expression of genes related to cardiac development was disordered. However, due to the unstable embryo status in the 0.75 mg/L exposure concentration group, the effect of PCNB on the expression levels of cardiac-related genes was not concentration-dependent. We found that PCNB increased reactive oxygen species stress levels in zebrafish, increased malondialdehyde (MDA) content and catalase (CAT) activity, and decreased superoxide dismutase (SOD) activity. The increased level of oxidative stress reduced the proliferation ability of zebrafish cardiomyocytes, and the expressions of zebrafish proliferation-related genes such as cdk-2, cdk-6, ccnd1, and ccne1 were significantly down-regulated. Astaxanthin (AST) attenuates PCNB-induced reduction in zebrafish cardiomyocyte proliferation by reducing oxidative stress levels. Our study shows that PCNB can cause severe oxidative stress in zebrafish, thereby reducing the proliferative capacity of cardiomyocytes, resulting in zebrafish cardiotoxicity.
Collapse
|
20
|
Gong G, Kam H, Chen H, Chen Y, Cheang WS, Giesy JP, Zhou Q, Lee SMY. Role of endocrine disruption in toxicity of 6-benzylaminopurine (6-BA) to early-life stages of Zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113287. [PMID: 35149407 DOI: 10.1016/j.ecoenv.2022.113287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
6-benzylaminopurine (6-BA), classified as a "plant hormone", is an important ingredient in production of "toxic bean sprouts". Although there is no direct evidence of adverse effects, its hazardous effects have received some attention and aroused furious debate between proponents and environmental regulators. In this study, potential adverse effects of 6-BA were investigated by exposing zebrafish in vivo to 0.2 - 25 mg 6-BA/L. Results indicated that, when exposure was limited to early-life stage (4-36 hpf), 20 mg 6-BA/L caused early hatching, abnormal spontaneous movement, and precocious hyperactivity in zebrafish embryos/larvae. While under a continuous exposure regime, 6-BA at 0.2 mg/L was able to cause hyperactive locomotion and transcription of genes related to neurogenesis (gnrh3 and nestin) and endocrine systems (cyp19a and fshb) in 5 dpf larvae. Quantification by use of LC/MS indicated bioaccumulation of 6-BA in zebrafish increased when exposed to 0.2 or 20 mg 6-BA/L. These results suggested that 6-BA could accumulate in aquatic organisms and disrupt neuro-endocrine systems. Accordingly, exposure to 0.2 mg 6-BA/L increased production of estradiol (E2) and consequently E2/T ratio in zebrafish larvae, which directly indicated 6-BA is estrogenic. In silico simulations demonstrated potential for binding of 6-BA to estrogen receptor alpha (ERa) and cytochrome P450 aromatase (CYP19A). Therefore, induction of estrogenic effects, via potential interactions with hormone receptors or disturbance of downstream transcription signaling, was possible mechanism underlying the toxicity of 6-BA. Taken together, these findings demonstrate endocrine disrupting properties of 6-BA, which suggest concerns about risks posed to endocrine systems.
Collapse
Affiliation(s)
- Guiyi Gong
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yan Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon Saskatchewan S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon Saskatchewan S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76706, United States
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
21
|
Wang X, Yang X, Wang J, Li L, Zhang Y, Jin M, Chen X, Sun C, Wang R, Liu K. Cardiotoxicity of sanguinarine via regulating apoptosis and MAPK pathways in zebrafish and HL1 cardiomyocytes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109228. [PMID: 34744004 DOI: 10.1016/j.cbpc.2021.109228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Sanguinarine, a plant phytoalexin, possesses extensive biological activities including antimicrobial, insecticidal, antitumor, anti-inflammatory and anti-angiogenesis effect. But its cardiotoxicity has rarely been studied. Here, we assess the cardiotoxicity of sanguinarine in vivo using larval zebrafish from 48 hpf to 96 hpf. The results show that sanguinarine caused severe malformation and the dysfunction of the heart including reductions of heart rate, red blood cell number, blood flow dynamics, stroke volume and increase of SV-BA distance, subintestinal venous congestion. Further studies showed that apoptosis in the zebrafish heart region was observed after sanguinarine exposure using TUNEL assay and AO staining method. In addition, the genes, such as sox9b, myl7, nkx2.5 and bmp10, which play crucial parts in the development and the function of the heart, were changed after sanguinarine treatment. caspase3, caspase9, bax and bcl2, apoptosis-related genes, were also altered by sanguinarine. Further studies were performed to study the cardiotoxicity in vitro using cardiomyocytes HL1 cell line. The results showed that remarkable increase of apoptosis and ROS level in HL1 cells were induced by sanguinarine. Moreover, the MAPK pathway (JNK and P38) were notably enhanced and involved in the cardiotoxicity induced by sanguinarine. Our findings will provide better understanding of sanguinarine in the toxic effect on heart.
Collapse
Affiliation(s)
- Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Jiazhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Lei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xiqiang Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| |
Collapse
|
22
|
Liu X, Xie B, Cheng Y, Luo L, Liang Y, Xiao Z. A Sensitive Monoclonal-Antibody-Based ELISA for Forchlorfenuron Residue Analysis in Food Samples. BIOSENSORS 2022; 12:bios12020078. [PMID: 35200339 PMCID: PMC8869720 DOI: 10.3390/bios12020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
Abstract
In this study, forchlorfenuron (CPPU) was coupled with succinic anhydride to yield a CPPU hapten (CPPU-COOH), and a high-affinity monoclonal antibody (mAb) that can specifically recognize CPPU was produced. Using this mAb as a recognition reagent, a sensitive indirect competitive enzyme-linked immunosorbent assay (icELISA) for CPPU was optimized, which exhibits an IC50 of 1.04 ng/mL, a limit of detection of 0.16 ng/mL, and a linear range of 0.31–3.43 ng/mL for CPPU. Cross-reactivity percentages with six analogues were all below 6%. The average recovery rates for cucumber and orange samples were from 85.23% to 119.14%. The analysis results of this icELISA showed good consistency with those from liquid chromatography mass spectrometry. These results suggest that the proposed icELISA provides a sensitive, specific, and reliable strategy for CPPU detection in food samples.
Collapse
|
23
|
Xu R, Huang Y, Lu C, Lv W, Hong S, Zeng S, Xia W, Guo L, Lu H, Chen Y. Ticlopidine induces cardiotoxicity in zebrafish embryos through AHR-mediated oxidative stress signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113138. [PMID: 34995907 DOI: 10.1016/j.ecoenv.2021.113138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Ticlopidine has inhibitory effects on platelet aggregation via ADP (adenosine diphosphate), platelet release reaction and depolymerization. In clinical practice, it is commonly used to prevent heart, cerebrovascular and other thromboembolic diseases. However, ticlopidine has also been reported to have teratogenic effects on the heart, though its specific molecular mechanism remains unclear. In this study, zebrafish embryos were used as model organisms to examine the toxicity effect of ticlopidine. Zebrafish embryos exposed to 6, 7.5, and 9 mg/L ticlopidine solutions manifested several abnormalities, including body curvature, smaller eyes, slower absorption of the vitella sac, pericardial edema, slower heart rate, increased mortality, longer venous sinus - arterial ball (SV-BA) distance, and increased oxidative stress, which indicated developmental and cardiac toxicity. Abnormal expression of key genes related to heart development was observed, and the level of apoptotic gene expression was up-regulated. Further experiments revealed up-regulation of embryonic oxidative stress following ticlopidine exposure, leading to a decrease in cardiomyocyte proliferation. Conversely, the aromatic hydrocarbon receptor (AHR) inhibitor CH223191 protected embryos from the cardiotoxicity effect of ticlopidine, confirming further the role of up-regulated oxidative stress as the molecular mechanism of ticlopidine-induced cardiotoxicity in zebrafish. In conclusion, ticlopidine exposure leads to developmental and cardiotoxicity in zebrafish embryos. Therefore, further studies are warranted to ascertain such potential harms of ticlopidine in humans, which are vital in providing guidance in the safe use of drugs in clinical practice.
Collapse
Affiliation(s)
- Rong Xu
- Medical College of Soochow University, Suzhou 215123, Jiangsu, P.R.China; The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Chen Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Weiming Lv
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Shihua Hong
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Shuqin Zeng
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Wenyan Xia
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Li Guo
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China.
| | - Yijian Chen
- Medical College of Soochow University, Suzhou 215123, Jiangsu, P.R.China; The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China.
| |
Collapse
|
24
|
Li M, Yu T, Lai J, Han X, Hu J, Deng Z, Li D, Ye Z, Wang S, Hu C, Xu X. Ethoprophos induces cardiac toxicity in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113029. [PMID: 34847436 DOI: 10.1016/j.ecoenv.2021.113029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Ethoprophos is an effective and widely pesticide that used in controlling nemathelminth and soil insect. However, ethoprophos has been frequently detected in environment and freshwater. The potential toxicity to aquatic organisms is still not be explored. In this study, zebrafish embryo model was used to evaluated the toxicity of ethoprophos during cardiovascular developmental process of zebrafish. Zebrafish embryos were separately exposed to 10 mg/L, 20 mg/L, 30 mg/L, 40 mg/L and 50 mg/L of ethoprophos exposure at 96 h post-fertilization (hpf), which induced cardiac defects, such as low heart rate, pericardium edema and long SV-BA distance, but had no influence to vascular development. Mechanistically, the expression of cardiac-related genes were abnormal. Moreover, ethoprophos exposure significantly increased oxidative stress in zebrafish embryos by inhibiting the production of antioxidant enzyme (SOD) and activating reactive oxygen species. Expectedly, some apoptosis genes were induced and the apoptotic cardiomyocytes were detected by acridine orange staining. In addition, ethoprophos exposure also inhibited the expression of genes in wnt signaling pathway, such as β-catenin, Axin2, GSK3β and Sox9b. BML284, an activator of wnt signaling pathway, can rescue the cardiotoxic effect of embryos. These results indicated that oxidative stress and blocking wnt signaling pathway were molecular basis of ethoprophos-induced injure in zebrafish. Generally, our study showed that ethoprophos exposure led to severe cardiotoxicity to zebrafish embryo.
Collapse
Affiliation(s)
- Meifeng Li
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tingting Yu
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jingli Lai
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xue Han
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jihuan Hu
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou 344000, China
| | - Zuocheng Ye
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China.
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
25
|
Ling D, Chen H, Chan G, Lee SMY. Quantitative measurements of zebrafish heartrate and heart rate variability: A survey between 1990-2020. Comput Biol Med 2021; 142:105045. [PMID: 34995954 DOI: 10.1016/j.compbiomed.2021.105045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 12/19/2022]
Abstract
Zebrafish is an essential model organism for studying cardiovascular diseases, given its advantages of fast proliferation and high gene homology with humans. Zebrafish embryos/larvae are valuable experimental models used in toxicology studies to analyze drug toxicity, including hepatoxicity, nephrotoxicity and cardiotoxicity, as well as for drug discovery and drug safety screening in the preclinical stage. Heart rate (HR) serves as a functional endpoint in studies of cardiotoxicity, while heart rate variability (HRV) serves as an indicator of cardiac arrhythmia. Cardiotoxicity is a major cause of early and late termination of drug trials, so a more comprehensive understanding of zebrafish HR and HRV is important. This review summarized HR and HRV in a specific range of applications and fields, focusing on zebrafish heartbeat detection procedures, signal analysis technology and well-established commercial software, such as LabVIEW, Rvlpulse, and ZebraLab. We also compared HR detection algorithms and electrocardiography (ECG)-based methods of heart signal extraction. The relationship between HR and HRV was also systematically analyzed; HR was shown to have an inverse correlation with HRV. Applications to drug testing are also highlighted in this review. Furthermore, HR and HRV were shown to be regulated by the automatic nervous system; their connections with ECG measurements are also summarized herein.
Collapse
Affiliation(s)
- Dongmin Ling
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China
| | - Huanxian Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
26
|
Shan T, Zhang X, Guo C, Guo S, Zhao X, Yuan Y, Yue T. Identity, Synthesis, and Cytotoxicity of Forchlorfenuron Metabolites in Kiwifruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9529-9535. [PMID: 34382788 DOI: 10.1021/acs.jafc.1c02492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Forchlorfenuron (CPPU) is a plant growth regulator widely used in kiwifruit production. Although research on the toxicological and environmental effects of CPPU is well-established, the nature and toxicological properties of its metabolites are much less well-known. Using high resolution mass spectrometry and nuclear magnetic resonance, the CPPU previously unidentified metabolites in Xuxiang and Jinyan kiwifruit were identified as N-(2-chloro-4-pyridinyl)-N'-(2-hydroxy-4-methoxyphenyl)-urea (metabolite 1) and N-phenyl-N'-4-pyridinylurea (metabolite 2, CAS: 1932-35-0). Their structures were confirmed by synthesis (metabolite 1) and by comparison with a commercial standard (metabolite 2). Quantitative studies demonstrate that CPPU and its metabolites are mainly retained in the kiwifruit peel, while the content is dependent on the nature of the peel surface, with the smoother peel of Jinyan kiwifruit retaining smaller amounts of the compound. Cell viability experiments in Caco2 and Lo2 cells show that the metabolites may have a lower cytotoxicity compared to the parent compound CPPU.
Collapse
Affiliation(s)
- Tingting Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Xiao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Chunfeng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Shihuan Guo
- College of Food Science and Technology, Northwest University, Xian 710000, China
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xian 710000, China
| |
Collapse
|
27
|
Comparative Pharmacokinetic Study of Forchlorfenuron in Adult and Juvenile Rats. Molecules 2021; 26:molecules26144276. [PMID: 34299551 PMCID: PMC8306460 DOI: 10.3390/molecules26144276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
Forchlorfenuron (CPPU) is a plant growth regulator extensively used in agriculture. However, studies on CPPU pharmacokinetics are lacking. We established and validated a rapid, sensitive, and accurate liquid chromatography-mass spectrometry method for CPPU detection in rat plasma. CPPU pharmacokinetics was evaluated in adult and juvenile rats orally treated with 10, 30, and 90 mg/kg of the compound. The area under the plasma drug concentration-time curve from 0 to 24 h (AUC), at the final time point sampled (AUC0-t), and the maximum drug concentration of CPPU increased in a dose-dependent manner. The pharmacokinetic parameters AUC0-t and absolute bioavailability were higher in the juvenile rats than in adult rats. The mean residence time and AUC0-t of juvenile rats in the gavage groups, except for the 10 mg/kg dose, were significantly higher in comparison to those observed for adult rats (p < 0.001). The plasma clearance of CPPU in juvenile rats was slightly lower than that in the adult rats. Taken together, juvenile rats were more sensitive to CPPU than adult rats, which indicates potential safety risks of CPPU in minors.
Collapse
|
28
|
Zhu D, Ping L, Qian R, Chen C, Hong Y, Tong Z, Yang X. Dissipation behavior, residue dynamics, and dietary risk assessment of forchlorfenuron in postharvest kiwifruits during simulated cold chain logistics and store shelf life. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20002-20011. [PMID: 33410058 DOI: 10.1007/s11356-020-11803-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Forchlorfenuron (CPPU) is often applied during the cultivation of kiwifruit to produce larger fruit. To address degradation patterns of CPPU during simulated cold chain logistics and simulated shelf life of the fruit after harvest, appropriate storage methods and safe consumption behavior can be investigated. In this study, an ultra-high-performance liquid chromatography-tandem mass spectrometry method was adopted to detect CPPU residues under different conditions. CPPU in kiwifruit stored at 6 °C had a half-life of 40.8-77.0 days. However, when kiwifruit was stored at 0 °C under simulated cold chain storage conditions, the half-life of CPPU was 63.0-115.5 days, implying that lower storage temperatures can reduce the degradation rate of CPPU. The residues of CPPU in kiwifruit pulp declined with time, and the reduction followed the first-order kinetics equation. More CPPU residues were present in the pulp of postharvest kiwifruit treated with exogenous ethylene than in the pulp of untreated kiwifruit. Thus, using exogenous ethylene for artificial ripening after harvest is not recommended. We determined that the appropriate cold chain storage temperature is 6 °C. It is recommended that the public select kiwifruit stored for at least 2 weeks. The estimated chronic and acute dietary risk quotients of CPPU are ≤ 0.79% and ≤ 0.11%, respectively. Therefore, it is highly unlikely that consumers will be poisoned by CPPU due to kiwifruit consumption. Our results provide scientific evidence regarding the adoption of appropriate kiwifruit storage methods and consumption behavior to enhance consumption safety.
Collapse
Affiliation(s)
- Difeng Zhu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Li Ping
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Renyun Qian
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Chao Chen
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Yawen Hong
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Zhenxuan Tong
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
29
|
Xia ZS, Hao EW, Wei YT, Hou XT, Chen ZM, Wei M, Du ZC, Deng JG. Genipin induces developmental toxicity through oxidative stress and apoptosis in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108951. [PMID: 33316388 DOI: 10.1016/j.cbpc.2020.108951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
Genipin, an iridoid substance, is mainly derived from Gardenia jasminoides Ellis of the traditional Chinese medicine and is widely used in raw materials for the food additive gardenia blue and biological materials. The developmental toxicity of genipin has not been investigated, and its underlying mechanism is unclear. Therefore, in this study we attempt to investigate the potential developmental toxicity of genipin in zebrafish embryos/larvae. The results showed zebrafish embryos treated with 50 μg/ml dose of genipin display inhibited hatching rates and body length. The pericardial edema was observed. It was also found that genipin could induce cardio-toxicity, hepatotoxicity and nephrotoxicity in zebrafish larvae. After genipin treatment, the suppression of antioxidant capacity and increase of oxidative stress were showed for the triggered generation of ROS and MDA, and decreased activity of SOD. Compared with the 0.5% DMSO group, a number of apoptotic cells in zebrafish were increased after genipin exposure. By measuring marker gene expression with the using of qRT-PCR, we proposed that developmental toxicity after genipin treatment might be associated with oxidative stress and apoptosis increase. Our research offers a better understanding for developmental toxicity of genipin.
Collapse
Affiliation(s)
- Zhong-Shang Xia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Er-Wei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yan-Ting Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiao-Tao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhang-Mei Chen
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Man Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zheng-Cai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Jia-Gang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
30
|
Gong G, Kam H, Tse YC, Giesy JP, Seto SW, Lee SMY. Forchlorfenuron (CPPU) causes disorganization of the cytoskeleton and dysfunction of human umbilical vein endothelial cells, and abnormal vascular development in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:115791. [PMID: 33401215 DOI: 10.1016/j.envpol.2020.115791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Forchlorfenuron (CPPU) has been used worldwide, to boost size and improve quality of various agricultural products. CPPU and its metabolites are persistent and have been detected frequently in fruits, water, sediments, and organisms in aquatic systems. Although the public became aware of CPPU through the exploding watermelon scandal of 2011 in Zhenjiang, China, little was known of its potential effects on the environment and wildlife. In this study, adverse effects of CPPU on developmental angiogenesis and vasculature, which is vulnerable to insults of persistent toxicants, were studied in vivo in zebrafish embryos (Danio rerio). Exposure to 10 mg CPPU/L impaired survival and hatching, while development was hindered by exposure to 2.5 mg CPPU/L. Developing vascular structure, including common cardinal veins (CCVs), intersegmental vessels (ISVs) and sub-intestinal vessels (SIVs), were significantly restrained by exposure to CPPU, in a dose-dependent manner. Also, CPPU caused disorganization of the cytoskeleton. In human umbilical vein endothelial cells (HUVECs), CPPU inhibited proliferation, migration and formation of tubular-like structures in vitro. Results of Western blot analyses revealed that exposure to CPPU increased phosphorylation of FLT-1, but inhibited phosphorylation of FAK and its downstream MAPK pathway in HUVECs. In summary, CPPU elicited developmental toxicity to the developing endothelial system of zebrafish and HUVECs. This was do, at least in part due to inhibition of the FAK/MAPK signaling pathway rather than direct interaction with the VEGF receptor (VEGFR).
Collapse
Affiliation(s)
- Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, United States
| | - Sai-Wang Seto
- Department of Applied Biology and Chemistry Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
31
|
Gong G, Chen H, Kam H, Chan G, Tang YX, Wu M, Tan H, Tse YC, Xu HX, Lee SMY. In Vivo Screening of Xanthones from Garcinia oligantha Identified Oliganthin H as a Novel Natural Inhibitor of Convulsions. JOURNAL OF NATURAL PRODUCTS 2020; 83:3706-3716. [PMID: 33296199 DOI: 10.1021/acs.jnatprod.0c00963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Epilepsy is a chronic neurological disorder, characterized by recurrent, spontaneous, and transient seizures, and affects more than 70 million people worldwide. Although two dozen antiepileptic drugs (AEDs) are approved and available in the market, seizures remain poorly controlled in one-third of epileptic patients who are suffering from drug resistance or various adverse effects. Recently, the xanthone skeleton has been regarded as an attractive scaffold for the discovery and development of emerging anticonvulsants. We had isolated several dihydroxanthone derivatives previously, including oliganthin H, oliganthin I, and oliganthin N, whose structures were similar and delicately elucidated by spectrum analysis or X-ray crystallographic data, from extracts of leaves of Garcinia oligantha. These xanthone analogues were evaluated for anticonvulsant activity, and a novel xanthone, oliganthin H, has been identified as a sound and effective natural inhibitor of convulsions in zebrafish in vivo. A preliminary structure-activity relationship analysis on the relationship between structures of the xanthone analogues and their activities was also conducted. Oliganthin H significantly suppressed convulsant behavior and reduced to about 25% and 50% of PTZ-induced activity, in 12.5 and 25 μM treatment groups (P < 0.01 and 0.001), respectively. Meanwhile, it reduced seizure activity, velocity, seizure duration, and number of bursts in zebrafish larvae (P < 0.05). Pretreatment of oliganthin H significantly restored aberrant induction of gene expressions including npas4a, c-fos, pyya, and bdnf, as well as gabra1, gad1, glsa, and glula, upon PTZ treatment. In addition, in silico analysis revealed the stability of the oliganthin H-GABAA receptor complex and their detailed binding pattern. Therefore, direct interactions with the GABAA receptor and involvement of downstream GABA-glutamate pathways were possible mechanisms of the anticonvulsant action of oliganthin H. Our findings present the anticonvulsant activity of oliganthin H, provide a novel scaffold for further modifications, and highlight the xanthone skeleton as an attractive and reliable resource for the development of emerging AEDs.
Collapse
Affiliation(s)
- Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
- The Second Affiliated Hospital, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yue-Xun Tang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
32
|
Wang J, Yang Y, Huang Y, Zhang X, Huang Y, Qin WC, Wen Y, Zhao YH. Evaluation of modes of action of pesticides to Daphnia magna based on QSAR, excess toxicity and critical body residues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111046. [PMID: 32888614 DOI: 10.1016/j.ecoenv.2020.111046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Agricultural pesticides serve as effective controls of unwanted weeds and pests. However, these same chemicals can exert toxic effects in non-target organisms. To determine chemical modes of action, the toxicity ratio (TR) and critical body residues (CBRs) of 57 pesticides were calculated for Daphnia magna. Results showed that the CBR values of inert compounds were close to a constant while the CBR values of pesticides varied over a wider range. Although herbicides are categorized as specifically-acting compounds to plants, herbicides did not exhibit excess toxicity to Daphnia magna and were categorized as inert compounds with an average logTR = 0.41, which was less than a threshold of one. Conversely, fungicides and insecticides exhibited strong potential for toxic effects to Daphnia magna with an average logTR >2. Many of these chemicals act via disruption of the nervous, respiratory, or reproductive system, with high ligand-receptor binding activity which leads to higher toxicity for Daphnia magna. Molecular docking using acetylcholinesterase revealed that fungicides and insecticides bind more easily with the biological macromolecule when compared with inert compounds. Quantitative structure-activity relationship (QSAR) analysis revealed that the toxicity of fungicides was mainly dependent upon the heat of formation and polar surface area, while the toxicity of insecticides was more related to hydrogen-bond properties. This comprehensive analysis reveals that there are specific differences in toxic mechanisms between fungicides and insecticides. These results are useful for determining relative risk associated with pesticide exposure to aquatic crustaceans, such as Daphnia magna.
Collapse
Affiliation(s)
- Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yi Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Ying Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Xiao Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yu Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Wei C Qin
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yang Wen
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, School of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin, 136000, PR China.
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China.
| |
Collapse
|
33
|
Mi P, Tang YQ, Feng XZ. Acute fluorene-9-bisphenol exposure damages early development and induces cardiotoxicity in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110922. [PMID: 32800257 DOI: 10.1016/j.ecoenv.2020.110922] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Fluorene-9-bisphenol (BHPF) is a substitute for bisphenol A (BPA), which is widely used to manufacture plastic products. Previous studies indicate that BHPF has an anti-estrogenic effect and induces cytotoxicity in mice oocytes. However, the effects of acute BHPF exposure on the aquatic organism obtain little attention. In this study, a series of BHPF concentrations (1 μM, 2 μM, 5 μM, 10 μM, 20 μM) was used to exposed zebrafish embryos from 2 h post-fertilization (hpf). The results showed the LC50 at 96hpf was 2.88 μM (1.01 mg/L). Acute exposure induced malformation in morphology, and retarded epiboly rate at 10hpf, increased apoptosis. Moreover, acute BHPF exposure led cardiotoxicity, by impeding cardiac looping, decreasing cardiac contractility (reducing the stroke volume and cardiac output, decreasing fractional shortening of ventricle). Besides that, BHPF exposure altered the expression of cardiac transcriptional regulators and development related genes. In conclusion, acute BHPF exposure induced developmental abnormality, retarded cardiac morphogenesis and injured the cardiac contractility. This study indicated BHPF would be an unneglected threat for the safety of aquatic organisms.
Collapse
Affiliation(s)
- Ping Mi
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ya-Qiu Tang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
34
|
Huang Y, Ma J, Meng Y, Wei Y, Xie S, Jiang P, Wang Z, Chen X, Liu Z, Zhong K, Cao Z, Liao X, Xiao J, Lu H. Exposure to Oxadiazon-Butachlor causes cardiac toxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114775. [PMID: 32504889 DOI: 10.1016/j.envpol.2020.114775] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Oxadiazon-Butachlor (OB) is a widely used herbicide for controlling most annual weeds in rice fields. However, its potential toxicity in aquatic organisms has not been evaluated so far. We used the zebrafish embryo model to assess the toxicity of OB, and found that it affected early cardiac development and caused extensive cardiac damage. Mechanistically, OB significantly increased oxidative stress in the embryos by inhibiting antioxidant enzymes that resulted in excessive production of reactive oxygen species (ROS), eventually leading to cardiomyocyte apoptosis. In addition, OB also inhibited the WNT signaling pathway and downregulated its target genes includinglef1, axin2 and β-catenin. Reactivation of this pathway by the Wnt activator BML-284 and the antioxidant astaxanthin rescued the embryos form the cardiotoxic effects of OB, indicating that oxidative stress, and inhibition of WNT target genes are the mechanistic basis of OB-induced damage in zebrafish. Our study shows that OB exposure causes cardiotoxicity in zebrafish embryos and may be potentially toxic to other aquatic life and even humans.
Collapse
Affiliation(s)
- Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuling Xie
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ping Jiang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ziqin Wang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaobei Chen
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zehui Liu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
35
|
Zhu D, Ping L, Shen X, Hong Y, Weng Q, He Q, Wang J, Wang J. Effects of prepubertal exposure to forchlorfenuron through prenatal and postnatal gavage administration in developing Sprague-Dawley rats. Reprod Toxicol 2020; 98:157-164. [PMID: 32998050 DOI: 10.1016/j.reprotox.2020.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Forchlorfenuron (CPPU), a plant growth regulator, is widely used in agriculture. However, its long-term exposure effects on humans, especially neonates, remain unclear. Therefore, we investigated the developmental toxicity of prenatal and postnatal gavage administration of CPPU in rats. Pregnant Sprague-Dawley rats were administered 300 mg/kg/day CPPU by gavage from day 6 of gestation to the cessation of nursing. During weaning, rat offspring were administered 0, 30, 100, or 300 mg/kg/day CPPU for 4 weeks, followed by a 4-week CPPU-free recovery period. There were no significant differences in clinical symptoms, body weight, development indicators, serum biochemical parameters, sex hormone levels, sperm motility, relative organ weights, and histopathological changes among the 0-100 mg/kg/day CPPU groups. In the 300 mg/kg/day CPPU group, female rats exhibited decreased body weight, earlier time of vaginal opening (VO) and first estrus time (FE), elevated estradiol and blood urea nitrogen (BUN) levels, and upregulation of estrogen receptor 1 gene expression, whereas male rats only exhibited increases in serum BUN, creatinine, and glucose levels. Most changes were reversed after the recovery period. Furthermore, the endometrial epithelial height was significantly increased in female rats despite the absence of significant changes in uterine wall thickness and endometrial glands. Thus, CPPU may promote estradiol secretion, resulting in altered VO and FE and adverse effects in prepubertal female rats. These findings may be applied for risk assessment following CPPU exposure in humans.
Collapse
Affiliation(s)
- Difeng Zhu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Ping
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofei Shen
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yawen Hong
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Lu Y, Li P, Yang C, Han Y, Yan H. One pot green synthesis of m-aminophenol-urea-glyoxal resin as pipette tip solid-phase extraction adsorbent for simultaneous determination of four plant hormones in watermelon juice. J Chromatogr A 2020; 1623:461214. [PMID: 32505267 DOI: 10.1016/j.chroma.2020.461214] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
Plant hormones (PHs) are a type of pesticide that can potentially affect human health. Therefore, their quantitative detection is particularly important. In this study, a green and economic method for the simultaneous extraction and determination of four PHs, namely thidiazuron, forchlorfenuron, 1-naphthylacetic acid, and 2-naphthoxyacetic acid, in watermelon juice was developed by using m-aminophenol-urea-glyoxal resin as the adsorbent for pipette tip solid phase extraction (PT-SPE) coupled with liquid chromatography. The resin was synthesized via a simple (one pot hydrothermal synthesis) and green (ethanol as the solvent and glyoxal as crosslinking agent) process. The synthesized resin possesses multiple functional groups (hydroxyl, amino, and imino, among others), high adsorption capacity, larger specific surface area than the urea-glyoxal resin and m-aminophenol-glyoxal resin, and can be regenerated easily. The PT-SPE device is simple, cheap, and easy to obtain, and the adsorbent dosage is only 5.0 mg. The proposed method has a wide linear detection range, high recovery, good precision, and high sensitivity, and satisfies the measurement requirements for detecting trace levels of PHs in fruits and vegetables.
Collapse
Affiliation(s)
- Yanke Lu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Pengfei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Chunliu Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China.
| | - Yehong Han
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of pharmacy, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China; Key Laboratory of Analytical Science and Technology of Hebei Province, College of pharmacy, Hebei University, Baoding 071002, China.
| |
Collapse
|
37
|
Arman S, İşisağ Üçüncü S. Cardiac toxicity of acrolein exposure in embryonic zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22423-22433. [PMID: 32307682 DOI: 10.1007/s11356-020-08853-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Acrolein is a widely distributed pollutant produced from various sources such as industrial waste, organic combustion, and power plant emissions. It is also intentionally released into irrigation canals to control invasive aquatic plants. Zebrafish (Danio rerio) has a good reputation for being an attractive model organism for developmental and toxicological research. In this study, zebrafish embryos were exposed to acrolein to investigate the cardiotoxic effects. The 96-h LC50 (median lethal concentration) value of acrolein was determined as 654.385 μg/L. Then, the embryos were treated with the sublethal experimental concentrations of acrolein (1, 4, 16, 64, and 256 μg/L) for 96 h. Embryos were examined at 48, 72, and 96 h post-fertilization (hpf). Acrolein affected the cardiac morphology and function of the embryos. Sinus venosus-bulbus arteriosus (SV-BA) distance of 64 μg/L and 256 μg/L acrolein groups was elongated compared with the control samples. Immunostaining with MF20 antibody clearly exhibited that the atrium positioned posterior to the ventricle which indicated cardiac looping inhibition. Histological preparations also showed the mispositioning and the lumens of the chambers narrowed. Acrolein-induced increased heart rate was noted in the 4, 16, 64, and 256 μg/L treatment groups. Taken together, these results indicated that acrolein disrupted the heart development and cardiac function in zebrafish, suggesting that its water-borne risks should be considered seriously.
Collapse
Affiliation(s)
- Sezgi Arman
- Department of Biology, Faculty of Arts and Sciences, Sakarya University, 54050, Serdivan, Sakarya, Turkey.
| | - Sema İşisağ Üçüncü
- Department of Biology, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
38
|
Sun L, Cao X, Lechuga S, Feygin A, Naydenov NG, Ivanov AI. A Septin Cytoskeleton-Targeting Small Molecule, Forchlorfenuron, Inhibits Epithelial Migration via Septin-Independent Perturbation of Cellular Signaling. Cells 2019; 9:cells9010084. [PMID: 31905721 PMCID: PMC7016606 DOI: 10.3390/cells9010084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Septins are GTP-binding proteins that self-assemble into high-order cytoskeletal structures, filaments, and rings. The septin cytoskeleton has a number of cellular functions, including regulation of cytokinesis, cell migration, vesicle trafficking, and receptor signaling. A plant cytokinin, forchlorfenuron (FCF), interacts with septin subunits, resulting in the altered organization of the septin cytoskeleton. Although FCF has been extensively used to examine the roles of septins in various cellular processes, its specificity, and possible off-target effects in vertebrate systems, has not been investigated. In the present study, we demonstrate that FCF inhibits spontaneous, as well as hepatocyte growth factor-induced, migration of HT-29 and DU145 human epithelial cells. Additionally, FCF increases paracellular permeability of HT-29 cell monolayers. These inhibitory effects of FCF persist in epithelial cells where the septin cytoskeleton has been disassembled by either CRISPR/Cas9-mediated knockout or siRNA-mediated knockdown of septin 7, insinuating off-target effects of FCF. Biochemical analysis reveals that FCF-dependent inhibition of the motility of control and septin-depleted cells is accompanied by decreased expression of the c-Jun transcription factor and inhibited ERK activity. The described off-target effects of FCF strongly suggests that caution is warranted while using this compound to examine the biological functions of septins in cellular systems and model organisms.
Collapse
Affiliation(s)
- Lei Sun
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Xuelei Cao
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Alex Feygin
- School of Nursing, Virginia Commonwealth University School of Nursing, Richmond, VA 23298, USA;
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
- Correspondence: ; Tel.: +1-216-444-5620
| |
Collapse
|