1
|
Gungure AS, Jule LT, Nagaprasad N, Ramaswamy K. Studying the properties of green synthesized silver oxide nanoparticles in the application of organic dye degradation under visible light. Sci Rep 2024; 14:26967. [PMID: 39505895 PMCID: PMC11541536 DOI: 10.1038/s41598-024-75614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
In present study the green synthesis of silver oxide nanoparticles has been effectively achieved using novel plant extract Phragmanthera Macrosolen. This method provides sustainable alternative for nanoparticle synthesis, demonstrating the potential of Phragmanthera Macrosolen as a reducing and stabilizing agent in the production of Ag2O NPs. The synthesized nanoparticles were characterized for their structural, morphological, and optical properties, confirming their successful formation and potential applications in various fields. The effects of different pH values and annealing temperature of the samples on the properties of Ag2O NPs formations, as well as photo-catalytic activities towards Toluidine Blue dye degradations, were studied. Powder XRD reveals that the crystallite natures of Ag2O NPs a long with crystalline size ranges from 25.85 to 35.90 nm. FIB-SEM and HR-TEM images displayed that the Ag2O NPs as spherical shapes. UV-vis spectroscopy displayed that Ag2O NPs belong to a direct-band gap of 2.1-2.6 eV. FTIR- study shown that the green synthesized Ag2O NPs may be steadied via the interfaces of -OH as well as C = O groups in the carbohydrate, flavonoid, tannin, as well as phenolic acid existing in P. macrosolen L. leaf. The chemical states, electron-hole recombinations and purity of Ag and O in the synthesized Ag2O NPs were confirmed through X-ray Photoelectron Spectroscopy (XPS) and PL analysis respectively. Fascinatingly, the synthesized Ag2O NPs at pH 12 displayed high photo-catalytic degradations for TB dyes. The photo-catalytic degradations of the TB dyes were monitored spectro-photo-metrically in wave-length ranges of 200-900 nm, as well as high efficiency (98.50%) with half-life of 9.5798 min and kinetic rate constant of 0.07234 min-1, was obtained after 45 min of reactions. From this study, it can be concluded that Ag2O NPs synthesized from Phragmanthera Macrosolen aqueous extract are promising in the remediation of environmental pollution and water treatment. In this light, the study reports that Phragmanthera Macrosolen green synthesis of Ag2O NPs can effectively address environmental pollution in cost-effective, eco-friendly, and sustainable ways.
Collapse
Affiliation(s)
- Abel Saka Gungure
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Sangareddy, India
- College of Natural and Computational Science, Department of Physics, Dambi Dollo University, Dembi Dolo, Ethiopia
| | - Leta Tesfaye Jule
- College of Natural and Computational Science, Department of Physics, Dambi Dollo University, Dembi Dolo, Ethiopia.
| | - N Nagaprasad
- Department of Mechanical Engineering, ULTRA College of Engineering and Technology, Madurai, Tamil Nadu, 625 104, India
| | - Krishnaraj Ramaswamy
- Department of Mechanical Engineering, Dambi Dollo University, Dambi Dollo, Ethiopia.
- Center for global health research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
2
|
Sabri M, Kazim H, Tawalbeh M, Al-Othman A, Almomani F. A review of advancements in humic acid removal: Insights into adsorption techniques and hybrid solutions. CHEMOSPHERE 2024; 365:143373. [PMID: 39306101 DOI: 10.1016/j.chemosphere.2024.143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Humic acid (HA) is a prominent contaminant in wastewater, and its elimination is crucial to ensure purified drinking water. A variety of sources of HA in wastewater exist, ranging from agricultural runoff, industrial discharges, and natural decomposition. Adsorption is a technique that has been heavily investigated in this direction. The process complexities, technological advancements, and sustainable approaches are discussed in this review. A range of adsorbents can be employed for HA removal, including modified membranes, carbon nanotubes (CNTs), clay nanoparticles, and acid-modified natural materials. This work compares the effectiveness of the preceding adsorbents along with their advantages and limitations. This review also discusses the optimization of various process parameters, such as pH, ionic strength, and temperature, with an emphasis on response surface methodology for process optimization. Furthermore, the challenges and limitations associated with each removal technique are discussed, along with the potential areas for improvement and future directions in the field of wastewater treatment.
Collapse
Affiliation(s)
- Moin Sabri
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Hisham Kazim
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates; Energy, Water and Sustainable Environment Research Center, College of Engineering, American University of Sharjah, PO. Box 26666, Sharjah, United Arab Emirates
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Qatar.
| |
Collapse
|
3
|
Sirajudheen P, Vigneshwaran S, Thomas N, Selvaraj M, Assiri MA, Park CM. Critical assessment of recent advancements in chitosan-functionalized iron and geopolymer-based adsorbents for the selective removal of arsenic from water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:946. [PMID: 39289191 DOI: 10.1007/s10661-024-13087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
Inorganic arsenic (As), a known carcinogen and major contaminant in drinking water, affects over 140 million people globally, with levels exceeding the World Health Organization's (WHO) guidelines of 10 μg L-1. Developing innovative technologies for effluent handling and decontaminating polluted water is critical. This paper summarizes the fundamental characteristics of chitosan-embedded composites for As adsorption from water. The primary challenge in selectively removing As ions is the presence of phosphate, which is chemically similar to As(V). This study evaluates and summarizes innovative As adsorbents based on chitosan and its composite modifications, focusing on factors influencing their adsorption affinity. The kinetics, isotherms, column models, and thermodynamic aspects of the sorption processes were also explored. Finally, the adsorption process and implications of functionalized chitosan for wastewater treatment were analyzed. There have been minimal developments in water disinfection using metal-biopolymer composites for environmental purposes. This field of study offers numerous research opportunities to expand the use of biopolymer composites as detoxifying materials and to gain deeper insights into the foundations of biopolymer composite adsorbents, which merit further investigation to enhance adsorbent stability.
Collapse
Affiliation(s)
- P Sirajudheen
- Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi, Malappuram, Kerala, 676306, India.
| | - S Vigneshwaran
- Environmental System Laboratory, Department of Civil Engineering, Kyung Hee University Global Campus, Seoul, 1732 Deogyong-daero, Giheung-Gu, Yongin-Si, Gyeonggi-Do, 16705, Republic of Korea
| | - Nygil Thomas
- Department of Chemistry, Nirmalagiri College, Kuthuparamba, Nirmalagiri P.O, Kannur, Kerala, 670701, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
4
|
Zhao H, Huang X, Yang Y, Wang L, Zhao X, Yan F, Yang Y, Gao P, Ji P. The role of available nitrogen in the adsorption of polystyrene nanoplastics on magnetic materials. WATER RESEARCH 2023; 229:119481. [PMID: 36521314 DOI: 10.1016/j.watres.2022.119481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Several studies have been conducted on nanoplastics (NPs). However, few studies have investigated the complexity of the interactions between NPs and other aqueous pollutants in multi-solute media. In this study, the adsorption of polystyrene nanoplastics (PSNPs) on magnetic materials (MS) in the presence of available nitrogen (AN) was studied. The results demonstrated that the adsorbed amount of PSNPs increased in the presence of ammonium nitrogen (NH4+-N), whereas no significant difference was detected on the adsorbed amount of PSNPs using nitrate nitrogen (NO3--N) as a cosolute. The increase in the adsorbed amount of PSNPs was attributed to the formation of an MS-PSNPs-NH4+-N complex. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and zeta potential analyses indicated that the PSNPs with NH4+-N as a cosolute can be bound on the MS surfaces. Moreover, the change in the PSNPs amount adsorbed by MS depends on the valence state, electronegativity of the coexisting ions, and the surface properties and functional groups of PSNPs. Additionally, the ionic strength, dissolved organic matter, solution pH, metal cations and the subsequent release of MS-coated PSNPs and NH4+-N changed considerably in different aquatic systems and artificial nitrating fluids. Among different natural aquatic systems, the PSNPs adsorption on MS was excellent in lake water. The results indicate high potential for the attachment of PSNPs to MS in the presence of AN and further deepen the understanding of removing NPs using magnetic materials in aqueous systems with various coexisting contaminants.
Collapse
Affiliation(s)
- Hanghang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Yinan Yang
- Meteorological Bureau of Chengcheng County, Weinan, 715200, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xin Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fan Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Yue Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Pengcheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Shaanxi Ghanshan Cui Environmental Protection Technology Co., Ltd., Room 202-2, Zone A, China-South Korea Industrial Park, Gaoke 3rd Road, Shaanxi Province, 712000, China.
| |
Collapse
|
5
|
Ansari MAH, Khan ME, Mohammad A, Baig MT, Chaudary A, Tauqeer M. Application of nanocomposites in wastewater treatment. NANOCOMPOSITES-ADVANCED MATERIALS FOR ENERGY AND ENVIRONMENTAL ASPECTS 2023:297-319. [DOI: 10.1016/b978-0-323-99704-1.00025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Farhan A, Arshad J, Rashid EU, Ahmad H, Nawaz S, Munawar J, Zdarta J, Jesionowski T, Bilal M. Metal ferrites-based nanocomposites and nanohybrids for photocatalytic water treatment and electrocatalytic water splitting. CHEMOSPHERE 2023; 310:136835. [PMID: 36243091 DOI: 10.1016/j.chemosphere.2022.136835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/18/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic degradation is one of the most promising technologies available for removing a variety of synthetic and organic pollutants from the environmental matrices because of its high catalytic activity, reduced energy consumption, and low total cost. Due to its acceptable bandgap, broad light-harvesting efficiency, significant renewability, and stability, Fe2O3 has emerged as a fascinating material for the degradation of organic contaminants as well as numerous dyes. This study thoroughly reviewed the efficiency of Fe2O3-based nanocomposite and nanomaterials for water remediation. Iron oxide structure and various synthetic methods are briefly discussed. Additionally, the electrocatalytic application of Fe2O3-based nanocomposites, including oxygen evolution reaction, oxygen reduction reaction, hydrogen evolution reaction, and overall water splitting efficiency, was also highlighted to illustrate the great promise of these composites. Finally, the ongoing issues and future prospects are directed to fully reveal the standards of Fe2O3-based catalysts. This review is intended to disseminate knowledge for further research on the possible applications of Fe2O3 as a photocatalyst and electrocatalyst.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Javeria Arshad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Haroon Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Junaid Munawar
- College of Chemistry, Beijing University of Chemical Technology, 100029, China
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland.
| |
Collapse
|
7
|
Merazzo KJ. Design, Fabrication, and Characterization of Magnetoresponsive Materials and Devices. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7183. [PMID: 36295251 PMCID: PMC9609582 DOI: 10.3390/ma15207183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Modern technology has made an elegant link between smart materials and interlinked devices thanks to the interplay between materials science, smart sensors and devices, artificial intelligence, and a fierce imagination; this has allowed us to reach every corner of our society [...].
Collapse
Affiliation(s)
- Karla J. Merazzo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; or
- Materials Science and Engineering Research Center (CICIMA), Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica
- Escuela de Física, Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica
| |
Collapse
|
8
|
Zhang S, Ange KU, Ali N, Yang Y, Khan A, Ali F, Sajid M, Tian CT, Bilal M. Analytical perspective and environmental remediation potentials of magnetic composite nanosorbents. CHEMOSPHERE 2022; 304:135312. [PMID: 35709848 DOI: 10.1016/j.chemosphere.2022.135312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The synthesis and application of magnetic nanosorbents to remove emerging pollutants have been considered the best environmental remediation and sustainability option. Incorporating magnetism shortens the treatment time and allows the sorbent to be recovered quickly using external magnetic with many cycles. The implementation of magnetic solid-phase extraction (MSPE) using magnetic materials of different shapes, sizes, and surface morphology can be a valuable tool in applying materials to prepare analytical samples. In MSPE applications, materials with strong magnetic domain can be used as precursors for constructing magnetic composite as a promising sorbent. This article focuses on the most recent and exceptional applications of magnetic adsorbents for preconcentration and removal purposes. Magnetic adsorbents, such as nanoparticles (NPs), foam, sponges, nanocomposites, hydrogels, and beads with multifunctional attributes have been comprehensively studied in terms of preparation procedures, limitations, advantages, and interactions between pollutants and magnetic composites. The role of magnetic sorbents in sample preparation methods, such as simple solid-phase extraction and microextraction, as well as sorptive extraction using a stir bar, was also examined. The use of magnetic adsorbents with analytical techniques, such as solid-phase extraction and solid-phase microextraction improves the method for preparing samples concerning the influential role of magnetic adsorbents. Towards the end, promising features and future outlook are also directed.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Kunda Umuhoza Ange
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Chen Tian Tian
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
9
|
Zaman H, Shah AUHA, Ali N, Zhou C, Khan A, Ali F, Tian CT, Bilal M. Magnetically recoverable poly (methyl methacrylate-acrylic acid)/iron oxide magnetic composites nanomaterials with hydrophilic wettability for efficient oil-water separation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115690. [PMID: 35834853 DOI: 10.1016/j.jenvman.2022.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Due to the environmental and production problems of emulsion, it is important to efficiently separate oil-water emulsion to meet the refinery requirement and clean up oil spills. Synthesis of a universal demulsifier is not an easy task because the physical properties of crude oil vary, which makes its characterization and demulsification procedure difficult. To overcome this problem, hydrophilic and magnetically recoverable poly (methyl methacrylate-acrylic acid)/iron oxide magnetic composite nanoparticles ((P(MMA-AA)/Fe3O4 NPs) were developed as an efficient and economical demulsifier via soap-free emulsion polymerization. To characterize the magnetic composite NPs for their appropriate surface morphology and magnetic domain, TEM, FTIR, VSM, and TGA analyses were carried out. The newly synthesized NPs displayed good hydrophilic properties as they migrated quickly to the aqueous emulsion phase, which was also reassured by their water contact angle of 75°. They exhibit strong magnetic characteristics (20 amu/g) in the oil-water emulsion, makings the hydrophilic wettability capable and attractive to the external magnet. Experimental results revealed that the prepared magnetic composite NPs separated 99% of the water from stable emulsion in 30 min and could be recycled 8 times through magnetic separation. The recycled magnetic composite NPs maintain their hydrophilic wettability and efficiency in separating oil-water emulsion, making them economical and commercially viable. The migration of magnetic composite NPs to the aqueous phase in the stable emulsion with a strong magnetic domain explains the coalescence of emulsified water droplets and their quick separation from the stable emulsions through the external magnet.
Collapse
Affiliation(s)
- Hira Zaman
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Anwar Ul Haq Ali Shah
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Cao Zhou
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra, 21300, KPK, Pakistan
| | - Chen Tian Tian
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
10
|
Yaashikaa PR, Kumar PS. Fabrication and characterization of magnetic nanomaterials for the removal of toxic pollutants from water environment: A review. CHEMOSPHERE 2022; 303:135067. [PMID: 35623434 DOI: 10.1016/j.chemosphere.2022.135067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The success of any sustainable growth represents an advancement of novel approaches and new methodologies for managing any ecological concern. Magnetic nanoparticles have gained recent interest owing to their versatile properties such as controlled size, shape, quantum and surface effect, etc, and outcome in wastewater treatment and pollutant removal. Developments have progressed in synthesizing magnetic nanoparticles with the required size, shape and morphology, surface and chemical composition. Magnetic nanoparticles are target specific and inexpensive compared to conventional treatment techniques. This review insight into the synthesis of magnetic nanoparticles using physical, chemical, and biological methods. The biological method of synthesizing magnetic nanoparticles serves to be cost-effective, green process, and eco-friendly for various applications. Characterization studies of synthesized nanoparticles using TEM, XRD, SARS, SANS, DLS, etc are discussed in detail. Magnetic nanoparticles are widely utilized in recent research for removing organic and inorganic contaminants. It was found that the magnetic nanosorption approach together with redox reactions proves to be an effective and flexible mechanism for the removal of pollutants from waste effluents.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
11
|
Bagheri AR, Aramesh N, Chen J, Liu W, Shen W, Tang S, Lee HK. Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: A review. Anal Chim Acta 2022; 1209:339509. [PMID: 35569843 DOI: 10.1016/j.aca.2022.339509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) as metal-oxide anions have exceptional properties like high negative charges, remarkable redox abilities, unique ligand properties and availability of organic grafting. Moreover, the amenability of POMs to modification with different materials makes them suitable as precursors to further obtain new composites. Due to their unique attributes, POMs and their composites have been utilized as adsorbents, electrodes and catalysts in extraction, and electrochemical and optical detection methods, respectively. A survey of the recent progress and developments of POM-based materials in these methods is therefore desirable, and should be of great interest. In this review article, POM-based materials, their properties as well as their identification methods, and analytical applications as adsorbents, electrodes and catalysts, and corresponding mechanisms of action, where relevant, are reviewed. Some current issues of the utilization of these materials and their future prospects in analytical chemistry are discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, Isfahan University, Isfahan, 81746-73441, Iran
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wenning Liu
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
12
|
Javaid A, Latif S, Imran M, Hussain N, Rajoka MSR, Iqbal HMN, Bilal M. Nanohybrids-assisted photocatalytic removal of pharmaceutical pollutants to abate their toxicological effects - A review. CHEMOSPHERE 2022; 291:133056. [PMID: 34838839 DOI: 10.1016/j.chemosphere.2021.133056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Advancement in medication by health care sector has undoubtedly improved our life but at the same time increased the chemical burden on our natural ecosystem. The residuals of pharmaceutical products become part of wastewater streams by different sources such as excretion after their usage, inappropriate way of their disposal during production etc. Hence, they are serious health hazards for human, animal, and aquatic lives. Due to rapid urbanization, the increased demand for clean drinking water is a burning global issue. In this regard it is need of the present era to explore efficient materials which could act as photocatalyst for mitigation of pharmaceuticals in wastewater. Nanohybrid as photocatalyst is one of the widely explored class of materials in photocatalytic degradation of such harmful pollutants. Among these nanohybrids; metal based nanohybrids (metals/metal oxides) and carbon based nanohybrids (carbon nanotubes, graphene, fullerenes etc.) have been explored to remove pharmaceutical drugs. Keeping in view the increasing harmful impacts of pharmaceuticals; the sources of pharmaceuticals in wastewater, their health risk factors and their mitigation using efficient nanohybrids as photocatalysts have been discussed in this review.
Collapse
Affiliation(s)
- Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700, Pakistan
| | - Muhammad Shahid Riaz Rajoka
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
13
|
Gao Y, Zhao C, Tan Q, Gao M, Chen G, Zhai R, Huang X, Xu X, Liu G, Wang J, Zhang Y, Xu D. Ternary magnetic Fe3O4@C3N4@covalent organic framework for facile extraction and determination of organophosphorus pesticides in fruit. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Bagheri AR, Aramesh N, Gong Z, Cerda V, Lee HK. Two-dimensional materials as a platform in extraction methods: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
15
|
Bilal M, Lam SS, Iqbal HMN. Biocatalytic remediation of pharmaceutically active micropollutants for environmental sustainability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118582. [PMID: 34856243 DOI: 10.1016/j.envpol.2021.118582] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
The discharge of an alarming number of recalcitrant pollutants from various industrial activities presents a serious threat to environmental sustainability and ecological integrity. Bioremediation has gained immense interest around the world due to its environmentally friendly and cost-effective nature. In contrast to physical and chemical methods, the use of microbial enzymes, particularly immobilized biocatalysts, has been demonstrated as a versatile approach for the sustainable mitigation of environmental pollution. Considerable attention is now devoted to developing novel enzyme engineering approaches and state-of-the-art bioreactor design for ameliorating the overall bio-catalysis and biodegradation performance of enzymes. This review discusses the contemporary and state of the art technical and scientific progress regarding applying oxidoreductase enzyme-based biocatalytic systems to remediate a vast number of pharmaceutically active compounds from water and wastewater bodies. A comprehensive insight into enzyme immobilization, the role of mediators, bioreactors designing, and transformation products of pharmaceuticals and their associated toxicity is provided. Additional studies are necessary to elucidate enzymatic degradation mechanisms, monitor the toxicity levels of the resulting degraded metabolites and optimize the entire bio-treatment strategy for technical and economical affordability.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
16
|
Multifunctional Electrospun Nanofibers Based on Biopolymer Blends and Magnetic Tubular Halloysite for Medical Applications. Polymers (Basel) 2021; 13:polym13223870. [PMID: 34833169 PMCID: PMC8624944 DOI: 10.3390/polym13223870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Tubular halloysite (HNT) is a naturally occurring aluminosilicate clay with a unique combination of natural availability, good biocompatibility, high mechanical strength, and functionality. This study explored the effects of magnetically responsive halloysite (MHNT) on the structure, morphology, chemical composition, and magnetic and mechanical properties of electrospun nanofibers based on polycaprolactone (PCL) and gelatine (Gel) blends. MHNT was prepared via a simple modification of HNT with a perchloric-acid-stabilized magnetic fluid–methanol mixture. PCL/Gel nanofibers containing 6, 9, and 12 wt.% HNT and MHNT were prepared via an electrospinning process, respecting the essential rules for medical applications. The structure and properties of the prepared nanofibers were studied using infrared spectroscopy (ATR-FTIR) and electron microscopy (SEM, STEM) along with energy-dispersive X-ray spectroscopy (EDX), magnetometry, and mechanical analysis. It was found that the incorporation of the studied concentrations of MHNT into PCL/Gel nanofibers led to soft magnetic biocompatible materials with a saturation magnetization of 0.67 emu/g and coercivity of 15 Oe for nanofibers with 12 wt.% MHNT. Moreover, by applying both HNT and MHNT, an improvement of the nanofibers structure was observed, together with strong reinforcing effects. The greatest improvement was observed for nanofibers containing 9 wt.% MHNT when increases in tensile strength reached more than two-fold and the elongation at break reached a five-fold improvement.
Collapse
|