1
|
Liang Y, Li F, Li Q, He D. Study on the adsorption of phosphate by composite biochar of phosphogypsum and rape straw. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:472. [PMID: 39400656 DOI: 10.1007/s10653-024-02253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
Wastewater containing phosphorus is often added by industrial activities, which is bad for the environment. In this study, composite biochar (PG-RS700) was prepared from phosphogypsum (PG) and rape straw (RS) for the treatment of phosphate in wastewater. SEM, FTIR, XRD and XPS characterization results showed that PG and RS were successfully combined. When PG-RS700 was dosed at 1.5 g/L and the phosphate solution concentration was 50 mg/L and pH = 8, the phosphate removal rate was 100% and the adsorption capacity was three times higher than the corresponding pure PG and RS. The quasi-secondary kinetic model indicated that the adsorption mechanism was chemisorption, and the maximum adsorption capacity for phosphate in the Langmuir isotherm model was 102.25 mg/g. Through pot experiment, the phosphorus adsorbed material obviously promoted the growth of plants. PG-RS700 can be used as a powerful adsorbent to treat phosphate in water and return it to soil as phosphate fertilizer.
Collapse
Affiliation(s)
- Yu Liang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Fengyu Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Qin Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Dongsheng He
- School of Resource and Safety Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
2
|
Bao T, Damtie MM, Wang CY, Li CL, Chen Z, Cho K, Wei W, Yuan P, Frost RL, Ni BJ. Iron-containing nanominerals for sustainable phosphate management: A comprehensive review and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172025. [PMID: 38554954 DOI: 10.1016/j.scitotenv.2024.172025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Adsorption, which is a quick and effective method for phosphate management, can effectively address the crisis of phosphorus mineral resources and control eutrophication. Phosphate management systems typically use iron-containing nanominerals (ICNs) with large surface areas and high activity, as well as modified ICNs (mICNs). This paper comprehensively reviews phosphate management by ICNs and mICNs in different water environments. mICNs have a higher affinity for phosphates than ICNs. Phosphate adsorption on ICNs and mICNs occurs through mechanisms such as surface complexation, surface precipitation, electrostatic ligand exchange, and electrostatic attraction. Ionic strength influences phosphate adsorption by changing the surface potential and isoelectric point of ICNs and mICNs. Anions exhibit inhibitory effects on ICNs and mICNs in phosphate adsorption, while cations display a promoting effect. More importantly, high concentrations and molecular weights of natural organic matter can inhibit phosphate adsorption by ICNs and mICNs. Sodium hydroxide has high regeneration capability for ICNs and mICNs. Compared to ICNs with high crystallinity, those with low crystallinity are less likely to desorb. ICNs and mICNs can effectively manage municipal wastewater, eutrophic seawater, and eutrophic lakes. Adsorption of ICNs and mICNs saturated with phosphate can be used as fertilizers in agricultural production. Notably, mICNs and ICNs have positive and negative effects on microorganisms and aquatic organisms in soil. Finally, this study introduces the following: trends and prospects of machine learning-guided mICN design, novel methods for modified ICNs, mICN regeneration, development of mICNs with high adsorption capacity and selectivity for phosphate, investigation of competing ions in different water environments by mICNs, and trends and prospects of in-depth research on the adsorption mechanism of phosphate by weakly crystalline ferrihydrite. This comprehensive review can provide novel insights into the research on high-performance mICNs for phosphate management in the future.
Collapse
Affiliation(s)
- Teng Bao
- School of Biology, Food and Environment Engineering, Hefei University, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Department of Environmental Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea; Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| | - Mekdimu Mezemir Damtie
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Water Resources Engineering Department, Adama Science and Technology University, Adama, P.O. Box 1888, Ethiopia
| | - Chu Yan Wang
- School of Biology, Food and Environment Engineering, Hefei University, China
| | - Cheng Long Li
- School of Biology, Food and Environment Engineering, Hefei University, China
| | - Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kuk Cho
- Department of Environmental Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Peng Yuan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ray L Frost
- Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Das KP, Chauhan P, Staudinger U, Satapathy BK. Sustainable adsorbent frameworks based on bio-resourced materials and biodegradable polymers in selective phosphate removal for waste-water remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31691-31730. [PMID: 38649601 DOI: 10.1007/s11356-024-33253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Phosphorus to an optimum extent is an essential nutrient for all living organisms and its scarcity may cause food security, and environmental preservation issues vis-à-vis agroeconomic hurdles. Undesirably excess phosphorus intensifies the eutrophication problem in non-marine water bodies and disrupts the natural nutrient balance of the ecosystem. To overcome such dichotomy, biodegradable polymer-based adsorbents have emerged as a cost-effective and implementable approach in striking a "desired optimum-undesired excess" balance pertaining to phosphate in a sustainable manner. So far, the reports on adopting such adsorbent-approach for wastewater remediation remained largely scattered, unstructured, and poorly correlated. In this background, the contextual review comprehensively discusses the current state-of-the-art in utilizing biodegradable polymeric frameworks as an adsorbent system for phosphate removal and its efficient recovery from the aquatic ecosystem, while highlighting their characteristics-specific functional efficiency vis-à-vis easiness of synthetic and commercial viability. The overview further delves into the sources and environmental ramifications of excessive phosphorus in water bodies and associated mechanistic pathways of phosphorus removal via adsorption, precipitation, and membrane filtration enabled by biodegradable (natural and synthetic) polymeric substrates. Finally, functionality optimization, degradability tuning, and adsorption selectivity of biodegradable polymers are highlighted, while aiming to strike a balance in "removal-recovery-reuse" dynamics of phosphate. Thus, the current review not only paves the way for future exploration of biodegradable polymers in sustainable cost-effective adsorbents for phosphorus removal but also can serve as a guide for researchers dealing with this critical issue.
Collapse
Affiliation(s)
- Krishna Priyadarshini Das
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas, 110016, India
| | - Pooja Chauhan
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas, 110016, India
| | - Ulrike Staudinger
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
| | - Bhabani Kumar Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas, 110016, India.
| |
Collapse
|
4
|
Niedzbała N, Lorenc-Grabowska E, Rutkowski P, Chęcmanowski J, Szymczycha-Madeja A, Wełna M, Michalak I. Potential use of Ulva intestinalis-derived biochar adsorbing phosphate ions in the cultivation of winter wheat Tristicum aestivum. BIORESOUR BIOPROCESS 2024; 11:27. [PMID: 38647581 PMCID: PMC10992812 DOI: 10.1186/s40643-024-00741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/04/2024] [Indexed: 04/25/2024] Open
Abstract
In this work, the properties of biochar produced from green macroalga Ulva intestinalis by pyrolysis were studied at temperatures of 300, 500, and 700 °C. This biochar was characterized in terms of multielemental composition, BET surface area, total pore volume, and biosorption properties toward phosphate ions. Biochar produced at 700 °C-25 m2/g had the highest surface area. The kinetics and isotherms of sorption processes of phosphate ions as sorbate by these sorbents were investigated. Modified biochar was able to remove 84.3% of phosphate ions from wastewater, whereas non-modified biochar-only 40.6%. Hence, biochar enriched with phosphate ions can serve as a valuable soil amendment. Pot experiments performed on winter wheat (Triticum aestivum) with a 3% addition of dry Ulva intestinalis, pristine biochar, and Mg-modified biochar enriched with phosphate ions showed that these amendments stimulated plant growth (length and fresh weight of plants) as well as enlarging the chlorophyll content in leaves. Our results indicate that the production of biochar (pristine and Mg-impregnated) is a sustainable option to valorize the biomass of seaweeds, and to recycle phosphorus from wastewater.
Collapse
Affiliation(s)
- Natalia Niedzbała
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland.
| | - Ewa Lorenc-Grabowska
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Piotr Rutkowski
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Jacek Chęcmanowski
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Anna Szymczycha-Madeja
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Maja Wełna
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
5
|
Wang L, Zhou JC, Li ZH, Zhang X, Leung KMY, Yuan L, Sheng GP. Facet-Specific Photocatalytic Degradation of Extracellular Antibiotic Resistance Genes by Hematite Nanoparticles in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21835-21845. [PMID: 38085064 DOI: 10.1021/acs.est.3c06571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persistence of extracellular antibiotic resistance genes (ARGs) in aquatic environments has attracted increasing attention due to their potential threat to public health and the environment. However, the fate of extracellular ARGs in receiving water remains largely unknown. This study investigated the influence of hematite nanoparticles, a widespread natural mineral, on the photodegradation of extracellular ARGs in river water. Results showed that under exposure to visible light, hematite nanoparticles, at environmental concentrations, resulted in a 3-5 orders of magnitude reduction in extracellular ARGs. This photodegradation of extracellular ARGs is shown to be facet-dependent; the (001) facet of hematite demonstrates a higher removal rate than that of the (100) facet, which is ascribed to its enhanced adsorption capability and higher hydroxyl radical (•OH) production. Density functional theory (DFT) calculations corroborate this finding, indicating elevated iron density, larger adsorption energy, and lower energy barrier of •OH formation on the (001) facet, providing more active sites and •OH generation for extracellular ARG interaction. Gel electrophoresis and atomic force microscopy analyses further confirm that the (001) facet causes more substantial damage to extracellular ARGs than the (100) facet. These findings pave the way for predicting the photodegradation efficiency of hematite nanoparticles with varied facets, thereby shedding light on the inherent self-purification capacity for extracellular ARGs in both natural and engineered aquatic environments.
Collapse
Affiliation(s)
- Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jing-Chen Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Yang W, Zhang L, Li M, Zhang T, Liu Y, Liu J. KOH-modified bamboo charcoal loaded with α-FeOOH for efficient adsorption of copper and fluoride ions from aqueous solution. RSC Adv 2023; 13:30176-30189. [PMID: 37849693 PMCID: PMC10577395 DOI: 10.1039/d3ra05315f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
In this work, bamboo charcoal (BC) is prepared by pyrolysis of bamboo. Then, KOH modification and surface deposition of Goethite (α-FeOOH) are performed to obtain a new KOH-modified BC loaded with α-FeOOH (FKBC) adsorbent for copper (Cu2+) and fluoride (F-) ion adsorption from aqueous solution. Surface morphology and physiochemical properties of the prepared adsorbent are characterized by scanning electron microscopy-energy dispersive spectrometer, X-ray diffraction, and N2 adsorption-desorption. The effect of pH, contact time, adsorbent dosage, and initial concentration on Cu2+ and F- adsorption is also investigated. In addition, adsorption kinetics and isotherms are fitted to pseudo-second-order kinetics and Langmuir model, respectively. Thermodynamic parameters suggest that the adsorption process is spontaneous and endothermic. The adsorption mechanism is further characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The Cu2+ absorption mainly occurs through ion exchange, coordination reactions, and surface precipitation, while the F- adsorption mainly occurs via ion exchange and hydrogen bonding. The selective adsorption experiments reveal that FKBC has good selectivity for Cu2+ and F-. The adsorption-desorption experimental results indicate that FKBC can be reused for Cu2+ and F- adsorption after regeneration. Results indicate that FKBC can be a promising adsorbent for Cu2+ and F- removal from aqueous solutions.
Collapse
Affiliation(s)
- Wei Yang
- School of Environmental Science and Engineering, Hubei Polytechnic University Huangshi 435003 Hubei China
| | - Lei Zhang
- MWR Standard & Quality Control Research Institute Hangzhou 310024 Zhejiang China
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology Wuhan 430070 Hubei China
| | - Ting Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University Huangshi 435003 Hubei China
| | - Yue Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University Huangshi 435003 Hubei China
| | - Juan Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University Huangshi 435003 Hubei China
| |
Collapse
|
7
|
Sokołowski A, Jędruchniewicz K, Kobyłecki R, Zarzycki R, Różyło K, Wang H, Czech B. Plant-Waste-Derived Sorbents for Nitazoxanide Adsorption. Molecules 2023; 28:5919. [PMID: 37570889 PMCID: PMC10421272 DOI: 10.3390/molecules28155919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The increased application of drugs during the COVID-19 pandemic has resulted in their increased concentration in wastewater. Conventional wastewater treatment plants do not remove such pollutants effectively. Adsorption is a cheap, effective, and environmentally friendly method that can accomplish this. On the other hand, maintaining organic waste is required. Thus, in this study, plant waste-derived pelletized biochar obtained from different feedstock and pyrolyzed at 600 °C was applied for the adsorption of nitazoxanide, an antiparasitic drug used for the treatment of SARS-CoV-2. The adsorption was fast and enables one to remove the drug in one hour. The highest adsorption capacity was noted for biochar obtained from biogas production (14 mg/g). The process of NTZ adsorption was governed by chemisorption (k2 = 0.2371 g/mg min). The presence of inorganic ions had a detrimental effect on adsorption (Cl-, NO3- in 20-30%) and carbonates were the most effective in hindering the process (60%). The environmentally relevant concentration of DOM (10 mg/L) did not affect the process. The model studies were supported by the results with a real wastewater effluent (15% reduction). Depending on the applied feedstock, various models described nitazoxanide adsorption onto tested biochars. In summary, the application of carbonaceous adsorbents in the pelletized form is effective in nitazoxanide adsorption.
Collapse
Affiliation(s)
- Artur Sokołowski
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland; (A.S.); (K.J.)
| | - Katarzyna Jędruchniewicz
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland; (A.S.); (K.J.)
| | - Rafał Kobyłecki
- Department of Advanced Energy Technologies, Częstochowa University of Technology, Dąbrowskiego 73, 42-201 Częstochowa, Poland; (R.K.); (R.Z.)
| | - Robert Zarzycki
- Department of Advanced Energy Technologies, Częstochowa University of Technology, Dąbrowskiego 73, 42-201 Częstochowa, Poland; (R.K.); (R.Z.)
| | - Krzysztof Różyło
- Department of Herbology and Plant Cultivation Techniques, University of Life Sciences in Lublin, 20-033 Lublin, Poland;
| | - Haitao Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China;
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland; (A.S.); (K.J.)
| |
Collapse
|
8
|
Hao M, Wu W, Habibul N, Chai G, Ma X, Ma X. Fe-modified fly ash/cotton stalk biochar composites for efficient removal of phosphate in water: mechanisms and green-reuse potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27372-9. [PMID: 37155106 DOI: 10.1007/s11356-023-27372-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
Excessive phosphate content input into natural water can lead to the waste of resource and eutrophication. Biochar is a kind of low-cost adsorbent. However, its adsorption capacity for phosphate is low. In order to solve this problem, Fe compound-modified fly ash/cotton stalk biochar composites (Fe-FBC) were prepared through co-pyrolyzed fly ash and cotton stalk at 800℃, followed by infiltration of FeSO4 solution. The samples were characterized by scanning electron microscopy, Brunauer-Emmett-Teller, X-ray diffraction, Fourier transform infrared spectroscopy, and zeta potential. After modification, the hydrophilicity and polarity of Fe-FBC increased. In addition, the pore volume, specific surface area, and surface functional groups were significantly improved. The adsorption behavior of Fe-FBC for the removal of phosphate from water can be well fitted by the pseudo-second-order kinetic and Sips isotherm adsorption model, with a maximum adsorption capacity of 47.91 mg/g. Fe-FBC maintained a high adsorption capacity in the pH range of 3-10. The coexisting anions (NO3-, SO42-, and Cl-) had negligible effects on phosphate adsorption. The adsorption mechanisms of Fe-FBC include electrostatic attraction, ligand exchange, surface complexation, ion exchange, chemical precipitation, and hydrogen bonding. Moreover, the desorption process of phosphate was investigated, indicating that the phosphate-saturated Fe-FBC could use as slow-release phosphate fertilizer. This study proposed a potentially environmental protection and recycling economy approach, which consists of recycling resources and treating wastes with wastes.
Collapse
Affiliation(s)
- Mengqi Hao
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Wei Wu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Xinjiang Normal University, Urumqi, 830054, China.
| | - Nuzahat Habibul
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Xinjiang Normal University, Urumqi, 830054, China
| | - Guang Chai
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Xiaoli Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Xinjiang Normal University, Urumqi, 830054, China
| | - Xiaoqian Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| |
Collapse
|
9
|
Dey S, Purakayastha TJ, Sarkar B, Rinklebe J, Kumar S, Chakraborty R, Datta A, Lal K, Shivay YS. Enhancing cation and anion exchange capacity of rice straw biochar by chemical modification for increased plant nutrient retention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163681. [PMID: 37100159 DOI: 10.1016/j.scitotenv.2023.163681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Biochar, a potential alternative of infield crop residue burning, can prevent nutrient leaching from soil and augment soil fertility. However, pristine biochar contains low cation (CEC) and anion (AEC) exchange capacity. This study developed fourteen engineered biochar by treating a rice straw biochar (RBC-W) first separately with different CEC and AEC enhancing chemicals, and then with their combined treatments to increase CEC and AEC in the novel biochar composites. Following a screening experiment, promising engineered biochar, namely RBC-W treated with O3-HCl-FeCl3 (RBC-O-Cl), H2SO4-HNO3-HCl-FeCl3 (RBC-A-Cl), and NaOH-Fe(NO3)3(RBC-OH-Fe), underwent physicochemical characterization and soil leaching-cum nutrient retention studies. RBC-O-Cl, RBC-A-Cl, and RBC-OH-Fe recorded a spectacular rise in CEC and AEC over RBC-W. All the engineered biochar remarkably reduced the leaching of NH4+-N, NO3- -N, PO43--P and K+ from a sandy loam soil and increased retention of these nutrients. RBC-O-Cl at 4.46 g kg-1 dosage emerged as the most effective soil amendment increasing the retention of above ions by 33.7, 27.8, 15.0, and 5.74 % over a comparable dose of RBC-W. The engineered biochar could thus enhance plants' nutrient use efficiency and reduce the use of costly chemical fertilizers that are harmful to environmental quality.
Collapse
Affiliation(s)
- Saptaparnee Dey
- Division of Soil Science and Agricultural Chemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Tapan Jyoti Purakayastha
- Division of Soil Science and Agricultural Chemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sarvendra Kumar
- Division of Soil Science and Agricultural Chemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Ranabir Chakraborty
- Division of Soil Science and Agricultural Chemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anindita Datta
- Division of Design of Experiments, Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Khajanchi Lal
- Division of Water Technology Center, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Yashbir Singh Shivay
- Division of Agronomy, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
10
|
Zhou R, Xu W, Liu P, Zhao S, Xu G, Xiong Q, Zhang W, Zhang C, Ye X. Synthesis of FeOOH-Loaded Aminated Polyacrylonitrile Fiber for Simultaneous Removal of Phenylphosphonic Acid and Phosphate from Aqueous Solution. Polymers (Basel) 2023; 15:polym15081918. [PMID: 37112065 PMCID: PMC10146033 DOI: 10.3390/polym15081918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Phosphorus is one of the important metabolic elements for living organisms, but excess phosphorus in water can lead to eutrophication. At present, the removal of phosphorus in water bodies mainly focuses on inorganic phosphorus, while there is still a lack of research on the removal of organic phosphorus (OP). Therefore, the degradation of OP and synchronous recovery of the produced inorganic phosphorus has important significance for the reuse of OP resources and the prevention of water eutrophication. Herein, a novel FeOOH-loaded aminated polyacrylonitrile fiber (PANAF-FeOOH) was constructed to enhance the removal of OP and phosphate. Taking phenylphosphonic acid (PPOA) as an example, the results indicated that modification of the aminated fiber was beneficial to FeOOH fixation, and the PANAF-FeOOH prepared with 0.3 mol L-1 Fe(OH)3 colloid had the best performance for OP degradation. The PANAF-FeOOH efficiently activated peroxydisulfate (PDS) for the degradation of PPOA with a removal efficiency of 99%. Moreover, the PANAF-FeOOH maintained high removal capacity for OP over five cycles as well as strong anti-interference in a coexisting ion system. In addition, the removal mechanism of PPOA by the PANAF-FeOOH was mainly attributed to the enrichment effect of PPOA adsorption on the fiber surface's special microenvironment, which was more conducive to contact with SO4•- and •OH generated by PDS activation. Furthermore, the PANAF-FeOOH prepared with 0.2 mol L-1 Fe(OH)3 colloid possessed excellent phosphate removal capacity with a maximal adsorption quantity of 9.92 mg P g-1. The adsorption kinetics and isotherms of the PANAF-FeOOH for phosphate were best depicted by pseudo-quadratic kinetics and a Langmuir isotherm model, showing a monolayer chemisorption procedure. Additionally, the phosphate removal mechanism was mainly due to the strong binding force of iron and the electrostatic force of protonated amine on the PANAF-FeOOH. In conclusion, this study provides evidence for PANAF-FeOOH as a potential material for the degradation of OP and simultaneous recovery of phosphate.
Collapse
Affiliation(s)
- Rui Zhou
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wusong Xu
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Peisen Liu
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shangyuan Zhao
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Gang Xu
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Qizhong Xiong
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Weifeng Zhang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Chaochun Zhang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xinxin Ye
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
11
|
Synergy between graphitized biochar and goethite driving efficient H2O2 activation: Enhanced performance and mechanism analysis. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Yu Y, Zhong Z, Guo H, Yu Y, Zheng T, Li H, Chang Z. Biochar-goethite composites inhibited/enhanced degradation of triphenyl phosphate by activating persulfate: Insights on the mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159940. [PMID: 36336063 DOI: 10.1016/j.scitotenv.2022.159940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
In this study, the biochar-goethite composites (MBC@FH) were synthesized through co-ball milling and the degradation of triphenyl phosphate (TPhP) was compared in persulfate (PDS) alone system and MBC@FH&PDS systems. The results showed that TPhP can be effectively degraded in PDS alone system and degradation efficiency reached up to 90 % within reaction of 8 h, at a PDS concentration of 10 mM, a reaction temperature of 30 °C and a system pH of 6.12. The obvious degradation can be ascribed to the reactive oxygen species (ROS) generated by self-decompose of PDS, among which 1O2, ∙OH and O2∙- play a major role in the degradation process. Although 350 °C biochar-goethite composites (MBC35@FH) and 800 °C biochar-goethite composites (MBC80@FH) facilitated PDS activation to produce more ROS, the catalytic degradation of TPhP was different in their systems. The degradation of TPhP was inhibited by MBC35@FH due to its stronger adsorption for TPhP, while MBC80@FH promoted TPhP degradation and degradation efficiency was up to 100 % within 6 h. 1O2 and SO4∙- played a stronger degradation role than ∙OH and O2∙- in above systems. The transformation of Fe species, functional groups (oxygen-containing functional groups, pyrrolic nitrogen) and persistent free radicals (PFRs) on the MBC@FH were involved in the PDS activation to produce ROS. Furthermore, MBC80@FH was more capable of activating PDS than MBC35@FH due to its abundant defect sites, larger specific surface area, more PFRs, higher Fe content and stronger electron transfer capability. In addition, seven possible TPhP intermediates were identified and possible degradation pathways of TPhP were proposed accordingly. This study illustrated that not all metallic carbon catalysts are necessarily beneficial for organic contaminants degradation.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zijuan Zhong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haobo Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongyan Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhaofeng Chang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China.
| |
Collapse
|
13
|
Lai L, Liu X, Ren W, Zhou Z, Zhao X, Zeng X, Lin C, He M, Ouyang W. Efficient removal of Sb(III) from water using β-FeOOH-modified biochar:Synthesis, performance and mechanism. CHEMOSPHERE 2023; 311:137057. [PMID: 36328318 DOI: 10.1016/j.chemosphere.2022.137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Since the toxicity of Sb(III) is 10 times as high as that of Sb(V) in the environment, it is urgent to find a way to cut down Sb(III). β-FeOOH-modified biochar (β-FeOOH/BC) was prepared and used to remove Sb(III). The characterization results suggested that oxygen-containing functional groups formed on β-FeOOH/BC, which increased the Sb(III) removal efficiency. Even under complex water matrix conditions, the outstanding adsorption performance of β-FeOOH/BC for Sb(III) was obtained. The adsorption reaction rapidly reached a high removal efficiency within 5 min and approached adsorption equilibrium in about 6 h. The adsorption process was fitted to pseudo-second-order kinetics. Amount of maximum adsorption was 202.53 mg g-1 at 308 K according to Langmuir model. β-FeOOH/BC removed Sb(III) mainly through pore-filling complexation, cation-π and coordination exchange. The CO sites and persistent free radicals (PFRs) acted as electron acceptors, facilitating the electron transfer. In brief, β-FeOOH/BC adsorbent material could adsorb and oxidize Sb(III), which showed excellent prospects for reducing the risk of Sb(III).
Collapse
Affiliation(s)
- Ling Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Wenbo Ren
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhou Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; North China Power Engineering CO., Ltd of China Power Engineering Group, Beijing 100120, China
| | - Xiwang Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaofeng Zeng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Thallium separation from wastewater using α-FeOOH@Biochar: Efficacy and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Cheng P, Liu Y, Yang L, Wang X, Chi Y, Yuan H, Wang S, Ren YX. Adsorption and recovery of phosphate from aqueous solution by katoite: Performance and mechanism. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Li Z, Zhang R, Sun P. Simultaneous removal of phosphate and antibiotic from hydrolyzed urine by novel spherical particles. CHEMOSPHERE 2022; 300:134637. [PMID: 35439493 DOI: 10.1016/j.chemosphere.2022.134637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Phosphate recovery from wastewater is regarded as promising strategy to achieve sustainable supply of non-renewable natural resources. In this study, a novel technique for spherical materials preparation was developed to achieve both phosphate recovery and antibiotic removal from urine. Phosphate removal and sulfamethoxazole (SMX) degradation performance of the synthesized spherical materials was studied in synthesized urine and real urine. MgB, made from magnesium oxide (10%) and biochar (10%), was the most effective in phosphate removal and SMX degradation. Struvite formation and radical production were the mechanisms of phosphate removal and SMX degradation, respectively. The phosphate removal capacity of MgB was 0.181 g/g and the removal cost was around 0.245 RMB/g phosphate. Meanwhile, the combination of MgB and persulfate could achieve a 98% degradation efficiency of SMX, which could eliminate the hazardous impurity in final product. Furthermore, this technique has also been validated useful in treating real hydrolyzed urine.
Collapse
Affiliation(s)
- Zhipeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ruochun Zhang
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
17
|
Zahed MA, Salehi S, Tabari Y, Farraji H, Ataei-Kachooei S, Zinatizadeh AA, Kamali N, Mahjouri M. Phosphorus removal and recovery: state of the science and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58561-58589. [PMID: 35780273 DOI: 10.1007/s11356-022-21637-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus is one of the main nutrients required for all life. Phosphorus as phosphate form plays an important role in different cellular processes. Entrance of phosphorus in the environment leads to serious ecological problems including water quality problems and soil pollution. Furthermore, it may cause eutrophication as well as harmful algae blooms (HABs) in aquatic environments. Several physical, chemical, and biological methods have been presented for phosphorus removal and recovery. In this review, there is an overview of phosphorus role in nature provided, available removal processes are discussed, and each of them is explained in detail. Chemical precipitation, ion exchange, membrane separation, and adsorption can be listed as the most used methods. Identifying advantages of these technologies will allow the performance of phosphorus removal systems to be updated, optimized, evaluate the treatment cost and benefits, and support select directions for further action. Two main applications of biochar and nanoscale materials are recommended.
Collapse
Affiliation(s)
| | - Samira Salehi
- Department of Health, Safety and Environment, Petropars Company, Tehran, Iran.
| | - Yasaman Tabari
- Faculty of Sciences and Advanced Technologies, Science and Culture University, Tehran, Iran
| | - Hossein Farraji
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Ali Akbar Zinatizadeh
- Faculty of Chemistry, Department of Applied Chemistry, Environmental Research Center (ERC), Razi University, Kermanshah, 67144-14971, Iran
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, 1710, South Africa
| | - Nima Kamali
- Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahjouri
- Department of Environmental Engineering, University of Tehran, Kish International Campus, Tehran, Iran
| |
Collapse
|
18
|
Liang H, Guo P, Yang Y, Wang W, Sun Z. Environmental application of engineering magnesite slag for phosphate adsorption from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59502-59512. [PMID: 35381926 DOI: 10.1007/s11356-022-20029-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Herein, magnesite slags (MS), which remain after sulfuric acid extraction from light burnt magnesite in the magnesite industry, were used as phosphate adsorbents in wastewater. The MS were calcined under 700 °C to enhance phosphate adsorption. The calcined magnesite slags (CMS) were characterized by nitrogen adsorption-desorption isotherm, X-ray diffraction, and scanning electron microscopy. A series of batch adsorption experiments were carried out to test the phosphate adsorption capacity of CMS. The results showed that the calcific treatment promoted the conversion from Mg, Ca, Fe, etc. compound to metal oxide of the MS. The generated metal oxide particles resulted in 237.4 mg/g increase in the phosphate adsorption capacity. The phosphate adsorption isotherm of CMS fitted the Langmuir model better, and the maximum adsorption capacity of CMS was 526 mg/g. The adsorption kinetics of phosphate on CMS can be described by the pseudo-second-order model. The phosphate removal efficiency was greater than 98% in 300 mg/L phosphate solution. Mechanism investigation results indicated that phosphate was adsorbed by CMS through MgO protonation, electrostatic attraction, Mg-P complexation, and ligand exchange. The results obtained in this work demonstrate that the CMS is a potential effective adsorbent for removal and reutilization phosphate from P-contaminated water, due to it can be employed as a fertilizer after phosphate adsorption.
Collapse
Affiliation(s)
- Hai Liang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, 46 Bowen Road, Yingkou, 115014, China.
- College of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Panliang Guo
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, 46 Bowen Road, Yingkou, 115014, China
| | - Yunhong Yang
- Yingkou Magnesite Chemical Ind Group Co., Ltd., Yingkou, 115100, China
| | - Wanting Wang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, 46 Bowen Road, Yingkou, 115014, China
| | - Zhaonan Sun
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, 46 Bowen Road, Yingkou, 115014, China
| |
Collapse
|
19
|
Efficient Nitrate Adsorption from Groundwater by Biochar-Supported Al-Substituted Goethite. SUSTAINABILITY 2022. [DOI: 10.3390/su14137824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Groundwater nitrate contamination is challenging and requires efficient solutions for nitrate removal. This study aims to investigate nitrate removal using a novel adsorbent, biochar-supported aluminum-substituted goethite (BAG). The results showed that an increase in the initial Al/(Al + Fe) atomic ratio for BAGs from 0 to 20% decreased the specific surface area from 115.2 to 75.7 m2/g, but enhanced the surface charge density from 0.0180 to 0.0843 C/m2. By comparison, 10% of Al/(Al + Fe) led to the optimal adsorbent for nitrate removal. The adsorbent’s adsorption capacity was effective with a wide pH range (4–8), and decreased with increasing ionic strength. The descending order of nitrate adsorption inhibition by co-existing anions was SO42−, HCO3−, PO43−, and Cl−. The adsorption kinetics and isotherms agreed well with the pseudo-first-order equation and Langmuir model, respectively. The theoretical maximum adsorption capacity was 96.1469 mg/g. Thermodynamic analysis showed that the nitrate adsorption was spontaneous and endothermic. After 10-cycle regeneration, the BAG still kept 92.6% of its original adsorption capacity for synthetic nitrate-contaminated groundwater. Moreover, the main adsorption mechanism was attributed to electrostatic attraction due to the enhancement of surface charge density by Al substitution. Accordingly, the BAG adsorbent is a potential solution to remove nitrate from groundwater.
Collapse
|
20
|
Wang C, Luo D, Zhang X, Huang R, Cao Y, Liu G, Zhang Y, Wang H. Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 10:100167. [PMID: 36159737 PMCID: PMC9488105 DOI: 10.1016/j.ese.2022.100167] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 05/21/2023]
Abstract
Increasing global population and decreasing arable land pose tremendous pressures to agricultural production. The application of conventional chemical fertilizers improves agricultural production, but causes serious environmental problems and significant economic burdens. Biochar gains increasing interest as a soil amendment. Recently, more and more attentions have been paid to biochar-based slow-release of fertilizers (SRFs) due to the unique properties of biochar. This review summarizes recent advances in the development, synthesis, application, and tentative mechanism of biochar-based SRFs. The development mainly undergoes three stages: (i) soil amendment using biochar, (ii) interactions between nutrients and biochar, and (iii) biochar-based SRFs. Various methods are proposed to improve the fertilizer efficiency of biochar, majorly including in-situ pyrolysis, co-pyrolysis, impregnation, encapsulation, and granulation. Considering the distinct features of different methods, the integrated methods are promising for fabricating effective biochar-based SRFs. The in-depth understanding of the mechanism of nutrient loading and slow release is discussed based on current knowledge. Additionally, the perspectives and challenges of the potential application of biochar-based SRFs are described. Knowledge surveyed from this review indicates that applying biochar-based SRFs is a viable way of promoting sustainable agriculture.
Collapse
Affiliation(s)
- Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Corresponding author.
| | - Dan Luo
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Rong Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yijun Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Gonggang Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yingshuang Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Hui Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| |
Collapse
|
21
|
Zhou Y, Wang Y, Dong S, Hao H, Li J, Liu C, Li X, Tong Y. Phosphate removal by a La(OH) 3 loaded magnetic MAPTAC-based cationic hydrogel: Enhanced surface charge density and Donnan membrane effect. J Environ Sci (China) 2022; 113:26-39. [PMID: 34963534 DOI: 10.1016/j.jes.2021.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 06/14/2023]
Abstract
Cationic hydrogels have received great attention to control eutrophication and recycle phosphate. In this study, a type of La(OH)3 loaded magnetic MAPTAC-based cationic hydrogel (La(OH)3@MMCH) was developed as a potential adsorbent for enhanced phosphate removal from aqueous environment. La(OH)3@MMCH exhibited high adsorption capacity of 105.72±5.99 mg P/g, and reached equilibrium within 2 hr. La(OH)3@MMCH could perform effectively in a wide pH range from 3.0 to 9.0 and in the presence of coexisting ions (including SO42-, Cl-, NO3-, HCO3-, SiO44- and HA). The adsorption-desorption experiment indicated that La(OH)3@MMCH could be easily regenerated by using NaOH-NaCl as the desorption agent, and 73.3% adsorption capacity remained after five cycles. Moreover, La(OH)3@MMCH was employed to treat surface water with phosphate concentration of 1.90 mg/L and showed great removal efficiency of 95.21%. Actually, MMCH showed high surface charge density of 34.38-59.38 meq/kg in the pH range from 3.0 to 11.0 and great swelling ratio of 3014.57% within 24 h, indicating that MMCH could produce the enhanced Donnan membrane effect to pre-permeate phosphate. Furthermore, the bifunctional structure of La(OH)3@MMCH enabled it to capture phosphate through electrostatic attraction and ligand exchange. All the results prove that La(OH)3@MMCH is a promising adsorbent for eutrophication control and phosphate recovery.
Collapse
Affiliation(s)
- Yanqing Zhou
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yili Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Shuoxun Dong
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100083, China
| | - Haotian Hao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junyi Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Chenyang Liu
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Xiaolin Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yao Tong
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
22
|
Yang Y, Kou L, Fan Q, Jiang K, Wang J. Simultaneous recovery of phosphate and degradation of antibiotics by waste sludge-derived biochar. CHEMOSPHERE 2022; 291:132832. [PMID: 34762879 DOI: 10.1016/j.chemosphere.2021.132832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/10/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Recovery of phosphorus (P) from wastewater has led to growing public concern considering its scarcity and future availability as well as its detrimental environmental impacts. However, the recovered P is inevitably contaminated with co-existing antibiotics like tetracycline (TC) and sulfamethazine (SMT) which will pose serious risks to the health of human and animals after being spread to the environment. In this study, we propose a novel scheme that can recover P from synthetic wastewater and at the same time degrade the co-existing antibiotics. To achieve such a goal, a series of biochar (BC) were prepared from calcination of waste sludge and were used both as the adsorbent for P recovery and as the catalyst for peroxymonosulfate (PMS) activation and antibiotic degradation. Results showed that the sludge source (i.e. Sm: municipal sludge, Sp: paper mill sludge), calcination atmosphere (i.e. air-deficient, N2, vacuum) and temperature (i.e. 600 and 800 °C) exhibited significant influence on P adsorption capacity. Generally, the BC calcined in N2 showed better P uptake, and increase of calcination temperature from 600 °C to 800 °C could further improve P uptake. Though BCp-N-600 (prepared from Sp in N2 at 600 °C) showed faster and higher P uptake (56.3 mg/g) than its counterpart BCm-N-600 (33.2 mg/g), BCm-N-600 showed stronger catalytic activity and more stable performance in the complex pollutant system (P + SMT). It was proposed that P was recovered primarily through the chemisorption and precipitation mechanism, while SMT was nearly completely degraded primarily by the ROS generated from PMS activation.
Collapse
Affiliation(s)
- Yuhong Yang
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, PR China
| | - Lidong Kou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China; Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan, 450002, PR China
| | - Qingfeng Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Jing Wang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan, 450002, PR China.
| |
Collapse
|
23
|
Xi H, Zhang X, Hua Zhang A, Guo F, Yang Y, Lu Z, Ying G, Zhang J. Concurrent removal of phosphate and ammonium from wastewater for utilization using Mg-doped biochar/bentonite composite beads. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Xue J, Wang H, Li P, Zhang M, Yang J, Lv Q. Efficient reclaiming phosphate from aqueous solution using waste limestone modified sludge biochar: Mechanism and application as soil amendments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149454. [PMID: 34435587 DOI: 10.1016/j.scitotenv.2021.149454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
A novel limestone-modified biochar derived from sewage sludge was prepared to reclaim phosphorus (P) from aqueous solution, and the potential application of P-laden biochar as soil amendments was also investigated. The limestone-modified biochar demonstrated excellent performance on phosphate recovery from aqueous solution in a wide range of pH (2.0-11.0), with maximum adsorption capacity of the biochar (Limestone/sludge mass ratio of 3:1) up to 231.28 mg P/g, which was 10.7 times that of the original sludge biochar. The adsorption was well described by the pseudo second-order model and Langmuir isotherm model. According to the adsorption thermodynamic parameters, the phosphate adsorption was spontaneous (ΔG0 < 0) and endothermic (ΔH0 > 0) so that increasing the temperature was beneficial to adsorption. Characterization analysis by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectrometer (SEM-EDS) proved that electrostatic attraction, surface complexation and brushite (CaHPO4.2H2O) precipitation were the dominant mechanism. The P-laden biochar exhibited an excellent ability to be reused as a new slow-release P fertilizer for soil. Pot experiment results showed that the treatment of P-laden LB 3:1 (P content of 22.8%) addition (1 wt%) significantly promoted Indian Lettuce germination (increasing by 14.4%), plant height (increasing by 18.6%), and dry biomass (53.0%) compared with the control, though it underperformed compared to commercial fertilizer.
Collapse
Affiliation(s)
- Junbing Xue
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China
| | - Haixia Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China.
| | - Peng Li
- Shandong Gold Group CO., LTD, Jinan 250100, China
| | - Mingliang Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China
| | - Jie Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China
| | - Qi Lv
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China
| |
Collapse
|
25
|
Lian Q, Islam F, Ahmad ZU, Lei X, Depan D, Zappi M, Gang DD, Holmes W, Yan H. Enhanced adsorption of resorcinol onto phosphate functionalized graphene oxide synthesized via Arbuzov Reaction: A proposed mechanism of hydrogen bonding and π-π interactions. CHEMOSPHERE 2021; 280:130730. [PMID: 33964756 DOI: 10.1016/j.chemosphere.2021.130730] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Phosphate functionalized graphene oxide (PGO) was successfully prepared by Arbuzov reaction and employed for adsorption of resorcinol from an aqueous phase. The phosphate functional groups were successfully incorporated onto the PGO surface by the formation of P-C bonds as identified by the analysis of FTIR and XPS spectra. The evaluation of adsorption capacity of resorcinol onto PGO exhibited significant improvement of resorcinol removal, achieving an adsorption capacity of 50.25 mg/g in the pH range of 4-7 which was 15 times higher than pristine graphene oxide. The addition of 2.4 M and 5 M NaCl in the adsorption system significantly increased the adsorption capacity towards resorcinol from 50.25 mg/g to 82.10 mg/g and 128.10 mg/g, respectively. Based on kinetics and adsorption isotherm studies, Pseudo-First-Order and Langmuir model are the best model to describe the adsorption process indicating that the adsorption is dominantly controlled by physisorption. The thermodynamic analysis suggested that the adsorption process was the favorable, spontaneous, and endothermic process. Besides, the interplay of hydrogen bonding and π-π interactions is proposed to be the governing physisorption mechanism. The outstanding reusability and better adsorption performance make PGO a promising adsorbent for environmental remediation of resorcinol.
Collapse
Affiliation(s)
- Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Fahrin Islam
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Zaki Uddin Ahmad
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA; Wastewater Infrastructure Planning, Houston Water, Houston Public Works, 611 Walker Street, 18th Floor, Houston, TX, 77002, USA
| | - Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Dilip Depan
- Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA
| | - Mark Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA
| | - Daniel D Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA.
| | - William Holmes
- Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA
| | - Hui Yan
- Department of Chemistry, University of Louisiana at Lafayette, P. O. Box 43700, Lafayette, LA, 70504, USA
| |
Collapse
|
26
|
Li W, Ouyang F, An G, Yang C, Zhong R, Xiao F, Peng D, Wang D. Mechanism insight into the role of clay particles on enhancing phosphate removal by ferrate compared with ferric salt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45414-45421. [PMID: 33866501 DOI: 10.1007/s11356-021-13436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The application of ferrate (Fe(VI)) and ferric chloride as coagulants for treating phosphate wastewater in the presence of kaolin clay particles was comparatively studied. The phosphate removal processes by ferrate and ferric chloride assisted with kaolin clay particles were investigated under different Fe/P molar ratios. At neutral pH, complete removal of phosphates by ferrate and ferric chloride was observed at 2:1 and 6:1 of Fe/P molar ratio, respectively. The effect of kaolin clay particles on the phosphate removal process was discussed by zeta potential, size particle distribution, FTIR and XPS. We showed that with the increase of Fe/P molar ratio, the interaction intensity of kaolin clay particles with Fe flocs was decreased by ferric chloride coagulation while firstly increased and then decreased by ferrate. This depends on the Fe species with positive charge from ferric chloride hydrolysis and ferrate decomposition. Phosphate can inhibit the formation of FeOH2+ and Fe(OH)2+ in the ferric chloride hydrolysis but promote the formation of FeOOH and Fe(OH)2+ in the ferrate decomposition. Kaolin clay particles can more remarkably promote phosphate removal by ferrate than by ferric chloride.
Collapse
Affiliation(s)
- Wentao Li
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Fan Ouyang
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Guangyu An
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chenggang Yang
- Nuclear and Radiation Safety Centre MEE, Beijing, 102400, China
| | - Runsheng Zhong
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China.
| | - Feng Xiao
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China
| | - Dan Peng
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Dongsheng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
27
|
Zhang X, Yao H, Lei X, Lian Q, Roy A, Doucet D, Yan H, Zappi ME, Gang DD. A comparative study for phosphate adsorption on amorphous FeOOH and goethite (α-FeOOH): An investigation of relationship between the surface chemistry and structure. ENVIRONMENTAL RESEARCH 2021; 199:111223. [PMID: 33991571 DOI: 10.1016/j.envres.2021.111223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/10/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Eutrophication is generally caused by excess nitrogen and phosphorus being released into surface waters by runoff. Developing adsorbents for adsorbing phosphate within soil buffer zones and/or water treatment columns may be effective methods to mitigate this problem. In this study, an amorphous FeOOH (AF) and a well-crystallized α-FeOOH (CF) was formulated to compare phosphate adsorption behavior. The physicochemical properties between these species showed significant differences in morphology, crystallization, zeta potential, and specific surface area. The AF exhibited higher phosphate uptake than CF. X-ray photoelectron spectroscopy (XPS) verified that the hydroxyl groups within AF were 13.28% higher than that in CF. The triply coordinated hydroxyl groups (μ3-OH) associated with AF and CF appeared at different positions as shown in the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses, confirming that AF contains more adsorption reactive sites (μ3-OH). Mechanisms for monodentate formations and a stable six-member ring structure were proposed. The X-ray absorption near the edge structure (XANES) and XPS results suggested that the iron valence in AF was dominated by Fe (III). XANES also demonstrated that the amorphous structure found in the AF was caused by the disordered tetrahedron and octahedron alignments, leading to a higher phosphate adsorption.
Collapse
Affiliation(s)
- Xu Zhang
- School of Civil Engineering, Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Jiaotong University, 3 Shangyuancun, Beijing, 100044, PR China; Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Hong Yao
- School of Civil Engineering, Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Jiaotong University, 3 Shangyuancun, Beijing, 100044, PR China.
| | - Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Amitava Roy
- The J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices (CAMD), Baton Rouge, LA, 70806, USA
| | - Dana Doucet
- The J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices (CAMD), Baton Rouge, LA, 70806, USA
| | - Hui Yan
- Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Mark E Zappi
- Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
| |
Collapse
|
28
|
Muhammad N, Ge L, Khan MH, Chan WP, Bilal M, Lisak G, Nafees M. Effects of different biochars on physicochemical properties and immobilization of potentially toxic elements in soil - A geostatistical approach. CHEMOSPHERE 2021; 277:130350. [PMID: 33794433 DOI: 10.1016/j.chemosphere.2021.130350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The impact of different biochars (BCs) on the physicochemical properties and immobilization of potentially toxic elements (PTEs) in contaminated soil irrigated with industrial wastewater for the last three decades was studied. Furthermore, the efficacy of applied BCs in reducing geostatistical risks was also evaluated. For this purpose, BCs were prepared from green waste (Cynodon dactylon L.) for the first time at different pyrolysis temperature (400 °C, 600 °C and 800 °C), and amended the contaminated soil in pots with two different ratios of 2% and 5% (w/w) under controlled conditions. The BCs amended soil samples were analyzed after five months (equivalent to the life span of a wheat crop). The physicochemical impacts of applied BCs on the soil showed that the acidic soil was changed to basic. A tremendous increase in water holding capacity, cation exchange capacity, dissolved organic carbon, carbon, phosphorus and potassium contents was observed. The PTEs concentrations and geostatistical risks were significantly (p ≤ 0.05) decreased by all the BCs. Among them, BC prepared at 800 °C and applied at a ratio of 5% was showed the best effects by reducing the bioavailable concentrations of Cd, Pb, Cr, Ni, Cu, Mn, Fe, As, Co and Zn in 88%, 87%, 78%, 76%, 69%, 65%, 64%, 63%, 46% and 21%, respectively. Similarly, significant (p ≤ 0.05) reductions in geoaccumulation index, enrichment factor, contamination factor, and ecological risk were recorded. Therefore, BC prepared at 800 °C and applied at a ratio of 5% is recommended for soil remediation.
Collapse
Affiliation(s)
- Nisar Muhammad
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; Department of Environmental Science, Gomal University, Dera Ismail Khan, 29050, Pakistan.
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
| | - Muhammad Haya Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Wei Ping Chan
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Muhammad Bilal
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 637141, Singapore.
| | - Mohammad Nafees
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| |
Collapse
|
29
|
Wang L, Wang J, Wei Y. Facile synthesis of eggshell biochar beads for superior aqueous phosphate adsorption with potential urine P-recovery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|