1
|
Hamdi S, Issaoui M, Hammami S, Míguez-González A, Cela-Dablanca R, Barreiro A, Núñez-Delgado A, Álvarez-Rodríguez E, Fernández-Sanjurjo MJ. Removal of the Highly Toxic Anticoccidial Monensin Using Six Different Low-Cost Bio-Adsorbents. TOXICS 2024; 12:606. [PMID: 39195708 PMCID: PMC11360468 DOI: 10.3390/toxics12080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
The anticoccidial monensin (MON) is a high-concern emerging pollutant. This research focused on six low-cost bio-adsorbents (alfa, cactus, and palm fibers, and acacia, eucalyptus, and zean oak barks), assessing their potential for MON removal. Batch adsorption/desorption tests were carried out, and the results were fitted to the Freundlich, Langmuir, Linear, Sips, and Temkin models. The concentrations adsorbed by the six materials were very similar when low doses of antibiotic were added, while they differed when adding MON concentrations higher than 20 µmol L-1 (adsorption ranging 256.98-1123.98 μmol kg-1). The highest adsorption corresponded to the sorbents with the most acidic pH (<5.5) and the highest organic matter and effective cation exchange capacity values (eucalyptus bark and acacia bark, reaching 92.3% and 87.8%), whereas cactus and palm fibers showed the lowest values (18.3% and 10.17%). MON desorption was below 8.5%, except for cactus and palm fibers. Temkin was the model showing the best adjustment to the experimental data, followed by the Langmuir and the Sips models. The overall results indicate that eucalyptus bark, alfa fiber, and acacia bark are efficient bio-adsorbents with potential for MON removal, retaining it when spread in environmental compartments, reducing related risks for human and environmental health.
Collapse
Affiliation(s)
- Samiha Hamdi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, Sidi Bouzid 9100, Tunisia; (S.H.); (M.I.)
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
- Laboratory of Nutrition–Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, Monastir 5019, Tunisia;
| | - Manel Issaoui
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, Sidi Bouzid 9100, Tunisia; (S.H.); (M.I.)
- Laboratory of Nutrition–Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, Monastir 5019, Tunisia;
| | - Sonia Hammami
- Laboratory of Nutrition–Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, Monastir 5019, Tunisia;
| | - Ainoa Míguez-González
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - Raquel Cela-Dablanca
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - Ana Barreiro
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - Esperanza Álvarez-Rodríguez
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - María J. Fernández-Sanjurjo
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| |
Collapse
|
2
|
Liu X, Yuan J, Feng Y, Zhang Z, Tang L, Chen H. Knowledge graph and development hotspots of biochar as an emerging aquatic antibiotic remediator: A scientometric exploration based on VOSviewer and CiteSpace. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121165. [PMID: 38759554 DOI: 10.1016/j.jenvman.2024.121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
As an emerging material in the field of environmental remediation, biochar produced by carbonisation of organic solid waste has been widely used in the remediation of antibiotic wastewater due to its environmental friendliness and excellent adsorption properties. This study analyses the current literature in the field in a comprehensive and scientific manner using CiteSpace and VOSviewer technologies. Between 2011 and 2023, a total of 1162 papers were published in this domain, spanning three distinct stages: applied methods, mechanism investigation, and enhanced improvement. The results of keyword clustering indicate that the remediation of antibiotics complexed with multiple pollutants by biochar is the main research topic, followed by the remediation of antibiotics by biochar in combination with other technologies. Furthermore, drawing from current research hotspots in antibiotic remediation using biochar, this study identified the pivotal mechanisms involved: (1) The primary mechanisms by which raw biochar remediates antibiotics include π-π electron donor-acceptor interactions, hydrophobic interactions, electrostatic interactions, hydrogen-bonding, and pore filling. (2) Steam activation, acid/base, metal salt/metal oxide, and clay mineral modification can improve the physical/chemical properties of biochar, enhancing its adsorptive removal of antibiotics. (3) Biochar activated persulfate and degraded antibiotics via free radical pathways (SO4-•, •OH and O2-•) as well as non-free radical pathways (1O2 and electron transfer). In addition, the challenge and prospect of biochar engineering applications for antibiotic remediation lies in improving the main mechanism of antibiotic remediation by biochar. The prospective utilization of biochar in enhancing the remediation of antibiotic-related pollutants holds tremendous value for the future.
Collapse
Affiliation(s)
- Xiaojing Liu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, 210014, China; Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Jianyang Yuan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, 210014, China; Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Zhiyong Zhang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, 210014, China; Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Linyi Tang
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Haoming Chen
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, 210014, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China; Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| |
Collapse
|
3
|
Ghariani B, Alessa AH, Ben Atitallah I, Louati I, Alsaigh AA, Mechichi T, Zouari-Mechichi H. Fungal Bioremediation of the β-Lactam Antibiotic Ampicillin under Laccase-Induced Conditions. Antibiotics (Basel) 2024; 13:407. [PMID: 38786136 PMCID: PMC11117353 DOI: 10.3390/antibiotics13050407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Due to widespread overuse, pharmaceutical compounds, such as antibiotics, are becoming increasingly prevalent in greater concentrations in aquatic ecosystems. In this study, we investigated the capacity of the white-rot fungus, Coriolopsis gallica (a high-laccase-producing fungus), to biodegrade ampicillin under different cultivation conditions. The biodegradation of the antibiotic was confirmed using high-performance liquid chromatography, and its antibacterial activity was evaluated using the bacterial growth inhibition agar well diffusion method, with Escherichia coli as an ampicillin-sensitive test strain. C. gallica successfully eliminated ampicillin (50 mg L-1) after 6 days of incubation in a liquid medium. The best results were achieved with a 9-day-old fungal culture, which treated a high concentration (500 mg L-1) of ampicillin within 3 days. This higher antibiotic removal rate was concomitant with the maximum laccase production in the culture supernatant. Meanwhile, four consecutive doses of 500 mg L-1 of ampicillin were removed by the same fungal culture within 24 days. After that, the fungus failed to remove the antibiotic. The measurement of the ligninolytic enzyme activity showed that C. gallica laccase might participate in the bioremediation of ampicillin.
Collapse
Affiliation(s)
- Bouthaina Ghariani
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (B.G.); (I.B.A.); (I.L.); (H.Z.-M.)
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - Imen Ben Atitallah
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (B.G.); (I.B.A.); (I.L.); (H.Z.-M.)
| | - Ibtihel Louati
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (B.G.); (I.B.A.); (I.L.); (H.Z.-M.)
| | - Ahmad A. Alsaigh
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (B.G.); (I.B.A.); (I.L.); (H.Z.-M.)
| | - Héla Zouari-Mechichi
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (B.G.); (I.B.A.); (I.L.); (H.Z.-M.)
- Institute of Biotechnology of Sfax, University of Sfax, BP 1175, Sfax 3038, Tunisia
| |
Collapse
|
4
|
Li Y, Wang W, Chen L, Ma H, Lu X, Ma H, Liu Z. Visible-Light-Driven Z-Type Pg-C 3N 4/Nitrogen Doped Biochar/BiVO 4 Photo-Catalysts for the Degradation of Norfloxacin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1634. [PMID: 38612148 PMCID: PMC11012328 DOI: 10.3390/ma17071634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Antibiotics cannot be effectively removed by traditional wastewater treatment processes, and have become widespread pollutants in various environments. In this study, a Z-type heterojunction photo-catalyst Pg-C3N4 (PCN)/Nitrogen doped biochar (N-Biochar)/BiVO4 (NCBN) for the degradation of norfloxacin (NOR) was prepared by the hydrothermal method. The specific surface area of the NCBN (42.88 m2/g) was further improved compared to BiVO4 (4.528 m2/g). The photo-catalytic performance of the catalyst was investigated, and the N-Biochar acted as a charge transfer channel to promote carrier separation and form Z-type heterojunctions. Moreover, the NCBN exhibited excellent performance (92.5%) in removing NOR, which maintained 70% degradation after four cycles. The main active substance of the NCBN was •O2-, and the possible degradation pathways are provided. This work will provide a theoretical basis for the construction of heterojunction photo-catalysts.
Collapse
Affiliation(s)
- Yi Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenyu Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lei Chen
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huifang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xi Lu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongfang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhibao Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
5
|
Ma N, Zhang H, Yuan L, Li Y, Yang W, Huang Y. Characterization and removal mechanism of fluoroquinolone-bioremediation by fungus Cladosporium cladosporioides 11 isolated from aquacultural sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29525-29535. [PMID: 38575819 DOI: 10.1007/s11356-024-33142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Antibiotics have been widely detected in aquatic environments, and fungal biotransformation receives considerable attention for antibiotic bioremediation. Here, a fungus designated Cladosporium cladosporioides 11 (CC11) with effective capacity to biotransform fluoroquinolones was isolated from aquaculture pond sediments. Enrofloxacin (ENR), ciprofloxacin (CIP) and ofloxacin (OFL) were considerably abated by CC11, and the antibacterial activities of the fluoroquinolones reduced significantly after CC11 treatment. Transcriptome analysis showed the removal of ENR, CIP and OFL by CC11 is a process of enzymatic degradation and biosorption which consists well with ligninolytic enzyme activities and sorption experiments under the same conditions. Additionally, CC11 significantly removed ENR in zebrafish culture water and reduced the residue of ENR in zebrafish. All these results evidenced the potential of CC11 as a novel environmentally friendly process for the removal of fluoroquinolones from aqueous systems and reduce fluoroquinolone residues in aquatic organisms.
Collapse
Affiliation(s)
- Ning Ma
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China.
| |
Collapse
|
6
|
Nkoh JN, Shang C, Okeke ES, Ejeromedoghene O, Oderinde O, Etafo NO, Mgbechidinma CL, Bakare OC, Meugang EF. Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120312. [PMID: 38340667 DOI: 10.1016/j.jenvman.2024.120312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The increased use of antibiotics by humans for various purposes has left the environment polluted. Antibiotic pollution remediation is challenging because antibiotics exist in trace amounts and only highly sensitive detection techniques could be used to quantify them. Nevertheless, their trace quantity is not a hindrance to their transfer along the food chain, causing sensitization and the development of antibiotic resistance. Despite an increase in the literature on antibiotic pollution and the development and transfer of antibiotic-resistant genes (ARGs), little attention has been given to the behavior of antibiotics at the soil-solution interface and how this affects antibiotic adsorption-desorption interactions and subsequent uptake and transformation by plants. Thus, this review critically examines the interactions and possible degradation mechanisms of antibiotics in soil and the link between antibiotic soil-solution chemistry and uptake by plants. Also, different factors influencing antibiotic mobility in soil and the transfer of ARGs from one organism to another were considered. The mechanistic and critical analyses revealed that: (a) the charge characteristics of antibiotics at the soil-root interface determine whether they are adsorbed to soil or taken up by plants; (b) antibiotics that avoid soil colloids and reach soil pore water can be absorbed by plant roots, but their translocation to the stem and leaves depends on the ionic state of the molecule; (c) few studies have explored how plants adapt to antibiotic pollution and the transformation of antibiotics in plants; and (d) the persistence of antibiotics in cropland soils can be influenced by the content of soil organic matter, coexisting ions, and fertilization practices. Future research should focus on the soil/solution-antibiotic-plant interactions to reveal detailed mechanisms of antibiotic transformation by plants and whether plant-transformed antibiotics could be of environmental risk.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China.
| | - Onome Ejeromedoghene
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, China
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila Mexico
| | - Chiamaka Linda Mgbechidinma
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State, 200243, Nigeria
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Elvira Foka Meugang
- School of Metallurgy & Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| |
Collapse
|
7
|
Cela-Dablanca R, Míguez-González A, Barreiro A, Rodríguez-López L, Arias-Estévez M, Núñez-Delgado A, Fernández-Sanjurjo MJ, Castillo-Ramos V, Álvarez-Rodríguez E. Simultaneous adsorption of amoxicillin and ciprofloxacin on agricultural soils and by-products used as bio-adsorbents: Unraveling the interactions in complex systems. ENVIRONMENTAL RESEARCH 2023; 240:117535. [PMID: 39492492 DOI: 10.1016/j.envres.2023.117535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
The presence of pharmaceuticals in agricultural soils, like amoxicillin (AMX) and ciprofloxacin (CIP), poses a significant environmental challenge with potential implications for ecosystems and human well-being. This study explores the simultaneous adsorption of AMX and CIP on crop soils and bio-adsorbents, focusing on competitive adsorption dynamics. Tests were conducted with varying pharmaceutical concentrations in six soils and three bio-adsorbents. CIP consistently exhibited higher adsorption than AMX, particularly at higher concentrations. In the binary system, AMX's adsorption exceeded the individual system at higher concentrations, implying a synergistic effect. Bio-adsorbents, especially pine bark and oak ash, displayed superior adsorption capacities compared to soils. Some soils exhibited enhanced adsorption and retention of both antibiotics simultaneously, aligning with the cooperative adsorption model. Freundlich's adsorption model described the competitive adsorption systems well. These findings have implications for addressing antibiotic contamination in agricultural ecosystems, offering insights into complex interactions in soil environments amid rising pharmaceutical concerns.
Collapse
Affiliation(s)
- Raquel Cela-Dablanca
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Ainoa Míguez-González
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Barreiro
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Lucia Rodríguez-López
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Manuel Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Avelino Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - María J Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Ventura Castillo-Ramos
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain.
| | - Esperanza Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
8
|
Chen X, Lin H, Dong Y, Li B, Liu C, Zhang L, Lu Y, Jin Q. Enhanced simultaneous removal of sulfamethoxazole and zinc (II) in the biochar-immobilized bioreactor: Performance, microbial structures and gene functions. CHEMOSPHERE 2023; 338:139466. [PMID: 37442390 DOI: 10.1016/j.chemosphere.2023.139466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/20/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Biochar-immobilized functional bacteria Bacillus SDB4 was applied for sulfamethoxazole (SMX) and zinc (Zn2+) simultaneous removal in the bioreactor. Under the optimal operating conditions of HRT of 10 h, pH of 7.0, SMX concentration of 10 mg L-1 and Zn2+ concentration of 50 mg L-1, the removal efficiencies of SMX and Zn2+ by the immobilized reactor (IR) were 97.42% and 96.14%, respectively, 20.39% and 30.15% higher than those by free bioreactor (FR). SEM-EDS and FTIR results revealed that the functional groups and light metals on the carrier promoted the biosorption and biotransformation of SMX and Zn2+ in IR. Moreover, the improvement of SMX and Zn2+ removal might be related to the abundance enhancement of functional bacteria and genes. Bacillus SDB4 responsible for SMX and Zn2+ removal was the main strain in IR and FR. Biochar increased the relative abundance of Bacillus from 32.12% in FR to 38.73% in IR and improved the abundances of functional genes (such as carbohydrate metabolism, replication and repair and membrane transport) by 1.82%-11.04%. The correlations among the physicochemical properties, microbial communities, functional genes and SMX-Zn2+ co-contaminant removal proposed new insights into the mechanisms of biochar enhanced microbial removal of antibiotics and heavy metals in biochar-immobilized bioreactors.
Collapse
Affiliation(s)
- Xi Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanrong Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Jin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
9
|
Mathai T, Pal T, Prakash N, Mukherji S. Portable biosensor for the detection of Enrofloxacin and Ciprofloxacin antibiotic residues in food, body fluids, environmental and wastewater samples. Biosens Bioelectron 2023; 237:115478. [PMID: 37356410 DOI: 10.1016/j.bios.2023.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Enrofloxacin (ENR) and its metabolite Ciprofloxacin (CIP) are both a class of fluoroquinolone antibiotics effective against a broad-spectrum microbial infection. Recent surge in the consumption of CIP and ENR has been linked to increased cases of drug-resistant pathogens. This is due to the fact that the antibiotic residues remain in milk, meat, soil and environmental water for a prolonged duration. Although gold standard methods such as LC-MS are sensitive, they suffer from expensive operation and maintenance cost, and would need dedicated facilities and tedious sample preparation steps. Such limitations make on site detection impossible for regulatory bodies in developing countries. To address this issue, we developed a portable device that can detect the presence of CIP and ENR antibiotics in the range of parts per billion (ppb) concentrations accurately. It consists of a polyaniline (PAni) coated U-bent optical fiber with anti-ENR/CIP antibody immobilized on the polymer surface. The sensor relies on the principle of evanescent wave absorbance by antigen-antibody complex. The sensor showed limit of detection (LOD) of 1 ppb with a linear range of operation from 1 ppb to 500 ppb (R2 = 0.96-0.99) in lake water, waste water treatment plant effluent, urine, blood serum, milk and meat samples. The recovery of the sensor ranges from 88% to 120% indicating reasonable accuracy. The sensor has excellent selectivity towards CIP and ENR and showed stability for four weeks indicating its field deployability and robustness. The portable sensor is scalable and contract has been given to an industry partner to mass manufacture the device.
Collapse
Affiliation(s)
- Tennyson Mathai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Mumbai, India
| | - Tathagata Pal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Mumbai, India
| | - Nayan Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Mumbai, India
| | - Soumyo Mukherji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Mumbai, India.
| |
Collapse
|
10
|
Míguez-González A, Cela-Dablanca R, Barreiro A, Rodríguez-López L, Rodríguez-Seijo A, Arias-Estévez M, Núñez-Delgado A, Fernández-Sanjurjo MJ, Castillo-Ramos V, Álvarez-Rodríguez E. Adsorption of antibiotics on bio-adsorbents derived from the forestry and agro-food industries. ENVIRONMENTAL RESEARCH 2023; 233:116360. [PMID: 37295584 DOI: 10.1016/j.envres.2023.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Antibiotic consumption at high levels in both human and veterinary populations pose a risk to their eventual entry into the food chain and/or water bodies, which will adversely affect the health of living organisms. In this work, three materials from forestry and agro-food industries (pine bark, oak ash and mussel shell) were investigated as regards their potential use as bio-adsorbents in the retention of the antibiotics amoxicillin (AMX), ciprofloxacin (CIP) and trimethoprim (TMP). Batch adsorption/desorption tests were conducted, adding increasing concentrations of the pharmaceuticals individually (from 25 to 600 μmol L-1), reaching maximum adsorption capacities of ≈ 12000 μmol kg-1 for the three antibiotics, with removal percentages of ≈ 100% for CIP, 98-99% adsorption for TMP onto pine bark, and 98-100% adsorption for AMX onto oak ash. The presence of high calcium contents and alkaline conditions in the ash favored the formation of cationic bridges with AMX, whereas the predominance of hydrogen bonds between pine bark and TMP and CIP functional groups explain the strong affinity and retention of these antibiotics. The Freundlich's model provided the best prediction for AMX adsorption onto oak ash and mussel shell (heterogeneous adsorption), whereas the Langmuir's model described well AMX adsorption onto pine bark, as well as CIP adsorption onto oak ash (homogeneous and monolayer adsorption), while all three models provided satisfactory results for TMP. In the present study, the results obtained were crucial in terms of valorization of these adsorbents and their subsequent use to improve the retention of antibiotics of emerging concern in soils, thereby preventing contamination of waters and preserving environment quality.
Collapse
Affiliation(s)
- Ainoa Míguez-González
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Raquel Cela-Dablanca
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Barreiro
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Lucia Rodríguez-López
- Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, 32004, Ourense, Spain
| | - Andrés Rodríguez-Seijo
- Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, 32004, Ourense, Spain
| | - Manuel Arias-Estévez
- Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, 32004, Ourense, Spain
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - María J Fernández-Sanjurjo
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Ventura Castillo-Ramos
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain.
| | - Esperanza Álvarez-Rodríguez
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
11
|
Zhang M, Ning R, Zheng Q, Gao K. Microalgae-based biotechnology as a promising strategy for removing antibiotics from wastewater: opportunities, challenges and future directions. Front Bioeng Biotechnol 2023; 11:1248765. [PMID: 37691906 PMCID: PMC10485559 DOI: 10.3389/fbioe.2023.1248765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Meng Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ruoxu Ning
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qilin Zheng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Kun Gao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang, China
| |
Collapse
|
12
|
Meng Z, Wang L, Mo R, Zheng K, Li W, Lu Y, Qin C. Nitrogen doped magnetic porous carbon derived from starch of oatmeal for efficient activation peroxymonosulfate to degradation sulfadiazine. Int J Biol Macromol 2023:125579. [PMID: 37379945 DOI: 10.1016/j.ijbiomac.2023.125579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Nitrogen doped magnetic porous carbon catalyst based on starch of oatmeal was obtained by mixing and pyrolysis process, and its catalytic activity of peroxymonosulfate activation for sulfadiazine degradation was evaluated. When ratio of oatmeal/urea/iron was 1: 2: 0.1, CN@Fe-10 had the best catalytic activity to degrade sulfadiazine. Around 97.8 % removal of 20 mg L-1 sulfadiazine was achieved under incorporating of 0.05 g L-1 catalyst and 0.20 g L-1 peroxymonosulfate. Good adaptability, stability and universality of CN@Fe-10 were verified under different conditions. Electron paramagnetic resonance and radical quenching test suggested that surface-bound reactive oxides species and singlet oxygen were the main reactive oxides species in this reaction. Electrochemical analysis indicated that CN@Fe-10 had a good electrical conductivity and electron transferred did occur among CN@Fe-10 surface, peroxymonosulfate and sulfadiazine. X-ray photoelectron spectroscopy suggested that Fe0, Fe3C, pyridine nitrogen and graphite nitrogen were the potential active sites for peroxymonosulfate activation. Therefore, the work provided a practical approach for recycling biomass.
Collapse
Affiliation(s)
- Zhifei Meng
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China
| | - Liqiang Wang
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China
| | - Ruixing Mo
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China
| | - Kewang Zheng
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China; Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, Wuhan University, Wuhan, China.
| | - Wei Li
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China.
| | - Yunlai Lu
- Hubei Yunlai Plastic Technology Co., Ltd., Xiaogan, China
| | - Caiqin Qin
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China; Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Solmaz A, Karta M, Depci T, Turna T, Sari ZA. Preparation and characterization of activated carbons from Lemon Pulp for oxytetracycline removal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:797. [PMID: 37264196 DOI: 10.1007/s10661-023-11421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
This study aims to remove oxytetracycline (OTC) that harms the ecosystem, with activated carbon (LPAC) obtained from Lemon Pulp (LP). Characterization and properties of LPAC were analyzed by Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD) and point of zero charge (pHPZC) analyses. BET surface area, pore volume and pHPZC of LPAC produced by carbonization at 400 °C and activation with KOH at 800 °C were obtained as 1333.01 m2/g, 0.391 cm3/g, and 6.81, respectively. pH, reaction time, initial OTC concentration, and adsorbent amounts were optimized in the adsorption study performed with LPAC with high porosity and micropores. Kinetic evaluation was made with pseudo-first-order, pseudo-second-order, and intra-particle diffusion models and Freundlich, Langmuir, and Temkin equations are used to investigate their isotherms under reaction equilibrium conditions, and also the results were analyzed by statistical method (ANOVA). In pseudo-second-order kinetic and Freundlich isotherm models, where the best results were obtained, R2 values were calculated as 0.999 and 0.995, respectively. Maximum OTC removal efficiency was found as 104.22 mg/g. Overall, this research indicates that LPAC for the treatment of water contaminated with antibiotics is environmentally friendly green material.
Collapse
Affiliation(s)
- Alper Solmaz
- Department of Environmental Protection and Control-Iskenderun Vocational School of Higher Education, Iskenderun Technical University, Hatay, Turkey.
| | - Mesut Karta
- Department of Metallurgy-Iskenderun Vocational School of Higher Education, Iskenderun Technical University, Hatay, Turkey
| | - Tolga Depci
- Department of Petroleum and Natural Gas Engineering, Iskenderun Technical University, Hatay, Turkey
| | - Talip Turna
- Department of Parks and Garden Plants-Diyarbakır Vocational School of Higher Education, Dicle University, Diyarbakır, Turkey
| | - Zeynel Abidin Sari
- Department of Metallurgy-Iskenderun Vocational School of Higher Education, Iskenderun Technical University, Hatay, Turkey
| |
Collapse
|
14
|
Khaznadar O, Khaznadar F, Petrovic A, Kuna L, Loncar A, Omanovic Kolaric T, Mihaljevic V, Tabll AA, Smolic R, Smolic M. Antimicrobial Resistance and Antimicrobial Stewardship: Before, during and after the COVID-19 Pandemic. MICROBIOLOGY RESEARCH 2023; 14:727-740. [DOI: 10.3390/microbiolres14020052] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ongoing phenomenon. It is a significant public health issue that has existed long before the coronavirus disease of 2019 (COVID-19) pandemic. It develops as microorganisms undergo genetic mutations that allow them to survive despite antimicrobial treatment. This process is highly associated with excessive and often unnecessary antimicrobial pharmacotherapy, which was often discussed during the COVID-19 pandemic. This article explores how the pandemic has affected antimicrobial stewardship by shifting the focus away from antimicrobial resistance, as well as the impact of enhanced antibiotic usage and measures such as lockdowns, mandatory testing and vaccination on antimicrobial resistance. Although these measures were regarded as successful in terms of limiting the pandemic, they have significantly contributed to an already escalating AMR issue. Outpatient methods in primary care and intensive care units aiming to prevent severe COVID-19 disease have contributed to the spread of multidrug-resistant bacteria, while laboratories burdened with COVID-19 testing have indirectly interrupted the detection of these bacteria. In this review, we summarize the pathogens whose AMRe has been greatly affected by COVID-19 measures and emphasize the importance of efficient antimicrobial stewardship in future pandemic and non-pandemic states to promote the responsible use of antibiotics and minimize AMR.
Collapse
Affiliation(s)
- Omar Khaznadar
- Department of Radiology, “Dr. Juraj Njavro” National Memorial Hospital Vukovar, 32000 Vukovar, Croatia
| | - Farah Khaznadar
- Department of Pharmacology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ana Petrovic
- Department of Pharmacology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Lucija Kuna
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ana Loncar
- Microbiology Department, Institute of Public Health Osijek-Baranja County, 31000 Osijek, Croatia
| | - Tea Omanovic Kolaric
- Department of Pharmacology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vjera Mihaljevic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Giza 12622, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Robert Smolic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Martina Smolic
- Department of Pharmacology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
15
|
Ikizoglu B, Turkdogan FI, Kanat G, Aydiner C. Seasonal analysis of commonly prescribed antibiotics in Istanbul city. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:566. [PMID: 37058249 DOI: 10.1007/s10661-023-11203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Antibiotics are among the most common medicine groups since they are used to treat infectious diseases, as nutritional supplements in livestock breeding, and for preservation in the food industry. Turkey is among the highest antibiotic consumers in the world. In the present study, the most popular 14 antibiotics available in Turkey were monitored in one hospital sewage and two urban wastewater treatment plant influents and effluents seasonally in Istanbul province, the largest metropolitan center in Turkey. The present research aimed to develop a robust analytical method to determine 14 antibiotics, including six chemical groups, in environmental matrices which are considered significant antibiotic pollution sources, namely hospital sewage and urban wastewater. Solid-phase extraction (SPE) and UPLC-MS/MS analysis parameters included optimized column temperature, eluent, mobile phase, and flow rate. Three SPE cartridges were employed in recovery studies. The antibiotic recovery rates varied between 40 and 100%, and all analytes were identified within 3 min with UPLC-MS/MS under optimal conditions. It was determined that method detection limits (MDLs) varied between 0.07 and 2.72 µg/L for the antibiotics. In all seasons, the highest beta-lactam group antibiotic concentrations were identified in hospital sewage. The season with the greatest variety of antibiotics in urban wastewater was spring. Clarithromycin and ciprofloxacin were the antibiotics determined at the highest concentration in the influent and effluent of the wastewater treatment plant in all seasons. This study showed that the most widely used beta-lactam group antibiotics were found in high amounts in hospital sewage wastewater but in low concentrations in the treatment plants, and hence, it is seen that the degradability of beta-lactam group antibiotics was high. The presence of clarithromycin, ciprofloxacin, lincomycin, levofloxacin, and trimethoprim antibiotics in hospital sewage in higher amounts and also in inlet and outlet of wastewater treatment plants proves that those are resistant antibiotics.
Collapse
Affiliation(s)
- Bahar Ikizoglu
- Department of Environmental Engineering, Faculty of Engineering, Suleyman Demirel University, Bati Campus, 32260, Cunur, Isparta, Turkey.
| | - Fatma Ilter Turkdogan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
| | - Gurdal Kanat
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
| | - Coskun Aydiner
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| |
Collapse
|
16
|
Rodríguez-González L, Núñez-Delgado A, Álvarez-Rodríguez E, Díaz-Raviña M, Arias-Estévez M, Fernández-Calviño D, Santás-Miguel V. Direct toxicity of six antibiotics on soil bacterial communities affected by the addition of bio-adsorbents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121161. [PMID: 36720341 DOI: 10.1016/j.envpol.2023.121161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Reducing the toxicity caused by antibiotics on bacterial communities in the soil is one of the great challenges of this century. For this, the effectiveness of amending the soil with different bioadsorbents such as crushed mussel shell (CMS), pine bark (PB) and biomass ash (BA), as well as combinations of them (CMS + PB and PB + BA) was studied at different doses (0 g kg-1 to 48 g kg-1). Soil samples were spiked, separately, with increasing doses (0-2000 mg kg-1) of cefuroxime (CMX), amoxicillin (AMX), clarithromycin (CLA), azithromycin (AZI), ciprofloxacin (CIP) and trimethoprim (TMP). Their toxicity on bacterial growth was estimated using the tritium-labeled leucine (3H) incorporation method. Toxicity was observed to behave differently depending on the antibiotic family and bioadsorbent, although in different magnitude and at different doses. The toxicity of β-lactams (AMX and CXM) was reduced by up to 54% when the highest doses of bio-adsorbents were added due to the increase in pH (CMS and BA) and carbon (PB) contribution. Macrolides (CLA and AZI) showed slight toxicity in un-amended soil samples, which increased by up to 65% with the addition of the bio-adsorbents. The toxicity of CIP (a fluoroquinolone) increased with the dose of the bio-adsorbents, reaching up to 20% compared with the control. Finally, the toxicity of TMP (a diaminopyrimidine) slightly increased with the dose of bio-adsorbents. The by-products that increase soil pH are those that showed the highest increases of CLA, AZI, CIP and TMP toxicities. These results could help to prevent/reduce environmental pollution caused by different kinds of antibiotics, selecting the most appropriated bio-adsorbents and doses.
Collapse
Affiliation(s)
- Laura Rodríguez-González
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, 32004, Ourense, Spain
| | - Avelino Núñez-Delgado
- Departamento de Edafoloxía e Química Agrícola, Escola Politécnica Superior de Enxeñaría, Universidade de Santiago de Compostela, Campus Univ, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Departamento de Edafoloxía e Química Agrícola, Escola Politécnica Superior de Enxeñaría, Universidade de Santiago de Compostela, Campus Univ, 27002, Lugo, Spain
| | - Montserrat Díaz-Raviña
- Departamento de Bioquímica del Suelo, Misión Biológica de Galicia (MBG-CSIC), Apartado 122, 15780, Santiago de Compostela, Spain
| | - Manuel Arias-Estévez
- Departamento de Edafoloxía e Química Agrícola, Escola Politécnica Superior de Enxeñaría, Universidade de Santiago de Compostela, Campus Univ, 27002, Lugo, Spain
| | - David Fernández-Calviño
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, 32004, Ourense, Spain
| | - Vanesa Santás-Miguel
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, 32004, Ourense, Spain.
| |
Collapse
|
17
|
Zhang H, Yu Y, Li Y, Lin L, Zhang C, Zhang W, Wang L, Niu L. A novel BC/g-C 3N 4 porous hydrogel carrier used in intimately coupled photocatalysis and biodegradation system for efficient removal of tetracycline hydrochloride in water. CHEMOSPHERE 2023; 317:137888. [PMID: 36657568 DOI: 10.1016/j.chemosphere.2023.137888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Intimately coupled photocatalysis and biodegradation (ICPB) is a promising technology to remove refractory contaminants from water. The key to successful ICPB is a carrier capable of accumulating biofilm and adhering photocatalyst firmly. Herein, BC/g-C3N4 was prepared into a three dimensional porous hydrogel and used as a carrier in ICPB system for the first time. Degradation experiments revealed that the removal rate of tetracycline hydrochloride (TCH) in water by the ICPB system was 96.0% after 10 h, which was significantly higher than that by the photocatalysis (PC, 76.3%), biodegradation (B, 32.5%), adsorption (AD, 17.2%), and photolysis (P, 5.0%) systems. Photo-electrochemical tests confirmed that ICPB system had superior electron transfer ability between photocatalysts and microorganisms. The removal efficiency of COD proved that microorganisms played an important role in the mineralization process of TCH by the ICPB system. After the ICPB degradation experiment, microorganisms maintained high activity and Pseudomonas, Burkholderiaceae and Flavobacterium which had TCH degradation or electron transport ability, were enriched. In conclusion, the novel ICPB carrier overcame shortcomings of the traditional ICPB carrier and the novel ICPB system had superior degradation performance for TCH. This study provided a possible method to promote the practical application of ICPB technology.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Yanan Yu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China.
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei, 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei, 430010, PR China.
| | - Chi Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| |
Collapse
|
18
|
Saddique Z, Imran M, Javaid A, Rizvi NB, Akhtar MN, Iqbal HMN, Bilal M. Enzyme-Linked Metal Organic Frameworks for Biocatalytic Degradation of Antibiotics. Catal Letters 2023. [DOI: 10.1007/s10562-022-04261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
AbstractMetal organic frameworks (MOFs) are multi-dimensional network of crystalline material held together by bonding of metal atoms and organic ligands. Owing to unique structural, chemical, and physical properties, MOFs has been used for enzyme immobilization to be employed in different catalytic process, including catalytic degradation of antibiotics. Immobilization process other than providing large surface provides enzyme with enhanced stability, catalytic activity, reusability, and selectivity. There are various approaches of enzyme immobilization over MOFs including physical adsorption, chemical bonding, diffusion and in situ encapsulation. In situ encapsulation is one the best approach that provides extra stability from unfolding and denaturation in harsh industrial conditions. Presence of antibiotic in environment is highly damaging for human in particular and ecosystem in general. Different methods such as ozonation, oxidation, chlorination and catalysis are available for degradation or removal of antibiotics from environment, however these are associated with several issues. Contrary to these, enzyme immobilized MOFs are novel system to be used in catalytic degradation of antibiotics. Enzyme@MOFs are more stable, reusable and more efficient owing to additional support of MOFs to natural enzymes in well-established process of photocatalysis for degradation of antibiotics aimed at environmental remediation. Prime focus of this review is to present catalytic degradation of antibiotics by enzyme@MOFs while outlining their synthetics approaches, characterization, and mechanism of degradation. Furthermore, this review highlights the significance of enzyme@MOFs system for antibiotics degradation in particular and environmental remediation in general. Current challenges and future perspective of research in this field are also outlined along with concluding comments.
Graphical Abstract
Collapse
|
19
|
Zhou T, Zhang Z, Liu H, Dong S, Nghiem LD, Gao L, Chaves AV, Zamyadi A, Li X, Wang Q. A review on microalgae-mediated biotechnology for removing pharmaceutical contaminants in aqueous environments: Occurrence, fate, and removal mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130213. [PMID: 36283219 DOI: 10.1016/j.jhazmat.2022.130213] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical compounds in aquatic environments have been considered as emerging contaminants due to their potential risks to living organisms. Microalgae-based technology showed the feasibility of removing pharmaceutical contaminants. This review summarizes the occurrence, classification, possible emission sources, and environmental risk of frequently detected pharmaceutical compounds in aqueous environments. The efficiency, mechanisms, and influencing factors for the removal of pharmaceutical compounds through microalgae-based technology are further discussed. Pharmaceutical compounds frequently detected in aqueous environments include antibiotics, hormones, analgesic and non-steroidal anti-inflammatory drugs (NSAIDs), cardiovascular agents, central nervous system drugs (CNS), antipsychotics, and antidepressants, with a concentration ranging from ng/L to μg/L. Microalgae-based technology majorly remove the pharmaceutical compounds through bioadsorption, bioaccumulation, biodegradation, photodegradation, and co-metabolism. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the occurrence and fate of pharmaceutical contaminants in aqueous environments, highlighting the potential of microalgae-based technology for pharmaceutical contaminants removal.
Collapse
Affiliation(s)
- Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shiman Dong
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Li Gao
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Alex V Chaves
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Arash Zamyadi
- Water Research Australia Limited, Adelaide, SA 5001, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
20
|
Alexpandi R, Abirami G, Murugesan B, Durgadevi R, Swasthikka RP, Cai Y, Ragupathi T, Ravi AV. Tocopherol-assisted magnetic Ag-Fe 3O 4-TiO 2 nanocomposite for photocatalytic bacterial-inactivation with elucidation of mechanism and its hazardous level assessment with zebrafish model. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130044. [PMID: 36179621 DOI: 10.1016/j.jhazmat.2022.130044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many endeavours have been prompted with photocatalytic nanomaterials by the need to eradicate pathogenic microorganisms from water bodies. Herein, a tocopherol-assisted Ag-Fe3O4-TiO2 nanocomposite (TAFTN) was synthesized for photocatalytic bacterial inactivation. The prepared TAFTN became active under sunlight due to its narrowed bandgap, inactivating the bacterial contaminants via photo-induced ROS stress. The ROS radicals destroy bacteria by creating oxidative stress, which damages the cell membrane and cellular components such as nucleic acids and proteins. For the first time, the nano-LC-MS/MS-based quantitative proteomics reveals that the disrupted proteins are involved in a variety of cellular functions; the most of these are involved in the metabolic pathway, eventually leading to bacterial death during TAFTN-photocatalysis under sunlight. Furthermore, the toxicity analysis confirmed that the inactivated bacteria seemed to have no detrimental impact on zebrafish model, showing that the disinfected water via TAFTN-photocatalysis is enormously safe. Furthermore, the TAFTN-photocatalysis successfully killed the bacterial cells in natural seawater, indicating the consistent photocatalytic efficacy when recycled repeatedly. The results of this work demonstrate that the produced nanocomposite might be a powerful recyclable and sunlight-active photocatalyst for environmental water treatment.
Collapse
Affiliation(s)
- Rajaiah Alexpandi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Gurusamy Abirami
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Balaji Murugesan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Ravindran Durgadevi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Roshni Prithiviraj Swasthikka
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Thennarasu Ragupathi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India.
| |
Collapse
|
21
|
Removal Efficiency of Sulfapyridine from Contaminated Surface Water by Carboxylated Graphene Oxide Blended PVDF Composite Ultrafiltration Membrane with Activated Carbon. Polymers (Basel) 2022; 14:polym14214779. [DOI: 10.3390/polym14214779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, sulfapyridine (SPY), an antibiotic that is less commonly treated by membrane filtration techniques but is frequently detected in the aqueous environment and at higher concentrations than other detected antibiotics, was selected for investigation. A composite ultrafiltration membrane for the removal of sulfapyridine (SPY) antibiotics from water was fabricated using polyvinylidene fluoride (PVDF), polyvinylpyrrolidone (PVP), and carboxyl-functionalized graphene oxide (CFGO) as additives. The changes in retention rate and pure water flux of sulfapyridine by the composite ultrafiltration membrane were investigated by changing the ratios of the prepared ultrafiltration membrane materials under the conditions of low-pressure operation to explore the optimal experimental conditions. The results showed that the addition of PVP and CFGO significantly increased the number of membrane pores and their pore size. The addition of CFGO in the membrane significantly improved the hydrophilicity of the membrane. The contact angle decreased from 83.7 to 31.6°. Compared to ordinary PVDF ultrafiltration membranes, the membrane’s pure water flux increased nearly three times to 2612.95 L/(m2·h). The removal rate of SPY was 56.26% under the optimal conditions. When the composite ultrafiltration membrane was combined with activated carbon, the removal rate of SPY was 92.67%, which was nine times higher than that of activated carbon alone. At this time, the flux of the composite membrane was 2610.23 L/(m2·h). This study proposes a simple, efficient, and low production cost solution for the removal of sulfapyridine from water.
Collapse
|
22
|
You X, Liu F, Jiang G, Chen S, An B, Cui R. S‐g‐C
3
N
4
/N−TiO
2
@PTFE Membrane for Photocatalytic Degradation of Tetracycline. ChemistrySelect 2022. [DOI: 10.1002/slct.202203024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuehui You
- College of chemistry and chemical engineering China University of Petroleum Qingdao 266580 China
| | - Fang Liu
- College of chemistry and chemical engineering China University of Petroleum Qingdao 266580 China
| | - Guofei Jiang
- College of chemistry and chemical engineering China University of Petroleum Qingdao 266580 China
| | - Shuhua Chen
- College of chemistry and chemical engineering China University of Petroleum Qingdao 266580 China
| | - Beiya An
- College of chemistry and chemical engineering China University of Petroleum Qingdao 266580 China
| | - Rongli Cui
- College of chemistry and chemical engineering China University of Petroleum Qingdao 266580 China
| |
Collapse
|
23
|
Buroni S, Chiarelli LR. Antibiotics' Sustainability: Another Issue in the Fight against Antimicrobial Resistance. Curr Top Med Chem 2022; 22:1979-1981. [PMID: 35578852 DOI: 10.2174/1568026622666220516114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022]
Abstract
The spread of antimicrobial resistance (AMR) is still a major threat to global health that is likely to worsen also as a consequence of the COVID-19 pandemic. For this reason, there is an urgent need to develop new compounds and novel alternative treatments. Furthermore, the new lines of action must consider the issue of antibiotics' sustainability. Within this persrective, we have highlighted the main points on which actions in this perspective are possible.
Collapse
Affiliation(s)
- Silvia Buroni
- Department of Biology & Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology & Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
Bu J, Wan Q, Deng Z, Liu H, Li T, Zhou C, Zhong S. Waste coal cinder catalyst enhanced electrocatalytic oxidation and persulfate advanced oxidation for the degradation of sulfadiazine. CHEMOSPHERE 2022; 303:134880. [PMID: 35584712 DOI: 10.1016/j.chemosphere.2022.134880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Waste coal cinder, a kind of waste cinder discharged from coal combustion of thermal power plants, industrial and civil boilers, and other equipment, was rich in metal oxides with catalytic activity. In this work, waste coal cinder was used to enhance electrochemical coupling peroxymonosulfate (PMS) advanced oxidation degradation of sulfadiazine (SD). The surface morphology, elemental composition, and electrocatalytic activity of waste coal cinder were characterized by various characterization instruments. The results show that compared with simple electrocatalytic oxidation, electrocatalytic oxidation + waste coal cinder and electrocatalytic coupled persulfate oxidation, electrocatalytic oxidation + PMS advanced oxidation + waste coal cinder has the largest removal efficiency (99.95%) and mineralization rates (90.16%) of SD in 90 min, indicating that the introduction of waste coal cinder greatly increases the degradation efficiency. •OH and SO4-• were detected during the process of degradation. The optimal degradation process parameters were explored through different voltage, pH, plate spacing, aeration flow rate, potassium peroxymonosulfate sulfate complex salt dose, and Na2SO4 dosage. Cycling experiments show waste coal cinder has good structural stability. Through the analysis of triple quadrupole liquid chromatography-mass spectrometry (LC-MS), we put forward three possible ways of SD degradation. This research will provide a novel vision for water treatment.
Collapse
Affiliation(s)
- Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Qingqing Wan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Tianhao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
25
|
Hazra M, Joshi H, Williams JB, Watts JEM. Antibiotics and antibiotic resistant bacteria/genes in urban wastewater: A comparison of their fate in conventional treatment systems and constructed wetlands. CHEMOSPHERE 2022; 303:135148. [PMID: 35640694 DOI: 10.1016/j.chemosphere.2022.135148] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
There is a growing concern that the use and misuse of antibiotics can increase the detection of antibiotic resistant genes (ARGs) in wastewater. Conventional wastewater treatment plants provide a pathway for ARGs and antibiotic resistant bacteria (ARB) to be released into natural water bodies. Research has indicated that conventional primary and secondary treatment systems can reduce ARGs/ARB to varying degrees. However, in developing/low-income countries, only 8-28% of wastewater is treated via conventional treatment processes, resulting in the environment being exposed to high levels of ARGs, ARB and pharmaceuticals in raw sewage. The use of constructed wetlands (CWs) has the potential to provide a low-cost solution for wastewater treatment, with respect to removal of nutrients, pathogens, ARB/ARGs either as a standalone treatment process or when integrated with conventional treatment systems. Recently, CWs have also been employed for the reduction of antibiotic residues, pharmaceuticals, and emerging contaminants. Given the benefits of ARG removal, low cost of construction, maintenance, energy requirement, and performance efficiencies, CWs offer a promising solution for developing/low-income countries. This review promotes a better understanding of the performance efficiency of treatment technologies (both conventional systems and CWs) for the reduction of antibiotics and ARGs/ARB from wastewater and explores workable alternatives.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - John B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, United Kingdom
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, United Kingdom
| |
Collapse
|
26
|
Zhou H, Zhao Z, Xu X, Ye M, Cao Z. Enzymatic integrated in-situ advanced anaerobic digestion of sewage sludge for the removal of antibiotics and antibiotic resistance genes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:383-393. [PMID: 35926402 DOI: 10.1016/j.wasman.2022.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) in sewage sludge can cause high ecotoxicological risks in the environment and public health concerns. The aims of this study were to establish enzymatic integrated in-situ advanced anaerobic digestion (AAD) by adding cellulase and papain as well as the two enzymes combined with zero valent iron (ZVI) directly into the anaerobic digesters to explore the removal of antibiotics and ARGs under the mesophilic condition (35 °C). The methane production potential during in-situ AAD was effectively improved. Papain and cellulase at 30 mg/gTSS were most effective in improving antibiotic removal. The removal of sulfamerazine (SMZ) and sulfadiazine (SMR) could reach 89.10 % and 71.75 %. Combined enzymes with ZVI also enhanced the removal of all target antibiotics, especially roxithromycin (ROX), SMZ and SMR most significantly. Except for sul1, tetA and tetB, the removal of ARGs by papain reached 6.33 %-82.15 %. The addition of cellulase effectively improved tetA removal. The combination of biological enzymes further enhanced the removal of qnrS and ermX. The tetG, tetB, sul3, ermX, ermT, qnrS, and aac(6')-IB-CR by combined enzymes with ZVI could even not be detected after digestion. Addition of papain, cellulase, and ZVI caused variations in the dominant bacteria. All target antibiotics presented significant positive correlations with the genera norank_f__Bacteroidetes_vadinHA17, norank_f__norank_o__SJA-15, norank_f__norank_o__Aminicenantales. Redundancy analysis showed archaea Methanosaeta and Candidatus_ Methanoacidiosum genera greatly contributed to antibiotics removal with the combination of enzymes and ZVI. Co-occurrence network analysis indicated the removal of ARGs was mainly based on the changes of existence of host bacteria.
Collapse
Affiliation(s)
- Haidong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ziming Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinxuan Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mixuan Ye
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhengcao Cao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
27
|
Chen L, Li Y, Zhang J, Li M, Yin W, Chen X. Oxidative degradation of tetracycline hydrochloride by Mn2O3/Bi2O3 photocatalysis activated peroxymonosulfate. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Hays JP, Ruiz-Alvarez MJ, Roson-Calero N, Amin R, Murugaiyan J, van Dongen MBM. Perspectives on the Ethics of Antibiotic Overuse and on the Implementation of (New) Antibiotics. Infect Dis Ther 2022; 11:1315-1326. [PMID: 35608734 PMCID: PMC9127288 DOI: 10.1007/s40121-022-00656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
The continuing rise in global antimicrobial resistance is seen by many governments and international organizations as a major threat to worldwide health. This means that many publications have already described the problems concerning the overuse of currently available antibiotics and potential solutions to this crisis, including the development of new alternatives to antibiotics. However, in this manuscript, the authors approach the subject of increasing global antimicrobial resistance from two perspectives not normally covered by previous publications, namely the ethical use of antibiotics and potential issues relating to the implementation of new antibiotics.
Collapse
Affiliation(s)
- John P Hays
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, the Netherlands.
| | - Maria Jose Ruiz-Alvarez
- Research Coordination and Support Service (CORI), National Institute of Health (ISS) Viale Regina-Elena, 299, Rome, Italy
| | | | - Rohul Amin
- James P Grant School of Public Health, BRAC University, Dhaka, Bangladesh
| | | | | | | |
Collapse
|
29
|
Effect of Acid–Base Modified Biochar on Chlortetracycline Adsorption by Purple Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14105892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We used three purple soil (Hechuan, Jialing, and Cangxi) samples from the Jialing River basin as the research objects and added different proportions of an acid–base modified Alternanthera philoxeroides biochar (Cm) to the purple soil to study the effect of Cm on the adsorption of chlortetracycline (CTC) in the purple soil. The results indicated the following: (1) At 30 °C and pH = 6, the soil adsorption capacity increased with an increasing initial concentration of CTC. The maximum adsorption amount of CTC for each tested sample was in the range of 2054.63–3631.21 mg/kg, and the adsorption capacity in different Cm amended soils was ranked in the order of 10% Cm > 5% Cm > 2% Cm > CK. The adsorption capacity of CTC increased with an increase in the proportion of Cm. Furthermore, under the same addition ratio of Cm, Hechuan soil was found to have a better adsorption effect for CTC than Jialing and Cangxi soil. (2) The Langmuir model was the most suitable for fitting the adsorption behavior of CTC on different purple soils, and the fitting coefficients were all greater than 0.9, indicating that the adsorption of CTC on each soil sample occurred via monolayer adsorption. The thermodynamic experiment results showed that an increase in temperature was beneficial to the process of CTC adsorption, which was a spontaneous, endothermic, and entropy-adding process. (3) At pH = 6, the ionic strength ranged from 0.01 to 0.5 mol/L and the adsorption capacity of CTC of the soil samples decreased with an increase in ionic strength. In the range of pH 2–10, the adsorption capacity of CTC in all the soil samples decreased with an increase in pH. The inhibition capacity of CTC in the soil samples under acidic conditions was notably higher than that under alkaline conditions.
Collapse
|
30
|
Saibi S, Haroune L, Savary O, Bellenger JP, Cabana H. Impact of Pharmaceutical Compounds in the Bioremediation of Municipal Biosolids by the White-Rot-Fungi Trametes hirsuta. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:896043. [PMID: 37746222 PMCID: PMC10512397 DOI: 10.3389/ffunb.2022.896043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 09/26/2023]
Abstract
The potential of microorganisms for the treatment of municipal biosolids is continuously growing. The present studies evaluated the potency of Trametes hirsuta for the reduction in biosolid mass, production of extracellular enzymes, and removal of pharmaceutical compounds (PhACs) in biosolid slurry in the presence and absence of spiked PhACs [5 non-steroidal anti-inflammatories (NSAIs) and 2 psychoactive compounds (PACs)]. Toxicity after 35 days of fungal treatment was also assessed. Results showed that the growth of T. hirsuta is limited above 25% and wholly inhibited above 50% of biosolids in the slurry. At 12% of biosolid concentration, biosolid mass was reduced by 90%, NSAIs were entirely removed, but PACs' removal was only ~20%. Increasing biosolid content to 25% did not markedly affect biosolid reduction but significantly enhanced the removal of PACs (>50%). Results also showed that both PhACs and biosolids induced the production of oxidative enzymes. In 12% biosolids in the slurry, the oxidative potential measured by the ABTS assay (OABTS) reached 5,000 mM of OABTS in the presence of PhACs, and 2,500 mM of OABTS without PhACs, as compared to 1,200 mM of OABTS in control culture. Finally, we report that white rot fungi (WRF) treatment significantly decreased the toxicity of the biosolids.
Collapse
Affiliation(s)
- Sabrina Saibi
- Universitéde Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lounès Haroune
- Sherbrooke Pharmacology Institute, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Savary
- Universitéde Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Hubert Cabana
- Universitéde Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
31
|
Cela-Dablanca R, Barreiro A, Rodríguez-López L, Santás-Miguel V, Arias-Estévez M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A. Amoxicillin Retention/Release in Agricultural Soils Amended with Different Bio-Adsorbent Materials. MATERIALS 2022; 15:ma15093200. [PMID: 35591534 PMCID: PMC9100866 DOI: 10.3390/ma15093200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022]
Abstract
The antibiotic amoxicillin (AMX) may reach soils and other environmental compartments as a pollutant, with potential to affect human and environmental health. To solve/minimize these hazards, it would be clearly interesting to develop effective and low-cost methods allowing the retention/removal of this compound. With these aspects in mind, this work focuses on studying the adsorption/desorption of AMX in different agricultural soils, with and without the amendment of three bio-adsorbents, specifically, pine bark, wood ash and mussel shell. For performing the research, batch-type experiments were carried out, adding increasing concentrations of the antibiotic to soil samples with and without the amendment of these three bio-adsorbents. The results showed that the amendments increased AMX adsorption, with pine bark being the most effective. Among the adsorption models that were tested, the Freundlich equation was the one showing the best fit to the empirical adsorption results. Regarding the desorption values, there was a decrease affecting the soils to which the bio-adsorbents were added, with overall desorption not exceeding 6% in any case. In general, the results indicate that the bio-adsorbents under study contributed to retaining AMX in the soils in which they were applied, and therefore reduced the risk of contamination by this antibiotic, which can be considered useful and relevant to protect environmental quality and public health.
Collapse
Affiliation(s)
- Raquel Cela-Dablanca
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; (A.B.); (M.J.F.-S.); (E.Á.-R.); (A.N.-D.)
- Correspondence: ; Tel.: +34-982823145
| | - Ana Barreiro
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; (A.B.); (M.J.F.-S.); (E.Á.-R.); (A.N.-D.)
| | - Lucia Rodríguez-López
- Soil Science and Agricultural Chemistry, Faculty Sciences, University Vigo, 32004 Ourense, Spain; (L.R.-L.); (V.S.-M.); (M.A.-E.)
| | - Vanesa Santás-Miguel
- Soil Science and Agricultural Chemistry, Faculty Sciences, University Vigo, 32004 Ourense, Spain; (L.R.-L.); (V.S.-M.); (M.A.-E.)
| | - Manuel Arias-Estévez
- Soil Science and Agricultural Chemistry, Faculty Sciences, University Vigo, 32004 Ourense, Spain; (L.R.-L.); (V.S.-M.); (M.A.-E.)
| | - María J. Fernández-Sanjurjo
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; (A.B.); (M.J.F.-S.); (E.Á.-R.); (A.N.-D.)
| | - Esperanza Álvarez-Rodríguez
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; (A.B.); (M.J.F.-S.); (E.Á.-R.); (A.N.-D.)
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; (A.B.); (M.J.F.-S.); (E.Á.-R.); (A.N.-D.)
| |
Collapse
|
32
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
33
|
Li D, Hua T, Li X, Cheng J, Du K, Hu Y, Chen Y. In-situ fabrication of ionic liquids/MIL-68(In)-NH 2 photocatalyst for improving visible-light photocatalytic degradation of doxycycline hydrochloride. CHEMOSPHERE 2022; 292:133461. [PMID: 34974040 DOI: 10.1016/j.chemosphere.2021.133461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Metal-organic framework (MOFs)-based composites have been popular in photocatalysis due to their outstanding physicochemical properties, such as large surface area, high activity and good transmission properties. Herein, a method of ionic liquids (ILs)-assisted synthesis of IL/MIL-68(In)-NH2 composite materials were proposed, and composites were used for visible light catalytic degradation of doxycycline hydrochloride (DOXH). The effects of four kinds of ionic liquids on the structure and photocatalytic properties of the composites were explored, including diethylenetriamine acetate ([DETA][OAc]), diethylenetriamine hexafluorophosphate ([DETA][PF6]), 1-ethyl-3-methylimidazole acetate ([EMIM][OAc]) and 1-ethyl-3-methylimidazole hexafluorophosphate ([EMIM][PF6]). The results show that the introduction of different ionic liquids affects the grain growth of MOFs material and photocatalytic activity. Among them, ILDAc/MIL-68(In)-NH2 samples showed the highest photocatalytic activity. 92% removal rate of doxycycline hydrochloride and kinetic degradation constant (0.00918 min-1) was observed under the optimal addition of ILDAc (10 wt%), which was 4.6 times that of MIL-68(In)-NH2. The enhancement was attributed to a combined effect of efficient adsorption at low concentration, an increase of active sites, and efficient charge transfer. In addition, the effects of pH and initial concentration were investigated. Finally, the photocatalytic mechanism of DOXH was elucidated, and the possible intermediate products and degradation pathways were discussed. Considering the excellent photostability and ultra-fast photodegradation of ILDAc/MIL-68(In)-NH2, this study opens up a new prospect for the preparation of ionic liquids functionalized MOFs with wide practical application value.
Collapse
Affiliation(s)
- Dongmei Li
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Tao Hua
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoman Li
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianhua Cheng
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; South China Institute of Collaborative Innovation, Dongguan, 523808, China.
| | - Kesi Du
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Yongyou Hu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuancai Chen
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
34
|
Synthesis and characterization of CoFe2O4/SiO2/Cu-MOF for degradation of methylene blue through catalytic sono-Fenton-like reaction. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Rizvi SG, Ahammad SZ. COVID-19 and antimicrobial resistance: A cross-study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150873. [PMID: 34634340 PMCID: PMC8500695 DOI: 10.1016/j.scitotenv.2021.150873] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 05/03/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as a severe concern due to the escalating instances of resistant human pathogens encountered by health workers. Consequently, there is a shortage of antibiotics to treat Multidrug Resistance (MDR) and Extensively Drug Resistance (XDR) patients. The primary cause of AMR is the vast array of anthropogenic disturbances in natural microfauna brought about by the extensive use of antibiotics. Coronavirus Disease of 2019 (COVID-19) has crashed antibiotic stewardship and single-handedly increased the global usage of antibiotics, Personal Protective Equipment (PPE), and biocide, causing a ripple effect in the existing global AMR problem. This surge in antibiotic usage has escalated the residual antibiotics reaching Wastewater Treatment Plants (WWTPs) from pharmaceutical companies, health care centers, and domestic settings. Ultimately the natural water bodies receiving their effluents will have higher concentrations of emerging contaminants as the WWTPs cannot remove the Pharmaceuticals and Personal Care Products (PPCPs) completely. Furthermore, increased biocides usage will increase AMR by co-resistance, and increasing plastics will turn into microplastics and get converted to plastisphere, which will further enhance its propagation. Therefore, it is crucial to curb antibiotic usage, implement antibiotic stewardship dynamically; and, ameliorate the present condition of WWTPs to remove residual PPCPs efficiently. The need of the hour is to address the grave threat of AMR, which is loitering silently; if not the mankind will endure more affliction hereafter.
Collapse
Affiliation(s)
| | - Shaikh Ziauddin Ahammad
- Block I, Room # 135, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
36
|
Chang SH, Lu CC, Lin CW, Wang KS, Lee MW, Liu SH. Waste expanded polystyrene modified with H 2SO 4/biodegradable chelating agent for reuse: As a highly efficient adsorbent to remove fluoroquinolone antibiotic from water. CHEMOSPHERE 2022; 288:132619. [PMID: 34678352 DOI: 10.1016/j.chemosphere.2021.132619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Untreated wastewater containing fluoroquinolone antibiotics poses serious hazards to aquatic species and human health; therefore, treatment of waste expanded polystyrene (EPS) is a crucial environmental matter. In this study, waste EPS was modified with a H2SO4/biodegradable chelating agent, [S,S]-ethylenediamine-N,N'-disuccinic acid (EDDS), and used for highly efficient adsorption of the fluoroquinolone antibiotic ciprofloxacin. When ciprofloxacin of 25 mg/L was used, the H2SO4-modified EPS (EPSH2SO4) adsorbed 60.5% of the ciprofloxacin. During sulfonation, adding a low dose of EDDS markedly improved the adsorption ability of EPSH2SO4+EDDS. The optimal modification conditions were 95% H2SO4, 0.002 M EDDS, 80 °C, and 40 min. The increased adsorbent doses enhanced the adsorption. Approximately 0.2 g/L of EPSH2SO4+EDDS could effectively adsorb 97.8% of the ciprofloxacin (554.3 mg/g) within 30 min. Solution pH0 greatly influenced the adsorption, and the most suitable pH0 was 6. The Langmuir isotherm accurately described the adsorption behaviors of both EPSH2SO4 and EPSH2SO4+EDDS (R2 = 0.997-0.998). The adsorption ability of EPSH2SO4+EDDS (qmax = 1250 mg/g) was 32 times higher than that of EPSH2SO4 (qmax = 38.6 mg/g). A total of 1 M HCl effectively regenerated the exhausted adsorbent. The optimal solid/liquid ratio and time were 0.08 g/20 mL and 60 min, respectively. The regenerated EPSH2SO4+EDDS maintained a high adsorption ability (87.2%) after 10 regeneration cycles. The results thus indicate that the EPSH2SO4+EDDS adsorption-regeneration process is a potential approach to remove ciprofloxacin from water.
Collapse
Affiliation(s)
- Shih-Hsien Chang
- Department of Public Health, Chung-Shan Medical University, Taichung, 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Chun-Cheng Lu
- Department of Public Health, Chung-Shan Medical University, Taichung, 402, Taiwan
| | - Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan
| | - Kai-Sung Wang
- Department of Public Health, Chung-Shan Medical University, Taichung, 402, Taiwan
| | - Ming-Wei Lee
- Department of Medical Laboratory and Biotechnology, Chung-Shan Medical University, Taichung, 402, Taiwan
| | - Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan.
| |
Collapse
|
37
|
Abstract
Improved Cost-Benefit Analysis (CBA) analysis requires a broader analytical framework, in order to perceive each project individually from the perspective of potentially measurable and significant effects on the environment and society as a whole. The main goal of our paper is to assess the financial and economic justification for variant V3 (as the most technically optimal) of the wastewater treatment plant (WWTP) construction project in Nov Dojran, North Macedonia, with the purpose of advancing municipal infrastructure and environmental benefits from improved water treatment. Based on the economic analysis conducted, we conclude that the investment in the WWTP project is justified, because the economic internal rate of return is higher than the opportunity cost of capital (EIRR = 16.38%), the economic net present value is higher than 0, and EBCR (benefit-cost ratio) is greater than 1 (EBCR = 2.11). The highest environmental benefit of 49.2% in total environmental benefits is associated with nitrogen, while phosphorus is the next pollutant in the structure of environmental benefits at 46.1%. The environmental benefits of removing biological oxygen demand (BOD) and chemical oxygen demand (COD) are significantly less important, despite the removal of significant amounts of these pollutants during treatment. The situation is similar with suspended particles.
Collapse
|
38
|
Insights into removal of antibiotics by selected microalgae (Chlamydomonas reinhardtii, Chlorella sorokiniana, Dunaliella tertiolecta and Pseudokirchneriella subcapitata). ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Xie R, Fan J, Fang K, Chen W, Song Y, Pan Y, Li Y, Liu J. Hierarchical Bi 2MoO 6 microsphere photocatalysts modified with polypyrrole conjugated polymer for efficient decontamination of organic pollutants. CHEMOSPHERE 2022; 286:131541. [PMID: 34293565 DOI: 10.1016/j.chemosphere.2021.131541] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
To effectively degrade organic pollutants in wastewater, visible-light-driven Bi2MoO6/PPy hierarchical heterogeneous photocatalysts were prepared through a solvothermal method and the following in-situ chemical oxidation polymerization. Compared with pristine Bi2MoO6 photocatalyst, the composite photocatalysts exhibited dramatically improved photocatalytic activity and photostability towards the degradation of methylene blue dye and tetracycline antibiotic. Bi2MoO6/PPy-80 sample achieved the highest photocatalytic degradation rates for methylene blue dye (93.6%) and tetracycline antibiotic (88.3%) under visible light irradiation. These two organic pollutants could be completely degraded into nontoxic small molecules according to in-depth HPLC-MS analysis of degradation products. The transient photocurrent responses, electrochemical impedance spectra, and photoluminescence spectra demonstrated that the introduction of PPy nanoparticles on the surface of Bi2MoO6 nanosheets could effectively accelerate the separation of photo-generated electron-hole pairs. Furthermore, a possible synergetic photocatalytic mechanism was put forward based on the electron spin resonance and XPS valence-band spectra. This work indicated that construction of hierarchical composite photocatalysts combining polypyrrole conductive polymer and Bi2MoO6 semiconductor in nanoscale is an efficient approach to improve photocatalytic activity for environmental remediation.
Collapse
Affiliation(s)
- Ruyi Xie
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, PR China; Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, PR China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, 266071, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, 271001, PR China.
| | - Jianing Fan
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, PR China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, 266071, PR China
| | - Kuanjun Fang
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, PR China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, 266071, PR China
| | - Weichao Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, PR China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, 266071, PR China
| | - Yawei Song
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, PR China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, 266071, PR China
| | - Ying Pan
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, PR China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, 266071, PR China
| | - Yingzhan Li
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jianxun Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, PR China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, 266071, PR China
| |
Collapse
|
40
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
41
|
Yan B, Huang X, Chen K, Liu H, Wei S, Wu Y, Wang L. A study of synergetic carrier emulsion liquid membrane for the extraction of amoxicillin from aqueous phase using response surface methodology. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Kosar Hashemi Y, Tavakkoli Yaraki M, Ghanbari S, Heidarpoor Saremi L, Givianrad MH. Photodegradation of organic water pollutants under visible light using anatase F, N co-doped TiO 2/SiO 2 nanocomposite: Semi-pilot plant experiment and density functional theory calculations. CHEMOSPHERE 2021; 275:129903. [PMID: 33647684 DOI: 10.1016/j.chemosphere.2021.129903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Visible-light driven photocatalysts are of great importance in wastewater treatment. In this work, fluorine and nitrogen co-doped titanium dioxide/silica nanocomposite (F-N-TiO2/SiO2) was synthetized using a sol-gel approach. The as-developed nanocomposite was well characterized using different techniques. In particular, an anatase structure with high surface area (345.69 m2/g) and a band gap of 2.97 eV were observed for the as-synthesized nanocomposite, which makes it a potential candidate for photocatalytic applications under visible light. A systematic density functional theory calculation was performed to get more insight into the effect of dopant atoms on the band gap of TiO2 nanoparticles. To enhance the reusability of the photocatalyst in semi-pilot scale, the as-developed nanocomposite was immobilized onto the glass beads by coupling dip-coating and heat attachment methods. A semi-pilot scale custom-designed fixed-bed photoreactor was used to evaluate the photocatalytic performance of the as-developed nanocomposite under both visible and solar irradiations. A mixture of three azo dyes (i.e., basic red 29, basic blue 41 and basic yellow 51) was used as the model industrial wastewater. The analysis of the wastewater showed that the complete removal of the pollutants under visible light and sunlight can occurred at pH of 3 and flow rate of 280 mL/min. The durability results demonstrated the successful degradation of the pollutants for five cycles. The results of this study show how careful controlling the operational parameters as well as using a highly photocatalytic nanomaterial can lead to successful decontamination of organic water pollutants. This approach might open up new windows to the future applications of photocatalytic nanomaterials for wastewater treatment.
Collapse
Affiliation(s)
- Yeganeh Kosar Hashemi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Sina Ghanbari
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leily Heidarpoor Saremi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Mohammad Hadi Givianrad
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
43
|
Krakkó D, Illés Á, Licul-Kucera V, Dávid B, Dobosy P, Pogonyi A, Demeter A, Mihucz VG, Dóbé S, Záray G. Application of (V)UV/O 3 technology for post-treatment of biologically treated wastewater: A pilot-scale study. CHEMOSPHERE 2021; 275:130080. [PMID: 33667764 DOI: 10.1016/j.chemosphere.2021.130080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/24/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
For the first time, high energy VUV photons and generation of O3 by (V)UV lamps were applied together for removal of active pharmaceutical ingredients (APIs) from biologically treated wastewater (BTWW) in pilot-scale. The core of the pilot container unit was a photoreactor assembly consisting of six photoreactors, each containing a low-pressure Hg lamp (UV dose of 1.2 J/cm2 and 6.6 J/cm2 at 185 nm and 254 nm, respectively). BTWW was irradiated (4.75 min residence time) by (V)UV light in presence of in situ photochemically generated O3 from coolant air of the lamps. Experiments were conducted at the site of two wastewater treatment plants. Out of seven target APIs (namely carbamazepine, ciprofloxacin, clarithromycin, diclofenac, metoprolol, sitagliptin, and sulfamethoxazole), 80-100% removal was accomplished for five and 40-80% for two compounds. Two degradation products of carbamazepine were detected. Degradation products of other target compounds were not found. The applied O3 dose was 30-45 μg O3/mg dissolved organic carbon. Inactivation of up to log-4.8, log-4.5 and log-3.8 could be achieved for total coliform, Escherichia coli and Enterococcus faecalis, respectively. SOS Chromotest indicated no genotoxicity nor acute toxicity. Generation of neither NH4+, NO2- nor NO3- was observed during post-treatment. Electric energy per order values were calculated for the first time for (V)UV/O3 treatment in BTWW with a median value of 1.5 kWh/m3. This technology can be proposed for post-treatment of BTWWs of small settlements or livestock farms to degrade micropollutants before water discharge or for production of irrigation water. Further studies are essential in pilot-scale for other applications.
Collapse
Affiliation(s)
- Dániel Krakkó
- Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter Sétány 1/A, Hungary; Cooperative Research Center for Environmental Sciences, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter Sétány 1/A, Hungary
| | - Ádám Illés
- Green Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117, Budapest, Magyar Tudósok körútja 2, Hungary
| | - Viktória Licul-Kucera
- Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter Sétány 1/A, Hungary; Cooperative Research Center for Environmental Sciences, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter Sétány 1/A, Hungary
| | - Bence Dávid
- Inwatech Environmental Ltd., H-1124, Budapest, Németvölgyi út 114, Hungary
| | - Péter Dobosy
- Centre for Ecological Research, Danube Research Institute, H-1113, Budapest, Karolina út 29-31, Hungary
| | - Andrea Pogonyi
- LightTech Lamp Technology Ltd, H-2120, Dunakeszi, Hegyrejáró utca 1, Hungary
| | - Attila Demeter
- Green Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117, Budapest, Magyar Tudósok körútja 2, Hungary
| | - Victor G Mihucz
- Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter Sétány 1/A, Hungary; Cooperative Research Center for Environmental Sciences, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter Sétány 1/A, Hungary
| | - Sándor Dóbé
- Green Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117, Budapest, Magyar Tudósok körútja 2, Hungary
| | - Gyula Záray
- Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter Sétány 1/A, Hungary; Cooperative Research Center for Environmental Sciences, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter Sétány 1/A, Hungary; Centre for Ecological Research, Danube Research Institute, H-1113, Budapest, Karolina út 29-31, Hungary.
| |
Collapse
|
44
|
Efficacy of Different Waste and By-Products from Forest and Food Industries in the Removal/Retention of the Antibiotic Cefuroxime. Processes (Basel) 2021. [DOI: 10.3390/pr9071151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Environmental pollution due to antibiotics is a serious problem. In this work, the adsorption and desorption of the antibiotic cefuroxime (CFX) were studied in four by-products/residues from the forestry and food industries. For this, batch-type experiments were carried out, adding increasing concentrations of CFX (from 0 to 50 µmol L−1) to 0.5 g of adsorbent. The materials with a pH higher than 9 (mussel shell and wood ash) were those that presented the highest adsorption percentages, from 71.2% (23.1 µmol kg−1) to 98.6% (928.0 µmol kg−1). For the rest of the adsorbents, the adsorption was also around 100% when the lowest concentrations of CFX were added, but the percentage dropped sharply when the highest dose of the antibiotic was incorporated. Adsorption data fitted well to the Langmuir and Freundlich models, with R2 greater than 0.9. Regarding desorption, the materials that presented the lowest values when the highest concentration of CFX was added were wood ash (0%) and mussel shell (2.1%), while pine bark and eucalyptus leaves presented the highest desorption (26.6% and 28.6%, respectively). Therefore, wood ash and mussel shell could be considered adsorbents with a high potential to be used in problems of environmental contamination by CFX.
Collapse
|
45
|
Langbehn RK, Michels C, Soares HM. Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116603. [PMID: 33578315 DOI: 10.1016/j.envpol.2021.116603] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
In this critical review, we explored the most recent advances about the fate of antibiotics on biological wastewater treatment plants (WWTP). Although the occurrence of these pollutants in wastewater and natural streams has been investigated previously, some recent publications still expose the need to improve the detection strategies and the lack of information about their transformation products. The role of the antibiotic properties and the process operating conditions were also analyzed. The pieces of evidence in the literature associate several molecular properties to the antibiotic removal pathway, like hydrophobicity, chemical structure, and electrostatic interactions. Nonetheless, the influence of operating conditions is still unclear, and solid retention time stands out as a key factor. Additionally, the efficiencies and pathways of antibiotic removals on conventional (activated sludge, membrane bioreactor, anaerobic digestion, and nitrogen removal) and emerging bioprocesses (bioelectrochemical systems, fungi, and enzymes) were assessed, and our concern about potential research gaps was raised. The combination of different bioprocess can efficiently mitigate the impacts generated by these pollutants. Thus, to plan and design a process to remove and mineralize antibiotics from wastewater, all aspects must be addressed, the pollutant and process characteristics and how it is the best way to operate it to reduce the impact of antibiotics in the environment.
Collapse
Affiliation(s)
- Rayane Kunert Langbehn
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Camila Michels
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Hugo Moreira Soares
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|