1
|
He M, Zhao L, Hu H, Yao L, Guo Y, Hou C, Gao S, Li R. Multifunctional property of N,N-bis (carboxymethyl) glutamic acid modified biomass material: adsorption and degradation removals of cationic dyes in wastewater. ENVIRONMENTAL RESEARCH 2024; 263:120193. [PMID: 39427942 DOI: 10.1016/j.envres.2024.120193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
As a common type of pollutants in industrial wastewater, cationic dyes have attracted great attentions. Using biodegradable N,N-di (carboxymethyl) glutamic acid (GLDA) as ligand and corn stalk (CS) as matrix, a novel and green biomass modified material GLDA-CS was successfully prepared. The multifunctional property of GLDA-CS for removing methylene blue (MB), malachite green (MG) and alkaline red 46 (R-46) from wastewater was evaluated. The dyes were removed by the electrostatic adsorption based on the cationic adsorption properties of GLDA-CS. The removal rates of MB, MG and R-46 can quickly reach 90.4%, 96.8% and 94.8% in short time. especially for MG and R-46 even only 20 min. The adsorption capacities of the dyes still remain more than 86.5% of the initial values after 5 cycles. In a heterogeneous system, the dyes were removed by Fenton-like degradation based on the metal chelating property of GLDA-CS. 100% degradation rates of the dyes can be achieved in 35 min under the acidic region. Even if at pH 7, degradation rates are 44.1%, 47.1% and 56.6% higher than those under the conventional homogeneous system, and the degradation rate remained at 83.7% after 5 cycles. Regardless of the adsorption or degradation, GLDA-CS shows strong anti-anion interference ability. The potential mechanisms of adsorption and degradation for the dyes by GLDA-CS were deduced by quantization calculation. It is concluded that the adsorption removal of the dyes by GLDA-CS follows MG > R-46 > MB, and mainly depends on the electrostatic interaction between -COOH in GLDA-CS and -N- in the dye molecules. Based on the degradation mechanism of Fenton-like reaction, the possible active sites of the dyes attacked by free radicals and their possible degradation intermediates were predicted by the calculations of Fukui function.
Collapse
Affiliation(s)
- Min He
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China
| | - Lang Zhao
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China
| | - Hongbin Hu
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China
| | - Lu Yao
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China
| | - Yinghuai Guo
- Sanmenxia Chaoyang Technology Co., LTD., Hubin Industrial Park, Sanmenxia City, Henan Province, 472000, PR China
| | - Chunjiang Hou
- Sanmenxia Chaoyang Technology Co., LTD., Hubin Industrial Park, Sanmenxia City, Henan Province, 472000, PR China
| | - Shaokun Gao
- Sanmenxia Chaoyang Technology Co., LTD., Hubin Industrial Park, Sanmenxia City, Henan Province, 472000, PR China
| | - Rong Li
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China.
| |
Collapse
|
2
|
Dubey S, Mishra RK, Kaya S, Rene ER, Giri BS, Sharma YC. Microalgae derived honeycomb structured mesoporous diatom biosilica for adsorption of malachite green: Process optimization and modeling. CHEMOSPHERE 2024; 355:141696. [PMID: 38499077 DOI: 10.1016/j.chemosphere.2024.141696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
The present study investigated the removal of malachite green dye from aquifers by means of microalgae-derived mesoporous diatom biosilica. The various process variables (dye concentration, pH, and adsorbent dose) influencing the removal of the dye were optimized and their interactive effects on the removal efficiency were explored by response surface methodology. The pH of the solution (pH = 5.26) was found to be the most dominating among other tested variables. The Langmuir isotherm (R2 = 0.995) best fitted the equilibrium adsorption data with an adsorption capacity of 40.7 mg/g at 323 K and pseudo-second-order model (R2 = 0.983) best elucidated the rate of dye removal (10.6 mg/g). The underlying mechanism of adsorption was investigated by Weber-Morris and Boyd models and results revealed that the film diffusion governed the overall adsorption process. The theoretical investigations on the dye structure using DFT-based chemical reactivity descriptors indicated that malachite green cations are electrophilic, reactive and possess the ability to accept electrons, and are strongly adsorbed on the surface of diatom biosilica. Also, the Fukui function analysis proposed the favorable adsorption sites available on the adsorbent surface.
Collapse
Affiliation(s)
- Shikha Dubey
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal) 246174, India; Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India.
| | - Rakesh K Mishra
- Department of Chemistry, National Institute of Technology, Uttarakhand (NITUK), Srinagar (Garhwal) 246174, India
| | - Savaş Kaya
- Department of Pharmacy, Health Services Vocational School, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft 2601DA, the Netherlands
| | - Balendu Shekher Giri
- Sustainability Cluster, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
| | - Yogesh C Sharma
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
3
|
Nair A, Kuppusamy K, Nangan S, Natesan T, Haponiuk JT, Thomas S, Ramasubburayan R, Gnanasekaran L, Selvaraj M, Gopi S. Multifunctional natural derived carbon quantum dots from Withania somnifera (L.) - Antiviral activities against SARS-CoV-2 pseudoviron. ENVIRONMENTAL RESEARCH 2023; 239:117366. [PMID: 37827368 DOI: 10.1016/j.envres.2023.117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Natural carbon dots (NCQDs) are expediently significant in the photo-, nano- and biomedical spheres owing to their facile synthesis, optical and physicochemical attributes. In the present study, three NCQDs are prepared and optimized from Withania somnifera (ASH) by one-step hydrothermal (bottom-up) method: HASHP (without dopant), nitrogen doped HASHNH3 (surface passivation using ammonia) and HASHEDA (surface passivation with ethylenediamine). The HR-TEM images reveal that HASHP, HASNH3, HASHEDA are spherically shaped with 2.5 ± 0.5 nm, 4 ± 1 nm and 5 ± 2 nm particle size, respectively, whereas FTIR confirms the aqueous solubility and nitrogen doping. The XRD patterns ensure that the NCQDs are amorphous and graphitic in nature. Comparatively, HASHNH3 (32.5%) and HASHEDA (27.6%) portray better fluorescence quantum yield than HASHP (5.6%). The increase in quantum yield for the doped NCQDs can be attributed to the surface passivation using ammonia and ethylenediamine. Surface passivation plays a crucial role in enhancing the fluorescence properties of quantum dots. The introduction of nitrogen through ammonia and ethylenediamine provides additional electronic states, possibly reducing non-radiative recombination sites and hence boosting the QY. In addition, an antiviral study unveils the striking potential of surface passivated NCQDs to curb Covid-19 crises with around 85% inhibition of SARS-CoV pseudoviron cells, which is better in comparison to the non-doped NCQDs. Hence, to understand the paramount efficacy of these NCQDs, a hypothesis on their possible mechanism of action against Covid-19 is discussed.
Collapse
Affiliation(s)
- Akhila Nair
- Gdansk University of Technology, Faculty of Chemistry, Polymer Technology Department, Gdansk, Poland
| | - Kanagaraj Kuppusamy
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, China
| | - Senthilkumar Nangan
- Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Thirumalaivasan Natesan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Jozef T Haponiuk
- Gdansk University of Technology, Faculty of Chemistry, Polymer Technology Department, Gdansk, Poland
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| | - Ramasamy Ramasubburayan
- Marine Biomedical Research Laboratory & Environmental Toxicology Unit, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Sreeraj Gopi
- Gdansk University of Technology, Faculty of Chemistry, Polymer Technology Department, Gdansk, Poland; Molecules Food Solutions Private Limited, Kinfra, Koratty, 680309, Kerala, India.
| |
Collapse
|
4
|
Wang ZX, Chen X, Liu X, Li WZ, Ye YY, Xu SY, Zhang H, Wang XQ. Chaotropic Effect-Induced Self-Assembly of the Malachite Green and Boron Cluster for Toxicity Regulation and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55486-55494. [PMID: 37995715 DOI: 10.1021/acsami.3c13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Malachite green (MG), a toxic antibacterial agent, is widely used in the farming industry. Effectively regulating the biotoxicity of this highly water-soluble cationic dye is challenging. Here, we present a novel strategy to reduce the biotoxicity of MG through the self-assembly of MG and the closo-dodecaborate cluster ([B12H12]2-) driven by the chaotropic effect. [B12H12]2- and MG in an aqueous solution can rapidly form an insoluble cubic-type supramolecular complex (B12-MG), and the original toxicity of MG is completely suppressed. Surprisingly, this supramolecular complex, B12-MG, has a strong UV-vis absorption peak at 600-800 nm and significant photothermal conversion efficiency under 660 nm laser irradiation. On this basis, B12-MG, the supramolecular complex, can be used as an efficient photothermal agent for antimicrobial photothermal therapy (PTT) both in vitro and in vivo. As a molecular chaperone of MG, [B12H12]2- not only can be applied as an antidote to regulate the biotoxicity of MG but also provides a novel method for the construction of photothermal agents for PTT based on the chaotropic effect.
Collapse
Affiliation(s)
- Zi-Xin Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Xiaofang Chen
- Department of Infectious Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, P. R. China
| | - Xinyu Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Wen-Zhen Li
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Yu-Yuan Ye
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Shi-Yuan Xu
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Haibo Zhang
- National Demonstration Center for Experimental Chemistry; Engineering Research Center of Organosilicon Compounds Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Qiang Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| |
Collapse
|
5
|
Gurung S, Neha, Arun N, Joshi M, Jaiswal T, Pathak AP, Das P, Singh AK, Tripathi A, Tiwari A. Dual metal ion (Fe 3+ and As 3+) sensing and cell bioimaging using fluorescent carbon quantum dots synthesised from Cynodon dactylon. CHEMOSPHERE 2023; 339:139638. [PMID: 37524264 DOI: 10.1016/j.chemosphere.2023.139638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/09/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
In this study, water dispersible fluorescent carbon quantum dot (CQD) has been synthesised, having an average size of 8.6 ± 0.4 nm using Cynodon dactylon (CD) following microwave assisted green synthetic one-step method. As-prepared CQD fluoresces strongly at 444 nm having a quantum yield of 1% in water when excited at 350 nm. This fluorescence of CQD is sensitive toward As3+ and Fe3+ metal ions. These CQD are utilized for dual metal ion fluorescence sensing; turn-on fluorescence sensing for As3+ and turn-off fluorescence sensing for Fe3+ ions. Limit of detection for As3+ and Fe3+ ions has been found to be 19 nM and 0.10 μM respectively, which is the lowest value reported for As3+ without any functionalization. The adsorption kinetics of As3+ and Fe3+ ions on CQD have been examined using pseudo-first-order-kinetic model revealing that physical adsorption is dominant over chemical processes in this work. For 0.41 g/L and 1.90 g/L dose of CQD, the equilibrium adsorption capacity was found to be 1.57 × 10-6 mg/g, 2.91 × 10-7 mg/g, and 1.01 × 10-5 mg/g, 1.69 × 10-6 mg/g respectively for As3+ and Fe3+ ions. Despite having low quantum yield in water, as-prepared CQD showed low cytotoxicity and good tolerance against photodegradation of biological cells at concentrations lower than 62.5 μg/mL and when the cells are illuminated up to 12 h. Owing to this, the synthesised CQD have been utilized as fluorescent probes for in itro cell imaging.
Collapse
Affiliation(s)
- Sweta Gurung
- Department of Physics, School of Physical Sciences, Sikkim University, Gangtok, 737102, India
| | - Neha
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nimmala Arun
- School of Physics, University of Hyderabad, Hyderabad, 500046, India
| | - Mayank Joshi
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Tanya Jaiswal
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand P Pathak
- School of Physics, University of Hyderabad, Hyderabad, 500046, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amaresh Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Ajay Tripathi
- Department of Physics, School of Physical Sciences, Sikkim University, Gangtok, 737102, India.
| | - Archana Tiwari
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Kang J, Ai Q, Zhao A, Wang H, Zhang X, Liu Y, Zhang L, Liu Y. Neurotoxicological mechanisms of carbon quantum dots in a new animal model Dugesia japonica. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:711-719. [PMID: 37386302 DOI: 10.1007/s10646-023-02671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/01/2023]
Abstract
As luminescent nanomaterials, the carbon quantum dots (CQDs) research focused on emerging applications since their discovery. However, their toxicological effects on the natural environment are still unclear. The freshwater planarian Dugesia japonica is distributed extensively in aquatic ecosystems and can regenerate a new brain in 5 days after amputation. Therefore it can be used as a new model organism in the field of neuroregeneration toxicology. In our study, D. japonica was cut and incubated in medium treated with CQDs. The results showed that the injured planarian lost the neuronal ability of brain regeneration after treatment with CQDs. Its Hh signalling system was interfered with at Day 5, and all cultured pieces died on or before Day 10 due to head lysis. Our work reveals that CQDs might affect the nerve regeneration of freshwater planarians via the Hh signalling pathway. The results of this study improve our understanding of CQD neuronal development toxicology and can aid in the development of warning systems for aquatic ecosystem damage.
Collapse
Affiliation(s)
- Jing Kang
- College of Life Science, Xinxiang Medical University, Xinxiang, China.
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China.
| | - Qing Ai
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Ang Zhao
- College of Life Science, Xinxiang Medical University, Xinxiang, China
| | - Haijiao Wang
- College of Life Science, Xinxiang Medical University, Xinxiang, China
| | - Xiangpeng Zhang
- Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Yanli Liu
- College of Life Science, Xinxiang Medical University, Xinxiang, China
| | | | - Yuqing Liu
- College of Life Science, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
7
|
Poopal RK, Ashwini R, Ramesh M, Li B, Ren Z. Triphenylmethane dye (C 52H 54N 4O 12) is potentially a hazardous substance in edible freshwater fish at trace level: toxicity, hematology, biochemistry, antioxidants, and molecular docking evaluation study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28759-28779. [PMID: 36401692 DOI: 10.1007/s11356-022-24206-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Malachite green (C52H54N4O12) is a synthetic dye that is used in textile industries as a colorant and in aquaculture sectors to contain microbial damage. Aquatic contamination of malachite green (MG) has been reported globally. Fish is the highest trophic organism among aquatic inhabitants, highly sensitive to waterborne contaminants (metals, coloring agents, etc.). Toxicity of waterborne chemicals on nontarget organisms can be determined by assessing biomarkers. Assessing blood parameters and tissue antioxidants (enzymatic and nonenzymatic) is useful to evaluate MG toxicity. To initiate the MG toxicity data for freshwater fish (Cyprinus carpio), the median lethal toxicity was primarily evaluated. Then, hematological, blood biochemical (glucose, protein, and cholesterol) and tissue biochemical (amino acids, lipids), and vital tissue (gills, liver, and kidney) antioxidant capacity (CAT, LPO, GST, GR, POxy, vitamin C, and GSH) of C. carpio were analyzed under acute (LC50-96 h) and sublethal (Treatment I-1/10th and Treatment II-1/5th LC50-96 h) exposure periods (28 days). Molecular docking for MG with hemoglobin was also obtained. Biomarkers examined were affected in the MG-treated groups with respect to the control group. Significant changes (p < 0.05) were observed in hematology (Hb, RBCs, and WBCs), glucose, proteins, lipids and tissue CAT, LPO, and GST activities under acute MG exposure. In sublethal treatment groups, biomarkers studied were significant (p < 0.05) throughout the study period. The potential for MG binding to hemoglobin was tested in this study. MG is potentially a multiorgan toxicant. Literally a chemical that is harmful to the aquatic environment if safety is concerned.
Collapse
Affiliation(s)
- Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Rajan Ashwini
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Bin Li
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
8
|
Patra S, Purohit SS, Swain SK. In vivo fluorescence non-enzymatic glucose sensing technique for diabetes management by CQDs incorporated dextran nanocomposites in human blood serums. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
9
|
Rai K, Yadav K, Das M, Chaudhary S, Naik K, Singh P, Dubey AK, Yadav SK, Agrawal SB, Parmar AS. Effect of carbon quantum dots derived from extracts of UV-B-exposed Eclipta alba on alcohol-induced liver cirrhosis in Golden Hamster. Photochem Photobiol Sci 2023:10.1007/s43630-023-00396-3. [PMID: 36826694 DOI: 10.1007/s43630-023-00396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
The Eclipta alba plant is considered hepatoprotective, owing to its phytoconstituents wedelolactone. In the current study, effect of elevated ultraviolet-B (eUV-B) radiation was investigated on biochemical, phytochemical, and antioxidative enzymatic activities of E. alba (Bhringraj) plant. The UV-B exposure resulted in an increase in oxidative stress, which has caused an imbalance in phytochemical, biochemical constituents, and induced antioxidative enzymatic activities. It was observed that the UV-B exposure promoted wedelolactone yield by 23.64%. Further, the leaf extract of UV-B-exposed plants was used for the synthesis of carbon quantum dots (CQDs) using low cost, one-step hydrothermal technique and its biocompatibility was studied using in vitro MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay on HepG2 liver cell line. It revealed no toxicity in any treatment groups in comparison to the control. Both CQDs and leaf extract were orally administered to the golden hamster suffering from alcohol-induced liver cirrhosis. In the morphometric study, it was clearly observed that a combination of UV-B-exposed leaf extract and synthesized CQDs delivered the best result with maximum recovery of liver tissues. The present study reveals the positive impact of UV-B exposure on the medicinally important plant, increased yield of wedelolactone, and its enhanced hepatoprotective efficacy for the treatment of damaged liver tissues.
Collapse
Affiliation(s)
- Kshama Rai
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Kanchan Yadav
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Megha Das
- Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to Be University), Chandigarh, 160012, India
| | - Kaustubh Naik
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Priya Singh
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Sanjeev Kumar Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
10
|
Wang X, Yang T, Chen X, Fang L, Yang Y, Cao G, Zhang H, Bogere A, Meng S, Chen J, Song C. Quantitative detection of malachite green in sediment by a time-resolved immunofluorescence method combined with a portable 3D printing equipment platform. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158897. [PMID: 36411601 DOI: 10.1016/j.scitotenv.2022.158897] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Rapid detection technology of aquaculture fishery drug residues is needed to supplement large-scale instrument methods. To do this, the time-resolved fluorescence immunoassay (TRFIA) method and portable three-dimensional (3D) printing equipment platform were used, in combination with smartphones, to detect malachite green (MG) in pond sediments. The TRFIA was coupled to MG monoclonal antibodies (mAb) through lanthanide metal microspheres europium (Eu3+). The labeled antibody produced competitive immunity in the immune reaction system, and the specific fluorescence intensity in the product was determined by a portable 3D printing equipment platform to achieve quantitative analysis. To test this method, leucomalachite green (LMG) was converted to MG by oxidation of dicyanoquinone (DDQ), and a qualitative analysis was achieved. Methodological evaluation results were satisfactory, recoveries were 83 %-104 %, the limit of detection (LOD) was 0.3 ng/g, the limit of quantitation (LOQ) was 0.7 ng/g, and the coefficient of variation was 1.3 %-7.3 %. The linear equation y = -0.1496x + 0.5585 was in the range of 0-10 ng/g. The linear regression correlation coefficient was 99.2 %. The TRFIA was confirmed and positive samples were measured. Results were consistent with the standard method, which demonstrated that the TRFIA was feasible and that the detection results were reliable. Compared with the national standard method, the TRFIA saves time, is more convenient, and has high sensitivity. It provides an efficient technical method for the rapid screening of MG in the sediments of aquaculture environments.
Collapse
Affiliation(s)
- Xinchi Wang
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China
| | - Tingting Yang
- Jiangsu Su Wei Institute of Microbiology Co., Ltd., 214063 Wuxi, PR China
| | - Xi Chen
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China
| | - Longxiang Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000 Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yong Yang
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China
| | - Guoqing Cao
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China
| | - Haitao Zhang
- Jiangsu Su Wei Institute of Microbiology Co., Ltd., 214063 Wuxi, PR China
| | - Alex Bogere
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China
| | - Shunlong Meng
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000 Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Jiazhang Chen
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000 Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Chao Song
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000 Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| |
Collapse
|
11
|
Vijayaraj V, Sasikala G, Manivannan N, Mathivanan N, Karuppasamy Supervisor P, Senthil Pandian M, Ramasamy P. Fluorescence Imaging of Onion epidermal Cell utilizing Highly Luminescent Water-Soluble CdTe Colloidal Quantum Dots. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Bao W, Lan Y, Lu H, Li G, Yu M, Yang J, Wei L, Su Q. A Dual‐Function Carbon Quantum Dot Fluorescent Probe for the Detection of Fe
3+
and Sunset Yellow. ChemistrySelect 2022. [DOI: 10.1002/slct.202202375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenbin Bao
- College of Chemistry and Chemical Engineering Guangxi University Nanning China 530004
| | - Yuwei Lan
- College of Chemistry and Chemical Engineering Guangxi University Nanning China 530004
| | - Haiqin Lu
- College of Light Industry and Food Engineering Guangxi University Nanning China 530004
| | - Guowei Li
- College of Chemistry and Chemical Engineering Guangxi University Nanning China 530004
| | - Meihua Yu
- School of Resources Environment and Materials Guangxi University Nanning China 530004
| | - Jiachu Yang
- College of Chemistry and Chemical Engineering Guangxi University Nanning China 530004
| | - Liubai Wei
- College of Chemistry and Chemical Engineering Guangxi University Nanning China 530004
| | - Qionghua Su
- College of Chemistry and Chemical Engineering Guangxi University Nanning China 530004
| |
Collapse
|
13
|
Das M, Mohanty SR, Minocha T, Mishra NK, Yadav SK, Haldar C. Circadian desynchronization in pregnancy of Golden hamster following long time light exposure: Involvement of Akt/FoxO1 pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112508. [PMID: 35841738 DOI: 10.1016/j.jphotobiol.2022.112508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Coordination between central and peripheral reproductive clocks in females is poorly understood. Long light is having a hazardous effect on reproductive health. Hence, explored the effect of long-time light exposure (LLD; 16L:8D) on the central and peripheral reproductive (ovary and uterus) clock genes (Bmal1, Clock, Per1, Per2, Cry1 and Cry2) and its downstream regulators (Aanat, Egf, Cx26, Cx43, ERα, pAktS-473, pAktT-308, pFoxO1T-24, 14-3-3, HoxA10, HoxA11 and Pibf) expression in non-pregnant and pregnant Golden hamster. Young adult Golden hamsters were exposed to LLD for 30 days and then were mated. We observed that LLD exposure increased the thickness of the endometrium and reduced myometrium thickness, resembling uterine adenomyosis. In non-pregnant females LLD altered the expressions of clock genes in suprachiasmatic nuclei (SCN), ovary and the uterus along with serum estradiol rhythm. LLD upregulated Egf and downregulated Aanat, Cx26, and Cx43 mRNA levels in uterus. LLD upregulated Akt/FoxO1 phosphorylation and 14-3-3 expressions in the uterus of nonpregnant females. LLD exposure to pregnant females lowered serum progesterone, Aanat, Pibf, Hoxa10, and Hoxa11 mRNA expressions on D4 (peri-implantation) and D8 (post-implantation) resulting in a low implantation rate on D8 (post-implantation). Hence it is evident that the frequent pregnancy anomalies noted under a long light schedule might be due to desynchronization in Aanat, Pibf, Hoxa10, and Hoxa11 as well as the central and peripheral clock genes (Bmal1, Clock, Per1, Per2, Cry1 and Cry2). LLD exposure desynchronized the central and peripheral reproductive clock affecting uterine physiology via Akt/FoxO1 pathway in Golden hamsters. Thus, LLD is a risk factor for female reproductive health and fertility.
Collapse
Affiliation(s)
- Megha Das
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Soumya Ranjan Mohanty
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Tarun Minocha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nitesh Kumar Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sanjeev Kumar Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Chandana Haldar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
14
|
Chan MH, Huang WT, Chen KC, Su TY, Chan YC, Hsiao M, Liu RS. The optical research progress of nanophosphors composed of transition elements in the fourth period of near-infrared windows I and II for deep-tissue theranostics. NANOSCALE 2022; 14:7123-7136. [PMID: 35353112 DOI: 10.1039/d2nr00343k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research in the field of nano-optics is advancing by leaps and bounds, among which near-infrared (NIR) light optics have attracted much attention. NIR light has a longer wavelength than visible light, such that it can avoid shielding caused by biological tissues. This advantage has driven its importance and practicality in human treatment applications and has attracted significant attention from researchers in academia and industry. In the broad spectrum of infrared light wavelengths, the most noticeable ones are the NIR biological window I of 700-900 nm and window II of 1000-1700 nm. Luminescent materials can effectively cover the NIR biological window with different doping strategies. These doped elements are mostly transition elements with multielectron orbitals. Several nanomaterials based on narrow-spectrum lanthanides have been developed to correspond to biological applications of different wavelengths. However, this review explicitly introduces the absorption and reflection/luminescence interactions between NIR light and biological tissues independently. Unlike the adjustment of the wavelength of the lanthanide series, this review analyzes the NIR optical properties of the fourth-period element ions in transition elements (such as Cr3+ and Ni2+). These elements have a broadband wavelength of NIR light emission and higher quantum efficiency, corresponding to the absorption and emission spectrum and photobiological absorption of different NIR windows for therapeutic diagnosis. Finally, this review lists and explores other broadband NIR phosphors and has tried to discover the possibility of non-invasive precision medicine in the future.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Kuan-Chun Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Yung-Chieh Chan
- Intelligent Minimally Invasive Device Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ru-Shi Liu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
15
|
Naik K, Chaudhary S, Ye L, Parmar AS. A Strategic Review on Carbon Quantum Dots for Cancer-Diagnostics and Treatment. Front Bioeng Biotechnol 2022; 10:882100. [PMID: 35662840 PMCID: PMC9158127 DOI: 10.3389/fbioe.2022.882100] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
The understanding of the genesis of life-threatening cancer and its invasion calls for urgent development of novel technologies for real-time observations, early diagnosis, and treatment. Quantum dots (QDs) grabbed the spotlight in oncology owing to their excellent photostability, bright fluorescence, high biocompatibility, good electrical and chemical stability with minimum invasiveness. Recently, carbon QDs (CQDs) have become popular over toxic inorganic QDs in the area of bioimaging, biosensing, and drug delivery. Further, CQDs derived from natural sources like biomolecules and medicinal plants have drawn attention because of their one-pot, low-cost and ease of synthesis, along with remarkable tunable optical properties and biocompatibility. This review introduces the synthesis and properties of CQDs derived from natural sources, focusing on the applicability of CQD-based technologies as nano-theranostics for the diagnosis and treatment of cancer. Furthermore, the current issues and future directions for the transformation of CQDs-based nanotechnologies to clinical applications are highlighted.
Collapse
Affiliation(s)
- Kaustubh Naik
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to Be University), Chandigarh, India
| | - Lei Ye
- Division of Pure & Applied Biochemistry, Lund University, Lund, Sweden
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
- Center for Biomaterial and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
16
|
Continuous artificial light potentially disrupts central and peripheral reproductive clocks leading to altered uterine physiology and reduced pregnancy success in albino mice. Photochem Photobiol Sci 2022; 21:1217-1232. [PMID: 35399124 DOI: 10.1007/s43630-022-00210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
AIMS The mechanism behind clock coordination in female reproductive disorders is poorly understood despite the known importance of coordinated and synchronized timing of central and clocks in reproductive organs. We investigated the effect of continuous artificial light (LL) on the central and peripheral reproductive clock gene (Bmal1, Clock, Per1, Per2 and Cry1) and its downstream regulators (Hgf, PR-A and HOXA10) during non-pregnancy and pregnancy phases of female mice. MAIN METHODS Mice (n = 60) in two sets, were maintained under continuous light (LL) and natural day cycle (LD;12L: 12D) for both non-pregnant and pregnant study. Tissues from hypothalamus-containing SCN, ovary, uterus and serum were collected at different zeitgeber time points (ZT; at 4-h intervals across 24-h periods). KEY FINDINGS LL exposure desynchronized the expressions of the clock mRNAs (Bmal1, Clock, Per1, Per2 and Cry1) in SCN, ovary, and uterus along with Hgf mRNA rhythm. LL significantly increased the thickness of endometrial tissues. Furthermore, the pregnant study revealed lower serum progesterone level during peri- and post-implantation under LL along with downregulated expression of progesterone receptor (PR) as well as progesterone dependent uterine Homeobox A-10 (Hoxa10) proteins with lowered pregnancy outcomes. SIGNIFICANCE Our result suggests that LL disrupted the circadian coordination between central and clock genes in reproductive tissue leading to interrupted uterine physiology and altered pregnancy in mice. This led us to propose that duration of light exposure at work-places or home for females is very important in prevention of pregnancy anomalies.
Collapse
|
17
|
Fan R, Xiang J, Zhou P, Mei H, Li Y, Wang H, Liu X, Wang X. Reuse of waste Myrica rubra for green synthesis of nitrogen-doped carbon dots as an "on-off-on" fluorescent probe for Fe 3+ and ascorbic acid detection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113350. [PMID: 35228025 DOI: 10.1016/j.ecoenv.2022.113350] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
As one kind of high nutrition fruits, abandoned Myrica rubra causes great waste due to short storage period. For resource utilization, we herein fabricated the Myrica rubra-based N-doped carbon dots (MN-CDs) by a facile/green hydrothermal method. MN-CDs, fabricated from four regions of China, displayed significant differences in their corresponding fluorescence intensities (FIs). Interestingly, different batches of waxberry samples from the same region (Wenzhou, China) exhibited slight differences in their FIs, and also an excellent anti-photobleaching and anti-salt capacity. Based on Fe3+-triggered quenching effect and fluorescent recovery by redox reaction of AA and Fe3+, MN-CDs were employed to construct an "on-off-on" switch probe for sequential detection of Fe3+ and ascorbic acid (AA). Through Zeta potential, UV spectrum, Stern-Volmer equation, and valence-conduction band theory, the Fe3+-triggered quenching belonged to a static quenching process, which resulted from the synergistic contribution of inner filtering effect and photo-induced electron transfer mechanisms. The linear ranges for Fe3+ and AA detections were 1-1000 and 0.1-1000 mM. The limits of detection were 0.3 μM for Fe3+ in environmental waters, and 0.03 μM for AA in pharmaceutical tablets and fruit juice samples. Under 365-nm UV lamp, the color changes of test papers were easily observed from dark blue and bright blue in the presence of Fe3+ and AA, and thus the MN-CDs-based switch probe could be satisfactorily used for visually qualitative detection of Fe3+ and AA outdoor with our naked eyes. To sum up, MN-CDs not only realize resource reutilization of abandoned Myrica rubra, but also offer an convenient outdoor approach for qualitative detection of Fe3+ and AA in complex matrices.
Collapse
Affiliation(s)
- Ru Fan
- College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - Jianxing Xiang
- College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - Peipei Zhou
- College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - He Mei
- College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yanyan Li
- College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaodong Liu
- College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xuedong Wang
- College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
18
|
Aggarwal R, Saini D, Sonkar SK, Sonker AK, Westman G. Sunlight promoted removal of toxic hexavalent chromium by cellulose derived photoactive carbon dots. CHEMOSPHERE 2022; 287:132287. [PMID: 34563775 DOI: 10.1016/j.chemosphere.2021.132287] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
A scalable synthetic procedure for fabricating photoactive carbon dots (CD) from microcrystalline cellulose (MCC) is presented. The MCC was transformed into a photoactive nanosized CD by a one-step acid-assisted thermal-carbonization (~90 °C for 30 min). The efficiency of the obtained CD was determined by photo-removal of toxic hexavalent chromium (Cr(VI)) ions from wastewater. CD obtained from cellulose completely removed 20 ppm of Cr(VI) wastewater within ∼120 min under sunlight illumination. No Cr(VI) removal was observed in dark conditions and with control cellulose material as reference samples. The Cr(VI) removal follows pseudo-first-order kinetics along with a half-life of ∼26 min. Furthermore, the Cr(VI) removal from wastewater was supported via cyclic voltammetry analysis. Using a low-cost, naturally available cellulose material and sulfuric acid, the world's most-used chemical, creates techno-economic prerequisites for a scalable process of photoactive carbon dots.
Collapse
Affiliation(s)
- Ruchi Aggarwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur, 302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur, 302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur, 302017, India.
| | - Amit Kumar Sonker
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden; Wallenberg Wood Science Center (WWSC), Chalmers University of Technology, Gothenburg, 41296, Sweden.
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden; Wallenberg Wood Science Center (WWSC), Chalmers University of Technology, Gothenburg, 41296, Sweden.
| |
Collapse
|
19
|
Zhang Y, Liu B, Liu Z, Li J. Research progress in synthesis and biological application of quantum dots. NEW J CHEM 2022. [DOI: 10.1039/d2nj02603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dots are an excellent choice for biomedical applications due to their special optical properties and quantum confinement effects. This paper reviews the research and application progress of several quantum...
Collapse
|
20
|
Construction of Fe9S10@Fe2O3@Fe3S4 conductor-semiconductor type heterojunction as photoactivator of peroxymonosulfate toward the degradation of Malachite Green. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Sun Y, Zhang Y, Li W, Zhang W, Xu Z, Dai M, Zhao G. Combination of the endophytic manganese-oxidizing bacterium Pantoea eucrina SS01 and biogenic Mn oxides: An efficient and sustainable complex in degradation and detoxification of malachite green. CHEMOSPHERE 2021; 280:130785. [PMID: 33971420 DOI: 10.1016/j.chemosphere.2021.130785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Recently, Mn oxides (MnOxs) have been attracting considerable interest in the oxidation of organic pollutants. However, the reduction of MnOx in these reactions leads to the deactivation of the catalyst, which must be frequently regenerated. We evaluated the application of a manganese-oxidizing bacterium (MOB) and MnOx in removing toxic dyes. We studied the co-function of a plant-endophytic MOB, Pantoea eucrina SS01, with its bio-generated MnOx and evaluated the detoxification activity and chemical transformation mechanisms of the complex in malachite green (MG) degradation. We found a synergistic effect between MnOx and the strain. Particularly, strain SS01 could adsorb MG but could not degrade it, whereas the addition of Mn(II) promoted MG degradation by the formation of a complex containing the bacterium and MnOx aggregates (SS01-bio-MnOx), with distinct morphology characteristics. The complex showed a marked sustainability in the degradation of MG into less toxic or non-toxic metabolites. In this process, strain SS01 might have enhanced the regeneration of MnOx, accelerating MG degradation. Our data not only contribute to understanding the mechanism of MG removal by the SS01-bio-MnOx complex, but also provide a scientific basis for the future application of MOB and MnOx.
Collapse
Affiliation(s)
- Yuankai Sun
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Yonggang Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wenzhe Li
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wenchang Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Zhenlu Xu
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Guoyan Zhao
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
22
|
Bayda S, Amadio E, Cailotto S, Frión-Herrera Y, Perosa A, Rizzolio F. Carbon dots for cancer nanomedicine: a bright future. NANOSCALE ADVANCES 2021; 3:5183-5221. [PMID: 36132627 PMCID: PMC9419712 DOI: 10.1039/d1na00036e] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/14/2021] [Indexed: 05/25/2023]
Abstract
Cancer remains one of the main causes of death in the world. Early diagnosis and effective cancer therapies are required to treat this pathology. Traditional therapeutic approaches are limited by lack of specificity and systemic toxicity. In this scenario, nanomaterials could overcome many limitations of conventional approaches by reducing side effects, increasing tumor accumulation and improving the efficacy of drugs. In the past few decades, carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and carbon dots) have attracted significant attention of researchers in various scientific fields including biomedicine due to their unique physical/chemical properties and biological compatibility and are among the most promising materials that have already changed and will keep changing human life. Recently, because of their functionalization and stability, carbon nanomaterials have been explored as a novel tool for the delivery of therapeutic cancer drugs. In this review, we present an overview of the development of carbon dot nanomaterials in the nanomedicine field by focusing on their synthesis, and structural and optical properties as well as their imaging, therapy and cargo delivery applications.
Collapse
Affiliation(s)
- Samer Bayda
- Faculty of Sciences, Jinan University Tripoli Lebanon
| | - Emanuele Amadio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Simone Cailotto
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Yahima Frión-Herrera
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Alvise Perosa
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Flavio Rizzolio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute 33081 Aviano Italy
| |
Collapse
|
23
|
Li J, Wang Q, Wang J, Li M, Zhang X, Luan L, Li P, Xu W. Quantitative SERS sensor based on self-assembled Au@Ag heterogeneous nanocuboids monolayer with high enhancement factor for practical quantitative detection. Anal Bioanal Chem 2021; 413:4207-4215. [PMID: 33987702 DOI: 10.1007/s00216-021-03366-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 01/10/2023]
Abstract
Accurate and rapid quantitative detection of pesticide and pollutant levels in the actual sample can aid in protecting food security, environmental security, and human health. A high Raman enhancement factor and good repeatability of the surface-enhanced Raman spectroscopy (SERS) substrates are favorable to quantitative analysis. Herein, a quantitative SERS sensor based on constructed self-assembled plasmonic Au@Ag heterogeneous nanocuboids (Au@Ag NCs) monolayer was developed. The sensor was used to quantitatively detect the trace pesticides extracted from pear surfaces and pollutants in fishpond water. Densely packed Au@Ag NCs fabricated into large-scale monolayer films were chemically functionalized using 4-methyl-thiobenzoic acid (4-MBA) at the organic/aqueous interface, in which plentiful nanogaps contribute to increase hotspots. Their sharp corners and edges make the sensor have high SERS performance through providing abundant "hot spots." The obtained optically SERS-based sensor with uniform liquid-state interfacial nanoparticle arrays appeared to have nice SERS performance and uniformity using crystal violet (CV) as a probe molecule. In particular, the proposed SERS sensor was applied for quantitative detection of thiabendazole (TBZ) extracted from pear surfaces and malachite green (MG) in fishpond water down to levels of 0.0105 nM and 0.87 nM for SERS assay respectively. As a result, our proposed SERS quantitative detection strategy is quite preferred to on-site analysis and supervision of contaminant in food samples.
Collapse
Affiliation(s)
- Jingya Li
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- Department of Biological Physics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qianqian Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Juan Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Man Li
- Department of Bioengineering, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xiang Zhang
- Department of Bioengineering, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Longlong Luan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Pan Li
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, CAS, Hefei, 230021, Anhui, China.
| | - Weiping Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China.
| |
Collapse
|
24
|
Zhang X, Li Y, Zhang L. Designed Eu 3+ functionalized Zr-MOF-808 probe for highly sensitive monitoring multiple dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119464. [PMID: 33493933 DOI: 10.1016/j.saa.2021.119464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Dyes detection remains a serious task because of their high toxicity. In present work, designed Eu3+ functionalized Zr-metal-organic framework (Eu3+@Zr-MOF-808) as fluorescent probe was constructed via post-synthetic modification (PSM) for rapid monitoring four most commonly used dyes (malachite green (MG), brilliant green (BG), alizarin red S (ARS), indigo red (IDR)). Systematic exploring on the sensing mechanism reveals that fluorescence resonance energy transfer (FRET) for BG, MG and IDR and inner filter effect (IFE) for ARS contribute to the realization of the fluorescence quenching process. It exhibits excellent sensing performances with low limit of detection (LOD) of 32, 58, 77 and 133 nM for BG, IDR, MG and ARS, respectively. The as-constructed Eu3+@Zr-MOF-808 was demonstrated to be a highly sensitive probe for screening of MG in fish pond and IDR in printing wastewater with satisfying results. Moreover, a portable test reagent bottle has been developed for visual on-site screening of sample containing dyes with naked eyes under UV light. This is the first attempt to construct the Eu3+@Zr-MOF-808 probe for sensingmultiple dyes in real samples and demonstrates promising applications in water quality monitoring.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Ying Li
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| |
Collapse
|
25
|
Zhang Z, Fan Z. Morphological analysis of chromium in carbon quantum dots pairs Co-doped with zirconium and nitrogen and their applications in imaging of living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119248. [PMID: 33288432 DOI: 10.1016/j.saa.2020.119248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
As a new nanomaterial in the biochemistry field, carbon quantum dots (CDs) have been widely applied by scientists. In this study, CDs co-doped with zirconium and nitrogen (Zr-N-CDs) were synthesized quickly with lemon, ethylenediamine, and zirconium chloride through a hydrothermal method. The yield of Zr-N-CDs reached as high as 82.7%. The Zr-N-CDs showed outstanding water solubility in aqueous solution. The formation of Zr-N-CDs was verified by characterization technologies, such as high-resolution transmission electron microscopy (HRTEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Moreover, the optical properties of Zr-N-CDs were investigated through fluorophotometer and ultraviolet spectroscopy. The synthesized Zr-N-CDs were applied to test hexavalent chromium (Cr (VI)), which showed a good linear relationship with the fluorescence quenching of Zr-N-CDs. The limit of detection was 0.52 µM. An analytical method for Cr morphology in natural water areas was developed in this experiment. The sensor showed good stability. The results demonstrate that the sensor detected 98.35%-100.9% Cr (VI) recovery rate in water samples. Based on the cytotoxicity of Zr-N-CDs to human cervical cancer cells (HeLa cells), the Zr-N-CDs had no evident cytotoxicity. The applications of Zr-N-CDs in bioimaging of cells were determined through laser scanning confocal microscopy.
Collapse
Affiliation(s)
- Ziting Zhang
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, PR China
| | - Zhefeng Fan
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, PR China.
| |
Collapse
|
26
|
Abstract
The family of carbon nanostructures comprises several members, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. Their unique electronic properties have attracted great interest for their highly innovative potential in nanomedicine. However, their hydrophobic nature often requires organic solvents for their dispersibility and processing. In this review, we describe the green approaches that have been developed to produce and functionalize carbon nanomaterials for biomedical applications, with a special focus on the very latest reports.
Collapse
|
27
|
Sousa HBA, Martins CSM, Prior JAV. You Don't Learn That in School: An Updated Practical Guide to Carbon Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:611. [PMID: 33804394 PMCID: PMC7998311 DOI: 10.3390/nano11030611] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Carbon quantum dots (CQDs) have started to emerge as candidates for application in cell imaging, biosensing, and targeted drug delivery, amongst other research fields, due to their unique properties. Those applications are possible as the CQDs exhibit tunable fluorescence, biocompatibility, and a versatile surface. This review aims to summarize the recent development in the field of CQDs research, namely the latest synthesis progress concerning materials/methods, surface modifications, characterization methods, and purification techniques. Furthermore, this work will systematically explore the several applications CQDs have been subjected to, such as bioimaging, fluorescence sensing, and cancer/gene therapy. Finally, we will briefly discuss in the concluding section the present and future challenges, as well as future perspectives and views regarding the emerging paradigm that is the CQDs research field.
Collapse
Affiliation(s)
| | | | - João A. V. Prior
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal; (H.B.A.S.); (C.S.M.M.)
| |
Collapse
|
28
|
Yadav K, Das M, Hassan N, Mishra A, Lahiri J, Dubey AK, Yadav SK, Parmar AS. Synthesis and characterization of novel protein nanodots as drug delivery carriers with an enhanced biological efficacy of melatonin in breast cancer cells. RSC Adv 2021; 11:9076-9085. [PMID: 35423422 PMCID: PMC8695413 DOI: 10.1039/d0ra08959a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Melatonin is a potent antioxidant, chemotherapeutic and chemo preventive agent against breast cancer. However, its short half-life is one of the major limitations in its application as a therapeutic drug. To overcome this issue, the green-emitting protein nanodot (PND) was synthesized by a one-step hydrothermal method for loading melatonin. The synthesized pH-7 and pH-2 PND showed a quantum yield of 22.1% and 14.0%, respectively. The physicochemical characterization of both PNDs showed similar morphological and functional activities. Furthermore, the biological efficacy of melatonin-loaded PND (MPND) was evaluated in a breast cancer cell line (MDA-MB-231) for live-cell imaging and enhanced nano-drug delivery efficacy. Interestingly, the permeability of neutral pH PND in both cell cytoplasm and nucleus nullifies the limitations of real-time live-cell imaging, and ensures nuclear drug delivery efficacy. Neutral pH PND showed better cell viability and cytotoxicity as a fluorescence bioimaging probe compared to acidic PND. The bioavailability and cell cytotoxicity effect of MPND on MDA-MB-231 breast cancer cells were studied through confocal and migration assay. Results showed that MPND causes enhanced bioavailability, better cellular uptake, and inhibition of the migration of breast cancer cells as compared to the drug alone. Besides, the synthesized MPND showed no sign of fluorescence quenching even at a high concentration of melatonin, making it an ideal nanocarrier for bioimaging and drug delivery.
Collapse
Affiliation(s)
- Kanchan Yadav
- Department of Physics, Indian Institute of Technology (BHU) Varanasi-221005 India
| | - Megha Das
- Department of Zoology, Institute of Science, BHU Varanasi India
| | - Nurul Hassan
- Department of Physics, University of Hyderabad Hyderabad India
| | - Archana Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre Mumbai India
| | - Jayeeta Lahiri
- Department of Physics, University of Hyderabad Hyderabad India
- Department of Physics, Banaras Hindu University Varanasi India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU) Varanasi India
| | | | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU) Varanasi-221005 India
| |
Collapse
|
29
|
Caglayan MO, Mindivan F, Şahin S. Sensor and Bioimaging Studies Based on Carbon Quantum Dots: The Green Chemistry Approach. Crit Rev Anal Chem 2020; 52:814-847. [PMID: 33054365 DOI: 10.1080/10408347.2020.1828029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Since carbon quantum dots have high photoluminescent efficiency, it has been a desired material in sensor and bioimaging applications. In recent years, the green chemistry approach has been preferred and the production of quantum dots has been reported in many studies using different precursors from natural, abundant, or waste sources. Hydrothermal, chemical oxidation, microwave supported, ultrasonic, solvothermal, pyrolysis, laser etching, solid-state, plasma, and electrochemical methods have been reported in the literature. In this review article, green chemistry strategies for carbon quantum dot synthesis is summarized and compared with conventional methods using methodologic and statistical data. Furthermore, a detailed discussion on sensor and bioimaging applications of carbon quantum dots produced with green synthesis approaches are presented with a special focus on the last decade.
Collapse
Affiliation(s)
- Mustafa Oguzhan Caglayan
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Ferda Mindivan
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Samet Şahin
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|