1
|
Ji Y, Hu Q, Zhang X, Ma G, Zhao R, Zhao L. Effects of selenium biofortification on Pleurotus eryngii protein structure and digestive properties and its mitigation of lead toxicity: An in vitro and in vivo study. Food Chem 2024; 459:140391. [PMID: 39024879 DOI: 10.1016/j.foodchem.2024.140391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/13/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
The development of safe and efficient dietary selenium sources to promote lead excretion is of great importance for public health. In this research, proteins from original Pleurotus eryngii (PEP) and Se-enriched P. eryngii (SePEP, Se content: 360.64 ± 3.11 mg/kg) were extracted and purified respectively for the further comparison of structural and digestive characteristics. Caco-2 monolayer membrane, in vitro simulated fermentation and acute lead exposure mice model were constructed to evaluate the effects of PEP and SePEP on lead excretion. The results indicated that Se biofortification significantly altered the amino acid composition and reduced the total sulfhydryl content of proteins (p < 0.05). SePEP could better alleviate lead-induced intestinal barrier damage and inhibit the absorption and accumulation of lead in both cell and mice models. Furthermore, SePEP promoted fecal adsorption and excretion of lead via regulating gut microbiota composition. SePEP can be considered a potentially functional Se source to promote lead excretion.
Collapse
Affiliation(s)
- Yang Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China.
| | - Xueli Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Ruiqiu Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
2
|
Liu ZH, Ai S, Xia Y, Wang HL. Intestinal toxicity of Pb: Structural and functional damages, effects on distal organs and preventive strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172781. [PMID: 38685433 DOI: 10.1016/j.scitotenv.2024.172781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Lead (Pb) is one of the most common heavy metal pollutants that possesses multi-organ toxicity. For decades, great efforts have been devoted to investigate the damage of Pb to kidney, liver, bone, blood cells and the central nervous system (CNS). For the common, dietary exposure is the main avenue of Pb, but our knowledge of Pb toxicity in gastrointestinal tract (GIT) remains quite insufficient. Importantly, emerging evidence has documented that gastrointestinal disorders affect other distal organs like brain and liver though gut-brain axis or gut-liver axis, respectively. This review focuses on the recent understanding of intestinal toxicity of Pb exposure, including structural and functional damages. We also review the influence and mechanism of intestinal toxicity on other distal organs, mainly concentrated on brain and liver. At last, we summarize the bioactive substances that reported to alleviate Pb toxicity, providing potential dietary intervention strategies to prevent or attenuate Pb toxicity.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| |
Collapse
|
3
|
Bhardwaj G, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Tonk RK, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Thangavelu L, Saleem S. The hidden threat: Environmental toxins and their effects on gut microbiota. Pathol Res Pract 2024; 255:155173. [PMID: 38364649 DOI: 10.1016/j.prp.2024.155173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The human gut microbiota (GM), which consists of a complex and diverse ecosystem of bacteria, plays a vital role in overall wellness. However, the delicate balance of this intricate system is being compromised by the widespread presence of environmental toxins. The intricate connection between contaminants in the environment and human well-being has garnered significant attention in recent times. Although many environmental pollutants and their toxicity have been identified and studied in laboratory settings and animal models, there is insufficient data concerning their relevance to human physiology. Consequently, research on the toxicity of environmental toxins in GM has gained prominence in recent years. Various factors, such as air pollution, chemicals, heavy metals, and pesticides, have a detrimental impact on the composition and functioning of the GM. This comprehensive review aims to comprehend the toxic effects of numerous environmental pollutants, including antibiotics, endocrine-disrupting chemicals, heavy metals, and pesticides, on GM by examining recent research findings. The current analysis concludes that different types of environmental toxins can lead to GM dysbiosis and have various potential adverse effects on the well-being of animals. We investigate the alterations to the GM composition induced by contaminants and their impact on overall well-being, providing a fresh perspective on research related to pollutant exposure.
Collapse
Affiliation(s)
- Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Lakshmi Thangavelu
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Santiago MSA, Avellar MCW, Perobelli JE. Could the gut microbiota be capable of making individuals more or less susceptible to environmental toxicants? Toxicology 2024; 503:153751. [PMID: 38354972 DOI: 10.1016/j.tox.2024.153751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Environmental toxicants are chemical substances capable to impair environmental quality and exert adverse effects on humans and other animals. The main routes of exposure to these pollutants are through the respiratory tract, skin, and oral ingestion. When ingested orally, they will encounter trillions of microorganisms that live in a community - the gut microbiota (GM). While pollutants can disrupt the GM balance, GM plays an essential role in the metabolism and bioavailability of these chemical compounds. Under physiological conditions, strategies used by the GM for metabolism and/or excretion of xenobiotics include reductive and hydrolytic transformations, lyase and functional group transfer reactions, and enzyme-mediated functional transformations. Simultaneously, the host performs metabolic processes based mainly on conjugation, oxidation, and hydrolysis reactions. Thus, due to the broad variety of bacterial enzymes present in GM, the repertoire of microbial transformations of chemicals is considered a key component of the machinery involved in the metabolism of pollutants in humans and other mammals. Among pollutants, metals deserve special attention once contamination by metals is a worldwide problem, and their adverse effects can be observed even at very low concentrations due to their toxic properties. In this review, bidirectional interaction between lead, arsenic, cadmium, and mercury and the host organism and its GM will be discussed given the most recent literature, presenting an analysis of the ability of GM to alter the host organism's susceptibility to the toxic effects of heavy metals, as well as evaluating the extent to which interventions targeting the microbiota could be potential initiatives to mitigate the adverse effects resulting from poisoning by heavy metals. This study is the first to highlight the overlap between some of the bacteria found to be altered by metal exposure and the bacteria that also aid the host organism in the metabolism of these metals. This could be a key factor to determine the beneficial species able to minimize the toxicity of metals in future therapeutic approaches.
Collapse
Affiliation(s)
- Marcella S A Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Juliana E Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil.
| |
Collapse
|
5
|
Chen F, Zhu J, Yu L, Zhang Q, Guo M, Tian F, Zhai Q. Effect of Lactiplantibacillus plantarum CCFM8661 on serum metabolites and gut microbiota in a lead-exposed population. Int J Biol Macromol 2024; 261:129815. [PMID: 38296122 DOI: 10.1016/j.ijbiomac.2024.129815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
In this study, we investigated the impact of Lactiplantibacillus plantarum (L. plantarum) CCFM8661 on the gut microbiota, and the serum and fecal metabolomes in lead (Pb)-exposed individuals. The volunteers recruited for this study were divided into two treatment groups, (i) the placebo (control) and (ii) the L. plantarum CCFM8661 treatment groups. The analysis revealed that probiotic intervention reversed some of the changes in Pb exposure-induced intestinal bacterial abundance, including the abundance of Parabacteroides, Bacteroides, Clostridiaceae, and Erysipelotrichaceae. An analysis of the fecal metabolome identified 26 differential metabolites involved in purine metabolism, unsaturated fatty acid metabolism, and other pathways. Serum metabolite analysis showed that L. plantarum CCFM8661 treatment altered the serum metabolite levels of various metabolic pathways, such as the glycerophospholipid, amino acid, and glutathione metabolism pathways. These results suggest that L. plantarum CCFM8661 may have beneficial effects on Pb-exposed populations by modulating the gut microbiota, host serum metabolism, and the metabolism of the gut microbiota.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiamin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
Jiang S, Hu H. Protective effect of chitosan-modified rice porous starch loaded catechin on HT-29 cells exposed to lead ion. Heliyon 2024; 10:e25019. [PMID: 38312581 PMCID: PMC10835365 DOI: 10.1016/j.heliyon.2024.e25019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
To explore how chitosan-modified rice porous starch-loaded catechin (CT@RPS/CS) protects HT-29 cells exposed to lead ions. METHOD The HT-29 cells were treated differently based on their grouping. The effect of CT@RPS/CS on lead-induced toxicity was evaluated using cell proliferation, apoptosis, oxidative stress index, and cytokine tests. RESULTS CT@RPS/CS did not affect the activity, cell apoptosis, oxidative stress level, and related cytokines of HT-29 cells. After exposure to lead, CT@RPS/CS has the potential to enhance cellular activity, minimize apoptosis, and decrease the level of oxidative stress. DISCUSSION CT@RPS/CS not only has no toxicity to cells but also adsorbs lead ions, which protects cells.
Collapse
Affiliation(s)
- Suwei Jiang
- Suwei Jiang, School of Biological, Food and Environmental, Hefei University, Hefei, 230601, Anhui, China
| | - Hailiang Hu
- Hailiang Hu, Department of Blood Transfusion, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| |
Collapse
|
7
|
Tao J, Deng P, Lin M, Chen C, Ma Q, Yang L, Zhang W, Luo Y, Chen S, Pi H, Zhou Z, Yu Z. Long-term exposure to polystyrene microplastics induces hepatotoxicity by altering lipid signatures in C57BL/6J mice. CHEMOSPHERE 2024; 347:140716. [PMID: 37979802 DOI: 10.1016/j.chemosphere.2023.140716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
It is estimated that the life of plastics is hundreds to thousands of years, their lasting properties making plastic debris absorbing toxic chemicals and degrading into microplastics (MPs). The purpose of this study was to explore the effects of exposure to different size (0.08 and 0.5 μm) polystyrene (PS) in mice. After 16 weeks of exposure, it was found that PS-MPs could be identified in the liver. No effect of PS-MPs treatment on body weight was observed. PS-MPs exposure disturbed lipids and lipid-like molecule metabolisms and perturbed the citrate cycle and oxidative phosphorylation. Meanwhile, isocitrate dehydrogenase (ICDHc), nicotinamide adenine dinucleotide -malate dehydrogenase (NAD-MDH), succinate dehydrogenase (SDH), α ketoglutarate dehydrogenase (α-KGDH) activities and adenosine triphosphate (ATP) level were obviously affected by PS-MPs treatment. In addition, significant differences were recorded in catalase (CAT) and malondialdehyde (MDA) levels, indicating that PS-MPs exposure induced an oxidative stress in the liver. In conclusion, our present study provided the first evidence of: (a) long-term exposure to PS-MPs lead to PS-MPs accumulated in the liver and results in liver injury; (b) long-term exposure to PS-MPs disturbs lipids and lipid-like molecule metabolisms; (c) long-term exposure to PS-MPs perturbs citrate cycle and oxidative phosphorylation and leads to oxidative stress in the liver.
Collapse
Affiliation(s)
- Jiawen Tao
- Department of Occupational Health, Army Medical University, Chongqing, 400038, China
| | - Ping Deng
- Department of Occupational Health, Army Medical University, Chongqing, 400038, China
| | - Min Lin
- Department of Occupational Health, Army Medical University, Chongqing, 400038, China
| | - Chunhai Chen
- Department of Occupational Health, Army Medical University, Chongqing, 400038, China
| | - Qinlong Ma
- Department of Occupational Health, Army Medical University, Chongqing, 400038, China
| | - Lingling Yang
- Department of Occupational Health, Army Medical University, Chongqing, 400038, China
| | - Wenjuan Zhang
- Department of Occupational Health, Army Medical University, Chongqing, 400038, China
| | - Yan Luo
- Department of Occupational Health, Army Medical University, Chongqing, 400038, China
| | - Siyu Chen
- Department of Occupational Health, Army Medical University, Chongqing, 400038, China
| | - Huifeng Pi
- Department of Occupational Health, Army Medical University, Chongqing, 400038, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400030, China; Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhengping Yu
- Department of Occupational Health, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
8
|
Tizabi Y, Bennani S, El Kouhen N, Getachew B, Aschner M. Interaction of Heavy Metal Lead with Gut Microbiota: Implications for Autism Spectrum Disorder. Biomolecules 2023; 13:1549. [PMID: 37892231 PMCID: PMC10605213 DOI: 10.3390/biom13101549] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD), a neurodevelopmental disorder characterized by persistent deficits in social interaction and communication, manifests in early childhood and is followed by restricted and stereotyped behaviors, interests, or activities in adolescence and adulthood (DSM-V). Although genetics and environmental factors have been implicated, the exact causes of ASD have yet to be fully characterized. New evidence suggests that dysbiosis or perturbation in gut microbiota (GM) and exposure to lead (Pb) may play important roles in ASD etiology. Pb is a toxic heavy metal that has been linked to a wide range of negative health outcomes, including anemia, encephalopathy, gastroenteric diseases, and, more importantly, cognitive and behavioral problems inherent to ASD. Pb exposure can disrupt GM, which is essential for maintaining overall health. GM, consisting of trillions of microorganisms, has been shown to play a crucial role in the development of various physiological and psychological functions. GM interacts with the brain in a bidirectional manner referred to as the "Gut-Brain Axis (GBA)". In this review, following a general overview of ASD and GM, the interaction of Pb with GM in the context of ASD is emphasized. The potential exploitation of this interaction for therapeutic purposes is also touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
9
|
Zheng Y, Chen M, Zhang Y, Wang G, Zhao H. Lead exposure disrupted ileal barrier of developmental Japanese quails(Coturnix japonica): Histopathological damages, microbiota dysbiosis and immune disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115488. [PMID: 37717353 DOI: 10.1016/j.ecoenv.2023.115488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The gut barrier plays an essential role in maintaining homeostasis and is usually composed of a mechanical barrier, a chemical barrier, an immune barrier, and a biological barrier. However, the impacts of lead (Pb) exposure on avian gut barrier are still unclear. Therefore, the present study tried to determine the toxic effects of Pb on ileal barrier of a biological model-Japanese quail (Coturnix japonica). One-week old quails were exposed to 0, 50, 500 and 1000 ppm Pb in drinking water for 5 weeks. The results showed mechanic barrier in the ileum was disrupted with microstructural deformation featured by epithelial cell abscission, villi contractions and goblet cells reduction as well as ultrastructural changes characterized by swollen mitochondria, blurry tight junctions and microvilli subtraction. Meanwhile, the expression of genes associated with intestinal tight junctions was downregulated in Pb-treated groups indicating tight junction malfunction. Moreover, less mucus and downregulation of expression of mucin2 (Muc2) and Krüppel-like factor 4 (Klf4) indicated chemical barrier disturbance by Pb. In addition, the alteration of microbial diversity and emergence of pathogen bacteria suggested ileal biological barrier disruption by Pb. Furthermore, Pb caused immune dysfunction in the ileum through promoting the expression of pro-inflammatory factors including interleukin 1 beta (IL-1β), interleukin 6 (IL-6), Interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and nuclear factor kappa B (NF-κB) and inhibiting the expression of anti-inflammatory factor interleukin 10 (IL-10). The present study demonstrated that Pb may pose health risks to birds through gut barrier damages.
Collapse
Affiliation(s)
- Ying Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mingcun Chen
- AP Center, Changzhou Senior High School of Jiangsu Province, Changzhou 213000, China
| | - Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Gang Wang
- AP Center, Changzhou Senior High School of Jiangsu Province, Changzhou 213000, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
10
|
Yang CS, Lai YY, Tsai CC. Investigating the Effectiveness of Exopolysaccharide-Producing Lactic Acid Bacteria in Biosorbing Lead (II), Attaching to Caco-2 Cells, and Provoking Antiinflammatory Responses. J Food Prot 2023; 86:100106. [PMID: 37211248 DOI: 10.1016/j.jfp.2023.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Lead is a common toxic heavy metal with harmful effects on the human body and is widely used in several industries. It can contaminate the environment by air and water emissions and can enter the human body through the respiratory tract, ingestion, or skin contact. Lead is considered as a persistent environmental pollutant, with a half-life of 30 days in the blood, and exists in the skeletal system for decades and causes damage to other systems. Biosorption is receiving increasing attention. Due to its high efficiency and economic value in removing heavy metals from the environment, a variety of biosorption methods can be used for the removal of heavy metals. Lactic acid bacteria (LAB) strains were capable of attaching to both human skin stratum corneum HaCaT cells and human rectal cancer Caco-2 cells. NBM-04-10-001 and NBM-01-07-003 significantly reduced the secretion of IL-6 and IL-8 after coculture with HaCaT cells. In the immune response of RAW264.7 mouse macrophages, high bacterial counts reduced the concentrations of IL-6 and TNF-α in a dose-dependent manner. The results of animal experiments revealed that feeding lead solution exerted no effect on the animal's food intake, and feeding PURE LAC NBM11 powder could effectively remove lead content in the blood. The group fed with PURE LAC NBM11 powder showed significantly less damage and lesions to liver cells. The LAB powder developed in this study has the potential to bind metals, preventing them from entering the body and protecting the host. LAB can be an ideal strain for future bioadsorption chelators.
Collapse
Affiliation(s)
- Chieh-Sheng Yang
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung City 43302, Taiwan
| | - Yong-Yu Lai
- Native Biomedical Co., Ltd., Xinshi District, Tainan City 74442, Taiwan
| | - Cheng-Chih Tsai
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung City 43302, Taiwan.
| |
Collapse
|
11
|
Tian Y, Pan Z, Lan L, Chang Y, Zhao T, Fu Z, Wu S, Deng T, Cao M, Wang W, Bi Y, Yang R, Yang Lee BJ, Liu Q. Amelioration of intestinal barrier function and reduction of blood lead level in adult women with recurrent spontaneous abortion by a novel product of dietary fiber mixture, Holofood. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:63. [PMID: 37420277 DOI: 10.1186/s41043-023-00394-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/29/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND The elevated circulating toxins secondary to the impairment of intestinal barrier integrity commonly elicit a chronic inflammatory response and finally contribute to multiple diseases. These toxins, including bacterial by-products and heavy metals, are the potent risk factors for the development of recurrent spontaneous abortion (RSA). Preclinical evidence suggests that several dietary fibers can restore intestinal barrier function and decrease the accumulation of heavy metals. However, it is uncertain whether treatment with a newly developed blend of dietary fibers product (Holofood) benefits patients with RSA. METHODS In this trial, we enrolled 70 adult women with RSA, who were randomly assigned into the experiment group and the control group in a 2:1 ratio. Upon the basis of conventional therapy, subjects in the experiment group (n = 48) received 8 weeks oral administration with Holofood three times daily at a dose of 10 g each time. Subjects without Holofood consumption were set as the control (n = 22). Blood samples were collected for the determinations of metabolic parameters, heavy mental lead, and the indices related to intestinal barrier integrity (D-lactate, bacterial endotoxin, and diamine oxidase activity). RESULTS The reduction amplitude in blood lead from baseline to week 8 was 40.50 ± 54.28 (μg/L) in the experiment group as compared with 13.35 ± 36.81 (μg/L) in the control group (P = 0.037). The decreased level of serum D-lactate from baseline to week 8 was 5.58 ± 6.09 (mg/L) in the experiment group as compared with - 2.38 ± 8.90 (mg/L, P < 0.0001) in the control group. The change in serum DAO activity from baseline to week 8 was 3.26 ± 2.23 (U/L) in the experiment group as compared with - 1.24 ± 2.22 (U/L, P < 0.0001) in the control group. Participants who received Holofood had a greater decline in blood endotoxin from baseline to week 8 than those in the control group. Moreover, by comparing with the self-baseline, Holofood consumption significantly decreased the blood levels of lead, D-lactate, bacterial endotoxin, and DAO activity. CONCLUSION Our results suggest that Holofood affords a clinically relevant improvements in blood lead level and intestinal barrier dysfunction in patients with RSA.
Collapse
Affiliation(s)
- Ye Tian
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518053, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Liling Lan
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China
| | - Yuxiao Chang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ting Zhao
- Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Zhihong Fu
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China
| | - Shuhua Wu
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China
| | - Tianqin Deng
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China
| | - Meilan Cao
- Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518053, China
| | - Weizhou Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100007, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - B J Yang Lee
- Beijing Future Science & Technology Development Co., Ltd., Rm. 1702A #1 Guanhu International Plaza, 105 Yaojiayuan Road, Chaoyang District, Beijing, 100025, China.
| | - Qingzhi Liu
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China.
- Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518053, China.
| |
Collapse
|
12
|
Qiu T, Jiang Z, Chen X, Dai Y, Zhao H. Comorbidity of Anxiety and Hypertension: Common Risk Factors and Potential Mechanisms. Int J Hypertens 2023; 2023:9619388. [PMID: 37273529 PMCID: PMC10234733 DOI: 10.1155/2023/9619388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
Anxiety is more common in patients with hypertension, and these two conditions frequently coexist. Recently, more emphasis has been placed on determining etiology in patients with comorbid hypertension and anxiety. This review focuses on the common risk factors and potential mechanisms of comorbid hypertension and anxiety. Firstly, we analyze the common risk factors of comorbid hypertension and anxiety including age, smoking, alcohol abuse, obesity, lead, and traffic noise. The specific mechanisms underlying hypertension and anxiety were subsequently discussed, including interleukin (IL)-6 (IL-6), IL-17, reactive oxygen species (ROS), and gut dysbiosis. Increased IL-6, IL-17, and ROS accelerate the development of hypertension and anxiety. Gut dysbiosis leads to hypertension and anxiety by reducing short-chain fatty acids, vitamin D, and 5-hydroxytryptamine (5-HT), and increasing trimethylamine N-oxide (TAMO) and MYC. These shared risk factors and potential mechanisms may provide an effective strategy for treating and preventing hypertension and comorbid anxiety.
Collapse
Affiliation(s)
- Tingting Qiu
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The Central Hospital of Changsha City, Hengyang Medical School, University of South China, Changsha, Hunan 410000, China
| | - Zhiming Jiang
- Department of Cardiology, The Fourth Hospital of Changsha, Changsha, Hunan 410006, China
| | - Xuancai Chen
- Urinary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Yehua Dai
- Nursing College, University of Xiangnan, Chenzhou, Hunan 423000, China
| | - Hong Zhao
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
13
|
DuPont HL, Sajadi MM, Mackowiak PA. Death of a medical colossus: The course, cause and fatal outcome of Avicenna's colic. Am J Med Sci 2023; 365:409-412. [PMID: 36608846 DOI: 10.1016/j.amjms.2022.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
Abu-'Ali al-Husayn ibn Abdallah ibn-Sina (known in the West as Avicenna) is revered in much of Asia as one of history's greatest physicians. And yet, few westerners know of him, his iconic Canon of Medicine or the role he played in preserving ancient Greek medical knowledge following the sack of Rome. We briefly review Avicenna's impressive legacy and provide what to our knowledge is the first critical examination of the illness responsible for his death at age 58 years.
Collapse
Affiliation(s)
- Herbert L DuPont
- The University of Texas School of Public Health and the McGovern School of Medicine, Houston, TX, USA
| | - Mohammad M Sajadi
- The Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip A Mackowiak
- The Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Hua H, Huang L, Yang B, Jiang S, Zhang Y, Liu J, Yan C, Xu J. The mediating role of gut microbiota in the associations of prenatal maternal combined exposure to lead and stress with neurodevelopmental deficits in young rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114798. [PMID: 36948003 DOI: 10.1016/j.ecoenv.2023.114798] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Prenatal single and combined exposure to lead (Pb) and stress (Ps) impairs neurodevelopment. Prenatal single exposure to Pb or Ps affects the composition of intestinal microbiota, and bidirectional communication between gut microbiota and central nervous system has been well recognized. However, whether gut microbiota mediated the effects of prenatal Pb+Ps co-exposure on neurodevelopmental deficits remains unclear. This study established rat models with prenatal single and combined exposure to Ps and Pb. We investigated the effects of such prenatal single and combined exposure on hippocampal structures using morphological analyses, on learning/memory using the Morris-water-maze test, and on fecal microbiota using 16S rRNA sequencing. The mediating roles of gut microbiota were analyzed using the bootstrap method. The study found both single and combined exposure affected hippocampal ultra-structures and spatial learning/memory, and the most significant impairments were observed in the Pb+Ps group. Prenatal Pb+Ps co-exposure decreased fecal microbial alpha/beta-diversity. Significantly lower levels of B/F-ratio, class-Bacteroidia, order-Bacteroidales, and family-S24-7, and significantly higher levels of class-Bacilli, order-Lactobacillales, family-Lactobacillaceae, and genus-Lactobacillus were observed in the co-exposure group, compared with the controls. Increased relative abundances of genus-Helicobacter mediated the detrimental effect of prenatal Ps+Pb co-exposure on learning/memory [β (95%CI) for the total and indirect effects: - 10.70 (-19.19, -2.21) and - 4.65(-11.07, -1.85)], accounting for 43.47% of the total effect. As a result, increased relative abundances of genus-Lactobacillus alleviated the adverse effects of the co-exposure on learning/memory, and the alleviation effect accounted for 44.55% of the direct effect [β (95%CI) for the direct and indirect effects: - 0.28(-0.48, -0.08) and 0.13(0.01, 0.41)]. This study suggested that prenatal combined exposure to Pb and Ps induced more impairments in offspring gut microbiota and neurodevelopment than single exposure, and alterations in fecal microbiome may mediate the developmental neurotoxicity induced by such prenatal co-exposure.
Collapse
Affiliation(s)
- Hui Hua
- The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Lihua Huang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20092, China
| | - Bo Yang
- Neurosurgery Department, Shanghai Children's Medical Center Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai 200127, China
| | - Shiwei Jiang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20092, China
| | - Yijing Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20092, China
| | - Junxia Liu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20092, China
| | - Chonghuai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20092, China
| | - Jian Xu
- The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20092, China.
| |
Collapse
|
15
|
Wang Y, Zhou H, Che Y, Wan X, Ding X, Zheng S, Wu C, Qin M, Xu Y, Yu Y, Kulyar MFEA, Li K, Wu Y. Emblica officinalis mitigates intestinal toxicity of mice by modulating gut microbiota in lead exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114648. [PMID: 36812873 DOI: 10.1016/j.ecoenv.2023.114648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Lead (Pb) contamination has been affecting public health for decades. As a plant-derived medicine, the safety and effectiveness of Emblica officinalis (E. officinalis) fruit extract has been emphasized. The current study focused on mitigating the adverse effects of lead (Pb) exposure in reducing its toxicity worldwide. According to our findings, E. officinalis significantly improved weight loss and colon length shortening (p < 0.05 or p < 0.01). The data of colon histopathology and serum levels of inflammatory cytokines indicated a positive impact to the colonic tissue and inflammatory cell infiltration in a dose-dependent manner. Moreover, we confirmed the expression level improvement of tight junction proteins (TJPs), including ZO-1, Claudin-1, and Occludin. Furthermore, we found that the abundance of some commensal species necessary for maintaining homeostasis and other beneficial function decreased in Pb exposure model, while a remarkable reversion impact was noticed on the intestinal microbiome composition in the treatment group. These findings were consistent with our speculations that E. officinalis could mitigate the adverse effects caused by Pb in alleviating intestinal tissue damage, intestinal barrier disruption, and inflammation. Meanwhile, the variations in gut microbiota might drive the fulfilling current impact. Hence, the present study could provide the theoretical basis for mitigating intestinal toxicity induced by Pb exposure with the help of E. officinalis.
Collapse
Affiliation(s)
- Yaping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanyun Che
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Xin Wan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoxue Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shengnan Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chenyang Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Miao Qin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanling Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Yu
- Department of Anesthesiology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing 210029, PR China
| | - Muhammad Fakhar-E-Alam Kulyar
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
16
|
Hu L, Zhao Y, Liu S, Zhang J, You T, Gan B, Xu H. Lead exposure exacerbates adverse effects of HFD on metabolic function via disruption of gut microbiome, leading to compromised barrier function and inflammation. Eur J Nutr 2023; 62:783-795. [PMID: 36264385 DOI: 10.1007/s00394-022-03028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The toxicity of lead (Pb) has been intensively studied, while the adverse effects in the population on a high-fat diet (HFD) remain unclear. This study compared the different biologic effects of Pb in CHOW and HFD-fed mice and investigated the important role that gut microbiota may play. METHODS C57BL/6 mice were fed a CHOW diet and HFD with or without 1 g/L Pb exposure through drinking water for 8 weeks. Using oral glucose tolerance test, histopathological observation, real-time fluorescence quantitative PCR, enzyme-linked immunosorbent assay, and 16S high-throughput sequencing to compare the Pb toxicity, fecal microbiota transplantation was conducted to investigate the key role of gut microbiota. RESULTS The metabolic disorders induced by HFD were aggravated by chronic Pb intake, and HFD exacerbated the Pb accumulation in the colon by 96%, 32% in blood, 27% in the liver, and 142% in tibiae. Concomitantly, Pb induced more serious colonic injury, further disturbing the composition of gut microbiota in the HFD-fed mice. Moreover, altered fecal microbiota by HFD and Pb directly mediated metabolic disorders and colonic damage in recipient mice, which emphasized the importance of gut microbiota. CONCLUSION These findings indicated that the population with HFD has lower resistance and would face more security risks under Pb pollution, and pointed out the importance of assessing the health impacts of food contaminants in people with different dietary patterns.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Jinfeng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Tao You
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Bei Gan
- Institute for Testing of Industrial Products of Jiangxi General Institute of Testing and Certification, Nanchang, 330047, People's Republic of China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| |
Collapse
|
17
|
Bioactive compounds, antibiotics and heavy metals: effects on the intestinal structure and microbiome of monogastric animals – a non-systematic review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The intestinal structure and gut microbiota are essential for the animals‘ health. Chemical components taken with food provide the right environment for a specific microbiome which, together with its metabolites and the products of digestion, create an environment, which in turn is affects the population size of specific bacteria. Disturbances in the composition of the gut microbiota can be a reason for the malformation of guts, which has a decisive impact on the animal‘ health. This review aimed to analyse scientific literature, published over the past 20 years, concerning the effect of nutritional factors on gut health, determined by the intestinal structure and microbiota of monogastric animals. Several topics have been investigated: bioactive compounds (probiotics, prebiotics, organic acids, and herbal active substances), antibiotics and heavy metals (essentaial minerals and toxic heavy metals).
Collapse
|
18
|
Sun W, Yan S, Meng Z, Tian S, Jia M, Huang S, Wang Y, Zhou Z, Diao J, Zhu W. Combined ingestion of polystyrene microplastics and epoxiconazole increases health risk to mice: Based on their synergistic bioaccumulation in vivo. ENVIRONMENT INTERNATIONAL 2022; 166:107391. [PMID: 35803075 DOI: 10.1016/j.envint.2022.107391] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/11/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Microplastic and pesticide are two common environmental pollutants whose adverse effects have been widely reported, but it is unclear whether they cause combined toxicity in mammals. In this study, polystyrene microplastics (5 µm, 0.012 or 0.120 mg/kg) or/and epoxiconazole (0.080 mg/kg) were administered orally to mice for 6 weeks, their toxicity to liver and kidney was assessed from changes in histopathology, tissue function, oxidative defense system and metabolic profile. In addition, mechanism of combined toxicity was explored in terms of bioaccumulation levels, intestinal barrier, gut microbiota. Results showed that combined ingestion of polystyrene (0.120 mg/kg) and epoxiconazole caused more severe tissue damage, dysfunction, oxidative stress, and metabolic disorders compared to single exposure sources. Interestingly, occurrence of combined toxicity was associated with their increased accumulation in tissues. In-depth exploration found that epoxiconazole caused intestinal barrier damage by targeting the gut microbiota, leading to massive invasion and accumulation of polystyrene, which in turn interfered with the metabolic clearance of epoxiconazole in liver. In all, findings highlighted that polystyrene and epoxiconazole could cause combined toxicity in mice through the synergistic effect of their bioaccumulation in vivo, which provided new reference for understanding the health risks of microplastics and pesticides and sheds light on the potential risk to humans of their combined ingestion.
Collapse
Affiliation(s)
- Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Meng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Yu L, Duan H, Yu Y, Zhang Q, Zhao J, Zhang H, Zhai Q, Tian F, Chen W. Dose-dependent effects of chronic lead toxicity in vivo: Focusing on trace elements and gut microbiota. CHEMOSPHERE 2022; 301:134670. [PMID: 35452643 DOI: 10.1016/j.chemosphere.2022.134670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 05/26/2023]
Abstract
Dose-dependent effects of chronic Pb exposure-induced injuries, especially on the trace elements and gut microbiota in mice, have not been explored. In the present study, we investigated these aspects using C57BL/6 mouse models that were exposed to Pb via drinking water with Pb concentrations of 0.1, 0.5, and 1.0 g/L for 8 weeks. The results showed that with the increase in chronic Pb exposure dose, the Pb levels in the blood and tissues, Zn levels in the kidney and brain were elevated, and the levels of bone Zn, kidney Fe, brain Mg, Ca, and Fe, renal catalase activity, and glutathione levels, as well as the expression of colonic zonula occludens-1 and occludin, decreased with a strong linear correlation. Moreover, the relative abundance of Marvinbryantia and Ruminococcus 1 increased, while that of Lactobacillus and Roseburia decreased linearly with the Pb exposure dose. PICRUSt analysis revealed that chronic Pb exposure had a greater impact on the metabolism of macronutrients, trace elements, and neurodegenerative injury. These findings suggest that chronic Pb exposure disrupts trace element levels in tissues, especially in the brain, and induces gut dysbiosis in a dose-dependent manner, which is different from the dose-effect of acute Pb toxicity.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yaqi Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
20
|
Gu X, Bi N, Wang T, Huang C, Wang R, Xu Y, Wang HL. Probiotic Lactobacillus rhamnosus GR-1 supplementation attenuates Pb-induced learning and memory deficits by reshaping the gut microbiota. Front Nutr 2022; 9:934118. [PMID: 35928850 PMCID: PMC9344877 DOI: 10.3389/fnut.2022.934118] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Lead (Pb) exposure during early life has been associated with an increased risk of neurodevelopmental disorders, including learning and memory deficits. The intestinal flora, via the microbiome–gut–brain axis, could play a significant role in the nervous system. However, the effects of probiotics on ameliorating Pb-induced learning and memory deficits are still unclear. In this study, we showed that adolescent Pb exposure (150 ppm) for 2 months impaired spatial learning and memory ability, accompanied by the decreasing diversity of gut microbiota, and the decreasing abundance of Lactobacillus at the genus level. Surprisingly, administration of the Lactobacillus rhamnosus GR-1 (1010 organisms/rat/day), not L. rhamnosus LGG or Lactobacillus reuteri RC-14, reversed learning and memory deficits induced by Pb exposure. Meanwhile, administration of the L. rhamnosus GR-1 increased the diversity of the gut microbiota composition and partially normalized the genus level of Lactobacillus, Parabacteroides, Enterococcus, and Akkermansia in Pb-exposed rats. Notably, supplementation of L. rhamnosus GR-1 decreased the gut permeability of Pb-exposed rats, reduced proinflammatory cytokines [interleukin-1β (IL-1β) and IL-6] expression, and promoted anti-inflammatory cytokines [granulocyte colony-stimulating factor (G-CSF)] expression. Interestingly, neural cell treatment with G-CSF rescued Pb-induced neurotoxicity. In general, L. rhamnosus GR-1 supplementation recovered the Pb-induced loss of intestinal bacteria (Lactobacillus), which may have reversed the damage to learning and memory ability. Collectively, our findings demonstrate an unexpectedly pivotal role of L. rhamnosus GR-1 in Pb-induced cognitive deficits and identify a potential probiotic therapy for cognitive dysfunction during early life.
Collapse
Affiliation(s)
- Xiaozhen Gu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Nanxi Bi
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tian Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chengqing Huang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Rongrong Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yi Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- *Correspondence: Yi Xu,
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Hui-Li Wang,
| |
Collapse
|
21
|
Zeng X, Zeng Z, Wang Q, Liang W, Guo Y, Huo X. Alterations of the gut microbiota and metabolomics in children with e-waste lead exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128842. [PMID: 35430456 DOI: 10.1016/j.jhazmat.2022.128842] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A lead (Pb) exposure can alter the composition and metabolites of gut microbiota. However, few studies investigated this association in the children. METHODS A total of 551 children aged 3-7 years were recruited from Guiyu (the e-waste dismantling area) and Haojiang (the reference area). There were finally 70 subjects met the inclusive criteria. Blood and urinary Pb concentrations were detected by GFAAS and ICP-MS techniques. The microbiota and metabolites were measured in stool samples using 16 S rRNA MiSeq sequencing technology and gas chromatography-mass spectrometry (GC-MS), respectively. RESULTS Average Pb concentrations in the blood and urine of children were higher in Guiyu than in Haojiang. There were 58 kinds of differential genera and 19 types of discrepant metabolites between the two groups, and wide and significant correlations were found between them. Exposure to Pb caused the most significant differences in microbiota, metabolites, and physical development parameters between the two groups in terms of microbiota, metabolites, and physical development indicators. Sphingolipid metabolism and ion transport may also be altered by Pb exposure. CONCLUSIONS Exposure to Pb is associated with significant alterations in the gut microbiota and metabolome in children. More research is needed to confirm the findings of this study.
Collapse
Affiliation(s)
- Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Wanting Liang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Yufeng Guo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
22
|
Giambò F, Costa C, Teodoro M, Fenga C. Role-Playing Between Environmental Pollutants and Human Gut Microbiota: A Complex Bidirectional Interaction. Front Med (Lausanne) 2022; 9:810397. [PMID: 35252248 PMCID: PMC8888443 DOI: 10.3389/fmed.2022.810397] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
There is a growing interest in the characterization of the involvement of toxicant and pollutant exposures in the development and the progression of several diseases such as obesity, diabetes, cancer, as well as in the disruption of the immune and reproductive homeostasis. The gut microbiota is considered a pivotal player against the toxic properties of chemicals with the establishment of a dynamic bidirectional relationship, underlining the toxicological significance of this mutual interplay. In fact, several environmental chemicals have been demonstrated to affect the composition, the biodiversity of the intestinal microbiota together with the underlining modulated metabolic pathways, which may play an important role in tailoring the microbiotype of an individual. In this review, we aimed to discuss the latest updates concerning the environmental chemicals–microbiota dual interaction, toward the identification of a distinctiveness of the gut microbial community, which, in turn, may allow to adopt personalized preventive strategies to improve risk assessment for more susceptible workers.
Collapse
Affiliation(s)
- Federica Giambò
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, Messina, Italy
| | - Michele Teodoro
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Concettina Fenga
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
23
|
Wan H, Wang Y, Zhang H, Zhang K, Chen Y, Chen C, Zhang W, Xia F, Wang N, Lu Y. Chronic lead exposure induces fatty liver disease associated with the variations of gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113257. [PMID: 35104782 DOI: 10.1016/j.ecoenv.2022.113257] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Lead (Pb) has been suggested as an endocrine-disrupting chemical. However, few studies have investigated the association between chronic Pb exposure and fatty liver disease. OBJECTIVES We aimed to investigate the association of chronic Pb exposure with fatty liver disease and whether the variations of the gut microbiota involve in the mechanism of the fatty liver disease induced by chronic Pb exposure. METHODS We conducted a cross-sectional study of 3066 rural participants in East China. Blood lead level (BLL) was detected, and abdominal ultrasonography was used to diagnose hepatic steatosis. Both the definition of non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) were used. Wistar rats were randomly divided into two groups and each group was exposed to 0 or 0.05% w/v Pb through drinking water for 28 weeks. The relevant parameters of hepatic lipid metabolism and gut microbiota were analyzed. RESULTS In humans, after adjusting for potential confounders, the odds of having NAFLD and MAFLD were significantly increased by 54% and 52% in the participants in the fourth BLL quartile (OR 1.54, 95% CI 1.24, 1.91 and OR 1.52, 95% CI 1.22, 1.89). In the rats, chronic Pb exposure induced the increased visceral fat, hepatic steatosis, and dysbiosis of the gut microbiota, including the decrease of richness, diversity, evenness and phylogenetic diversity of the gut microbiota and the significant alternations of the gut microbiota composition, particularly, the decrease of the relative abundance of Coprococcus and Oscillospira at the genus level. CONCLUSIONS Chronic Pb exposure could induce fatty liver disease, which may be associated with the variations of the gut microbiota.
Collapse
Affiliation(s)
- Heng Wan
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Institute and Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Haojie Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kun Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wen Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Institute and Department of Endocrinology and Metabolism, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Institute and Department of Endocrinology and Metabolism, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Abstract
Oscillospira is a class of organism that often appears in high-throughput sequencing data but has not been purely cultured and is widely present in the animal and human intestines. There is a strong association between variation in Oscillospira abundance and obesity, leanness, and human health. In addition, a growing body of studies has shown that Oscillospira is also implicated in other diseases, such as gallstones and chronic constipation, and has shown some correlation with the positive or negative changes in its course. Sequencing data combined with metabolic profiling indicate that Oscillospira is likely to be a genus capable of producing short-chain fatty acids (SCFAs) such as butyrate, which is an important reference indicator for screening "next-generation probiotics ". Considering the positive effects of Oscillospira in some specific diseases, such as obesity-related metabolic diseases, it has already been characterized as one of the next-generation probiotic candidates and therefore has great potential for development and application in the future food, health care, and biopharmaceutical products.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China,CONTACT Jingpeng Yang
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wenzheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China,He Huang School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| |
Collapse
|
25
|
Luo X, Huo X, Zhang Y, Cheng Z, Chen S, Xu X. Increased intestinal permeability with elevated peripheral blood endotoxin and inflammatory indices for e-waste lead exposure in children. CHEMOSPHERE 2021; 279:130862. [PMID: 34134434 DOI: 10.1016/j.chemosphere.2021.130862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 05/09/2021] [Indexed: 02/05/2023]
Abstract
Lead (Pb) entering the body through different channels can damage the function of intestinal mucosal barrier and cause the body stressful inflammatory response to enhance. This study conducted a cross-sectional study to investigate the effects of Pb exposure on intestinal permeability in children by measuring the level of bacterial endotoxin and index of inflammatory cell types in peripheral blood. From November to December 2018, we recruited 187 participants aged 3-6 years by stratified randomization, from an electronic-waste-exposed group (n = 82) and a referent group (n = 105). General demographic information, past history of the digestive system in child, and family situation were informed by children's guardians with questionnaires. Children in the exposed group showed lower weight, height, and body mass index while more diarrhea in a month. Blood Pb and plasma endotoxin were elevated in exposed children than referent children and the positive relationship between them was shown in all children [B (95% CI): 0.072 (0.008, 0.137), P = 0.033]. Peripheral monocyte counts and leukotriene B4 (LTB4) levels were significantly increased in the exposed group. Endotoxin levels were positively correlated with neutrophils, monocytes, and LTB4 [B (95% CI): 0.054 (0.015, 0.093), 0.018 (0.005, 0.031), and 0.049 (0.011, 0.087), respectively, P < 0.05]. To sum up, the exposed children showed lower physical growth levels, poorer gut health, and increased intestinal permeability, which was related to high blood Pb and peripheral inflammatory indices. These results suggest the possible adverse impact of environmental Pb exposure on the intestinal health of children.
Collapse
Affiliation(s)
- Xiuli Luo
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Shuqin Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|