1
|
Cheng M, Qu G, Xu R, Ren N. Research on the conversion of biowaste to MCCAs: A review of recent advances in the electrochemical synergistic anaerobic pathway. CHEMOSPHERE 2024; 366:143430. [PMID: 39353474 DOI: 10.1016/j.chemosphere.2024.143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Medium-chain carboxylic acids (MCCAs) show great promise as commercial chemicals due to their high energy density, significant product value, and wide range of applications. The production of MCCAs from waste biomass through coupling chain extension with anaerobic fermentation represents a new and innovative approach to biomass utilization. This review provides an overview of the principles of MCCAs production through coupled chain extension and anaerobic fermentation, as well as the extracellular electron transfer pathways and microbiological effects involved. Emphasis is placed on the mechanisms, limitations, and microbial interactions in MCCAs production, elucidating metabolic pathways, potential influencing factors, and the cooperative and competitive relationships among various microorganisms. Additionally, this paper delves into a novel technology for the bio-electrocatalytic generation of MCCAs, which promotes electron transfer through the use of different three-dimensional electrodes, various electrical stimulation methods, and hydrogen-assisted approaches. The insights and conclusions from previous studies, as well as the identification of existing challenges, will be valuable for the further development of high-product-selectivity strategies and environmentally friendly treatments.
Collapse
Affiliation(s)
- Minhua Cheng
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, Yunnan, 650500, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, Yunnan, 650500, China.
| | - Rui Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, Yunnan, 650500, China
| | - Nanqi Ren
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
2
|
Li Z, Qiu S, Xu S, Lu X, Wang Y, Ge S. Nano zero valent iron stimulated acetaldehyde oxidation, electron transfer, and RBO pathway for enhanced medium-chain carboxylic acids production. WATER RESEARCH 2024; 262:122103. [PMID: 39032333 DOI: 10.1016/j.watres.2024.122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Nano zero-valent iron (NZVI) has been shown to effectively enhance the chain elongation (CE) process, addressing the issue of limited yield of medium-chain carboxylic acids (MCCA) from organic wastewater. However, the specific impact of NZVI on the metabolism of CE bacteria (CEB) is not well understood. In this study, it was aimed to investigate the mechanism by which an optimal concentration of NZVI influences CE metabolism, particularly in relation to ethanol oxidation, electron transfer, and MCCA synthesis. This was achieved through single-factor influence experiments and metagenomic analysis. The results showed that the addition of 1 g/gVSS NZVI achieved the highest MCCA yield (n-caproic acid + n-octanoic acid) at 2.02 g COD/L, which was 4.9 times higher than the control. This improvement in MCCA production induced by NZVI was attributed to several factors. Firstly, NZVI facilitated the oxidation of acetaldehyde, leading to its reduced accumulation in the system (from 18.4 % to 5.8 %), due to the optimized chemical environment created by NZVI corrosion, including near-neutral pH and a more reductive oxidation-reduction potential (ORP). Additionally, the inherent conductivity property of NZVI and the additional Fe ions released during corrosion improved the electron transfer efficiency between CEB. Lastly, both the composition of microbial communities and the abundance of unique enzyme genes confirmed the selective stimulation of NZVI on the reverse β-oxidation (RBO) pathway. These findings provide valuable insights into the role of NZVI in CEB metabolism and its potential application for enhancing MCCA production in CE bioreactors.
Collapse
Affiliation(s)
- Zimu Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shiling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Xiyang Lu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Yuhan Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
3
|
Huang Z, Niu Q, He S, Li X, Qian C, He Y, Yang C. Effects of long-term exposure to zinc on performances of anaerobic digesters for swine wastewater treatment under various organic loading rates. CHEMOSPHERE 2024; 363:142843. [PMID: 39004151 DOI: 10.1016/j.chemosphere.2024.142843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The long-term performance of anaerobic digestion (AD) often decreases substantially when treating swine wastewater contaminated with heavy metals. However, the toxicological characteristics and mechanisms of continuous exposure to heavy metals under different organic loading rates (OLR) are still poorly understood. In these semi-continuous AD experiments, it was found that zinc concentrations of 40 mg/L only deteriorated the reductive environments of AD. In comparison, a concentration of 2.0 mg/L probably facilitated the reproduction of microorganisms in the operating digesters with a constant OLR of 0.51 g COD/(L·d). Nevertheless, when the OLR was increased to 2.30 g COD/(L·d), 2.0 mg/L zinc inhibited various life activities of microorganisms at the molecular level within only 10 days. Hence, even though 2.0 mg/L zinc could promote AD performances from a macroscopic perspective, it had potential inhibitory effects on AD. Therefore, this study deepens the understanding of the inhibitions caused by heavy metals on AD and the metabolic laws of anaerobic microorganisms in swine wastewater treatment. These results could be referred to for enhancing AD in the presence of zinc in practical swine wastewater treatment.
Collapse
Affiliation(s)
- Zhiwei Huang
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Chongxin Qian
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yuxin He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; School of Environmental Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China.
| |
Collapse
|
4
|
Xian Y, Lu Y, Wang Z, Lu Y, Han J, Zhou G, Chen Z, Lu Y, Su C. Removal of organic matter from food wastewater using anaerobic digestion at low temperatures enhanced by exogenous signaling molecule N-hexanoyl-homoserine lactone enhancement: Insight to extracellular polymeric substances and key functional genes. CHEMOSPHERE 2024; 364:143024. [PMID: 39111677 DOI: 10.1016/j.chemosphere.2024.143024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
This experiment aimed to study the effects of adding the exogenous signaling molecule N-hexanoyl-homoserine lactone (C6-HSL) on the anaerobic digestion of food wastewater at low temperature (15 °C). Daily addition of 0.4 μmol C6-HSL increased the average chemical oxygen demand removal from 45.98% to 94.92%, while intermittent addition (adding 2 μmol C6-HSL every five days) increased it from 45.98% to 72.44%. These two modes of C6-HSL addition increased protease and acetate kinase activity by 47.99%/8.04% and 123.26%/127.91% respectively, and increased coenzyme F420 concentrations by 15.79% and 63.16%, respectively. The regulation of loosely bound extracellular polymeric substances synthesis was influenced by C6-HSL, which increased protein and polysaccharide content in sludge. The relative abundance of Firmicutes and Bacteroidetes increased following addition of C6-HSL. After continuous addition of C6-HSL, the relative abundance of related functional genes such as amy, apgM, aceE, and accC increased, indicating that methanogens obtained sufficient substrate. The abundance of glycolysis-related functional genes such as glk, pfk, pgi, tpiA, gap, pgk, gpmA, eno, and pyk increased after the addition of C6-HSL, ensuring the efficient transformation and absorption of organic matter by anaerobic sludge at low temperatures. This study provides new comprehensive insights into the mechanism behind the enhancement of food wastewater anaerobic digestion by C6-HSL at low temperature.
Collapse
Affiliation(s)
- Yunchuan Xian
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yingqi Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Yiying Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Jinglong Han
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Guangrong Zhou
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zhengpeng Chen
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
5
|
Cai X, Zhou H, Lou Y, Lu B, Zhang D, Wang J, Xing D. Microbiome and antibiotic resistome in bioelectrochemical toilets for onsite treatment of fecal sludge. WATER RESEARCH 2024; 260:121956. [PMID: 38906081 DOI: 10.1016/j.watres.2024.121956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Effective management of fecal sludge (FS) is essential for preventing environmental and public health risks. Developing safe and efficient FS treatment technology is crucial for reducing the health risks of onsite sanitation systems. In this study, bioelectrochemical toilets (BETs) were developed to treat FS onsite. Compared with the open-circuit BETs (OC-BETs), BETs exhibited higher removal efficiencies for total organic carbon, total nitrogen, and total phosphorus. Specifically, the enhancements in removal efficiencies were 18.82 ± 1.73 %, 7.28 ± 0.32 %, and 11.41 ± 0.05 % for urine, and 19.28 ± 4.08 %, 21.65 ± 1.23 %, and 24.68 ± 0.95 % for feces, respectively. Microbiome analysis indicated that the dominant populations were affiliated with electroactive bacteria (Desulfuromonas and Pseudomonas) in the electrode biofilm of BETs. The species co-occurrence network showed that the electrode biofilm microbiome in BETs had more complex correlations than that in OC-BETs, suggesting that a weak electrical current enhanced the microbiome stability. The relative abundance of antibiotic resistance genes in BETs and OC-BETs reduced by 59.85 ± 1.32 % and 53.01 ± 2.81 % compared with the initial FS, respectively. These findings indicate that BETs are an alternative system for enhancing onsite treatment of fecal sludge and provide a theoretical foundation for the implementation of BETs.
Collapse
Affiliation(s)
- Xiaoyu Cai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huihui Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baiyun Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dawei Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Ye F, Yang Y, Shi J. A novel co-metabolic mode with Spirulina powder in enhancing the anaerobic degradation of typical nitrogen heterocyclic compounds. ENVIRONMENTAL TECHNOLOGY 2024:1-14. [PMID: 38312073 DOI: 10.1080/09593330.2024.2311086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/12/2024] [Indexed: 02/06/2024]
Abstract
Spirulina powder emerged as a novel and suitable co-metabolism substance significantly enhancing the anaerobic degradation of specific nitrogen heterocyclic compounds. On the addition of 1.0 mg/L of Spirulina powder, the reactor demonstrated optimal degradation efficiency for quinoline and indole, achieving ratios of 99.77 ± 1.83% and 99.57 ± 1.98%, respectively. Moreover, the incorporation of Spirulina powder resulted in increased concentrations of mixed liquor suspended solids, mixed liquor volatile suspended solids, proteins, and polysaccharides in anaerobic sludge. In addition, Spirulina powder led to reduced levels of Acinetobacter and enriched Aminicenantes genera incertae sedis, Levilinea, and Longilinea. The analysis of the archaeal community structure confirmed that the addition of Spirulina powder increased archaeal sequences, fostering greater richness and diversity in the archaeal community.
Collapse
Affiliation(s)
- Fei Ye
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, People's Republic of China
| | - Yangshiyi Yang
- NUIST Reading Academy, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Nie W, He S, Lin Y, Cheng JJ, Yang C. Functional biochar in enhanced anaerobic digestion: Synthesis, performances, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167681. [PMID: 37839485 DOI: 10.1016/j.scitotenv.2023.167681] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Anaerobic digestion technology is crucial in bioenergy recovery and organic waste management. At the same time, it often encounters challenges such as low organic digestibility and inhibition of toxic substances, resulting in low biomethane yields. Biochar has recently been used in anaerobic digestion to alleviate toxicity inhibition, improve the stability of anaerobic digestion processes, and increase methane yields. However, the practical application of biochar is limited, for the properties of pristine biochar significantly affect its application in anaerobic digestion. Although much research focuses on understanding original biochar's fundamental properties and functionalization, there are few reviews on the applications of functional biochar and the effects of critical properties of pristine biochar on anaerobic digestion. This review systematically reviewed functionalization strategies, key performances, and applications of functional biochar in anaerobic digestion. The properties determining the role of biochar were reviewed, the synthesis methods of functional biochar were summarized and compared, the mechanism of functional biochar was discussed, and the factors affecting the function of functional biochar were reviewed. This review provided a comprehensive understanding of functional biochar in anaerobic digestion processes, which would be helpful for the development and applications of engineered biochar.
Collapse
Affiliation(s)
- Wenkai Nie
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
8
|
Wu M, Yang ZH, Jiang TB, Zhang WW, Wang ZW, Hou QX. Enhancing sludge methanogenesis with changed micro-environment of anaerobic microorganisms by Fenton iron mud. CHEMOSPHERE 2023; 341:139884. [PMID: 37648172 DOI: 10.1016/j.chemosphere.2023.139884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/14/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Conductive materials have been demonstrated to enhance sludge methanogenesis, but few researches have concentrated on the interaction among conductive materials, microorganisms and their immediate living environment. In this study, Fenton iron mud with a high abundance of Fe(III) was recycled and applied in anaerobic reactors to promote anaerobic digestion (AD) process. The results show that the primary content of extracellular polymeric substances (EPS) such as polysaccharides and proteins increased significantly, possibly promoting microbial aggregation. Furthermore, with the increment of redox mediators including humic substances in EPS and Fe(III) introduced by Fenton iron mud, the direct interspecies electron transfer (DIET) between methanogens and interacting bacteria could be accelerated, which enhanced the rate of methanogenesis in anaerobic digestion (35.21 ± 4.53% increase compared to the control). The further analysis of the anaerobic microbial community confirmed the fact that Fenton iron mud enriched functional microorganisms, such as the abundance of CO2-reducing (e.g. Chloroflexi) and Fe(III)-reducing bacteria (e.g., Tepidimicrobium), thereby expediting the electron transfer reaction in the AD process via microbial DIET and dissimilatory iron reduction (DIR). This work will make it possible for using the recycled hazardous material - Fenton iron mud to improve the performance of anaerobic granular sludge during methanogenesis.
Collapse
Affiliation(s)
- Ming Wu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhen-Hu Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Tong-Bao Jiang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wen-Wen Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhi-Wei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Qing-Xi Hou
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
9
|
Kundu R, Kunnoth B, Pilli S, Polisetty VR, Tyagi RD. Biochar symbiosis in anaerobic digestion to enhance biogas production: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118743. [PMID: 37572403 DOI: 10.1016/j.jenvman.2023.118743] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
In recent years, anaerobic digestion (AD) has gained popularity as a practical method for generating clean energy and efficiently managing organic waste. However, the effectiveness of the reactor is compromised by the accumulation of ammonia, acids, and nutrients, leading to inhibition and instability. Because of its adaptability, biochar (BC) has sparked a substantial interest in biogas production and can be created by charring biomass and waste materials. Adding BC to the AD process could yield the following benefits: mitigating toxic inhibition, reducing the duration of the methanogenic lag phase, immobilising functional bacteria, and enhancing the rate of electron transfer between methanogenic and acetogenic microorganisms. Nonetheless, there remains to be more comprehensive knowledge regarding the multifaceted function of BC and its intricate mechanisms in the generation of biogas in AD. The research summarises scattered information from the literature on BC production from various feedstocks and factors affecting its characteristics. Additionally, a comprehensive analysis of the utilisation of BC as an additive within AD is presented here, emphasising how BC characteristics impact AD processes and how they effectively engage key challenges.
Collapse
Affiliation(s)
- Ranarup Kundu
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India
| | - Bella Kunnoth
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India
| | - Sridhar Pilli
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India.
| | - Venkateswara Rao Polisetty
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India.
| | - R D Tyagi
- BOSK Bioproducts, Quebec City, QC, Canada
| |
Collapse
|
10
|
Valentin MT, Luo G, Zhang S, Białowiec A. Direct interspecies electron transfer mechanisms of a biochar-amended anaerobic digestion: a review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:146. [PMID: 37784139 PMCID: PMC10546780 DOI: 10.1186/s13068-023-02391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
This paper explores the mechanisms of biochar that facilitate direct interspecies electron transfer (DIET) among syntrophic microorganisms leading to improved anaerobic digestion. Properties such as specific surface area (SSA), cation exchange capacity (CEC), presence of functional groups (FG), and electrical conductivity (EC) were found favorable for increased methane production, reduction of lag phase, and adsorption of inhibitors. It is revealed that these properties can be modified and are greatly affected by the synthesizing temperature, biomass types, and residence time. Additionally, suitable biochar concentration has to be observed since dosage beyond the optimal range can create inhibitions. High organic loading rate (OLR), pH shocks, quick accumulation and relatively low degradation of VFAs, and the presence of heavy metals and toxins are the major inhibitors identified. Summaries of microbial community analysis show fermentative bacteria and methanogens that are known to participate in DIET. These are Methanosaeta, Methanobacterium, Methanospirillum, and Methanosarcina for the archaeal community; whereas, Firmicutes, Proteobacteria, Synergistetes, Spirochetes, and Bacteroidetes are relatively for bacterial analyses. However, the number of defined cocultures promoting DIET is very limited, and there is still a large percentage of unknown bacteria that are believed to support DIET. Moreover, the instantaneous growth of participating microorganisms has to be validated throughout the process.
Collapse
Affiliation(s)
- Marvin T. Valentin
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
- Department of Science and Technology, Engineering and Industrial Research, National Research Council of the Philippines, Taguig, Philippines
- Benguet State University, Km. 5, La Trinidad, 2601 Benguet, Philippines
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
- Department of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Road, Ames, IA 50011 USA
| |
Collapse
|
11
|
Zhong Y, He J, Duan S, Cai Q, Pan X, Zou X, Zhang P, Zhang J. Revealing the mechanism of novel nitrogen-doped biochar supported magnetite (NBM) enhancing anaerobic digestion of waste-activated sludge by sludge characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117982. [PMID: 37119625 DOI: 10.1016/j.jenvman.2023.117982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Anaerobic digestion (AD) is a promising technology in waste treatment and energy recovery. However, it suffers from long retention time and low biogas yield. In this study, novel nitrogen-doped biochar supported magnetite (NBM) was synthesized and applied to enhance the AD of waste-activated sludge. Results showed that NBM increased cumulative methane production and SCOD removal efficiency by up to 1.75 times and 15% respectively at 5 g/L compared with the blank. NBM enhanced both hydrolysis and methanogenesis process during AD and the activities of α-glucosidase, protease, coenzyme F420 and electron transport system were increased by 19%, 163%, 104% and 160% respectively at 5 g/L NBM compared with the blank. NBM also facilitated the secretion of conductive protein in extracellular polymeric substances as well as the formation of conductive pili, leading to 3.18-7.59 times higher sludge electrical conductivity. Microbial community analysis revealed that bacteria Clostridia and archaea Methanosarcina and Methanosaeta were enriched by the addition of NBM, and direct interspecies electron transfer might be promoted between them. This study provides a practical reference for future material synthesis and its application.
Collapse
Affiliation(s)
- Yijie Zhong
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Shengye Duan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Qiupeng Cai
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiang Zou
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Pengfei Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jie Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
12
|
Huang Z, Niu Q, Nie W, Lin Y, Wu S, Li X, Cheng JJ, Yang C. Combined effects of oxytetracycline concentration and organic loading rate on semi-continuous anaerobic digestion of swine wastewater. BIORESOURCE TECHNOLOGY 2023; 382:129179. [PMID: 37196746 DOI: 10.1016/j.biortech.2023.129179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
High concentrations of antibiotics in swine wastewater raises concerns about the potential adverse effects of anaerobic digestion (AD). Current studies mainly focused on the effects of various antibiotic concentrations. However, these studies didn't take into account the fluctuation of swine wastewater quality and the change of reactor operating conditions in practical engineering applications. In this study, it was found that in the operating systems with COD of 3300 mg/L and hydraulic retention time (HRT) of 4.4 days, the continuous addition of oxytetracycline for 30 days had no effect on the AD performance. Nevertheless, when COD and HRT were changed to 4950 mg/L and 1.5 days respectively, oxytetracycline at 2 and 8 mg/L increased the cumulative methane yield by 27% and 38% at the cost of destroying cell membrane, respectively, while oxytetracycline at 0.3 mg/L improved the performance and stability of AD. These results could be referred for practical engineering applications.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Wenkai Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
13
|
Hu Y, Wang X, Zhang S, Liu S, Hu T, Wang X, Wang C, Wu J, Xu L, Xu G, Hu F. Microbial response behavior to powdered activated carbon in high-solids anaerobic digestion of kitchen waste: Metabolism and functional prediction analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117756. [PMID: 36934497 DOI: 10.1016/j.jenvman.2023.117756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic digestion (AD) can not only treat organic waste, but also recycle energy. However, high-solids AD of kitchen waste usually failed due to excessive acidification. In this study, the effect of activated carbon (AC) on kitchen waste AD performance was investigated under high-solids conditions (total solids contents = 15%). The results showed that efficiencies of acidogenesis and methanogenesis were promoted in presence of moderate concentration (50 g/L > AC >5 g/L), but high concentration (AC >70 g/L) weakened AD performance. Moreover, AC addition enhanced the methane production rate from 66.0 mL/g VS to 231.50 mL/g VS, i.e., up to 250.7%. High-throughput sequencing results demonstrated that the abundance of electroactive DMER64 increased from less than 1%-29.7% (20 g/L AC). As AC gradually increased,aceticlastic methanogenesis changed to hydrogenotrophic pathway. Predicted functional analysis indicated that AC can enhance abundances of energy and inorganic ion metabolism, resulting in high methane production.
Collapse
Affiliation(s)
- Yuying Hu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China.
| | - Xiaofan Wang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Shihao Zhang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Susu Liu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Tengfang Hu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Xin Wang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Chuqiao Wang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Li Xu
- JiangXi Water Science Detecting and Researching Co., Ltd., Jingdezhen, 333000, China
| | - Gaoping Xu
- JiangXi Water Science Detecting and Researching Co., Ltd., Jingdezhen, 333000, China
| | - Fengping Hu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Qiu S, Zhang X, Xia W, Li Z, Wang L, Chen Z, Ge S. Effect of extreme pH conditions on methanogenesis: Methanogen metabolism and community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162702. [PMID: 36898547 DOI: 10.1016/j.scitotenv.2023.162702] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 05/06/2023]
Abstract
The control of pH is effective for inhibiting methanogenesis in the chain elongation fermentation (CEF) system. However, obscure conclusions exist especially with regard to the underlying mechanism. This study comprehensively explored the responses of methanogenesis in granular sludge at various pH levels, ranging from 4.0 to 10.0, from multiple aspects including methane production, methanogenesis pathway, microbial community structure, energy metabolism and electron transport. Results demonstrated that compared with that at pH 7.0, pH at 4.0, 5.5, 8.5 and 10.0 triggered a 100%, 71.7%, 23.8% and 92.1% suppression on methanogenesis by the end of 3 cycles lasting 21 days. This might be explained by the remarkably inhibited metabolic pathways and intracellular regulations. To be more specific, extreme pH conditions decreased the abundance of the acetoclastic methanogens. However, obligate hydrogenotrophic and facultative acetolactic/hydrogenotrophic methanogens were significantly enriched by 16.9%-19.5 fold. pH stress reduced the gene abundance and/or activity of most enzymes involved in methanogenesis such as acetate kinase (by 81.1%-93.1%), formylmethanofuran dehydrogenase (by 10.9%-54.0%) and tetrahydromethanopterin S-methyltransferase (by 9.3%-41.5%). Additionally, pH stress suppressed electron transport via improper electron carriers and decreased electron amount as evidenced by 46.3%-70.4% reduced coenzyme F420 content and diminished abundance of CO dehydrogenase (by 15.5%-70.5%) and NADH:ubiquinone reductase (by 20.2%-94.5%). pH stress also regulated energy metabolism with inhibited ATP synthesis (e.g., ATP citrate synthase level reduced by 20.1%-95.3%). Interestingly, the protein and carbohydrate content secreted in EPS failed to show consistent responses to acidic and alkaline conditions. Specifically, when compared with pH 7.0, the acidic condition remarkably reduced the levels of total EPS and EPS protein while both levels were enhanced in the alkaline condition. However, the EPS carbohydrate content at pH 4.0 and 10.0 both decreased. This study is expected to promote the understanding of the pH control-induced methanogenesis inhibition in the CEF system.
Collapse
Affiliation(s)
- Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Xingchen Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Wenhao Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zimu Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Lingfeng Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
15
|
Ni Z, Zhou L, Lin Z, Kuang B, Zhu G, Jia J, Wang T. Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131314. [PMID: 37030222 DOI: 10.1016/j.jhazmat.2023.131314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/26/2023] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
The accumulation of volatile fatty acids (VFAs) caused by antibiotic inhibition significantly reduces the treatment efficiency of sulfamethoxazole (SMX) wastewater. Few studies have been conducted to study the VFAs gradient metabolism of extracellular respiratory bacteria (ERB) and hydrogenotrophic methanogen (HM) under high-concentration sulfonamide antibiotics (SAs). And the effects of iron-modified biochar on antibiotics are unknown. Here, the iron-modified biochar was added to an anaerobic baffled reactor (ABR) to intensify the anaerobic digestion of SMX pharmaceutical wastewater. The results demonstrated that ERB and HM were developed after adding iron-modified biochar, promoting the degradation of butyric, propionic and acetic acids. The content of VFAs reduced from 1166.0 mg L-1 to 291.5 mg L-1. Therefore, chemical oxygen demand (COD) and SMX removal efficiency were improved by 22.76% and 36.51%, and methane production was enhanced by 6.19 times. Furthermore, the antibiotic resistance genes (ARGs) such as sul1, sul2, intl1 in effluent were decreased by 39.31%, 43.33%, 44.11%. AUTHM297 (18.07%), Methanobacterium (16.05%), Geobacter (6.05%) were enriched after enhancement. The net energy after enhancement was 0.7122 kWh m-3. These results confirmed that ERB and HM were enriched via iron-modified biochar to achieve high efficiency of SMX wastewater treatment.
Collapse
Affiliation(s)
- Zhili Ni
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Lilin Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Ziyang Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Bin Kuang
- Jiangmen Polytechnic, Jiangmen 529020, PR China; Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianbo Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Tao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
16
|
Nie W, Lin Y, Wu X, Wu S, Li X, Cheng JJ, Yang C. Chitosan-Fe 3O 4 composites enhance anaerobic digestion of liquor wastewater under acidic stress. BIORESOURCE TECHNOLOGY 2023; 377:128927. [PMID: 36940874 DOI: 10.1016/j.biortech.2023.128927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Acid stress in the anaerobic digestion process of liquor wastewater leads to low anaerobic treatment efficiency. Herein, chitosan-Fe3O4 was prepared, and its effects on anaerobic digestion processes under acid stress were studied. Results showed that chitosan-Fe3O4 increased the methanogenesis rate of anaerobic digestion of acidic liquor wastewater by 1.5-2.3 times and accelerated the restoration of acidified anaerobic systems. The analysis of sludge characteristics showed that chitosan-Fe3O4 promoted the secretion of proteins and humic substances in extracellular polymeric substances and increased the electron transfer activity of the system by 71.4%. Microbial community analysis indicated that chitosan-Fe3O4 enriched the abundance of Peptoclostridium, and Methanosaeta participated in direct interspecies electron transfer. Chitosan-Fe3O4 could promote the direct interspecies electron transfer pathway to maintain stable methanogenesis. These methods and results regarding the use of chitosan-Fe3O4 could be referred to for improving the efficiency of anaerobic digestion of high concentration organic wastewater under acid inhibition.
Collapse
Affiliation(s)
- Wenkai Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xin Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shaohua Wu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jay J Cheng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
17
|
Di L, Wang F, Li S, Wang H, Zhang D, Yi W, Shen X. Influence of nano-Fe 3O 4 biochar on the methanation pathway during anaerobic digestion of chicken manure. BIORESOURCE TECHNOLOGY 2023; 377:128979. [PMID: 36990326 DOI: 10.1016/j.biortech.2023.128979] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Volatile fatty acids and ammonia nitrogen (AN) accumulate during anaerobic digestion (AD) of high N substrates, such as chicken manure (CM), causing decreases in methane yield. Previous research found that the addition of nano-Fe3O4 biochar can alleviate the inhibition caused by acids and ammonia and increase methane production. The mechanism of enhanced methane production in nano-Fe3O4 biochar-mediated AD of CM was explored in depth in this study. The results showed the lowest AN concentration in the control and nano-Fe3O4 biochar addition groups were 8,229.0 mg/L and 7,701.5 mg/L, respectively. Methane yield of volatile solids increased from 92.0 mL/g to 219.9 mL/g in the nano-Fe3O4 biochar treatment, which was attributed to the enrichment of unclassified Clostridiales and Methanosarcina. The mechanism of nano-Fe3O4 biochar in AD of CM under high AN level was to improve methane production by promoting syntrophic acetate oxidation and facilitating direct electron transfer between microorganisms.
Collapse
Affiliation(s)
- Lu Di
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong 255049, China
| | - Fang Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong 255049, China.
| | - Siyu Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong 255049, China
| | - Hao Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong 255049, China
| | - Deli Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong 255049, China
| | - Weiming Yi
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong 255049, China
| | - Xiuli Shen
- Academy of Agricultural Planning and Engineering, Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| |
Collapse
|
18
|
Wu Z, Qiao W, Li YY, Yao J, Sun Y, Dong R. Chemically and biologically driven carbon transformation flow in MSW leachate treated by a high-solids anaerobic membrane bioreactor system. CHEMOSPHERE 2023; 335:139075. [PMID: 37263509 DOI: 10.1016/j.chemosphere.2023.139075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/03/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
Carbon transformation is important for an anaerobic process but is often overlooked when using an anaerobic membrane bioreactor (AnMBR). Material flow in an AnMBR treating calcium-rich MSW leachate was thus quantitatively investigated to illustrate how chemical and biological factors affect carbon transformation. The results show that a remarkable amount of carbon in the leachate was degraded, with 50.1% of it should be converted into CH4 and 37.7% of it into CO2. However, a much smaller value of 40.6% and 14.2% were experimentally obtained. Chemical analysis indicated that the precipitation of calcium carbonate captured 1.23 g/day of carbon. At the same time, about 23.2 g/L HCO3- and 16.6 mg/L CH4 (both as carbon) were dissolved in the liquid. Those features facilitated the high CH4 (74%) content in biogas. A carbon transformation model was therefore established and showed carbon flow into the gas, liquid, and solid phases, respectively. Carbon existed in biogas, permeate, and discharged sludge was also obtained.
Collapse
Affiliation(s)
- Zhiyue Wu
- College of Engineering, China Agricultural University, China; Sanya Institute of China Agricultural University, Sanya, Hainan Province, 572025, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, China; Sanya Institute of China Agricultural University, Sanya, Hainan Province, 572025, China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi, 980-8579, Japan
| | - Junqiang Yao
- College of Engineering, China Agricultural University, China; Sanya Institute of China Agricultural University, Sanya, Hainan Province, 572025, China
| | - Yibo Sun
- College of Engineering, China Agricultural University, China; Sanya Institute of China Agricultural University, Sanya, Hainan Province, 572025, China
| | - Renjie Dong
- College of Engineering, China Agricultural University, China
| |
Collapse
|
19
|
Cheng Y, Wan W. Strong linkage between nutrient-cycling functional gene diversity and ecosystem multifunctionality during winter composting with pig manure and fallen leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161529. [PMID: 36634774 DOI: 10.1016/j.scitotenv.2023.161529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Microorganisms play important roles in element transformation and display distinct compositional changes during composting. However, little is known about the linkage between nutrient-cycling functional gene diversity and compost ecosystem multifunctionality (EMF). This study performed winter composting with pig manure and fallen leaves and evaluated the distribution patterns and ecological roles of multiple functional genes involved in nutrient cycles. Physicochemical properties and enzyme activities presented large fluctuations during composting. Absolute abundance, composition, and diversity of functional genes participating in carbon, nitrogen, phosphorus, and sulfur cycles presented distinct dynamic changes. Stronger linkage was found between enzyme activities and temperature than other physicochemical factors, whereas total nitrogen rather than other physicochemical factors displayed closer linkage with functional gene composition and diversity. EMF targeting key nutrient (i.e., carbon, nitrogen, phosphorus, and sulfur) cycles was significantly positively correlated with temperature and notably negatively correlated with functional gene diversity. Enzyme activities rather than functional gene diversity showed a greater potential effect on phosphorus availability. Consequently, the available phosphorus (AP) content increased from initial 0.50 g/kg to final 1.43 g/kg. To our knowledge, this is the first study that deciphered ecological roles of nutrient-cycling functional gene diversity during composting, and the final compost can serve as a potential phosphorus fertilizer.
Collapse
Affiliation(s)
- Yarui Cheng
- College of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, PR China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, PR China.
| |
Collapse
|
20
|
Zhong Y, He J, Wu F, Zhang P, Zou X, Pan X, Zhang J. Metagenomic analysis reveals the size effect of magnetite on anaerobic digestion of waste activated sludge after thermal hydrolysis pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158133. [PMID: 35988621 DOI: 10.1016/j.scitotenv.2022.158133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Although magnetite has been widely investigated in anaerobic digestion (AD), its role in the practical AD of waste-activated sludge (WAS) after thermal hydrolysis pretreatment (THP) and its size effect remain unclear. In this study, magnetite with four different particle sizes was added during the AD of WAS after THP. With the reduction of magnetite particle size, cumulative methane production was increased, while the optimal dosage of magnetite decreased, with 0.1 μm magnetite at an optimal dosage of 2 g/L achieving the highest cumulative methane production increase of 111.97 % compared with the blank group (without magnetite). Smaller magnetite particles increased α-glucosidase and protease activities, coenzyme F420 concentration, and electron-transport system activity (20.30 %, 173.02 %, 60.39 % and 158.08 % higher respectively than the blank group). The size of magnetite also influenced the establishment of direct interspecies electron transfer (DIET) during AD. Based on the analysis of the pilA gene abundance, magnetite with a large particle size could promote the formation of e-pili in syntrophic electroactive bacteria (Clostridium, Syntrophomonas, and Pseudomonas) and methanogens (Methanospirillum), thereby completing electron transfer. However, small-sized magnetite particles stimulated DIET by enhancing the secretion of conductive proteins in extracellular polymeric substances and membrane-bound enzymes (Fpo) in Methanosarcina.
Collapse
Affiliation(s)
- Yijie Zhong
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Fei Wu
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Pengfei Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiang Zou
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jie Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
21
|
Huang Z, He C, Dong F, Su K, Yuan S, Hu Z, Wang W. Granular activated carbon and exogenous hydrogen enhanced anaerobic digestion of hypersaline phenolic wastewater via syntrophic acetate oxidation and hydrogenotrophic methanogenesis. BIORESOURCE TECHNOLOGY 2022; 365:128155. [PMID: 36272682 DOI: 10.1016/j.biortech.2022.128155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
High salinity in phenolic wastewater inhibited anaerobes' metabolic activity, thereby affecting the anaerobic biotransformation of phenol. In this study, granular activated carbon (GAC) coupled with exogenous hydrogen (H2) was used to enhance the anaerobic digestion of phenol. The GAC/H2 group's accumulative methane production, coenzyme F420 concentration, and interspecies electron transfer system activity increased by 24 %, 53 %, and 16 %, respectively, compared with the control group. In the floc sludge of the GAC/H2 group, the relative abundance of syntrophic acetate-oxidizing bacteria such as Syntrophus and Syntrophorhabdus were 18.7 % and 1.1 % at genus level, respectively, which were around 93.5 and 7.5 times of that of the controlgroup. Moreover, Acinetobacter (77.6 %), Methanobacterium (44.0 %), and Methanosarcina (34.2 %) were significantly enriched on the GAC surface in GAC/H2 group. Therefore, the coupling of GAC and H2 provided a novel attempt at anaerobic digestion of hypersaline phenolic wastewater via syntrophic acetate oxidation and hydrogenotrophic methanogenesis pathway.
Collapse
Affiliation(s)
- Zhiqiang Huang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Chunhua He
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui JianZhu University, Hefei 230601, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Fang Dong
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Kuizu Su
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Shoujun Yuan
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China.
| |
Collapse
|
22
|
Tijjani Usman IM, Ho YC, Baloo L, Lam MK, Sujarwo W. A comprehensive review on the advances of bioproducts from biomass towards meeting net zero carbon emissions (NZCE). BIORESOURCE TECHNOLOGY 2022; 366:128167. [PMID: 36341858 DOI: 10.1016/j.biortech.2022.128167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
This review investigates the development of bioproducts from biomass and their contribution towards net zero carbon emissions. The promising future of biomasses conversion techniques to produce bioproducts was reviewed. The advances in anaerobic digestion as a biochemical conversion technique have been critically studied and contribute towards carbon emissions mitigation. Different applications of microalgae biomass towards carbon neutrality were comprehensively discussed, and several research findings have been tabulated in this review. The carbon footprints of wastewater treatment plants were studied, and bioenergy utilisation from sludge production was shown to mitigate carbon footprints. The carbon-sinking capability of microalgae has also been outlined. Furthermore, integrated conversion processes have shown to enhance bioproducts generation yield and quality. The anaerobic digestion/pyrolysis integrated process was promising, and potential substrates have been suggested for future research. Lastly, challenges and future perspectives of bioproducts were outlined for a contribution towards meeting carbon neutrality.
Collapse
Affiliation(s)
- Ibrahim Muntaqa Tijjani Usman
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan 32610, Malaysia; Agricultural and Environmental Engineering Department, Faculty of Engineering, Bayero University Kano, Kano 700241, Nigeria.
| | - Yeek-Chia Ho
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan 32610, Malaysia.
| | - Lavania Baloo
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan 32610, Malaysia.
| | - Man-Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan 32610, Malaysia.
| | - Wawan Sujarwo
- Ethnobotany Research Group, Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
23
|
Qian J, Zhang Y, Bai L, Yan X, Du Y, Ma R, Ni BJ. Revealing the mechanisms of polypyrrole (Ppy) enhancing methane production from anaerobic digestion of waste activated sludge (WAS). WATER RESEARCH 2022; 226:119291. [PMID: 36323214 DOI: 10.1016/j.watres.2022.119291] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion (AD) is a promising method for treating waste activated sludge (WAS), but the low methane yield limits its large-scale application. The addition of conductive nanomaterials has been demonstrated to enhance the activity of AD via promoting the direct interspecies electron transfer (DIET). In this study, novel conductive polypyrrole (Ppy) was prepared to effectively improve the AD performance of WAS. The results showed that the accumulative methane production was enhanced by 27.83% by Ppy, with both acidogenesis and methanogenesis being efficiently accelerated. The microbial community analysis indicated that the abundance of bacteria associated with acidogenesis process was significantly elevated by Ppy. Further investigation by metatranscriptomics revealed that fadE and fadN genes (to express the key enzymes in fatty acid metabolism) were highly expressed in the Ppy-driven AD, suggesting that Ppy promoted electron generation during acid production. For methanogenesis metabolism, genes related to acetate utilization and CO2 utilization methanogenesis were also up-regulated by Ppy, illustrating that Ppy facilitates the utilization of acetate and electrons by methanogenic archaea, thus potentially promoting the methanogenesis through DIET.
Collapse
Affiliation(s)
- Jin Qian
- Research & Development Institute in Shenzhen & School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China.
| | - Yichu Zhang
- Research & Development Institute in Shenzhen & School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Linqin Bai
- Research & Development Institute in Shenzhen & School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Xueqian Yan
- Research & Development Institute in Shenzhen & School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Yufei Du
- Research & Development Institute in Shenzhen & School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Rui Ma
- Research & Development Institute in Shenzhen & School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
24
|
Lu H, Li J, Fu Z, Wang X, Zhou J, Wang J. Comparison of the accelerating effect of graphene oxide and graphene on anaerobic transformation of bisphenol F by Pseudomonas sp. LS. ENVIRONMENTAL TECHNOLOGY 2022; 43:4249-4256. [PMID: 34152266 DOI: 10.1080/09593330.2021.1946167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
It was found that bisphenol F (BPF) could be anaerobically transformed to 4,4-dihydroxybenzophenone using nitrate as an electron acceptor by Pseudomonas sp. LS. However, BPF removal was a slow process under anaerobic conditions. In the present study, effects of graphene oxide (GO) and graphene on the anaerobic transformation of BPF were studied in detail. Results showed that GO (2-10 mg/L) and graphene (2-20 mg/L) could increase the anaerobic biotransformation rate of BPF. For GO-mediated system, GO was partially reduced, and then the reduced GO (rGO) as an electron mediator increased biotransformation rate of BPF. Further analysis showed that the promoting effect of 10 mg/L GO was over 1.5-fold higher compared with that of 10 mg/L graphene. BPF could be transformed using GO as an electron acceptor. GO and graphene was also used as nutrient scaffolds to promote cell growth via adsorbing proteins. Moreover, GO was a better cell growth promoter than graphene. These studies indicated that GO played more roles and exhibited a better accelerating effect on anaerobic removal of BPF compared with graphene.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jingyi Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Ze Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| |
Collapse
|
25
|
Huang Z, Niu Q, Nie W, Li X, Yang C. Effects of heavy metals and antibiotics on performances and mechanisms of anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 361:127683. [PMID: 35882314 DOI: 10.1016/j.biortech.2022.127683] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) is an efficacious technology to recover energy from organic wastes/wastewater, while the efficiency of AD could be limited by metals and antibiotics in substrates. It is of great significance to deeply understand the interaction mechanisms of metals and antibiotics with anaerobic microorganisms, as well as the combined effects of metals and antibiotics, which will help us break the inherent dysfunction of AD system and promote the efficient operation of AD. Therefore, this paper reviews the effects of metals, antibiotics and their combinations on AD performance, as well as the combined effects and interactional mechanisms of metals and antibiotics with anaerobic microorganisms. In addition, control strategies and future research needs are proposed. This review provides valuable information for the enhancement strategies and engineering applications of AD for organic wastes/wastewater containing metals and antibiotics.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wenkai Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan 410001, China.
| |
Collapse
|
26
|
de Quadros TCF, Mangerino Sicchieri I, Fernandes F, Kiyomi Kuroda E. Selection of additive materials for anaerobic co-digestion of fruit and vegetable waste and layer chicken manure. BIORESOURCE TECHNOLOGY 2022; 361:127659. [PMID: 35872273 DOI: 10.1016/j.biortech.2022.127659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to assess the potential of different additive materials in enhancing the stability and methane production of anaerobic co-digestion of fruit and vegetable waste and layer chicken manure. A biochemical methane potential assay was conducted to evaluate the co-digestion of substrates with the addition of additive materials (10 g L-1): biochars produced (450 and 550 °C) (from fruit and vegetable waste, layer chicken manure, and wood pruning waste), powdered activated carbon, and zeolites. All additive materials increased methane production. Biochars showed better results regarding methane production (increments of 17 to 28 %). The surface of biochars favored the adhesion of microorganisms, this was confirmed by spectra after co-digestion. Furthermore, the redox-active groups in the biochars may have contributed to the microbiological syntrophism, increasing methane rates. These materials are viable for application in co-digestion systems, and the use of waste for their production is an option for solid waste management.
Collapse
Affiliation(s)
- Thainara Camila Fernandes de Quadros
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil.
| | - Isabela Mangerino Sicchieri
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil
| | - Fernando Fernandes
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil
| | - Emília Kiyomi Kuroda
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil
| |
Collapse
|
27
|
Deng Y, Zhang K, Zou J, Li X, Wang Z, Hu C. Electron shuttles enhanced the removal of antibiotics and antibiotic resistance genes in anaerobic systems: A review. Front Microbiol 2022; 13:1004589. [PMID: 36160234 PMCID: PMC9490129 DOI: 10.3389/fmicb.2022.1004589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The environmental and epidemiological problems caused by antibiotics and antibiotic resistance genes have attracted a lot of attention. The use of electron shuttles based on enhanced extracellular electron transfer for anaerobic biological treatment to remove widespread antibiotics and antibiotic resistance genes efficiently from wastewater or organic solid waste is a promising technology. This paper reviewed the development of electron shuttles, described the mechanism of action of different electron shuttles and the application of enhanced anaerobic biotreatment with electron shuttles for the removal of antibiotics and related genes. Finally, we discussed the current issues and possible future directions of electron shuttle technology.
Collapse
|
28
|
Li X, Qin R, Yang W, Su C, Luo Z, Zhou Y, Lin X, Lu Y. Effect of asparagine, corncob biochar and Fe(II) on anaerobic biological treatment under low temperature: Enhanced performance and microbial community dynamic. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115348. [PMID: 35660832 DOI: 10.1016/j.jenvman.2022.115348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
To ensure the efficiency of anaerobic biological treatment technology at lower temperature will expand the application of anaerobic reactor in practical industrial wastewater treatment. Through a batch experiment, asparagine, corncob biochar and Fe2+ were selected as strengthening measures to analyze the effects on the anaerobic sludge characteristics, microbial community and functional genes in the low temperature (15 °C). Results showed that after 21 days, asparagine began to promote chemical oxygen demand (COD) removal by the anaerobic treatment, with highest COD removal rate (81.65%) observed when the asparagine concentration was 1 mmol/L. When adding 3 g biochar, 25 mg/L Fe2+, and the combination of biochar and Fe2+, the COD removal rates reached to 82%, 92% and 97%, respectively. In the presence of asparagine, both biochar and Fe2+ alone or in combination increased the activity of protease (16.35%-120.71%) and coenzyme F420 (5.63%-130.2%). The relative abundance of Proteobacteria and Methanobacterium increased in the presence of biochar and Fe2+. In addition, the KEGG results showed that the combined addition of biochar and Fe2+ enhanced bacterial replication and repair and promoted amino acid metabolism of archaea.
Collapse
Affiliation(s)
- Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Wenjing Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin, 541004, PR China.
| | - Zehua Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yijie Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xiangfeng Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yingqi Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
29
|
Romero-Güiza MS, Flotats X, Asiain-Mira R, Palatsi J. Enhancement of sewage sludge thickening and energy self-sufficiency with advanced process control tools in a full-scale wastewater treatment plant. WATER RESEARCH 2022; 222:118924. [PMID: 35933817 DOI: 10.1016/j.watres.2022.118924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
On their path to becoming sustainable facilities, it is required that wastewater treatment plants reduce their energy demand, sludge production, and chemical consumption, as well as increase on-site power generation. This study describes the results obtained from upgrading the sludge line of a full-scale wastewater treatment plant over 6 years (2015-2021) using three advanced process control strategies. The advanced process control tools were designed with the aim of (i) enhancing primary and secondary sludge thickening, (ii) improving anaerobic digestion performance, and (iii) reducing chemical consumption in the sludge line. The results obtained show that the use of advanced process control tools allows for optimising sludge thickening (increasing solids content by 9.5%) and anaerobic digestion (increasing both the removal of volatile solids and specific methane yield by 10%, respectively), while reducing iron chloride and antifoam consumption (by 75% and 53%, respectively). With the strategies implemented, the plant increased its potential energy self-sufficiency from 43% to 51% and reduced de-watered sludge production by 11%. Furthermore, the upgrade required a low investment, with a return of capital expense (CAPEX) in 1.98 years, which presents a promising and affordable alternative for upgrading existing wastewater treatment plants.
Collapse
Affiliation(s)
- M S Romero-Güiza
- Aqualia, Production Area, Cami Sot de Fontanet, 29, Lleida 25197, Spain
| | - X Flotats
- UPC BarcelonaTECH, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - R Asiain-Mira
- Aqualia, Innovation and Technology Department, Av. Camino de Santiago, 40, Madrid 28050, Spain
| | - J Palatsi
- Aqualia, Production Area, Cami Sot de Fontanet, 29, Lleida 25197, Spain.
| |
Collapse
|
30
|
Cao H, Sun J, Wang K, Zhu G, Li X, Lv Y, Wang Z, Feng Q, Feng J. Performance of bioelectrode based on different carbon materials in bioelectrochemical anaerobic digestion for methanation of maize straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154997. [PMID: 35381255 DOI: 10.1016/j.scitotenv.2022.154997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The performance of the bioelectrochemical anaerobic digestion (BEAD) reactor was investigated with different carbon material-modified electrodes for the methanation of maize straw. The carbon material-modified electrodes used titanium (Ti) mesh modified with carbon nanotube (CNT), carbon black (CB), and activated carbon (AC). The maximum cumulative methane production obtained in the Ti-CNT reactor was (616.4 ± 9.3) mL/g VS, while the maximum methane production rate in the Ti-AC reactor was (61.9 ± 1.0) mL/g VS.d.The electroactive bacteria were well enriched by the different electrodes, and the enriched electroactive bacteria further facilitate the direct interspecies electron transfer (DIET) for methane production. Additionally, we found the phylum Firmicutes showed a linear relationship to methanogenic performance, as well as the Genus Proteiniborus. The Ti-CNT electrode shows better performance by the electrochemical analysis. These findings provide critical knowledge for the large-scale use of the BEAD process and the treatment of maize straw.
Collapse
Affiliation(s)
- Hongrui Cao
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jin Sun
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Keqiang Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guanyu Zhu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoxiang Li
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yaowei Lv
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zejie Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qing Feng
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jie Feng
- School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| |
Collapse
|
31
|
Addition of Conductive Materials to Support Syntrophic Microorganisms in Anaerobic Digestion. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Syntrophy and interspecies electron transfer among different microbial groups occurs in anaerobic digestion, and many papers recently reported their positive effect on biogas and methane production. In this paper, we present the results on the effect of conductive material, i.e., graphene, PAC and biochar addition in 3.5 L batch experiments, analyzing the biogas production curve. A peculiar curve pattern occurred in the presence of conductive materials. Compared to the respective controls, the addition of graphene produced a biogas surplus of 33%, PAC 20% and biochar 8%. Microbial community molecular analysis showed that syntrophic microorganisms present in the inoculum were stimulated by the conductive material addition. Graphene also appears to promote an interspecies electron transfer between Geobacter sp. and ca. Methanofastidiosum. This paper contributes to the understanding of the DIET-related microbial community dynamic in the presence of graphene and PAC, which could be exploited to optimize biogas and methane production in real-scale applications.
Collapse
|
32
|
Logan M, Tan LC, Nzeteu CO, Lens PNL. Enhanced anaerobic digestion of dairy wastewater in a granular activated carbon amended sequential batch reactor. GLOBAL CHANGE BIOLOGY. BIOENERGY 2022; 14:840-857. [PMID: 35915605 PMCID: PMC9324911 DOI: 10.1111/gcbb.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/21/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the potential of granular activated carbon (GAC) supplementation to enhance anaerobic degradation of dairy wastewater. Two sequential batch reactors (SBRs; 0.8 L working volume), one control and another amended with GAC, were operated at 37°C and 1.5-1.6 m/h upflow velocity for a total of 120 days (four cycles of 30 days each). The methane production at the end of each cycle run increased by about 68%, 503%, 110%, and 125% in the GAC-amended SBR, compared with the Control SBR. Lipid degradation was faster in the presence of GAC. Conversely, the organic compounds, especially lipids, accumulated in the absence of the conductive material. In addition, a reduction in lag phase duration by 46%-100% was observed at all four cycles in the GAC-amended SBR. The peak methane yield rate was at least 2 folds higher with GAC addition in all cycles. RNA-based bacterial analysis revealed enrichment of Synergistes (0.8% to 29.2%) and Geobacter (0.4% to 11.3%) in the GAC-amended SBR. Methanolinea (85.8%) was the dominant archaea in the biofilm grown on GAC, followed by Methanosaeta (11.3%), at RNA level. Overall, this study revealed that GAC supplementation in anaerobic digesters treating dairy wastewater can promote stable and efficient methane production, accelerate lipid degradation and might promote the activity of electroactive microorganisms.
Collapse
Affiliation(s)
| | - Lea Chua Tan
- National University of Ireland, GalwayGalwayIreland
| | | | | |
Collapse
|
33
|
Kong X, Niu J, Li M, Yue X, Zhang Q, Zhang W, Liu J, Yuan J, Li X. Novel application of pyrolytic carbon generated from waste tires: Hydrolytic and methanogenic performance promotion in vinegar residue anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 143:15-22. [PMID: 35219252 DOI: 10.1016/j.wasman.2022.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Random disposal of waste tires and vinegar residues is deleterious to the environment; these materials can be sufficiently treated using pyrolysis and anaerobic digestion, respectively. In this study, pyrolytic carbon was used to enhance the performance of the anaerobic digestion of vinegar residues, which is a much more economic method comparing with dosing commercial-level carbon based materials. The conductivity of pyrolytic carbon at 1000 °C is much higher than that of commercial activated carbon. At a dosage of 10 g per 29 g of vinegar residues, the maximum volatile fatty acid production was 4225.4 mg COD/L in the reactor (effective volume of 400 mL) with inoculum to substrate ratio (ISR) of 1:1, representing an increase of 50.3% from that of the control reactor. A sufficient dosage is necessary to improve methane yield. The maximum methane yield was obtained at a pyrolytic carbon dosage, obtained at 1000 °C, of 12 g per 29 g of vinegar residues. The results indicated that the differences in the microbial communities of the control and experimental reactors correlated with the performance; however, the deep microbial mechanism of pyrolytic carbon boosting anaerobic digestion performance must be explored in further studies.
Collapse
Affiliation(s)
- Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; School of Environment, Tsinghua University, Beijing 10084, China; Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province, Shanxi Agricultural University, Taiyuan, China.
| | - Jianan Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Mingkai Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; China Nuclear Industry 24 Construction Co., Ltd., Chongqing 401120, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Qiang Zhang
- Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province, Shanxi Agricultural University, Taiyuan, China
| | - Wenjing Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 10084, China
| | - Jin Yuan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Xia Li
- Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
34
|
Wang P, Zheng Y, Zhao L, Lu J, Dong H, Yu H, Qi L, Ren L. New insights of anaerobic performance, antibiotic resistance gene removal, microbial community structure: applying graphite-based materials in wet anaerobic digestion. ENVIRONMENTAL TECHNOLOGY 2022:1-14. [PMID: 35188433 DOI: 10.1080/09593330.2022.2044917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The addition of carbonaceous materials into anaerobic digestion (AD) has gained widespread attention due to their significant effects on anaerobic performance and antibiotic resistance gene (ARG) removal. This study selected graphite, graphene, and graphene oxide (GO) as additives to investigate variations in AD performance, ARG removal, microbial community diversity and structure in wet AD systems. The results indicated that the addition of graphite-based materials in wet AD systems could increase degradation of solid organic matters by 0.91%-3.41% and utilization of soluble organic fractions by 10.43%-13.67%, but could not stimulate methane production. After the addition of graphite and graphene, ARG removal rates were effectively increased to 90.85% and 94.22%, respectively. However, the total ARG removal rate was reduced to 77.46% with the addition of GO. In addition, the microbial diversity in the wet AD process was enhanced with the addition of GO only, graphite and graphene led to a reduction in it. As for bacterial community, graphite and graphene increased the abundance of Thermotogae from 43.43% to 57.42% and 58.74%, while GO increased the abundance of Firmicute from 49.90% to 56.27%. For the archaeal community, the proportion of hydrogenotrophic methanogens was improved when adding each graphite-based material; however, only GO increased Methanosaeta that was acetoclastic methanogens. Finally, methanogens were found as the ARG host, and ARGs that belong to the same subtype might exist in the same host bacteria.
Collapse
Affiliation(s)
- Pan Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yi Zheng
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Liya Zhao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Jiaxin Lu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Heng Dong
- College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Hongbing Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Linsong Qi
- Department of Ophthalmology, Air Force Medical Center, Beijing, People's Republic of China
| | - Lianhai Ren
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, People's Republic of China
| |
Collapse
|
35
|
Kutlar FE, Tunca B, Yilmazel YD. Carbon-based conductive materials enhance biomethane recovery from organic wastes: A review of the impacts on anaerobic treatment. CHEMOSPHERE 2022; 290:133247. [PMID: 34914946 DOI: 10.1016/j.chemosphere.2021.133247] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Amongst the most important sustainable waste management strategies, anaerobic biotechnology has had a central role over the past century in the management of high-pollution load sources, such as food, agricultural and municipal wastes. During anaerobic digestion (AD), valuable by-products such as digestate and biogas are produced. Biogas (mainly composed of methane) is generated through a series of reactions between bacteria and archaea. Enhancement of AD process with higher methane yield, accelerated methane production rate, and shorter start-up time is possible via tapping into a novel methanogenic pathway discovered a decade ago. This fundamentally new concept that is a substitute to interspecies hydrogen transfer is called direct interspecies electron transfer (DIET). DIET, a thermodynamically more feasible way of electron transfer, has been proven to occur between bacteria and methanogens. It is well-documented that amendment of carbon-based conductive materials (CCMs) can stimulate DIET via serving as an electrical conduit between microorganisms. Therefore, different types of CCMs such as biochar and activated carbon have been amended to a variety of AD reactors and enhancement of process performance was reported. In this review, a comparative analysis is presented for enhancement of AD performance in relation to major CCM related factors; electrical conductivity, redox properties, particle size and dosage. Additionally, the impacts of AD operational conditions such as organic loading rate and temperature on CCM amended reactors were discussed. Further, the changes in microbial communities of CCM amended reactors were reviewed and future perspectives along with challenges for CCM application in AD have been provided.
Collapse
Affiliation(s)
- Feride Ece Kutlar
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| | - Berivan Tunca
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| | - Yasemin Dilsad Yilmazel
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
36
|
Lovley DR. Electrotrophy: Other microbial species, iron, and electrodes as electron donors for microbial respirations. BIORESOURCE TECHNOLOGY 2022; 345:126553. [PMID: 34906705 DOI: 10.1016/j.biortech.2021.126553] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Electrotrophy, the growth of microbes on extracellular electron donors, drives important biogeochemical cycles and has practical applications. Studies of Fe(II)-based electrotrophy have provided foundational cytochrome-based mechanistic models for electron transport into cells. Direct electron uptake from other microbial species, Fe(0), or cathodes is of intense interest due to its potential roles in the production and anaerobic oxidation of methane, corrosion, and bioelectrochemical technologies. Other cells or Fe(0) can serve as the sole electron donor supporting the growth of several Geobacter and methanogen strains that are unable to use H2 as an electron donor, providing strong evidence for electrotrophy. Additional evidence for electrotrophy in Geobacter strains and Methanosarcina acetivorans is a requirement for outer-surface c-type cytochromes. However, in most instances claims for electrotrophy in anaerobes are based on indirect inference and the possibility that H2 is actually the electron donor supporting growth has not been rigorously excluded.
Collapse
Affiliation(s)
- Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China; Department of Microbiology and Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
37
|
Cayetano RDA, Kim GB, Park J, Yang YH, Jeon BH, Jang M, Kim SH. Biofilm formation as a method of improved treatment during anaerobic digestion of organic matter for biogas recovery. BIORESOURCE TECHNOLOGY 2022; 344:126309. [PMID: 34798247 DOI: 10.1016/j.biortech.2021.126309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The efficiency of anaerobic digestion could be increased by promoting microbial retention through biofilm development. The inclusion of certain types of biofilm carriers has differentiated existing AD biofilm reactors through their respective mode of biofilm growth. Bacteria and archaea engaged in methanogenesis during anaerobic processes potentially build biofilms by adhering or attaching to biofilm carriers. Meta-analyzed results depicted varying degrees of biogas enhancement within AD biofilm reactors. Furthermore, different carrier materials highly induced the dynamicity of the dominant microbial population in each system. It is suggested that the promotion of surface contact and improvement of interspecies electron transport have greatly impacted the treatment results. Modern spectroscopy techniques have been and will continue to give essential information regarding biofilm's composition and structural organization which can be useful in elucidating the added function of this special layer of microbial cells.
Collapse
Affiliation(s)
- Roent Dune A Cayetano
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
38
|
Hoang AT, Nižetić S, Ng KH, Papadopoulos AM, Le AT, Kumar S, Hadiyanto H, Pham VV. Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. CHEMOSPHERE 2022; 287:132285. [PMID: 34563769 DOI: 10.1016/j.chemosphere.2021.132285] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cell (MFC) is lauded for its potentials to solve both energy crisis and environmental pollution. Technologically, it offers the capability to harness electricity from the chemical energy stored in the organic substrate with no intermediate steps, thereby minimizes the entropic loss due to the inter-conversion of energy. The sciences underneath such MFCs include the electron and proton generation from the metabolic decomposition of the substrate by microbes at the anode, followed by the shuttling of these charges to cathode for electricity generation. While its promising prospects were mutually evinced in the past investigations, the upscaling of MFC in sustaining global energy demands and waste treatments is yet to be put into practice. In this context, the current review summarizes the important knowledge and applications of MFCs, concurrently identifies the technological bottlenecks that restricted its vast implementation. In addition, economic analysis was also performed to provide multiangle perspectives to readers. Succinctly, MFCs are mainly hindered by the slow metabolic kinetics, sluggish transfer of charged particles, and low economic competitiveness when compared to conventional technologies. From these hindering factors, insightful strategies for improved practicality of MFCs were formulated, with potential future research direction being identified too. With proper planning, we are delighted to see the industrialization of MFCs in the near future, which would benefit the entire human race with cleaner energy and the environment.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nižetić
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Kim Hoong Ng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Agis M Papadopoulos
- Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Postal Address: GR-54124, Thessaloniki, Greece
| | - Anh Tuan Le
- School of Transportation Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam.
| | - Sunil Kumar
- Waste Reprocessing Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020, India
| | - H Hadiyanto
- Center of Biomass and Renewable Energy (CBIORE), Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang, 50271, Indonesia; School of Postgraduate Studies, Diponegoro University, Jl. Imam Bardjo, SH Semarang, 50241, Indonesia.
| | - Van Viet Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
39
|
He J, Ren S, Zhang S, Luo G. Modification of hydrochar increased the capacity to promote anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 341:125856. [PMID: 34479140 DOI: 10.1016/j.biortech.2021.125856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Hydrochar has been demonstrated to increase methane production rate during anaerobic digestion (AD) of organic wastes/wastewater by facilitating direct interspecies electron transfer (DIET). The present study compared the hydrochars prepared at different conditions (260 °C-1 h, 260 °C-8 h, 320 °C-1 h and 320 °C-8 h) on AD of glucose. Hydrochar prepared at lower temperature and residence time (260 °C-1 h) resulted in the highest methane production rate, which was 237% higher of control experiment without hydrochar. Modification of hydrochar (260 °C-1 h) by ball-milling further increased the capacity to increase methane production rate. Hydrothermal liquefaction (HTL) conditions affected the surface oxygen-containing functional groups that related with DIET, and hydrochar (260 °C-1 h) had higher peaks relating with C-O and O-H functional groups. Ball-milling enhanced the formation of such groups. Microbial analysis showed hydrochar (260 °C-1 h) by ball-milling resulted in the formation of different microbial communities as compared with control experiments, and Azospira and Methanosarcina were enriched, which might be involved in DIET.
Collapse
Affiliation(s)
- Jun He
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Shuang Ren
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
40
|
Improvement of Hydrogen Production during Anaerobic Fermentation of Food Waste Leachate by Enriched Bacterial Culture Using Biochar as an Additive. Microorganisms 2021; 9:microorganisms9122438. [PMID: 34946040 PMCID: PMC8708210 DOI: 10.3390/microorganisms9122438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/01/2022] Open
Abstract
It has become urgent to develop cost-effective and clean technologies for the rapid and efficient treatment of food waste leachate, caused by the rapid accumulation of food waste volume. Moreover, to face the energy crisis, and to avoid dependence on non-renewable energy sources, the investigation of new sustainable and renewable energy sources from organic waste to energy conversion is an attractive option. Green energy biohydrogen production from food waste leachate, using a microbial pathway, is one of the most efficient technologies, due to its eco-friendly nature and high energy yield. Therefore, the present study aimed to evaluate the ability of an enriched bacterial mixture, isolated from forest soil, to enhance hydrogen production from food waste leachate using biochar. A lab-scale analysis was conducted at 35 °C and at different pH values (4, no adjustment, 6, 6.5, 7, and 7.5) over a period of 15 days. The sample with the enriched bacterial mixture supplemented with an optimum of 10 g/L of biochar showed the highest performance, with a maximum hydrogen yield of 1620 mL/day on day three. The total solid and volatile solid removal rates were 78.5% and 75% after 15 days, respectively. Acetic and butyrate acids were the dominant volatile fatty acids produced during the process, as favorable metabolic pathways for accelerating hydrogen production.
Collapse
|
41
|
Liu T, Ou H, Su K, Hu Z, He C, Wang W. Promoting direct interspecies electron transfer and acetoclastic methanogenesis for enhancing anaerobic digestion of butanol octanol wastewater by coupling granular activated carbon and exogenous hydrogen. BIORESOURCE TECHNOLOGY 2021; 337:125417. [PMID: 34166933 DOI: 10.1016/j.biortech.2021.125417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Butanol octanol wastewater (BOW) generated from syngas conversion of coal contained abundant toxic organic pollutants. Anaerobic digestion is a promising technology for BOW, but abundant toxic substances would inhibit the activity of anaerobic microorganisms. Granular activated carbon (GAC) and exogenous hydrogen (EH2) were employed to enhance anaerobic digestion of BOW. The results indicated that methane production increased to 289.55 ± 17.43 mL CH4/g COD in EH2/GAC group, which was 1.07, 2.04, and 1.98 times of that in GAC, EH2, and control groups, respectively. In EH2/GAC group. The relative abundance of Geobacter and Methanosaeta increased rapidly to 25.36% and 52.81%, respectively, and the relative abundance of Clostridium was 9.78%. The underlying mechanism might be that GAC promoted the enrichment of Geobacter, and EH2 changed metabolic mechanism of Clostridium, stimulating the enrichment of Methanosaeta. Direct interspecies electron transfer was promoted by EH2/GAC, thus improving the methane production rate of BOW.
Collapse
Affiliation(s)
- Tingxia Liu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Hua Ou
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Kuizu Su
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Chunhua He
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China.
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| |
Collapse
|
42
|
Zhao D, Yan B, Liu C, Yao B, Luo L, Yang Y, Liu L, Wu F, Zhou Y. Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste. BIORESOURCE TECHNOLOGY 2021; 338:125531. [PMID: 34274583 DOI: 10.1016/j.biortech.2021.125531] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 05/22/2023]
Abstract
Anaerobic digestion (AD) of food waste is widely accepted as a promising technology for both waste disposal and resource recovery. With the advancing of AD technology, to exploit the capacity of organic waste for maximum energy/resource recovery becomes the new focus and hence, improve the viability of this technology for practical application. Product inhibition and mass transfer are the common limitations encountered during AD of putrescible organic waste. Biochar materials have been widely used to promote AD process in recent years. This review summarizes the mechanism and regulation strategies of biochar and its modified derivatives in promoting AD of solid waste (mainly food waste) from the three aspects of hydrolysis, syntrophic acetogenesis, and methane production. At the same time, the relationship between carbon materials and electron transfer among anaerobic microbes is summarized from the perspective of microbial community. In addition, the market application of this technology was evaluated.
Collapse
Affiliation(s)
- Danyang Zhao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Chao Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yang Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lichao Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Fan Wu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
43
|
|