1
|
Qiu Z, Liu Y, Cheng W, Ding C. Leaching Peculiarity of Uranium-Containing Layered Double Hydroxide Sediment Varied with Environmental Anions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22256-22264. [PMID: 39399978 DOI: 10.1021/acs.langmuir.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In this research, we focus our attention on the leaching peculiarity of uranium-containing Mg-Al layered double hydroxide (LDH) which is one kind of waste sediment in uranium tailings, generated by the alkalinization of uranyl raffinate. The effect of inorganic (CO32-, SO42-, PO43-) and organic (C2O42-, C6H6O72-, C6H16O24P62-) anions were investigated. Atomic force microscopy result showed that the thickness of CO32--LDH increased to 8.6 nm compared to original LDH whose thickness was 6.7 nm. Compared with the control sample (5.58 μm), the grain size with C6H16O24P62- anion grew to 7.04 μm. A large amount of CO32- can stay in LDH, up to 1.78 mol percent, while the C6H16O24P62- anion was only 0.41 mol percent. X-ray diffraction results showed that the anions could change the crystal structure of LDH, especially the C6H18O24P6 anion, and theoretical calculation also conformed this result. The leaching tests showed that the introduction of anions improved the leaching efficiency of UO22+ from LDH. The introduction of anions destroyed the super buffer property of LDH. Theoretical calculation results indicated that the anions could grab UO22+ and help the UO22+ escape from the LDH. This research gave guidance for long-term disposal of uranium-containing tailings.
Collapse
Affiliation(s)
- Ze Qiu
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Yingzhangyang Liu
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Wencai Cheng
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Congcong Ding
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| |
Collapse
|
2
|
Li Z, Wang J, She Z, Gu J, Lu H, Wang S, He X, Yue Z. Tailings particle size effects on pollution and ecological remediation: A case study of an iron tailings reservoir. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135024. [PMID: 38943882 DOI: 10.1016/j.jhazmat.2024.135024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
The particle size distribution in tailings notably influences their physical properties and behavior. Despite this, our understanding of how the distribution of tailings particle sizes impacts in situ pollution and ecological remediation in in-situ environment remains limited. In this study, an iron tailings reservoir was sampled along a particle flow path to compare the pollution characteristic and microbial communities across regions with different particle sizes. The results revealed a gradual reduction in tailings particle size along the flow direction. The predominant mineral composition shifts from minerals such as albite and quartz to layered minerals. Total nitrogen, total organic carbon, and total metal concentrations increased, whereas the acid-generating potential decreased. The region with the finest tailings particle size exhibited the highest microbial diversity, featuring metal-resistant microorganisms such as KD4-96, Micrococcaceae, and Acidimicrobiia. Significant discrepancies were observed in tailings pollution and ecological risks across different particle sizes. Consequently, it is necessary to assess tailings reservoirs pollution in the early stages of remediation before determining appropriate remediation methods. These findings underscore that tailings particle distribution is a critical factor in shaping geochemical characteristics. The responsive nature of the microbial community further validated these outcomes and offered novel insights into the ecological remediation of tailings.
Collapse
Affiliation(s)
- Ziyi Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Junyi Gu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hongyu Lu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shu Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiao He
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Masteel Mining Resources Group Co., Ltd,Nanshan Mining Co., Ltd, Ma', Anshan, Anhui 243000, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
3
|
Wang J, Hu H, Lin K, Wei X, Beiyuan J, Xiong X, Wan Y, Deng P, Wu H, Kang M, Liu J, Dong X. Pb isotopic fingerprinting of uranium pollution: New insight on uranium transport in stream-river sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134417. [PMID: 38691992 DOI: 10.1016/j.jhazmat.2024.134417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Uranium mill tailings (UMT) present a significant environmental concern due to high levels of radioactive and toxic elements, including uranium (U), thorium (Th), and lead (Pb), which can pose serious health risks to aquatic ecosystems. While Pb isotopic tracers have been widely utilized in environmental studies to identify elemental sources and geological processes, their application in U geochemistry remains relatively limited. In this study, we investigate the distribution and migration of U in stream-river sediments surrounding a decommissioned U hydrometallurgical area, employing Pb isotopes as tracers. Our findings reveal significant enrichment and ecological risk of U, Pb, and Th in the sediments. Uranium predominantly associates with quartz and silicate minerals, and its dispersion process is influenced by continuous leaching and precipitation cycles of typical U-bearing minerals. Furthermore, we establish a compelling positive relationship (r2 = 0.97) between 208Pb/207Pb and 206Pb/207Pb in the stream-river sediments and sediment derived from UMT. Application of a binary Pb mixing model indicates that anthropogenic hydrometallurgical activities contribute to 2.5-62.7% of the stream-river sediments. Notably, these values are lower than the 6.6-89.6% recorded about 10 years ago, prior to the decommissioning of the U hydrometallurgical activity. Our results underscore the continued risk of U pollution dispersion even after decommission, highlighting the long-term environmental impact of UMT.
Collapse
Affiliation(s)
- Jin Wang
- School of Environmental Science and Engineering; Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, 510006 Guangzhou, China
| | - Haiyao Hu
- School of Environmental Science and Engineering; Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, 510006 Guangzhou, China
| | - Ke Lin
- Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University, Singapore
| | - Xudong Wei
- School of Environmental Science and Engineering; Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, 510006 Guangzhou, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Xinni Xiong
- School of Environmental Science and Engineering; Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, 510006 Guangzhou, China
| | - Yuebing Wan
- School of Environmental Science and Engineering; Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, 510006 Guangzhou, China
| | - Pengyuan Deng
- School of Environmental Science and Engineering; Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, 510006 Guangzhou, China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Mingliang Kang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Juan Liu
- School of Environmental Science and Engineering; Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, 510006 Guangzhou, China.
| | - Xuhui Dong
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Barbhuiya S, Das BB, Qureshi T, Adak D. Cement-based solidification of nuclear waste: Mechanisms, formulations and regulatory considerations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120712. [PMID: 38531127 DOI: 10.1016/j.jenvman.2024.120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
This review paper provides a comprehensive analysis of cement-based solidification and immobilisation of nuclear waste. It covers various aspects including mechanisms, formulations, testing and regulatory considerations. The paper begins by emphasizing the importance of nuclear waste management and the associated challenges. It explores the mechanisms and principles in cement-based solidification, with a particular focus on the interaction between cement and nuclear waste components. Different formulation considerations are discussed, encompassing factors such as cement types, the role of additives and modifiers. The review paper also examines testing and characterisation methods used to assess the physical, chemical and mechanical properties of solidified waste forms. Then the paper addresses the regulatory considerations and compliance requirements for cement-based solidification. The paper concludes by critically elaborating on the current challenges, emerging trends and future research needs in the field. Overall, this review paper offers a comprehensive overview of cement-based solidification, providing valuable insights for researchers, practitioners and regulatory bodies involved in nuclear waste management.
Collapse
Affiliation(s)
- Salim Barbhuiya
- Department of Engineering and Construction, University of East London, London, UK.
| | | | - Tanvir Qureshi
- Canadian Nuclear Laboratories Limited, Chalk River, ON, Canada; Department of Engineering Design and Mathematics, University of the West of England, Bristol, UK
| | - Dibyendu Adak
- Department of Civil Engineering, NIT Meghalaya, Shillong, India
| |
Collapse
|
5
|
Liu S, Liu J, She J, Xie Z, Zhou L, Dai Q, Zhang X, Wan Y, Yin M, Dong X, Zhao M, Chen D, Wang J. Microbial features with uranium pollution in artificial reservoir sediments at different depths under drought stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170694. [PMID: 38325477 DOI: 10.1016/j.scitotenv.2024.170694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
The uranium (U) containing leachate from uranium tailings dam into the natural settings, may greatly affect the downstream environment. To reveal such relationship between uranium contamination and microbial communities in the most affected downstream environment under drought stress, a 180 cm downstream artificial reservoir depth sediment profile was collected, and the microbial communities and related genes were analyzed by 16S rDNA and metagenomics. Besides, the sequential extraction scheme was employed to shed light on the distinct role of U geochemical speciations in shaping microbial community structures. The results showed that U content ranged from 28.1 to 70.1 mg/kg, with an average content of 44.9 mg/kg, significantly exceeding the value of background sediments. Further, U in all the studied sediments was related to remarkably high portions of mobile fractions, and U was likely deposited layer by layer depending on the discharge/leachate inputs from uranium-involving anthoropogenic facilities/activities upstream. The nexus between U speciation, physico-chemical indicators and microbial composition showed that Fe, S, and N metabolism played a vital role in microbial adaptation to U-enriched environment; meanwhile, the fraction of Ureducible and the Fe and S contents had the most significant effects on microbial community composition in the sediments under drought stress.
Collapse
Affiliation(s)
- Siyu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jingye She
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Zhenyu Xie
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Lei Zhou
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, China
| | - Qunwei Dai
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, China
| | - Xing Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuebing Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Meiling Yin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xinjiao Dong
- School of Life & Environmental Science, Wenzhou University, Wenzhou, China
| | - Min Zhao
- School of Life & Environmental Science, Wenzhou University, Wenzhou, China
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, China.
| |
Collapse
|
6
|
Li W, Deng Y, Wang H, Hu Y, Cheng H. Potential risk, leaching behavior and mechanism of heavy metals from mine tailings under acid rain. CHEMOSPHERE 2024; 350:140995. [PMID: 38128738 DOI: 10.1016/j.chemosphere.2023.140995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
The leaching of heavy metals from abandoned mine tailings can pose a severe threat to surrounding areas, especially in the regions influenced by acid rain with high frequency. In this study, the potential risks of heavy metals in the tailings collected from a small-scale abandoned multi-metal mine was assessed, and their leaching behavior and mechanism were investigated by batch, semi-dynamic and in situ leaching experiments under simulated and natural rainfall conditions. The results suggested that Zn, Cu, Pb, and Cd in the tailings could cause high/very high risks. Both batch and semi-dynamic leaching tests consistently confirmed that the leaching of heavy metals (particularly Cd) could lead to serious pollution of the surrounding environment. The leaching rates of heavy metals were pH-dependent and related to their chemical speciations in the mine tailings. The leaching behavior of Cu and Cd was dominated by surface wash-off, Zn was controlled by diffusion initially and then surface wash-off, and the leaching mechanisms of Pb and As varied with the pH conditions. It was estimated that acid rain could greatly elevate the release fluxes of Zn (20.8%), Cu (36.7%), Pb (49.9%) and Cd (35.3%) in the study area. These findings could improve the understanding of the leaching behavior of heavy metals from mine tailings and assist in developing appropriate management strategies.
Collapse
Affiliation(s)
- Wei Li
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yu Deng
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hao Wang
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Liu Z, Li C, Tan K, Li Y, Tan W, Li X, Zhang C, Meng S, Liu L. Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161033. [PMID: 36574851 DOI: 10.1016/j.scitotenv.2022.161033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42-, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from -0.07 ‰ to 0.09 ‰ in the post-mining site and from -1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994-0.9997 for uranium and 1.0032-1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.
Collapse
Affiliation(s)
- Zhenzhong Liu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Chunguang Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; China Institute of Atomic Energy, Beiing 102413, PR China; R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China.
| | - Kaixuan Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Yongmei Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Wanyu Tan
- Hunan City University, Yiyang 413000, PR China
| | - Xiqi Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Chong Zhang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Beijing Research Institute of Chemical Engineering Metallurgy, Beijing 101149, PR China
| | - Shuo Meng
- R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China
| | - Longcheng Liu
- China Institute of Atomic Energy, Beiing 102413, PR China; R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China; Department of Chemical Engineering, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
8
|
Daraz U, Li Y, Ahmad I, Iqbal R, Ditta A. Remediation technologies for acid mine drainage: Recent trends and future perspectives. CHEMOSPHERE 2023; 311:137089. [PMID: 36336014 DOI: 10.1016/j.chemosphere.2022.137089] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Acid mine drainage (AMD) is a highly acidic solution rich in heavy metals and produced by mining activities. It can severely inhibit the growth of plants, and microbial communities and disturb the surrounding ecosystem. In recent years, the use of different bioremediation technologies to treat AMD pollution has received widespread attention due to its environment-friendly and low-cost nature. Various active and passive remediation technologies have been developed for the treatment of AMD. The active treatment involves the use of different chemical compounds while passive treatments utilize natural and biological processes like constructed wetlands, anaerobic sulfate-reducing bioreactors, anoxic limestone drains, vertical flow wetlands, limestone leach beds, open limestone channels, and various organic materials. Moreover, different nanomaterials have also been successfully employed in AMD treatment. There are also reports on certain plant growth-promoting rhizobacteria (PGPR) which have the potential to enhance the growth and productivity of plants under AMD-contaminated soil conditions. PGPR applied to plants with phytoremediation potential called PGPR-assisted phytoremediation has emerged as an economical and environment-friendly approach. Nevertheless, various approaches have been tested and employed, all the approaches have certain limitations in terms of efficiency, secondary pollution of chemicals used for the remediation of AMD, and disposal of materials used as sorbents or as phytoextractants as in the case of PGPR-assisted phytoremediation. In the future, more research work is needed to enhance the efficiency of various approaches employed with special attention to alleviating secondary pollutants production and safe disposal of materials used or biomass produced during PGPR-assisted phytoremediation.
Collapse
Affiliation(s)
- Umar Daraz
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui Province, China; State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yang Li
- Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad Vehari-Campus, Vehari, 61100, Pakistan.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Allah Ditta
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia; Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (Upper) Khyber Pakhtunkhwa, 18000, Pakistan.
| |
Collapse
|
9
|
Efficient Adsorption of Tl(I) from Aqueous Solutions Using Al and Fe-Based Water Treatment Residuals. Processes (Basel) 2022. [DOI: 10.3390/pr10122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Iron and aluminum water treatment residuals from a water supply plant were used as adsorbents for Tl(I) to treat thallium-containing Tl(I) wastewater and realize the resource utilization of water treatment residuals. The feasibility study results showed that Fe-WTR and Al-WTR reached adsorption equilibria within 120 min. The Langmuir model showed maximum adsorption capacities of Tl(I) on Fe-WTR and Al-WTR as 3.751 and 0.690 mg g−1 separately at an initial concentration of 5 mg L−1. The adsorption capacities of Fe-WTR and Al-WTR positively correlated with pH. The removal of Tl(I) using Fe-WTR exceeded Al-WTR; the adsorbed Tl(I) in Fe-WTR occurred primarily in the reduced state, while the Tl(I) adsorbed in Al-WTR was mainly in acid-extractable and reduced states. FTIR and XPS data showed that Tl(I) and Fe/Al-OH-functional groups formed stable surface complexes (Fe/Al-O-Tl) during adsorption, and there was no redox reaction. This confirmed that WTR is a highly efficient adsorbent for the stable removal of Tl(I), which provides a practical foundation for industrial application in Tl(I)-containing wastewater treatment.
Collapse
|
10
|
Liang K, Hong C, Luo J, Liu P, Zhao T, Zhou Z, Zeng Z, Liu Y. Radon attenuation characteristics of compacted soil layer for uranium mill tailings pond subjected to drying-wetting cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158184. [PMID: 35995164 DOI: 10.1016/j.scitotenv.2022.158184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Compacted soil layer (CSL) is generally designed for uranium mill tailings (UMTs) pond to form the radon seals, whereas it is usually affected by drying-wetting environmental conditions. To summarize the radon attenuation degradation performance of CSL subjected to drying-wetting cycles, an experiment with the application of meteorological data was developed. This paper focuses on the evolution of the soil apparent porosity, soil integrity and radon attenuation characteristics of CSL during continuous drying-wetting cycles. Image processing and a nonmetal acoustic wave detector were applied to analyze variations in the soil surface and internal defects, and the radon concentration was measured to reveal the radon attenuation performance of the CSL. The results reveal that with successive drying-wetting cycles, the soil apparent porosity increased, and the soil pores were enlarged. The soil integrity underwent dynamic recombination or reorganization and eventually reached a steady state. Moreover, it was observed that the saturated state of the uppermost soil led to a sharp increase in radon concentration (capping effect), and the decrease in accumulated radon concentration during the initial period resulted from the coupling effect of soil moisture, temperature and ambient pressure. The observations confirm that the drying-wetting environmental conditions markedly affect the radon migration channels and environment in the CSL, which provides a theoretical foundation for UMTs pond governance and radiation safety management.
Collapse
Affiliation(s)
- Kaiqi Liang
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang 421001, China
| | - Changshou Hong
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang 421001, China; Hunan Province Engineering Technology Research Center of Uranium Tailings Treatment, University of South China, Hengyang 421001, China; Hunan Province Engineering Research Center of Radioactive Control Technology in Uranium Mining and Metallurgy, University of South China, Hengyang 421001, China.
| | - Jian Luo
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang 421001, China
| | - Pengfei Liu
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tianji Zhao
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhifeng Zhou
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhiwei Zeng
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Yong Liu
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang 421001, China; Hunan Province Engineering Technology Research Center of Uranium Tailings Treatment, University of South China, Hengyang 421001, China; Hunan Province Engineering Research Center of Radioactive Control Technology in Uranium Mining and Metallurgy, University of South China, Hengyang 421001, China
| |
Collapse
|
11
|
Cheng W, Tang H, Kai T, Zhao R, Wang J, Ding C. Design anion regulated layered double hydroxide and explore its theoretical mechanism of immobilizing uranium. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129352. [PMID: 35897180 DOI: 10.1016/j.jhazmat.2022.129352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
It is momentous to comprehensively understand the anion's effect during the formation of Mg-Al layered double hydroxide (LDH), especially relating to the long-term disposal of uranium-containing (UO22+) residue. In this research, the CO32-, PO43- and SO42- anions were inserted into the LDH's interlayer driven by its reconstructive memory effect. The UO22+ removal capacity increased in order (typically SO42- < PO43- < CO32-). This was further confirmed by the bond length of U-S, U-P and U-C data acquired by theoretical calculation. The SEM-EDS showed anion-regulated LDH materials got fleecy and facilitated the insertion of anions. The increased average pore size and volume of calcined LDH provided convenient access for anions to easily enter interlayer. XRD results showed inserted interlayer anions could increase the interlayer spacing and expose more active sites, which was conducive to the removal of UO22+. The FTIR combined with theoretical calculation results certified anions could grasp UO22+. XPS results gave a compelling evidence that the amount of anion insertion was proportional to UO22+ removal capacity. In short, the anions could significantly improve LDH to the removal of UO22+ by the mechanism of surface and interlayer complexation. What was discovered can better evaluate the environmental behavior of UO22+ influenced by anion factors.
Collapse
Affiliation(s)
- Wencai Cheng
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Huiping Tang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Tang Kai
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Ruixuan Zhao
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Junfeng Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Congcong Ding
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
12
|
Wang Q, Huang T, Du J, Zhou L. Enhancement of Uranium Recycling from Tailings Caused by the Microwave Irradiation-Induced Composite Oxidation of the Fe-Mn Binary System. ACS OMEGA 2022; 7:24574-24586. [PMID: 35874237 PMCID: PMC9301716 DOI: 10.1021/acsomega.2c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The extraction of uranium (U)-related minerals from raw ore sands via a leaching procedure would produce enormous amounts of tailings, not only causing radioactivity contamination to surroundings but also wasting the potential U utilization. Effective recycling of U from U tailings is propitious to the current issues in U mining industries. In this study, the influence of the composite oxidation of Fe(III) and Mn(VII) intensified by microwave (MW) irradiation on the acid leaching of U from tailings was comprehensively explored in sequential and coupling systems. The U leaching activities from the tailing specimens were explicitly enhanced by MW irradiation. The composite oxidation caused by Fe(III) and Mn(VII) further facilitated the leaching of U ions from the tailing under MW irradiation in two systems. Maximum leaching efficiencies of 84.61, 80.56, and 92.95% for U ions were achieved in the Fe(III)-, Mn(VII)-, and Fe(III)-Mn(VII)-participated coupling systems, respectively. The inappropriateness of the shrinking core model (SCM) demonstrated by the linear fittings and analysis of variance (ANOVA) for the two systems explained a reverse increase of solid cores in the later stage of leaching experiments. The internal migration of oxidant ions into the particle cores enhanced by MW accelerated the dissolution of Al, Fe, and Mn constituents under acidic conditions, which further strengthened U extraction from tailing specimens.
Collapse
Affiliation(s)
- Qingxiang Wang
- School
of Safety Engineering, China University
of Mining and Technology, Xuzhou 221116, China
| | - Tao Huang
- School
of Safety Engineering, China University
of Mining and Technology, Xuzhou 221116, China
- School
of Materials Engineering, Changshu Institute
of Technology, Suzhou 215500, China
- Suzhou
Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, China
| | - Jing Du
- School
of Materials Engineering, Changshu Institute
of Technology, Suzhou 215500, China
| | - Lulu Zhou
- School
of Materials Engineering, Changshu Institute
of Technology, Suzhou 215500, China
| |
Collapse
|
13
|
Beaumais A, Mangeret A, Suhard D, Blanchart P, Neji M, Cazala C, Gourgiotis A. Combined U-Pb isotopic signatures of U mill tailings from France and Gabon: A new potential tracer to assess their fingerprint on the environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128484. [PMID: 35739667 DOI: 10.1016/j.jhazmat.2022.128484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 06/15/2023]
Abstract
Uranium milling activities have produced high volumes of long-lived radioactive processed wastes stored worldwide in near surface environment. The aim of this study is to highlight relevant tracers that can be used for environmental impact assessment studies involving U mill tailings. A multi-tracer study involving elemental content, 238U decay products disequilibria and stable Pb isotopes was performed in different types of U mill tailings (alkaline, acid, neutralized acid) collected from five Tailings Management Facilities in France (Le Bosc, L'Ecarpière, Le Bernardan, and Bellezane) and Gabon (Mounana). Our results showed that U and Pb concentrations range between 30 and 594 ppm and 66-805 ppm, respectively. These tailings have a strong disequilibrium of (234U/238U) and (230Th/238U) activity ratios (1.27-1.87 and 6-65, respectively), as well as higher 206Pb/207Pb (1.86-7.15) and lower 208Pb/207Pb (0.22-2.39) compared to geochemical background ((234U/238U) and (230Th/238U) equal to unity; 206Pb/207Pb = 1.20; 208Pb/207Pb = 2.47). In situ analyzes (SEM, SIMS) showed that Pb-bearing phases with high 206Pb/207Pb are related to remaining U-rich phases, S-rich phases and potentially clay minerals or oxyhydroxides. We suggest that the combination of the 206Pb/207Pb with the (234U/238U) ratio is a relevant tool for the fingerprinting of the impact of U milling activities on the environment.
Collapse
Affiliation(s)
- Aurélien Beaumais
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, LETIS, USDR, PSE-SANTE/SESANE/LRSI, 31 Av. de la Division Leclerc, Fontenay-aux-Roses 92260, France
| | - Arnaud Mangeret
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, LETIS, USDR, PSE-SANTE/SESANE/LRSI, 31 Av. de la Division Leclerc, Fontenay-aux-Roses 92260, France
| | - David Suhard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, LETIS, USDR, PSE-SANTE/SESANE/LRSI, 31 Av. de la Division Leclerc, Fontenay-aux-Roses 92260, France
| | - Pascale Blanchart
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, LETIS, USDR, PSE-SANTE/SESANE/LRSI, 31 Av. de la Division Leclerc, Fontenay-aux-Roses 92260, France
| | - Mejdi Neji
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, LETIS, USDR, PSE-SANTE/SESANE/LRSI, 31 Av. de la Division Leclerc, Fontenay-aux-Roses 92260, France
| | - Charlotte Cazala
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, LETIS, USDR, PSE-SANTE/SESANE/LRSI, 31 Av. de la Division Leclerc, Fontenay-aux-Roses 92260, France
| | - Alkiviadis Gourgiotis
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, LETIS, USDR, PSE-SANTE/SESANE/LRSI, 31 Av. de la Division Leclerc, Fontenay-aux-Roses 92260, France.
| |
Collapse
|
14
|
Liao J, He X, Zhang Y, Zhu W, Zhang L, He Z. Bismuth impregnated biochar for efficient uranium removal from solution: Adsorption behavior and interfacial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153145. [PMID: 35038520 DOI: 10.1016/j.scitotenv.2022.153145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this work, Bi2O3 doped horse manure-derived biochar was obtained by carbonizing the H2O2-modified horse manure loaded with bismuth nitrate under nitrogen atmosphere at 500 °C. The results showed that there was a sharp response between the as-prepared bismuth impregnated biochar and uranium(VI) species in solution, which resulted in a short equilibrium time (<80 min), a fast adsorption rate (about 5.0 mg/(g·min)), a high removal efficiency (93.9%) and a large adsorption capacity (516.5 mg/g) (T = 298 K, pH = 4, Ci = 10 mg/L and m/V = 0.1 g/L). Besides, the removal behavior of the bismuth impregnated biochar for uranium(VI) did not depend on the interfering ions and ion strength, except Al3+, Ca2+, CO32- and PO43-. These results indicated that the modified biochar might possess the potential of remediating the actual uranium(VI)-containing wastewater. Moreover, the interaction mechanism between Bi2O3 doped biochar and uranium(VI) species was further explored. The results demonstrated that the enrichment of uranium(VI) on the surface of the as-prepared biochar was controlled by various factors, such as surface complexation, ion exchange, electrostatic attraction, precipitation and reduction, which facilitated the adsorption of uranium(VI) on the bismuth impregnated biochar.
Collapse
Affiliation(s)
- Jun Liao
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoshan He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Yong Zhang
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Zhang
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Zhibing He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China.
| |
Collapse
|
15
|
Wang L, Fang F, Liu J, Beiyuan J, Cao J, Liu S, Ouyang Q, Huang Y, Wang J, Liu Y, Song G, Chen D. U(VI) adsorption by green and facilely modified Ficus microcarpa aerial roots: Behavior and mechanism investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151166. [PMID: 34699818 DOI: 10.1016/j.scitotenv.2021.151166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U)-containing wastewater poses serious pressure to human health and environmental safety. The treatment of U-bearing wastewater using green and facilely fabricated materials is considered a promising alternative. Herein, the raw and modified aerial roots of Ficus microcarpa (RARF and MARF, respectively) were prepared and applied to the treatment of synthesized U-containing wastewater. The results showed that the adsorption process was spontaneous and chemically controlled, which was in good accordance with the pseudo-second-order kinetic and the Redlich-Peterson isotherm adsorption model. The adsorption mechanisms were proposed to be the complexation between U(VI) and oxygen/phosphorus-containing functional groups on MARF.
Collapse
Affiliation(s)
- Lulu Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fa Fang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Jielong Cao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Siyu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qien Ouyang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yeliang Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Yanyi Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gang Song
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| |
Collapse
|
16
|
Liu J, Ouyang Q, Wang L, Wang J, Zhang Q, Wei X, Lin Y, Zhou Y, Yuan W, Xiao T. Quantification of smelter-derived contributions to thallium contamination in river sediments: Novel insights from thallium isotope evidence. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127594. [PMID: 34763928 DOI: 10.1016/j.jhazmat.2021.127594] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Thallium(Tl), an extremely toxic metal, is posing great hazards to water safety through anthropogenic activities (e.g., Pb-Zn smelter) and natural weathering in riverine systems. However, the relative contribution from each source remains obscure. This study investigated enrichment pattern of Tl and its isotopic compositions in sediment profiles from a recipient river, which was continuously collecting various Tl-bearing wastes discharged from a large Pb-Zn smelter in South China. Results show that high Tl content and ultra-fine particles (~ μm) of Tl-bearing mineral assemblages, probably derived from Pb-Zn smelting wastes, were ubiquitously observed in both of the depth profiles. In addition, the sediments generally yielded intermediate ε205Tl values of -3.76 to 1.01, which resembled those found in smelting wastes. A ternary mixing model was for the first time proposed for quantifying relative Tl contributions from each possible source. The calculation suggests that the smelter wastes are the major contributors, contributing approximately 80% of Tl contamination. All these results indicate that Tl isotope can be used as powerful proxies for quantitatively identifying potential different contributors in the environment. This is of critical importance to further implementation of pollution control and remediation strategy for the riverine systems in the near future.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Qi'en Ouyang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Lulu Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Qiong Zhang
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuyang Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuting Zhou
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wenhuan Yuan
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
17
|
Jiang Y, Wei X, He H, She J, Liu J, Fang F, Zhang W, Liu Y, Wang J, Xiao T, Tsang DCW. Transformation and fate of thallium and accompanying metal(loid)s in paddy soils and rice: A case study from a large-scale industrial area in China. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126997. [PMID: 34474370 DOI: 10.1016/j.jhazmat.2021.126997] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Thallium (Tl) is an extremely toxic metal, while its occurrence and fate in paddy soil environment remain understudied. Herein, the enrichment and migration mechanisms and potential health risks of Tl and metal(loid)s were evaluated in paddy soils surrounding an industrial park utilizing Tl-bearing minerals. The results showed that Tl contamination was evident (0.63-3.16 mg/kg) in the paddy soils and Tl was generally enriched in root of rice (Oryza sativa L.) with a mean content of 1.27 mg/kg. A remarkably high level of Tl(III) (30-50%) was observed in the paddy soils. Further analyses by STEM-EDS and XPS indicated that Tl(I) in the paddy soils was jointly controlled by adsorption, oxidation, and precipitation of Fe/Mn(hydr)oxide (e.g. hematite and birnessite), which might act as important stabilization mechanisms for inhibiting potential Tl uptake by rice grains. The health quotient (HQ) values indicated a potentially high Tl risk for inhabitants via consumption of the rice grains. Therefore, it is critical to establish effective measures for controlling the discharge of Tl-containing waste and wastewater from different industrial activities to ensure food safety in the rice paddy soils.
Collapse
Affiliation(s)
- Yanjun Jiang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongping He
- Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Jingye She
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Fa Fang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wenhui Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanyi Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
18
|
Wang J, Zhou W, Shi Y, Li Y, Xian D, Guo N, Liu C. Uranium sorption on oxyhydroxide minerals by surface complexation and precipitation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Pontér S, Rodushkin I, Engström E, Rodushkina K, Paulukat C, Peinerud E, Widerlund A. Early diagenesis of anthropogenic uranium in lakes receiving deep groundwater from the Kiruna mine, northern Sweden. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148441. [PMID: 34174600 DOI: 10.1016/j.scitotenv.2021.148441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
The uranium (U) concentrations and isotopic composition of waters and sediment cores were used to investigate the transport and accumulation of U in a water system (tailings pond, two lakes, and the Kalix River) receiving mine waters from the Kiruna mine. Concentrations of dissolved U decrease two orders of magnitude between the inflow of mine waters and in the Kalix River, while the concentration of the element bound to particulate matter increases, most likely due to sorption on iron‑manganese hydroxides and organic matter. The vertical distribution of U in the water column differs between two polluted lakes with a potential indication of dissolved U supply from sediment's pore waters at anoxic conditions. Since the beginning of exposure in the 1950s, U concentrations in lake sediments have increased >20-fold, reaching concentrations above 50 μg g-1. The distribution of anthropogenic U between the lakes does not follow the distribution of other mine water contaminants, with a higher relative proportion of U accumulating in the sediments of the second lake. Concentrations of redox-sensitive elements in the sediment core as well as Fe isotopic composition were used to re-construct past redox-conditions potentially controlling early diagenesis of U in surface sediments. Two analytical techniques (ICP-SFMS and MC-ICP-MS) were used for the determination of U isotopic composition, providing an extra dimension in the understanding of processes in the system. The (234 U)/(238 U) activity ratio (AR) is rather uniform in the tailings pond but varies considerably in water and lake sediments providing a potential tracer for U transport from the Kiruna mine through the water system, and U immobilization in sediments. The U mass balance in the Rakkurijoki system as well as the amount of anthropogenic U accumulated in lake sediments were evaluated, indicating the immobilization in the two lakes of 170 kg and 285 kg U, respectively.
Collapse
Affiliation(s)
- Simon Pontér
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, S-971 87 Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Aurorum 10, S-977 75 Luleå, Sweden.
| | - Ilia Rodushkin
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, S-971 87 Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Aurorum 10, S-977 75 Luleå, Sweden.
| | - Emma Engström
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, S-971 87 Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Aurorum 10, S-977 75 Luleå, Sweden.
| | - Katerina Rodushkina
- ALS Laboratory Group, ALS Scandinavia AB, Aurorum 10, S-977 75 Luleå, Sweden.
| | - Cora Paulukat
- ALS Laboratory Group, ALS Scandinavia AB, Aurorum 10, S-977 75 Luleå, Sweden.
| | - Elsa Peinerud
- Luossavaara-Kiirunavaara AB, S-981 86 Kiruna, Sweden.
| | - Anders Widerlund
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, S-971 87 Luleå, Sweden.
| |
Collapse
|
20
|
Wei X, Wang J, She J, Sun J, Liu J, Wang Y, Yang X, Ouyang Q, Lin Y, Xiao T, Tsang DCW. Thallium geochemical fractionation and migration in Tl-As rich soils: The key controls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:146995. [PMID: 33905923 DOI: 10.1016/j.scitotenv.2021.146995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/13/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Thallium (Tl) pollution caused by mining and processing of Tl-enriched ores has become an increasing concern. This study explored the geochemical fractionation and vertical transfer of Tl in a soil profile (200 cm) from a representative Tl-As mineralized area, Southwest China. The results showed that the soils were heavily enriched by Tl and As, with concentration ranging from 3.91-17.3 and 1830-8840 mg/kg (6.79 and 2973 mg/kg in average), respectively. Approximately 50% of Tl occurred in geochemically mobile fractions in the topsoil, wherein the reducible fraction was the most enriched fraction. Further characterization using LA-ICP-MS and TEM revealed that enriched Tl and As in soils were mainly inherited from the weathering of mine tailing piles upstream. XPS characterization indicated that Fe oxides herein may play a critical role in the oxidation of Tl(I) to Tl(III) which provoked further adsorption of Tl onto Fe oxides, thereby facilitating Tl enrichment in the reducible fraction. The findings highlight that the pivotal role of Fe oxides from mineralized area in the co-mobility and migration of Tl and As in the depth profile.
Collapse
Affiliation(s)
- Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Agripolis Campus, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Yuxuan Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi''en Ouyang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuyang Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
21
|
Zhou Y, Wang J, Wei X, Ren S, Yang X, Beiyuan J, Wei L, Liu J, She J, Zhang W, Liu Y, Xiao T. Escalating health risk of thallium and arsenic from farmland contamination fueled by cement-making activities: A hidden but significant source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146603. [PMID: 33836379 DOI: 10.1016/j.scitotenv.2021.146603] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Soil-to-vegetable migration of toxic metal(loid)s is a pivotal pathway of human exposure to chemical intoxication. Thallium (Tl) and arsenic (As) are highly toxic metal(loid)s but their co-occurrence in soils and vegetables remain poorly understood. Herein, the present study focuses on potential health risk arising from co-occurrence of TlAs in various common vegetables cultivated in different farmlands around an industrial area featured by cement production activities. The results reveal obvious co-contamination of Tl (2.28 ± 1.39 mg/kg) and As (102.0 ± 66.7 mg/kg) in soils. Fine particles bearing sulfide and other minerals associated with Tl and As are detected in fly ash from cement plant, which can be migrated by wind over a long distance with hidden but inevitable pollution. Bioaccumulation Factor (BCF) and Enrichment Factor (EF) show that taro and corn preferentially accumulate Tl especially in underground parts. Hazard Quotient (HQ) indicates that consumption of these vegetables may result in chronic poisoning and/or even carcinogenic risk. The study highlights that the pathway and high risk of co-contamination of TlAs in the nearby farmlands posed by cement-making activities should be highly concerned.
Collapse
Affiliation(s)
- Yuchen Zhou
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Shixing Ren
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Lezhang Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Weilong Zhang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yu Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| |
Collapse
|
22
|
Yin M, Sun J, He H, Liu J, Zhong Q, Zeng Q, Huang X, Wang J, Wu Y, Chen D. Uranium re-adsorption on uranium mill tailings and environmental implications. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126153. [PMID: 34492934 DOI: 10.1016/j.jhazmat.2021.126153] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Uranium mill tailings (UMTs) are one critical source of environmental U pollution. Leaching test has been extensively used to reveal U release capacity and mechanism from UMTs, while little attention has been paid to the effects of re-adsorption process on U release. In this study, the role of U re-adsorption behaviors during leaching test with UMTs was comprehensively investigated. Through paired data on mineralogical composition and aqueous U speciation, the influence of environmentally relevant factors on U re-absorption capacity and mechanism on UMTs with different particle sizes was revealed. Significant amounts of U re-adsorption were observed and primarily attributed to the adsorption on chlorite, albite and muscovite as well as combined reduction-sequestration by muscovite. Uranium re-adsorption predominantly occurred via inner-sphere complexation and surface precipitation depending on leachant pH. Coexisting sulfate or phosphate could further enhance U re-adsorption. The enhanced re-adsorption from sulfate occurred when inner-sphere complexation governed the re-adsorption process. These findings suggest that the environmental hazards and ecological risks of the U containing (waste) solids might have been underestimated due to the ignorance of the re-adsorption process, since the re-adsorbed U could be easily re-mobilized. The insights from this study are also helpful in developing effective in-situ remediation strategies.
Collapse
Affiliation(s)
- Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hongping He
- Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiaohui Zhong
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qingyi Zeng
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Xianfeng Huang
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Yingjuan Wu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| |
Collapse
|
23
|
Wang J, Yin M, Liu J, Shen CC, Yu TL, Li HC, Zhong Q, Sheng G, Lin K, Jiang X, Dong H, Liu S, Xiao T. Geochemical and U-Th isotopic insights on uranium enrichment in reservoir sediments. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125466. [PMID: 33657470 DOI: 10.1016/j.jhazmat.2021.125466] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Uranium (U) geochemistry and its isotopic compositions of reservoir sediments in U mine area were poorly understood. Herein, U and Th isotopic compositions were employed to investigate source apportionment and geochemical behavior of U in 41 reservoir sediments from a U mining area, Guangdong, China. The remarkably high contents of both total U (207.3-1117.7 mg/kg) and acid-leachable U (90.3-638.5 mg/kg) in the sediments exhibit a severe U contamination and mobilization-release risk. The U/Th activity ratios (ARs) indicate that all sediments have been contaminated apparently by U as a result of discharge of U containing wastewater, especially uranium mill tailings (UMT) leachate, while the variations of U/Th ARs are dominated by U geochemical behaviors (mainly redox process and adsorption). The U isotopic compositions (δ238U) showed a large variance through the sediment profile, varying from - 0.62 to - 0.04‰. The relation between δ238U and acid-leachable U fraction demonstrates that the U isotopic fractionation in sediments can be controlled by bedrock weathering (natural activity), UMT leachate (anthropogenic activity) and subsequent biogeochemical processes. The findings suggest that U-Th isotopes are a powerful tool to better understand U geochemical processes and enrichment mechanism in sediments that were affected by combined sources and driving forces.
Collapse
Affiliation(s)
- Jin Wang
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Meiling Yin
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Chuan-Chou Shen
- High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan; Research Center for Future Earth, National Taiwan University, Taipei 10617, Taiwan
| | - Tsai-Luen Yu
- High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan; Research Center for Future Earth, National Taiwan University, Taipei 10617, Taiwan; Marine Industry and Engineering Research Center, National Academy of Marine Research, Kaohsiung 80661, Taiwan
| | - Hong-Chun Li
- High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
| | - Qiaohui Zhong
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Guodong Sheng
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Ke Lin
- High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
| | - Xiuyang Jiang
- Key Laboratory for Humid Subtropical Eco-geographical Process of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Pudong, Shanghai 201203, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Siyu Liu
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
24
|
Wu W, Chen Z, Huang Y, Li J, Chen D, Chen N, Su M. Red mud for the efficient adsorption of U(VI) from aqueous solution: Influence of calcination on performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124925. [PMID: 33421876 DOI: 10.1016/j.jhazmat.2020.124925] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Iron-rich red mud is a potent radioactive drainage treatment material. However, the calcite in red mud attenuates its U adsorption capacity by restricting U adsorption onto adsorbent; it captures U as a dissociative complex in aqueous systems. This study produced macroporous iron and carbon combined calcined red mud (ICRM) and carbon calcined red mud (CRM) through calcination in the range of 500-800 °C. XRD results revealed that both series generated advantageous magnetite and calcite were fully decomposed. SEM and batch experiments highlighted ICRM calcined at 600 °C has more stable and favorable performance. The components of post-adsorption ICRM remained active, as demonstrated by FT-IR results. Additionally, ICRM@600 displayed superior U adsorption capacity (59.45 mg/g) than did all red mud adsorbents from our previous research. Zeta-potential results revealed ICRM has positive potential charges in acidic conditions, indicating it adsorbs U(VI) ions via electrostatic attraction. The main adsorption mechanisms of ICRM are surface electrostatic attraction, physical adsorption by porous structure, and chemical adsorption by active Al and Fe components. In application, ICRM@600 obtained a 82.20% U adsorption ratio in uranium mine pit drainage. Overall, this study offers theoretical guidances to radioactive drainage management and red mud reuse.
Collapse
Affiliation(s)
- Wanying Wu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School for Environment and Sustainability, University of Michigan, Ann Arbor 48109, USA
| | - Zheng Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ying Huang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jinwen Li
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
25
|
Yin M, Zhou Y, Tsang DCW, Beiyuan J, Song L, She J, Wang J, Zhu L, Fang F, Wang L, Liu J, Liu Y, Song G, Chen D, Xiao T. Emergent thallium exposure from uranium mill tailings. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124402. [PMID: 33189469 DOI: 10.1016/j.jhazmat.2020.124402] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/12/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Thallium (Tl) pollution caused by the exploitation of uranium (U) mines has long been neglected due to its low crustal abundance. However, Tl may be enriched in minerals of U ore because Tl has both sulfurophile and lithophile properties. Herein, a semi-dynamic leaching experiment combined with statistical analysis, geochemical speciation and multi-characterization provided novel insight into the distinct features and mechanisms of Tl release from uranium mill tailings (UMT). The results showed that particle size effects prevail over the pH on Tl release, and surface dissolution is the pivotal mechanism controlling Tl release based on Fick's diffusion model. The study revealed that long-term leaching and weathering can lead to the increased acid-extractable and oxidizable fractions of Tl in UMT, and that the exposure and dissolution of Tl-containing sulfides would largely enhance the flux of Tl release. The findings indicate that UMT containing (abundant) pyrite should be paid particular attention due to Tl exposure. Besides, critical concern over the potential Tl pollution in universal U mining and hydrometallurgical areas likewise may need to be seriously reconsidered.
Collapse
Affiliation(s)
- Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuting Zhou
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Lan Song
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Li Zhu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fa Fang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lulu Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Yanyi Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gang Song
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| | - Diyun Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
26
|
Adsorption of uranium(VI) from aqueous solution by phosphorylated luffa rattan activated carbon. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-020-07592-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Liu J, Ren S, Cao J, Tsang DCW, Beiyuan J, Peng Y, Fang F, She J, Yin M, Shen N, Wang J. Highly efficient removal of thallium in wastewater by MnFe 2O 4-biochar composite. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123311. [PMID: 32652417 DOI: 10.1016/j.jhazmat.2020.123311] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Thallium (Tl), is a highly toxic trace metal in the natural environment. Emerging Tl pollution in waters has gradually become a global concern. However, limited removal technologies are available for Tl-containing wastewater. Herein, MnFe2O4-biochar composite (MFBC) was successfully fabricated via coprecipitation method as a novel and efficient adsorbent for treating Tl(I)-contaminated wastewater. It was found that the MFBC, with a specific surface area of 187.03 m2/g, exhibited high performance across a wide pH range of 4-11, with the superior Tl(I) removal capacity (170.55 mg/g) based on Langmuir model (pH 6.0, a dosage of 1 g/L). The removal mechanisms included physical and chemical adsorption, ion exchange, surface complexation, and oxidation. This investigation revealed that MFBC is a promising and environmentally friendly adsorbent with a low cost, large specific surface area, magnetic properties, and high efficiency for the removal of Tl(I) from wastewater.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Shixing Ren
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jielong Cao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Yutao Peng
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation; College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Fa Fang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Nengping Shen
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| |
Collapse
|
28
|
Geochemical Controls on Uranium Release from Neutral-pH Rock Drainage Produced by Weathering of Granite, Gneiss, and Schist. MINERALS 2020. [DOI: 10.3390/min10121104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated geochemical processes controlling uranium release in neutral-pH (pH ≥ 6) rock drainage (NRD) at a prospective gold deposit hosted in granite, schist, and gneiss. Although uranium is not an economic target at this deposit, it is present in the host rock at a median abundance of 3.7 µg/g, i.e., above the average uranium content of the Earth’s crust. Field bin and column waste-rock weathering experiments using gneiss and schist mine waste rock produced circumneutral-pH (7.6 to 8.4) and high-alkalinity (41 to 499 mg/L as CaCO3) drainage, while granite produced drainage with lower pH (pH 4.7 to >8) and lower alkalinity (<10 to 210 mg/L as CaCO3). In all instances, U release was associated with calcium release and formation of weakly sorbing calcium-carbonato-uranyl aqueous complexes. This process accounted for the higher release of uranium from carbonate-bearing gneiss and schist than from granite despite the latter’s higher solid-phase uranium content. In addition, unweathered carbonate-bearing rocks having a higher sulfide-mineral content released more uranium than their oxidized counterparts because sulfuric acid produced during sulfide-mineral oxidation promoted dissolution of carbonate minerals, release of calcium, and formation of calcium-carbonato-uranyl aqueous complexes. Substantial uranium attenuation occurred during a sequencing experiment involving application of uranium-rich gneiss drainage into columns containing Fe-oxide rich schist. Geochemical modeling indicated that uranium attenuation in the sequencing experiment could be explained through surface complexation and that this process is highly sensitive to dissolved calcium concentrations and pCO2 under NRD conditions.
Collapse
|
29
|
Liu J, Zhou Y, She J, Tsang DCW, Lippold H, Wang J, Jiang Y, Wei X, Yuan W, Luo X, Zhai S, Song L. Quantitative isotopic fingerprinting of thallium associated with potentially toxic elements (PTEs) in fluvial sediment cores with multiple anthropogenic sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115252. [PMID: 32717591 DOI: 10.1016/j.envpol.2020.115252] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Thallium (Tl) is a dispersed trace metal showing remarkable toxicity. Various anthropogenic activities may generate Tl contamination in river sediments, posing tremendous risks to aquatic life and human health. This paper aimed to provide insight into the vertical distribution, risk assessment and source tracing of Tl and other potentially toxic elements (PTEs) (lead, cadmium, zinc and copper) in three representative sediment cores from a riverine catchment impacted by multiple anthropogenic activities (such as steel-making and Pb-Zn smelting). The results showed high accumulations of Tl combined with associated PTEs in the depth profiles. Calculations according to three risk assessment methods by enrichment factor (EF), geoaccumulation index (Igeo) and the potential ecological risk index (PERI) all indicated a significant contamination by Tl in all the sediments. Furthermore, lead isotopes were analyzed to fingerprint the contamination sources and to calculate their quantitative contributions to the sediments using the IsoSource software. The results indicated that a steel-making plant was the most important contamination source (∼56%), followed by a Pb-Zn smelter (∼20%). The natural parental bedrock was found to contribute ∼24%. The findings highlight the importance of including multiple anthropogenic sources for quantitative fingerprinting of Tl and related metals by the lead isotopic approach in complicated environmental systems.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yuchen Zhou
- Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Jingye She
- Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Holger Lippold
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ressourcenökologie, 04318, Leipzig, Germany
| | - Jin Wang
- Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, 510006, Guangzhou, China.
| | - Yanjun Jiang
- Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Xudong Wei
- Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Wenhuan Yuan
- Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Xuwen Luo
- Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Shuijing Zhai
- Key Laboratory of Humid Subtropical Eco-geographical Processes, Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
| | - Lan Song
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
30
|
Wang J, Fang F, Zhou Y, Yin M, Liu J, Wang J, Wu Y, Beiyuan J, Chen D. Facile modification of graphene oxide and its application for the aqueous uranyl ion sequestration: Insights on the mechanism. CHEMOSPHERE 2020; 258:127152. [PMID: 32544809 DOI: 10.1016/j.chemosphere.2020.127152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) has been proved with favorable affinity to U(VI), while some drawbacks such as poor dispersity and low adsorption performance limit its application. Herein, cetyltrimethylammonium bromide (CTAB) modified graphene oxide (MGO) composites were successfully fabricated, characterized and compared with graphene oxide (GO) in the sequestration of U(VI) in aqueous solutions. The results showed that maximum adsorption rate of MGO (99.21%) was obviously higher than that of GO (66.51%) under the same initial condition. Simultaneous introduction of C-H and NO coupled with the enhanced dispersity of GO after modification were mainly responsible for the updated performance verified with multiple characterization techniques. Based on the results of kinetics and isotherms investigations, the experimental data were best described by Pseudo-first-order kinetic model and Redlich-Peterson isotherm model. The results of ΔH, ΔS and ΔG show that adsorptive behaviors of uranyl ion on MGO are endothermic and spontaneous. The study provides a feasible alternative to the chemical modification of GO and enhancing the performance towards uranyl ion removal from solution.
Collapse
Affiliation(s)
- Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, 510006, China
| | - Fa Fang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuchen Zhou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Meiling Yin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jinwen Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yang Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China.
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, 510006, China
| |
Collapse
|
31
|
Li N, Zhou Y, Liu J, Tsang DCW, Wang J, She J, Zhou Y, Yin M, Chen Z, Chen D. Persistent thallium contamination in river sediments, source apportionment and environmental implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110874. [PMID: 32619890 DOI: 10.1016/j.ecoenv.2020.110874] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
The adverse impacts of detrimental thallium (Tl) contamination are of increasing concerns to sustainable development. Herein, the contents, distributions and sources of Tl and potential toxic elements (PTEs) (Pb, As, Cr, Cu, Ni, Co, Sb, Cd and U) were investigated in sediments collected in Gaofeng River, which has been contaminated by long-term mining activities, located in Yunfu City, Southern China. Results indicated that excessive Tl levels were found in sediments (1.80-16.70 mg/kg). Sequential extraction procedure indicated that despite a large amount of Tl entrapped in residual fraction, a significant level of Tl (0.28-2.34 mg/kg) still exhibited in geochemically labile fractions, which was easy for Tl mobilization and availability. Pb isotope tracing method further confirmed that the pyrite exploitations may be the prime contaminated contributor (47-76%) to these sediments. These findings highlight that it is essential to establish more effective measures for Tl contamination control and call for engineered remediation countermeasures towards polluted river sediments.
Collapse
Affiliation(s)
- Nuo Li
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuchen Zhou
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, 510006, China.
| | - Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuting Zhou
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zirong Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Diyun Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, 510006, China
| |
Collapse
|
32
|
Possibilities of Uranium Deposit Kuriskova Mining and Its Influence on the Energy Potential of Slovakia from Own Resources. ENERGIES 2020. [DOI: 10.3390/en13164209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Uranium is one of the strategic minerals used mainly in energetics. The main purpose of uranium mining is to achieve maximum production to meet the rapidly growing demand for energies. It needs to become aware that technological progress in mining processes could significantly reduce the negative impacts associated with environmental, economic, and social risks. Uranium mining is one of the most controversial topics. It is dealt with by many experts and scientists around the world. Various methods and technologies of uranium mining are encountered in professional journals, as well as political or socio-economic decisions based on the impact and importance of the energy potential of uranium deposits, or the environmental impacts of uranium mining. The deposit of Kuriskova is one of the most perspective deposits not only in Slovakia but also in the world. The deposit is located near the town of Kosice (with near 240,000 inhabitants) and near the recreational area of Jahodna in the east of the Slovak Republic. The analysis and determination of the energy potential of the deposit of Kuriskova shows that uranium reserves from this deposit would be able to fully cover the needs for nuclear power plants for the production of nuclear fuel, in the Slovak Republic, even in the longer term. With the above-mentioned energy potential of the deposit of Kuriskova at the level of 600 TWh, nuclear power plants in the Slovak Republic are able to be supplied with raw materials from the deposit of Kuriskova for about 40 years with the current amount of electricity produced (approx. 15 TWh). Therefore, for the purposes of this research, a proposal for the extraction of uranium reserves at the deposit of Kuriskova was made. Based on it, it is possible to determine the amount of recoverable uranium reserves from the deposit. A methodology has been determined with mining this proposal, which takes into account the basic criteria of uranium deposit mining, which was used for the selection of a suitable mining technology for the uranium deposit of Kuriskova.
Collapse
|
33
|
Ma B, Fernandez-Martinez A, Kang M, Wang K, Lewis AR, Maffeis TGG, Findling N, Salas-Colera E, Tisserand D, Bureau S, Charlet L. Influence of Surface Compositions on the Reactivity of Pyrite toward Aqueous U(VI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8104-8114. [PMID: 32469204 DOI: 10.1021/acs.est.0c01854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pyrite plays a significant role in governing the mobility of toxic uranium in an anaerobic environment via an oxidation-reduction process occurring at the mineral-water interface, but the factors influencing the reaction kinetics remain poorly understood. In this study, natural pyrites with different impurities (Pb, As, and Si) and different surface pretreatments were used to react with aqueous U(VI) from pH ∼3.0 to ∼9.5. Both aqueous and solid results indicated that freshly crushed pyrites, which do have more surface Fe2+/Fe3+ and S2- sites that were generated from breakage of Fe(S)-S bonds during ball milling, exhibited a much stronger reactivity than those treated with acid washing. Besides, U(VI) reduction which involves the possible intermediate U(V) and the formation of hyperstoichiometric UO2+x(s) was found to preferentially occur at Pb- and As-rich spots on the pyrite surface, suggesting that the incorporated impurities could act as reactive sites because of the generation of lattice defects and galena- and arsenopyrite-like local configurations. These reactive surface sites can be removed by acid washing, leaving a pyrite surface nearly inert toward aqueous U(VI). Thus, reactivity of pyrite toward U(VI) is largely governed by its surface compositions, which provides an insight into the chemical behavior of both pyrite and uranium in various environments.
Collapse
Affiliation(s)
- Bin Ma
- Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | | | - Mingliang Kang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, 519082 Zhuhai, China
| | - Kaifeng Wang
- Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
- Decommissioning Engineering Technology Center, China Institute of Atomic Energy, 102413 Beijing, China
| | - Aled R Lewis
- Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, SA1 8EN Swansea, U.K
| | - Thierry G G Maffeis
- Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, SA1 8EN Swansea, U.K
| | - Nathaniel Findling
- Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - Eduardo Salas-Colera
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
- Spanish CRG BM25 SpLine Beamline at the ESRF, 71 Avenue de Martyrs, F-38043 Grenoble, France
| | - Delphine Tisserand
- Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - Sarah Bureau
- Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - Laurent Charlet
- Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| |
Collapse
|
34
|
Zhou Y, Wang L, Xiao T, Chen Y, Beiyuan J, She J, Zhou Y, Yin M, Liu J, Liu Y, Wang Y, Wang J. Legacy of multiple heavy metal(loid)s contamination and ecological risks in farmland soils from a historical artisanal zinc smelting area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137541. [PMID: 32145625 DOI: 10.1016/j.scitotenv.2020.137541] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 05/16/2023]
Abstract
Farmland soil contamination of heavy metal(loid)s (HM) derived from smelting activities is a global concern, owing to its potential threat for human health through food chain. This study aims to evaluate total contents and bioavailability of HMs (Pb, Zn, Tl, Cd, Cu, As, Ag, Co, Cr and Ni) in farmland soils distributed over ten different villages from a former artisanal zinc smelting area in the northwest Guizhou province, China. The results showed that most of the studied soils still exhibited exceptionally high enrichment of Pb, Zn, Cd and As. High levels of bioavailable HMs were also observed in some samples, which may enter the human food chain through agricultural activities. Further analyses by Scanning Transmission Electron Microscopy - Energy Dispersive Spectroscopy (STEM-EDS), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) showed the presence of Zn smelting by-products such as Fe oxides, ZnO and PbSO4 even in nanoscale particles retained by the soils. Elemental mapping by EDS confirmed a close association of the studied HMs with the smelting waste particles. All these results signify that high levels of HM-contamination from historical artisanal zinc smelting activities still persist and threaten the health of local residents, despite the fact that the major industrial-derived-contamination period ended >15 years ago. Our findings highlight pivotal concerns in similar artisanal-smelting-affected farmland soils of suspected contamination, due to less-expected toxic elements such as Tl, which may cause high ecological health risks.
Collapse
Affiliation(s)
- Yuting Zhou
- Institute of Environmental Research at Greater Bay, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Lulu Wang
- Institute of Environmental Research at Greater Bay, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Institute of Environmental Research at Greater Bay, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yongheng Chen
- Institute of Environmental Research at Greater Bay, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Jingye She
- Institute of Environmental Research at Greater Bay, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuchen Zhou
- Institute of Environmental Research at Greater Bay, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Meiling Yin
- Institute of Environmental Research at Greater Bay, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- Institute of Environmental Research at Greater Bay, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yanyi Liu
- Institute of Environmental Research at Greater Bay, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuxuan Wang
- Institute of Environmental Research at Greater Bay, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- Institute of Environmental Research at Greater Bay, Innovation Center and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
35
|
Liu J, Ren J, Zhou Y, Tsang DCW, Lin J, Yuan W, Wang J, Yin M, Wu Y, Xiao T, Chen Y. Effects and mechanisms of mineral amendment on thallium mobility in highly contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110251. [PMID: 32090881 DOI: 10.1016/j.jenvman.2020.110251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Thallium (Tl) is an extremely toxic element, whose toxicity is even higher than mercury, arsenic, and cadmium. It is of great significance to hinder the migration and transfer of Tl from soils to the plants. A synthetic mineral amendment (SMA), mainly composed of different silicates, was evaluated for its effects on the transformation and retention of Tl in two typical highly Tl-contaminated soils from Southwest China. The results indicated that the addition of mineral amendment increased the soil of the pH by 0.46-2.13 units and distinctly reduced the content of active thallium in the soils. The extent of Tl reduction was related to the morphological characteristics of the original soil In particular, the application of the mineral amendment transformed 25.8-52.5% of the active Tl fractions in the soils to the residual fraction at 60 d. Adding mineral amendment to the soils can provide conditions to facilitate Tl to enter the silicate crystal lattice. The results of XPS evidenced that the proportion of Tl(I) in the soil was greatly reduced after adding the mineral amendment.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Jiamin Ren
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuchen Zhou
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jingfen Lin
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wenhuan Yuan
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, China.
| | - Meiling Yin
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yang Wu
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yongheng Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| |
Collapse
|