1
|
Song H, Chen WJ, Chen SF, Zhu X, Mishra S, Ghorab MA, Bhatt P, Chen S. Removal of chlorimuron-ethyl from the environment: The significance of microbial degradation and its molecular mechanism. CHEMOSPHERE 2024; 366:143456. [PMID: 39393587 DOI: 10.1016/j.chemosphere.2024.143456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Chlorimuron-ethyl is a selective pre- and post-emergence herbicide, which is widely used to control broad-leaved weeds in soybean fields. However, herbicide residues have also increased as a result of the pervasive use of chlorimuron-ethyl, which has become a significant environmental concern. Consequently, the removal of chlorimuron-ethyl residues from the environment has garnered significant attention in recent decades. A variety of technologies have been developed to address this issue, including adsorption, aqueous chlorination, photodegradation, Fenton, photo-Fenton, ozonation, and biodegradation. After extensive studies, the biodegradation of chlorimuron-ethyl by microorganisms has now been recognized as an efficient and environmentally friendly degradation process. As research has progressed, a number of microbial strains associated with chlorimuron-ethyl degradation have been identified, such as Pseudomonas sp., Klebsiella sp., Rhodococcus sp., Stenotrophomonas sp., Aspergillus sp., Hansschlegelia sp., and Enterobacter sp. In addition, the enzymes and genes responsible for chlorimuron-ethyl biodegradation are also being investigated. These degradation genes include sulE, pnbA, carE, gst, Kj-CysJ, Kj-eitD-2267, Kj-kdpD-226, Kj-dxs-398, Kj-mhpC-2096, and Kj-mhpC-2289, among others. The degradation enzymes associated with chlorimuron-ethyl biodegradation includes esterases (SulE, PnbA, and E3), carboxylesterase (CarE), Cytochrome P450, flavin monooxygenase (FMO), and glutathione-S-transferase (GST). Regrettably, few reviews have focused on the microbial degradation and molecular mechanisms of chlorimuron-ethyl. Therefore, this review covers the microbial degradation of chlorimuron-ethyl and its degradation pathways, the molecular mechanism of the microbial degradation of chlorimuron-ethyl, and the outlook on the practical application of the microbial degradation of sulfonylurea herbicides are all covered in this review's overview of previous studies into the degradation of chlorimuron-ethyl.
Collapse
Affiliation(s)
- Haoran Song
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xixian Zhu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Pankaj Bhatt
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Zhou Y, Wang T, Wang L, Wang P, Chen F, Bhatt P, Chen S, Cui X, Yang Y, Zhang W. Microbes as carbendazim degraders: opportunity and challenge. Front Microbiol 2024; 15:1424825. [PMID: 39206363 PMCID: PMC11349639 DOI: 10.3389/fmicb.2024.1424825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Carbendazim (methyl benzimidazol-2-ylcarbamate, CBZ) is a systemic benzimidazole carbamate fungicide and can be used to control a wide range of fungal diseases caused by Ascomycetes, Basidiomycetes and Deuteromycetes. It is widely used in horticulture, forestry, agriculture, preservation and gardening due to its broad spectrum and leads to its accumulation in soil and water environmental systems, which may eventually pose a potential threat to non-target organisms through the ecological chain. Therefore, the removal of carbendazim residues from the environment is an urgent problem. Currently, a number of physical and chemical treatments are effective in degrading carbendazim. As a green and efficient strategy, microbial technology has the potential to degrade carbendazim into non-toxic and environmentally acceptable metabolites, which in turn can dissipate carbendazim from the contaminated environment. To date, a number of carbendazim-degrading microbes have been isolated and reported, including, but not limited to, Bacillus, Pseudomonas, Rhodococcus, Sphingomonas, and Aeromonas. Notably, the common degradation property shared by all strains was their ability to hydrolyze carbendazim to 2-aminobenzimidazole (2-AB). The complete mineralization of the degradation products is mainly dependent on the cleavage of the imidazole and benzene rings. Additionally, the currently reported genes for carbendazim degradation are MheI and CbmA, which are responsible for breaking the ester and amide bonds, respectively. This paper reviews the toxicity, microbial degradation of carbendazim, and bioremediation techniques for carbendazim-contaminated environments. This not only summarizes and enriches the theoretical basis of microbial degradation of carbendazim, but also provides practical guidance for bioremediation of carbendazim-contaminated residues in the environment.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tianyue Wang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Liping Wang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Pengfei Wang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Feiyu Chen
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ye Yang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenping Zhang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
3
|
Chen WJ, Chen SF, Song H, Li Z, Luo X, Zhang X, Zhou X. Current insights into environmental acetochlor toxicity and remediation strategies. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:356. [PMID: 39083106 DOI: 10.1007/s10653-024-02136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
Acetochlor is a selective pre-emergent herbicide that is widely used to control annual grass and broadleaf weeds. However, due to its stable chemical structure, only a small portion of acetochlor exerts herbicidal activity in agricultural applications, while most of the excess remains on the surfaces of plants or enters ecosystems, such as soil and water bodies, causing harm to the environment and human health. In recent years, researchers have become increasingly focused on the repair of acetochlor residues. Compared with traditional physical and chemical remediation methods, microorganisms are the most effective way to remediate chemical pesticide pollution, such as acetochlor, because of their rich species, wide distribution, and diverse metabolic pathways. To date, researchers have isolated and identified many high-efficiency acetochlor-degrading strains, such as Pseudomonas oleovorans, Klebsiella variicola, Bacillus subtilus, Rhodococcus, and Methylobacillus, among others. The microbial degradation pathways of acetochlor include dechlorination, hydroxylation, N-dealkylation, C-dealkylation, and dehydrogenation. In addition, the microbial enzymes, including hydrolase (ChlH), debutoxylase (Dbo), and monooxygenase (MeaXY), responsible for acetochlor biodegradation are also being investigated. In this paper, we review the migration law of acetochlor in the environment, its toxicity to nontarget organisms, and the main metabolic methods. Moreover, we summarize the latest progress in the research on the microbial catabolism of acetochlor, including the efficient degradation of microbial resources, biodegradation metabolic pathways, and key enzymes for acetochlor degradation. At the end of the article, we highlight the existing problems in the current research on acetochlor biodegradation, provide new ideas for the remediation of acetochlor pollution in the environment, and propose future research directions.
Collapse
Affiliation(s)
- Wen-Juan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Song
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zeren Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofang Luo
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xidong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Xiong Z, Zhang Y, Chen X, Sha A, Xiao W, Luo Y, Han J, Li Q. Soil Microplastic Pollution and Microbial Breeding Techniques for Green Degradation: A Review. Microorganisms 2024; 12:1147. [PMID: 38930528 PMCID: PMC11205638 DOI: 10.3390/microorganisms12061147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Microplastics (MPs), found in many places around the world, are thought to be more detrimental than other forms of plastics. At present, physical, chemical, and biological methods are being used to break down MPs. Compared with physical and chemical methods, biodegradation methods have been extensively studied by scholars because of their advantages of greenness and sustainability. There have been numerous reports in recent years summarizing the microorganisms capable of degrading MPs. However, there is a noticeable absence of a systematic summary on the technology for breeding strains that can degrade MPs. This paper summarizes the strain-breeding technology of MP-degrading strains for the first time in a systematic way, which provides a new idea for the breeding of efficient MP-degrading strains. Meanwhile, potential techniques for breeding bacteria that can degrade MPs are proposed, providing a new direction for selecting and breeding MP-degrading bacteria in the future. In addition, this paper reviews the sources and pollution status of soil MPs, discusses the current challenges related to the biodegradation of MPs, and emphasizes the safety of MP biodegradation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jialiang Han
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (Z.X.); (Y.Z.); (X.C.); (A.S.); (W.X.); (Y.L.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (Z.X.); (Y.Z.); (X.C.); (A.S.); (W.X.); (Y.L.)
| |
Collapse
|
5
|
Song S, Hwang CW. Microbial degradation of the benzimidazole fungicide carbendazim by Bacillus velezensis HY-3479. Int Microbiol 2024; 27:797-805. [PMID: 37710143 DOI: 10.1007/s10123-023-00427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
Carbendazim (methyl benzimidazol-2-ylcarbamate: MBC) is a fungicide of the benzimidazole group that is widely used in the cultivation of pepper, ginseng, and many other crops. To remove the remnant carbendazim, many rhizobacteria are used as biodegradation agents. A bacterial strain of soil-isolated Bacillus velezensis HY-3479 was found to be capable of degrading MBC in M9 minimal medium supplemented with 250 mg/L carbendazim. The strain had a significantly higher degradation efficiency compared to the control strain Bacillus subtilis KACC 15590 in high-performance liquid chromatography (HPLC) analysis, and HY-3479 had the best degradation efficiency of 76.99% at 48 h. In gene expression analysis, upregulation of carbendazim-degrading genes (mheI, hdx) was observed in the strain. HY-3479 was able to use MBC as the sole source of carbon and nitrogen, but the addition of 12.5 mM NH4NO3 significantly increased the degradation efficiency. HPLC analysis showed that the degradation efficiency increased to 87.19% when NH4NO3 was added. Relative gene expression of mheI and hdx also increased for samples with NH4NO3 supplementation. The enzyme activity of the carbendazim-degrading enzyme and the 2-aminobenzimidazole-degrading enzyme was found to be highly present in the HY-3479 strain. It is the first reported B. velezensis strain to biodegrade carbendazim (MBC). The biodegradation activity of strain HY-3479 may be developed as a useful means for bioremediation and used as a potential microbial agent in sustainable agriculture.
Collapse
Affiliation(s)
- Suyoung Song
- Department of Advanced Convergence, Handong Global University, Pohang, 37554, South Korea
| | - Cher-Won Hwang
- Department of Global Leadership School, Handong Global University, Pohang, 37554, South Korea.
| |
Collapse
|
6
|
Makryniotis K, Nikolaivits E, Taxeidis G, Nikodinovic-Runic J, Topakas E. Exploring the substrate spectrum of phylogenetically distinct bacterial polyesterases. Biotechnol J 2024; 19:e2400053. [PMID: 38593303 DOI: 10.1002/biot.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
The rapid escalation of plastic waste accumulation presents a significant threat of the modern world, demanding an immediate solution. Over the last years, utilization of the enzymatic machinery of various microorganisms has emerged as an environmentally friendly asset in tackling this pressing global challenge. Thus, various hydrolases have been demonstrated to effectively degrade polyesters. Plastic waste streams often consist of a variety of different polyesters, as impurities, mainly due to wrong disposal practices, rendering recycling process challenging. The elucidation of the selective degradation of polyesters by hydrolases could offer a proper solution to this problem, enhancing the recyclability performance. Towards this, our study focused on the investigation of four bacterial polyesterases, including DaPUase, IsPETase, PfPHOase, and Se1JFR, a novel PETase-like lipase. The enzymes, which were biochemically characterized and structurally analyzed, demonstrated degradation ability of synthetic plastics. While a consistent pattern of polyesters' degradation was observed across all enzymes, Se1JFR stood out in the degradation of PBS, PLA, and polyether PU. Additionally, it exhibited comparable results to IsPETase, a benchmark mesophilic PETase, in the degradation of PCL and semi-crystalline PET. Our results point out the wide substrate spectrum of bacterial hydrolases and underscore the significant potential of PETase-like enzymes in polyesters degradation.
Collapse
Affiliation(s)
- Konstantinos Makryniotis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - George Taxeidis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Jasmina Nikodinovic-Runic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
7
|
Yuan Y, Teng H, Zhang T, Wang D, Gu H, Lv W. Toxicological effects induced by two carbamates on earthworms (Eisenia fetida): Acute toxicity, arrested regeneration and underlying mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115824. [PMID: 38096595 DOI: 10.1016/j.ecoenv.2023.115824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/03/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024]
Abstract
Eisenia fetida is recognised as advantageous model species in ecotoxicological and regeneration investigations. The intensive utilization of carbamate pesticides (CARs) imposes heavy residue burdens and grave hazards on edaphic environments as well as soil fauna therein. However, precise mechanisms whereby the specific CAR exerted toxic effects on earthworms remain largely elusive, notably from regenerative perspective. Herein, acute responses and regenerative toxicity of two carbamates (metolcarb, MEB and fenoxycarb, FEB) against E. fetida were dissected using biochemical, histological as well as molecular approaches following OECD guidelines at the cellular, tissue and organismal level. The acute toxicity data implied that MEB/FEB were very toxic/medium to extremely toxic, respectively in filter paper contact test and low to medium toxic/low toxic, respectively in artificial soil test. Chronic exposure to MEB and FEB at sublethal concentrations significantly mitigated the soluble protein content, protein abundance while enhanced the protein carbonylation level. Moreover, severely retarded posterior renewal of amputated earthworms was noticed in MEB and FEB treatments relative to the control group, with pronouncedly compromised morphology, dwindling segments and elevated cell apoptosis of blastema tissues, which were mediated by the rising Sox2 and decreasing TCTP levels. Taken together, these findings not only presented baseline toxicity cues for MEB and FEB exposure against earthworms, but also yielded mechanistic insights into regenerative toxicity upon CAR exposure, further contributing to the environmental risk assessment and benchmark formulation of agrochemical pollution in terrestrial ecosystem.
Collapse
Affiliation(s)
- Yongda Yuan
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Haiyuan Teng
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Tianshu Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Dongsheng Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Haotian Gu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China.
| |
Collapse
|
8
|
Pednekar RR, Rajan AP. Unraveling the contemporary use of microbial fuel cell in pesticide degradation and simultaneous electricity generation: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:144-166. [PMID: 38048001 DOI: 10.1007/s11356-023-30782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023]
Abstract
Pesticide is an inevitable substance used worldwide to kill pests, but their indiscriminate use has posed serious complications to health and the environment. Various physical, chemical, and biological methods are employed for pesticide treatment, but this paper deals with microbial fuel cell (MFC) as a futuristic technology for pesticide degradation with electricity production. In MFC, organic compounds are utilized as the carbon source for electricity production and the generation of electrons which can be replaced with pollutants such as dyes, antibiotics, and pesticides as carbon sources. However, MFC is been widely studied for a decade for electricity production, but its implementation in pesticide degradation is less known. We fill this void by depicting a real picture of the global pesticide scenario with an eagle eye view of the bioremediation techniques implemented for pesticide treatment with phytoremediation and rhizoremediation as effective techniques for efficient pesticide removal. The enormous literature survey has revealed that not many researchers have ventured into this new arena of MFC employed for pesticide degradation. Based on the Scopus database, an increase in annual trend from 2014 to 2023 is observed for MFC-implemented pesticide remediation. However, a novel MFC to date for effective remediation of pesticides with simultaneous electricity generation is discussed for the first time. Furthermore, the limitation of MFC technology and the implementation of MFC and rhizoremediation as a clubbed system which is the least applied can be seen as promising and futuristic approaches to enhance pesticide degradation by bacteria and electricity as a by-product.
Collapse
Affiliation(s)
- Reshma Raviuday Pednekar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Anand Prem Rajan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
9
|
Bhatt P, Bhatt K, Huang Y, Li J, Wu S, Chen S. Biofilm formation in xenobiotic-degrading microorganisms. Crit Rev Biotechnol 2023; 43:1129-1149. [PMID: 36170978 DOI: 10.1080/07388551.2022.2106417] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
Abstract
The increased presence of xenobiotics affects living organisms and the environment at large on a global scale. Microbial degradation is effective for the removal of xenobiotics from the ecosystem. In natural habitats, biofilms are formed by single or multiple populations attached to biotic/abiotic surfaces and interfaces. The attachment of microbial cells to these surfaces is possible via the matrix of extracellular polymeric substances (EPSs). However, the molecular machinery underlying the development of biofilms differs depending on the microbial species. Biofilms act as biocatalysts and degrade xenobiotic compounds, thereby removing them from the environment. Quorum sensing (QS) helps with biofilm formation and is linked to the development of biofilms in natural contaminated sites. To date, scant information is available about the biofilm-mediated degradation of toxic chemicals from the environment. Therefore, we review novel insights into the impact of microbial biofilms in xenobiotic contamination remediation, the regulation of biofilms in contaminated sites, and the implications for large-scale xenobiotic compound treatment.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|
10
|
Li J, Yang Z, Zhu Q, Zhong G, Liu J. Biodegradation of soil agrochemical contamination mitigates the direct horizontal transfer risk of antibiotic resistance genes to crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166454. [PMID: 37607639 DOI: 10.1016/j.scitotenv.2023.166454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Microorganisms can drive a substrate-specific biodegradation process to mitigate soil contamination resulting from extensive agrochemical usage. However, microorganisms with high metabolic efficiency are capable of adapting to the co-occurrence of non-substrate contaminants in the soil (particularly antibiotics). Therefore, the utilization of active microorganisms for biodegradation raises concerns regarding the potential risk of antibiotic resistance development. Here, the horizontal transfer risk of antibiotic-resistance genes (ARGs) in the soil-plant biota was assessed during biodegradation by the newly isolated Proteus terrae ZQ02 (which shortened the half-life of fungicide chlorothalonil from 9.24 d to 2.35 d when exposed to tetracycline). Based on metagenomic analyses, the distribution of ARGs and mobile genetic elements (MGEs) was profiled. The ARGs shared with ∼118 core genes and mostly accumulated in the rhizosphere and maize roots. After ZQ02 was inoculated, the core genes of ARGs reduced significantly in roots. In addition, the Pseudomonas and Proteus genera were identified as the dominant microbial hosts of ARGs and MGEs after ZQ02 adoption. The richness of major ARG hosts increased in soil but barely changed in the roots, which contributed to the mitigation of hosts-mediated ARGs transfer from soil to maize. Finally, the risk of ARGs has been assessed. Compared with the regular planting system, the number of risky ARGs declined from 220 (occupied 4.77 % of the total ARGs) to 143 (occupied 2.67 %) after biodegradation. Among these, 23 out of 25 high-risk genes were aggregated in the soil whereas only 2 genes were identified in roots, which further verified the low antibiotic resistance risk for crop after biodegradation. In a nutshell, this work highlights the critical advantage of ZQ02-based biodegradation that alleviating the ARGs transfer risks from soil to crop, which offers deeper insights into the versatility and feasibility of bioremediation techniques in sustainable agriculture.
Collapse
Affiliation(s)
- Jinhong Li
- National Key Laboratory of Green Pesticide, Guangzhou, P.R. China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P.R. China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P.R. China
| | - Zhengyi Yang
- National Key Laboratory of Green Pesticide, Guangzhou, P.R. China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P.R. China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P.R. China
| | - Qi Zhu
- National Key Laboratory of Green Pesticide, Guangzhou, P.R. China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P.R. China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P.R. China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, Guangzhou, P.R. China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P.R. China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P.R. China
| | - Jie Liu
- National Key Laboratory of Green Pesticide, Guangzhou, P.R. China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P.R. China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P.R. China.
| |
Collapse
|
11
|
Guerrero Ramírez JR, Ibarra Muñoz LA, Balagurusamy N, Frías Ramírez JE, Alfaro Hernández L, Carrillo Campos J. Microbiology and Biochemistry of Pesticides Biodegradation. Int J Mol Sci 2023; 24:15969. [PMID: 37958952 PMCID: PMC10649977 DOI: 10.3390/ijms242115969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pesticides are chemicals used in agriculture, forestry, and, to some extent, public health. As effective as they can be, due to the limited biodegradability and toxicity of some of them, they can also have negative environmental and health impacts. Pesticide biodegradation is important because it can help mitigate the negative effects of pesticides. Many types of microorganisms, including bacteria, fungi, and algae, can degrade pesticides; microorganisms are able to bioremediate pesticides using diverse metabolic pathways where enzymatic degradation plays a crucial role in achieving chemical transformation of the pesticides. The growing concern about the environmental and health impacts of pesticides is pushing the industry of these products to develop more sustainable alternatives, such as high biodegradable chemicals. The degradative properties of microorganisms could be fully exploited using the advances in genetic engineering and biotechnology, paving the way for more effective bioremediation strategies, new technologies, and novel applications. The purpose of the current review is to discuss the microorganisms that have demonstrated their capacity to degrade pesticides and those categorized by the World Health Organization as important for the impact they may have on human health. A comprehensive list of microorganisms is presented, and some metabolic pathways and enzymes for pesticide degradation and the genetics behind this process are discussed. Due to the high number of microorganisms known to be capable of degrading pesticides and the low number of metabolic pathways that are fully described for this purpose, more research must be conducted in this field, and more enzymes and genes are yet to be discovered with the possibility of finding more efficient metabolic pathways for pesticide biodegradation.
Collapse
Affiliation(s)
- José Roberto Guerrero Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Lizbeth Alejandra Ibarra Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - José Ernesto Frías Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Leticia Alfaro Hernández
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Javier Carrillo Campos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chihuahua, Mexico
| |
Collapse
|
12
|
Chen WJ, Zhang W, Lei Q, Chen SF, Huang Y, Bhatt K, Liao L, Zhou X. Pseudomonas aeruginosa based concurrent degradation of beta-cypermethrin and metabolite 3-phenoxybenzaldehyde, and its bioremediation efficacy in contaminated soils. ENVIRONMENTAL RESEARCH 2023; 236:116619. [PMID: 37482127 DOI: 10.1016/j.envres.2023.116619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Beta-cypermethrin is one of the widely used pyrethroid insecticides, and problems associated with the accumulation of its residues have aroused public attention. Thus, there is an urgent need to effectively remove the beta-cypermethrin that is present in the environment. Biodegradation is considered a cost-effective and environmentally friendly method for removing pesticide residues. However, the beta-cypermethrin-degrading microbes that are currently available are not optimal. In this study, Pseudomonas aeruginosa PAO1 was capable of efficiently degrading beta-cypermethrin and its major metabolite 3-phenoxybenzaldehyde in water/soil environments. Strain PAO1 could remove 91.4% of beta-cypermethrin (50 mg/L) in mineral salt medium within 120 h. At the same time, it also possesses a significant ability to metabolize 3-phenoxybenzaldehyde-a toxic intermediate of beta-cypermethrin. The Andrews equation showed that the maximum substrate utilization concentrations of beta-cypermethrin and 3-phenoxybenzaldehyde by PAO1 were 65.3558 and 49.6808 mg/L, respectively. Box-Behnken design-based response surface methodology revealed optimum conditions for the PAO1 strain-based degradation of beta-cypermethrin as temperature 30.6 °C, pH 7.7, and 0.2 g/L inoculum size. The results of soil remediation experiments showed that indigenous micro-organisms helped to promote the biodegradation of beta-cypermethrin in soil, and beta-cypermethrin half-life in non-sterilized soil was 6.84 days. The bacterium transformed beta-cypermethrin to produce five possible metabolites, including 3-phenoxybenzyl alcohol, methyl 2-(4-hydroxyphenoxy)benzoate, diisobutyl phthalate, 3,5-dimethoxyphenol, and 2,2-dimethyl-1-(4-phenoxyphenyl)propanone. Among them, methyl 2-(4-hydroxyphenoxy)benzoate and 3,5-dimethoxyphenol were first identified as the intermediate products during the beta-cypermethrin degradation. In addition, we propose a degradation pathway for beta-cypermethrin that is metabolized by strain PAO1. Beta-cypermethrin could be biotransformed firstly by hydrolysis of its carboxylester linkage, followed by cleavage of the diaryl bond and subsequent metabolism. Based on the above results, P. aeruginosa PAO1 could be a potent candidate for the beta-cypermethrin-contaminated environmental bioremediation.
Collapse
Affiliation(s)
- Wen-Juan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wenping Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiqi Lei
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Lisheng Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Patowary R, Jain P, Malakar C, Devi A. Biodegradation of carbofuran by Pseudomonas aeruginosa S07: biosurfactant production, plant growth promotion, and metal tolerance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115185-115198. [PMID: 37878173 DOI: 10.1007/s11356-023-30466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Pesticides are an indispensable part of modern farming as it aids in controlling pests and hence increase crop yield. But, unmanaged use of pesticides is a growing concern for safety and conservation of the environment. In the present study, a novel biosurfactant-producing bacterium, Pseudomonas aeruginosa S07, was utilized to degrade carbofuran pesticide, and it was obtained at 150 mg/L concentration; 89.2% degradation was achieved on the 5th day of incubation in in vitro culture condition. GC-MS (gas chromatography and mass spectrometry) and LC-MS (liquid chromatography and mass spectrometry) analyses revealed the presence of several degradation intermediates such as hydroxycarbofurnan, ketocarbofuran, and hydroxybenzofuran, in the degradation process. The bacterium was found to exhibit tolerance towards several heavy metals: Cu, Co, Zn, Ni, and Cd, where maximum and least tolerance were obtained against Co and Ni, respectively. Additionally, the bacterium also possesses plant growth-promoting activity showing positive results in nitrogen fixation, phosphate solubilising, ammonia production, and potassium solubilizing assays. Thus, from the study, it can be assumed that the bacterium can be useful in the production of bioformulation for remediation and rejuvenation of pesticide-contaminated sites in the coming days.
Collapse
Affiliation(s)
- Rupshikha Patowary
- Department of Biotechnology, The Assam Royal Global University, Betkuchi, Guwahati, Assam, 781035, India
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781 035, India
| | - Prerna Jain
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781 035, India
| | - Chandana Malakar
- Microbial Biotechnology and Protein Research Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781 035, India
| | - Arundhuti Devi
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781 035, India.
| |
Collapse
|
14
|
Wu S, Zhong J, Lei Q, Song H, Chen SF, Wahla AQ, Bhatt K, Chen S. New roles for Bacillus thuringiensis in the removal of environmental pollutants. ENVIRONMENTAL RESEARCH 2023; 236:116699. [PMID: 37481057 DOI: 10.1016/j.envres.2023.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
For a long time, the well-known Gram-positive bacterium Bacillus thuringiensis (Bt) has been extensively studied and developed as a biological insecticide for Lepidoptera and Coleoptera pests due to its ability to secrete a large number of specific insecticidal proteins. In recent years, studies have found that Bt strains can also potentially biodegrade residual pollutants in the environment. Many researchers have isolated Bt strains from multiple sites polluted by exogenous compounds and characterized and identified their xenobiotic-degrading potential. Furthermore, its pathway for degradation was also investigated at molecular level, and a number of major genes/enzymes responsible for degradation have been explored. At present, a variety of xenobiotics involved in degradation in Bt have been reported, including inorganic pollutants (used in the field of heavy metal biosorption and recovery and precious metal recovery and regeneration), pesticides (chlorpyrifos, cypermethrin, 2,2-dichloropropionic acid, etc.), organic tin, petroleum and polycyclic aromatic hydrocarbons, reactive dyes (congo red, methyl orange, methyl blue, etc.), and ibuprofen, among others. In this paper, the biodegrading ability of Bt is reviewed according to the categories of related pollutants, so as to emphasize that Bt is a powerful agent for removing environmental pollutants.
Collapse
Affiliation(s)
- Siyi Wu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfeng Zhong
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Song
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Abdul Qadeer Wahla
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA.
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Lei Q, Zhong J, Chen SF, Wu S, Huang Y, Guo P, Mishra S, Bhatt K, Chen S. Microbial degradation as a powerful weapon in the removal of sulfonylurea herbicides. ENVIRONMENTAL RESEARCH 2023; 235:116570. [PMID: 37423356 DOI: 10.1016/j.envres.2023.116570] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Sulfonylurea herbicides have been widely used worldwide and play a significant role in modern agricultural production. However, these herbicides have adverse biological effects that can damage the ecosystems and harm human health. As such, rapid and effective techniques that remove sulfonylurea residues from the environment are urgently required. Attempts have been made to remove sulfonylurea residues from environment using various techniques such as incineration, adsorption, photolysis, ozonation, and microbial degradation. Among them, biodegradation is regarded as a practical and environmentally responsible way to eliminate pesticide residues. Microbial strains such as Talaromyces flavus LZM1, Methylopila sp. SD-1, Ochrobactrum sp. ZWS16, Staphylococcus cohnii ZWS13, Enterobacter ludwigii sp. CE-1, Phlebia sp. 606, and Bacillus subtilis LXL-7 can almost completely degrade sulfonylureas. The degradation mechanism of the strains is such that sulfonylureas can be catalyzed by bridge hydrolysis to produce sulfonamides and heterocyclic compounds, which deactivate sulfonylureas. The molecular mechanisms associated with microbial degradation of sulfonylureas are relatively poorly studied, with hydrolase, oxidase, dehydrogenase and esterase currently known to play a pivotal role in the catabolic pathways of sulfonylureas. Till date, there are no reports specifically on the microbial degrading species and biochemical mechanisms of sulfonylureas. Hence, in this article, the degradation strains, metabolic pathways, and biochemical mechanisms of sulfonylurea biodegradation, along with its toxic effects on aquatic and terrestrial animals, are discussed in depth in order to provide new ideas for remediation of soil and sediments polluted by sulfonylurea herbicides.
Collapse
Affiliation(s)
- Qiqi Lei
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfeng Zhong
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Wu
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Guo
- Zhongshan City Garden Management Center of Guangdong Province, Zhongshan, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA.
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Saqib M, Solomonenko AN, Barek J, Dorozhko EV, Korotkova EI, Aljasar SA. Graphene derivatives-based electrodes for the electrochemical determination of carbamate pesticides in food products: A review. Anal Chim Acta 2023; 1272:341449. [PMID: 37355324 DOI: 10.1016/j.aca.2023.341449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023]
Abstract
Graphene (GR) composites have great potential for the determination of carbamates pesticides (CPs) by electrochemical methods. Since the beginning of the 20th century, GR has shown remarkable promise as electrode material for various sensors. The contamination of food products with harmful CPs is a major problem as they do not always damage human health immediately, but can be harmful after prolonged exposure. A range of advantages can be gained from their electrochemical determination, such as high sensitivity, reasonably selectivity, rapid detection, low limit of detection, and easy electrode fabrication. Furthermore, these electrochemical techniques are robust, reproducible, user-friendly, and conform to both "green" and "white" analytical chemistry. This review is focused on results published in the last ten years in the field of electrochemical determination of CPs in food products using GR and its derivatives.
Collapse
Affiliation(s)
- Muhammad Saqib
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia; Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ 128 43, Prague 2, Czech Republic
| | - Anna N Solomonenko
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia
| | - Jiří Barek
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ 128 43, Prague 2, Czech Republic.
| | - Elena V Dorozhko
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia
| | - Elena I Korotkova
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia
| | - Shojaa A Aljasar
- Physics and Engineering Department, National Research Tomsk State University, Lenin Ave. 36, 634045, Tomsk, Russia
| |
Collapse
|
17
|
Chen SF, Chen WJ, Huang Y, Wei M, Chang C. Insights into the metabolic pathways and biodegradation mechanisms of chloroacetamide herbicides. ENVIRONMENTAL RESEARCH 2023; 229:115918. [PMID: 37062473 DOI: 10.1016/j.envres.2023.115918] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023]
Abstract
Chloroacetamide herbicides are widely used around the world due to their high efficiency, resulting in increasing levels of their residues in the environment. Residual chloroacetamides and their metabolites have been frequently detected in soil, water and organisms and shown to have toxic effects on non-target organisms, posing a serious threat to the ecosystem. As such, rapid and efficient techniques that eliminate chloroacetamide residues from the ecosystem are urgently needed. Degradation of these herbicides in the environment mainly occurs through microbial metabolism. Microbial strains such as Acinetobacter baumannii DT, Bacillus altitudinis A16, Pseudomonas aeruginosa JD115, Sphingobium baderi DE-13, Catellibacterium caeni DCA-1, Stenotrophomonas acidaminiphila JS-1, Klebsiella variicola B2, and Paecilomyces marquandii can effectively degrade chloroacetamide herbicides. The degradation pathway of chloroacetamide herbicides in aerobic bacteria is mainly initiated by an N/C-dealkylation reaction, followed by aromatic ring hydroxylation and cleavage processes, whereas dechlorination is the initial reaction in anaerobic bacteria. The molecular mechanisms associated with bacterial degradation of chloroacetamide herbicides have been explored, with amidase, hydrolase, reductase, ferredoxin and cytochrome P450 oxygenase currently known to play a pivotal role in the catabolic pathways of chloroacetamides. The fungal pathway for the degradation of these herbicides is more complex with more diversified products, and the degradation enzymes and genes involved remain to be discovered. However, there are few reviews specifically summarizing the microbial degrading species and biochemical mechanisms of chloroacetamide herbicides. Here, we briefly summarize the latest progress resulting from research on microbial strain resources and enzymes involved in degradation of these herbicides and their corresponding genes. Furthermore, we explore the biochemical pathways and molecular mechanisms for biodegradation of chloroacetamide herbicides in depth, thereby providing a reference for further research on the bioremediation of such herbicides.
Collapse
Affiliation(s)
- Shao-Fang Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaohua Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ming Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Changqing Chang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Pang S, Lin Z, Chen WJ, Chen SF, Huang Y, Lei Q, Bhatt P, Mishra S, Chen S, Wang H. High-efficiency degradation of methomyl by the novel bacterial consortium MF0904: Performance, structural analysis, metabolic pathways, and environmental bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131287. [PMID: 37003005 DOI: 10.1016/j.jhazmat.2023.131287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Methomyl is a widely used carbamate pesticide, which has adverse biological effects and poses a serious threat to ecological environments and human health. Several bacterial isolates have been investigated for removing methomyl from environment. However, low degradation efficiency and poor environmental adaptability of pure cultures severely limits their potential for bioremediation of methomyl-contaminated environment. Here, a novel microbial consortium, MF0904, can degrade 100% of 25 mg/L methomyl within 96 h, an efficiency higher than that of any other consortia or pure microbes reported so far. The sequencing analysis revealed that Pandoraea, Stenotrophomonas and Paracoccus were the predominant members of MF0904 in the degradation process, suggesting that these genera might play pivotal roles in methomyl biodegradation. Moreover, five new metabolites including ethanamine, 1,2-dimethyldisulfane, 2-hydroxyacetonitrile, N-hydroxyacetamide, and acetaldehyde were identified using gas chromatography-mass spectrometry, indicating that methomyl could be degraded firstly by hydrolysis of its ester bond, followed by cleavage of the C-S ring and subsequent metabolism. Furthermore, MF0904 can successfully colonize and substantially enhance methomyl degradation in different soils, with complete degradation of 25 mg/L methomyl within 96 and 72 h in sterile and nonsterile soil, respectively. Together, the discovery of microbial consortium MF0904 fills a gap in the synergistic metabolism of methomyl at the community level and provides a potential candidate for bioremediation applications.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziqiu Lin
- The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette 47906, USA
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Huishan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Chen C, Ji R, Li W, Lan Y, Guo J. Waste self-heating bag derived iron-based composite with abundant oxygen vacancies for highly efficient Fenton-like degradation of micropollutants. CHEMOSPHERE 2023; 326:138499. [PMID: 36963587 DOI: 10.1016/j.chemosphere.2023.138499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, iron-rich waste self-heating bag was reutilized as the raw material to prepare oxygen vacancies (OV) functionalized iron-based composite (iron oxide (Fe3O4)-carbon-vermiculite, viz. OV-ICV), which exhibited excellent performance in the Fenton-like degradation of micropollutants via peroxydisulfate (PDS) activation. Above 95% of 1.0 mg/L carbaryl (CB) was efficiently eliminated in the presence of 0.1 g/L of OV-ICV and 0.5 mmol/L of PDS over a wide pH range of 3-10 within 30 min. Besides, OV-ICV also showed acceptable adaptability, stability, and renewability. Imbedding OV into Fe3O4 structure significantly generated more active iron sites and localized electrons, promoted the charge transfer ability, and assisted the redox cycle of ≡Fe(III)/≡Fe(II) for PDS activation. Mechanism investigation demonstrated that superoxide radicals (O2•-) derived from the activation of molecular oxygen mediated the generation of H2O2, and both of them further enhanced the formation of more sulfate radicals (SO4•-) and hydroxyl radicals (•OH), which led to the efficient degradation and mineralization of CB. Furthermore, the degradation pathways of CB were proposed based on the intermediates identification. This work lays a foundation for the rational reutilization of iron-containing wastes modified with defect engineering in heterogeneous Fenton-like catalysis for the remediation of micropollutants wastewater.
Collapse
Affiliation(s)
- Cheng Chen
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Runmei Ji
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wei Li
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210019, China
| | - Yeqing Lan
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Jing Guo
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
20
|
Mishra P, Kiran NS, Romanholo Ferreira LF, Yadav KK, Mulla SI. New insights into the bioremediation of petroleum contaminants: A systematic review. CHEMOSPHERE 2023; 326:138391. [PMID: 36933841 DOI: 10.1016/j.chemosphere.2023.138391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/16/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Petroleum product is an essential resource for energy, that has been exploited by wide range of industries and regular life. A carbonaceous contamination of marine and terrestrial environments caused by errant runoffs of consequential petroleum-derived contaminants. Additionally, petroleum hydrocarbons can have adverse effects on human health and global ecosystems and also have negative demographic consequences in petroleum industries. Key contaminants of petroleum products, primarily includes aliphatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), resins, and asphaltenes. On environmental interaction, these pollutants result in ecotoxicity as well as human toxicity. Oxidative stress, mitochondrial damage, DNA mutations, and protein dysfunction are a few key causative mechanisms behind the toxic impacts. Henceforth, it becomes very evident to have certain remedial strategies which could help on eliminating these xenobiotics from the environment. This brings the efficacious application of bioremediation to remove or degrade pollutants from the ecosystems. In the recent scenario, extensive research and experimentation have been implemented towards bio-benign remediation of these petroleum-based pollutants, aiming to reduce the load of these toxic molecules in the environment. This review gives a detailed overview of petroleum pollutants, and their toxicity. Methods used for degrading them in the environment using microbes, periphytes, phyto-microbial interactions, genetically modified organisms, and nano-microbial remediation. All of these methods could have a significant impact on environmental management.
Collapse
Affiliation(s)
- Prabhakar Mishra
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, Karnataka, India.
| | - Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, Karnataka, India
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
21
|
Zhong J, Wu S, Chen WJ, Huang Y, Lei Q, Mishra S, Bhatt P, Chen S. Current insights into the microbial degradation of nicosulfuron: Strains, metabolic pathways, and molecular mechanisms. CHEMOSPHERE 2023; 326:138390. [PMID: 36935058 DOI: 10.1016/j.chemosphere.2023.138390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/02/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Nicosulfuron is among the sulfonylurea herbicides that are widely used to control annual and perennial grass weeds in cornfields. However, nicosulfuron residues in the environment are likely to cause long-lasting harmful environmental and biological effects. Nicosulfuron degrades via photo-degradation, chemical hydrolysis, and microbial degradation. The latter is crucial for pesticide degradation and has become an essential strategy to remove nicosulfuron residues from the environment. Most previous studies have focused on the screening, degradation characteristics, and degradation pathways of biodegrader microorganisms. The isolated nicosulfuron-degrading strains include Bacillus, Pseudomonas, Klebsiella, Alcaligenes, Rhodopseudomonas, Ochrobactrum, Micrococcus, Serratia, Penicillium, Aspergillus, among others, all of which have good degradation efficiency. Two main intermediates, 2-amino-4,6-dimethoxypyrimidine (ADMP) and 2-aminosulfonyl-N,N-dimethylnicotinamide (ASDM), are produced during microbial degradation and are derived from the C-N, C-S, and S-N bond breaks on the sulfonylurea bridge, covering almost every bacterial degradation pathway. In addition, enzymes related to the degradation of nicosulfuron have been identified successively, including the manganese ABC transporter (hydrolase), Flavin-containing monooxygenase (oxidase), and E3 (esterase). Further in-depth studies based on molecular biology and genetics are needed to elaborate on their role in the evolution of novel catabolic pathways and the microbial degradation of nicosulfuron. To date, few reviews have focused on the microbial degradation and degradation mechanisms of nicosulfuron. This review summarizes recent advances in nicosulfuron degradation and comprehensively discusses the potential of nicosulfuron-degrading microorganisms for bioremediating contaminated environments, providing a reference for further research development on nicosulfuron biodegradation in the future.
Collapse
Affiliation(s)
- Jianfeng Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, 47906, USA.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
22
|
Upadhyay SK, Rani N, Kumar V, Mythili R, Jain D. A review on simultaneous heavy metal removal and organo-contaminants degradation by potential microbes: Current findings and future outlook. Microbiol Res 2023; 273:127419. [PMID: 37276759 DOI: 10.1016/j.micres.2023.127419] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Industrial processes result in the production of heavy metals, dyes, pesticides, polyaromatic hydrocarbons (PAHs), pharmaceuticals, micropollutants, and PFAS (per- and polyfluorinated substances). Heavy metals are currently a significant problem in drinking water and other natural water bodies, including soil, which has an adverse impact on the environment as a whole. The heavy metal is highly poisonous, carcinogenic, mutagenic, and teratogenic to humans as well as other animals. Multiple polluted sites, including terrestrial and aquatic ecosystems, have been observed to co-occur with heavy metals and organo-pollutants. Pesticides and heavy metals can be degraded and removed concurrently from various metals and pesticide-contaminated matrixes due to microbial processes that include a variety of bacteria, both aerobic and anaerobic, as well as fungi. Numerous studies have examined the removal of heavy metals and organic-pollutants from different types of systems, but none of them have addressed the removal of these co-occurring heavy metals and organic pollutants and the use of microbes to do so. Therefore, the main focus of this review is on the recent developments in the concurrent microbial degradation of organo-pollutants and heavy metal removal. The limitations related to the simultaneous removal and degradation of heavy metals and organo-pollutant pollutants have also been taken into account.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur 222003, Uttar Pradesh, India.
| | - Nitu Rani
- Department of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
| | - Vinay Kumar
- Divisional Forest Office, Social Forestry Division Fatehpur, Uttar Pradesh, India; Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College, Chennai 600077, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur 313001, India
| |
Collapse
|
23
|
Dini I. The Potential of Algae in the Nutricosmetic Sector. Molecules 2023; 28:molecules28104032. [PMID: 37241773 DOI: 10.3390/molecules28104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Seaweeds or algae are marine autotrophic organisms. They produce nutrients (e.g., proteins, carbohydrates, etc.) essential for the survival of living organisms as they participate in biochemical processes and non-nutritive molecules (such as dietary fibers and secondary metabolites), which can improve their physiological functions. Seaweed polysaccharides, fatty acids, peptides, terpenoids, pigments, and polyphenols have biological properties that can be used to develop food supplements and nutricosmetic products as they can act as antibacterial, antiviral, antioxidant, and anti-inflammatory compounds. This review examines the (primary and secondary) metabolites produced by algae, the most recent evidence of their effect on human health conditions, with particular attention to what concerns the skin and hair's well-being. It also evaluates the industrial potential of recovering these metabolites from biomass produced by algae used to clean wastewater. The results demonstrate that algae can be considered a natural source of bioactive molecules for well-being formulations. The primary and secondary metabolites' upcycling can be an exciting opportunity to safeguard the planet (promoting a circular economy) and, at the same time, obtain low-cost bioactive molecules for the food, cosmetic, and pharmaceutical industries from low-cost, raw, and renewable materials. Today's lack of methodologies for recovering bioactive molecules in large-scale processes limits practical realization.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
24
|
Yadav R, Khare P. Dissipation kinetics of chlorpyrifos and 3,5,6 trichloro-2-pyridinol under vegetation of different aromatic grasses: Linkage with enzyme kinetics and microbial community of soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130960. [PMID: 36860046 DOI: 10.1016/j.jhazmat.2023.130960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The dissipation of chlorpyrifos (CP) and its hydrolytic metabolite 3,5,6-trichloro-2-pyridinol (TCP) in the soil is crucial for safe agriculture. However, there is still lacking relevant information about its dissipation under different vegetation for remediation purposes. In the present study, evaluation of dissipation of CP and TCP in non-planted and planted soil with different cultivars of three types of aromatic grass viz Cymbopogon martinii (Roxb. Wats), Cymbopogon flexuosus, and Chrysopogon zizaniodes (L.) Nash was examined in light of soil enzyme kinetics, microbial communities, and root exudation. Results revealed that the dissipation of CP was well-fitted into a single first-order exponential model (SFO). A significant reduction in the half-life (DT50) of CP was observed in planted soil (30-63 days) than in non-planted soil (95 days). The presence of TCP in all soil samples was observed. The three types of the inhibitory effect of CP i.e. linear mixed inhibition (increase in enzyme-substrate affinity (Km) and decrease in enzyme pool (Vmax), un-competitive inhibition (decrease in Km and Vmax), and simple competitive inhibition were observed on soil enzymes involved in mineralization of carbon, nitrogen, phosphorus, and sulfur. The improvement in the enzyme pool (Vmax) was observed in planted soil. Streptomyces, Clostridium, Kaistobacter, Planctomyces, and Bacillus were the dominant genera in CP stress soil. CP contamination in soil demonstrated a reduction of richness in microbial diversity and enhancement of functional gene family related to cellular process, metabolism, genetic, and environmental information processing. Among all the cultivars, C. flexuosus cultivars demonstrated a higher dissipation rate of CP along with more root exudation.
Collapse
Affiliation(s)
- Ranu Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
25
|
Hassan S, Ganai BA. Deciphering the recent trends in pesticide bioremediation using genome editing and multi-omics approaches: a review. World J Microbiol Biotechnol 2023; 39:151. [PMID: 37029313 DOI: 10.1007/s11274-023-03603-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Pesticide pollution in recent times has emerged as a grave environmental problem contaminating both aquatic and terrestrial ecosystems owing to their widespread use. Bioremediation using gene editing and system biology could be developed as an eco-friendly and proficient tool to remediate pesticide-contaminated sites due to its advantages and greater public acceptance over the physical and chemical methods. However, it is indispensable to understand the different aspects associated with microbial metabolism and their physiology for efficient pesticide remediation. Therefore, this review paper analyses the different gene editing tools and multi-omics methods in microbes to produce relevant evidence regarding genes, proteins and metabolites associated with pesticide remediation and the approaches to contend against pesticide-induced stress. We systematically discussed and analyzed the recent reports (2015-2022) on multi-omics methods for pesticide degradation to elucidate the mechanisms and the recent advances associated with the behaviour of microbes under diverse environmental conditions. This study envisages that CRISPR-Cas, ZFN and TALEN as gene editing tools utilizing Pseudomonas, Escherichia coli and Achromobacter sp. can be employed for remediation of chlorpyrifos, parathion-methyl, carbaryl, triphenyltin and triazophos by creating gRNA for expressing specific genes for the bioremediation. Similarly, systems biology accompanying multi-omics tactics revealed that microbial strains from Paenibacillus, Pseudomonas putida, Burkholderia cenocepacia, Rhodococcus sp. and Pencillium oxalicum are capable of degrading deltamethrin, p-nitrophenol, chlorimuron-ethyl and nicosulfuron. This review lends notable insights into the research gaps and provides potential solutions for pesticide remediation by using different microbe-assisted technologies. The inferences drawn from the current study will help researchers, ecologists, and decision-makers gain comprehensive knowledge of value and application of systems biology and gene editing in bioremediation assessments.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
26
|
Wu X, Chen WJ, Lin Z, Huang Y, El Sebai TNM, Alansary N, El-Hefny DE, Mishra S, Bhatt P, Lü H, Chen S. Rapid Biodegradation of the Organophosphorus Insecticide Acephate by a Novel Strain Burkholderia sp. A11 and Its Impact on the Structure of the Indigenous Microbial Community. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5261-5274. [PMID: 36962004 DOI: 10.1021/acs.jafc.2c07861] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The acephate-degrading microbes that are currently available are not optimal. In this study, Burkholderia sp. A11, an efficient degrader of acephate, presented an acephate-removal efficiency of 83.36% within 56 h (100 mg·L-1). The A11 strain has a broad substrate tolerance and presents a good removal effect in the concentration range 10-1600 mg·L-1. Six metabolites from the degradation of acephate were identified, among which the main products were methamidophos, acetamide, acetic acid, methanethiol, and dimethyl disulfide. The main degradation pathways involved include amide bond breaking and phosphate bond hydrolysis. Moreover, strain A11 successfully colonized and substantially accelerated acephate degradation in different soils, degrading over 90% of acephate (50-200 mg·kg-1) within 120 h. 16S rDNA sequencing results further confirmed that the strain A11 gradually occupied a dominant position in the soil microbial communities, causing slight changes in the diversity and composition of the indigenous soil microbial community structure.
Collapse
Affiliation(s)
- Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Talaat N-M El Sebai
- Department of Agricultural Microbiology, Agricultural and Biology Research Institute, National Research Centre, El-Buhouth Street, 12622 Dokki, Cairo, Egypt
| | - Nasser Alansary
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Plant Protection Department, Division of Pesticides, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Dalia E El-Hefny
- Pesticide Residues and Environmental Pollution Department, Central of Agricultural Pesticide Laboratory, Agricultural Research Center, 12618 Dokki, Giza, Egypt
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Huixiong Lü
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
27
|
Armenova N, Tsigoriyna L, Arsov A, Petrov K, Petrova P. Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects. Foods 2023; 12:foods12061163. [PMID: 36981090 PMCID: PMC10048192 DOI: 10.3390/foods12061163] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The treatment of agricultural areas with pesticides is an indispensable approach to improve crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of pesticides remain in food and their ingestion causes serious damage such as neurological, gastrointestinal, and allergic reactions; cancer; and even death. However, during the fermentation processing of foods, residual amounts of pesticides are significantly reduced thanks to enzymatic degradation by the starter and accompanying microflora. This review concentrates on foods with the highest levels of pesticide residues, such as milk, yogurt, fermented vegetables (pickles, kimchi, and olives), fruit juices, grains, sourdough, and wines. The focus is on the molecular mechanisms of pesticide degradation due to the presence of specific microbial species. They contain a unique genetic pool that confers an appropriate enzymological profile to act as pesticide detoxifiers. The prospects of developing more effective biodetoxification strategies by engaging probiotic lactic acid bacteria are also discussed.
Collapse
Affiliation(s)
- Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
28
|
Bhatt P, Bhatt K, Chen WJ, Huang Y, Xiao Y, Wu S, Lei Q, Zhong J, Zhu X, Chen S. Bioremediation potential of laccase for catalysis of glyphosate, isoproturon, lignin, and parathion: Molecular docking, dynamics, and simulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130319. [PMID: 36356521 DOI: 10.1016/j.jhazmat.2022.130319] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to investigate the catalytic degradation produced by laccase in the detoxification of glyphosate, isoproturon, lignin polymer, and parathion. We explored laccase-glyphosate, laccase-lignin polymer, laccase-isoproturon, and laccase-parathion using molecular docking (MD) and molecular dynamics simulation (MDS) approaches. The results suggest that laccase interacts well with glyphosate, lignin polymer, isoproturon, and parathion during biodegradation. We calculated the root mean square deviations (RMSD) of laccase-glyphosate, laccase-lignin polymer, laccase-isoproturon, and laccase-parathion as 0.24 ± 0.02, 0.59 ± 0.32, 0.43 ± 0.07, and 0.43 ± 0.06 nm, respectively. In an aqueous solution, the stability of laccase with glyphosate, lignin polymer, isoproturon, and parathion is mediated through the formation of hydrophobic interactions, hydrogen bonds, and van der Waals interactions. The presence of xenobiotic toxic compounds in the active site changed the conformation of laccase. MDS of the laccase-substrate complexes confirmed their stability during catalytic degradation. Laccase assay results confirmed that the degradation of syringol, dihydroconiferyl alcohol, guaiacol, parathion, isoproturon, and glyphosate were 100%, 99.31%, 95.69%, 60.96%, 54.51%, and 48.34% within 2 h, respectively. Taken together, we describe a novel method to understand the molecular-level biodegradation of xenobiotic compounds through laccase and its potential application in contaminant removal.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Department of Agricultural & Biological Engineering, Purdue University, West Lafayette 47906, USA
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette 47906, USA
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Ying Xiao
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Jianfeng Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xixian Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
29
|
Zhang X, Huang Y, Chen WJ, Wu S, Lei Q, Zhou Z, Zhang W, Mishra S, Bhatt P, Chen S. Environmental occurrence, toxicity concerns, and biodegradation of neonicotinoid insecticides. ENVIRONMENTAL RESEARCH 2023; 218:114953. [PMID: 36504008 DOI: 10.1016/j.envres.2022.114953] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Neonicotinoids (NEOs) are fourth generation pesticides, which emerged after organophosphates, pyrethroids, and carbamates and they are widely used in vegetables, fruits, cotton, rice, and other industrial crops to control insect pests. NEOs are considered ideal substitutes for highly toxic pesticides. Multiple studies have reported NEOs have harmful impacts on non-target biological targets, such as bees, aquatic animals, birds, and mammals. Thus, the remediation of neonicotinoid-sullied environments has gradually become a concern. Microbial degradation is a key natural method for eliminating neonicotinoid insecticides, as biodegradation is an effective, practical, and environmentally friendly strategy for the removal of pesticide residues. To date, several neonicotinoid-degrading strains have been isolated from the environment, including Stenotrophomonas maltophilia, Bacillus thuringiensis, Ensifer meliloti, Pseudomonas stutzeri, Variovorax boronicumulans, and Fusarium sp., and their degradation properties have been investigated. Furthermore, the metabolism and degradation pathways of neonicotinoids have been broadly detailed. Imidacloprid can form 6-chloronicotinic acid via the oxidative cleavage of guanidine residues, and it is then finally converted to non-toxic carbon dioxide. Acetamiprid can also be demethylated to remove cyanoimine (=N-CN) to form a less toxic intermediate metabolite. A few studies have discussed the neonicotinoid toxicity and microbial degradation in contaminated environments. This review is focused on providing an in-depth understanding of neonicotinoid toxicity, microbial degradation, catabolic pathways, and information related to the remediation process of NEOs. Future research directions are also proposed to provide a scientific basis for the risk assessment and removal of these pesticides.
Collapse
Affiliation(s)
- Xidong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, 47906, USA.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
30
|
Krishnani KK, Oakeshott JG, Pandey G. Wide substrate range for a candidate bioremediation enzyme isolated from Nocardioides sp. strain SG-4 G. FEMS Microbiol Lett 2023; 370:fnad085. [PMID: 37660276 PMCID: PMC10501498 DOI: 10.1093/femsle/fnad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
Narrow substrate ranges can impact heavily on the range of applications and hence commercial viability of candidate bioremediation enzymes. Here we show that an ester hydrolase from Nocardioides strain SG-4 G has potential as a bioremediation agent against various pollutants that can be detoxified by hydrolytic cleavage of some carboxylester, carbamate, or amide linkages. Previously we showed that a radiation-killed, freeze-dried preparation (ZimA) of this strain can rapidly degrade the benzimidazole fungicide carbendazim due to the activity of a specific ester hydrolase, MheI. Here, we report that ZimA also has substantial hydrolytic activity against phthalate diesters (dimethyl, dibutyl, and dioctyl phthalate), anilide (propanil and monalide), and carbamate ester (chlorpropham) herbicides under laboratory conditions. The reaction products are substantially less toxic, or inactive as herbicides, than the parent compounds. Tests of strain SG-4 G and Escherichia coli expressing MheI found they were also able to hydrolyse dimethyl phthalate, propanil, and chlorpropham, indicating that MheI is principally responsible for the above activities.
Collapse
Affiliation(s)
- Kishore K Krishnani
- CSIRO Environment, Canberra, ACT 2601, Australia
- Central Institute of Fisheries Education, Versova, Andheri (West), Mumbai 400061, India
| | - John G Oakeshott
- CSIRO Environment, Canberra, ACT 2601, Australia
- Applied BioSciences, Macquarie University, North Ryde, New South Wales 2113, Australia
| | | |
Collapse
|
31
|
Sheng Y, Benmati M, Guendouzi S, Benmati H, Yuan Y, Song J, Xia C, Berkani M. Latest eco-friendly approaches for pesticides decontamination using microorganisms and consortia microalgae: A comprehensive insights, challenges, and perspectives. CHEMOSPHERE 2022; 308:136183. [PMID: 36058371 DOI: 10.1016/j.chemosphere.2022.136183] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Pesticides are chemical compounds that are considered toxic to many organisms, including humans. Their elimination from polluted sites attracted the attention of Scientifics in the last decade; Among the various methods used to decontaminate pesticides from the environment, the microbial-algae consortium is a promising bioremediation technology, which implies several advantages as an eco-friendly process that generate biomass produced that could be valorized in the form of bioenergy, In this review, we will discuss the latest eco-friendly approaches using microorganisms to remediate sites contaminated by pesticides, and shows the ability of microbial, algae and their consortium to remove pesticides and the role of different enzymes in degradation processes.
Collapse
Affiliation(s)
- Yequan Sheng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Mahbouba Benmati
- Biotechnology Laboratory, National Higher School of Biotechnology, BP E66, 25100, Constantine, Algeria
| | - Salma Guendouzi
- Biotechnology Laboratory, National Higher School of Biotechnology, BP E66, 25100, Constantine, Algeria
| | - Hadjer Benmati
- Laboratoire de Biologie et Environnement, Campus Chaab-Erssas, Biopole Université des Frères Mentouri Constantine 1, Ain Bey, 25000 Constantine Algeria
| | - Yan Yuan
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, PR China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Mohammed Berkani
- Biotechnology Laboratory, National Higher School of Biotechnology, BP E66, 25100, Constantine, Algeria.
| |
Collapse
|
32
|
Chen Y, Chen WJ, Huang Y, Li J, Zhong J, Zhang W, Zou Y, Mishra S, Bhatt P, Chen S. Insights into the microbial degradation and resistance mechanisms of glyphosate. ENVIRONMENTAL RESEARCH 2022; 215:114153. [PMID: 36049517 DOI: 10.1016/j.envres.2022.114153] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate, as one of the broad-spectrum herbicides for controlling annual and perennial weeds, is widely distributed in various environments and seriously threatens the safety of human beings and ecology. Glyphosate is currently degraded by abiotic and biotic methods, such as adsorption, photolysis, ozone oxidation, and microbial degradation. Of these, microbial degradation has become the most promising method to treat glyphosate because of its high efficiency and environmental protection. Microorganisms are capable of using glyphosate as a phosphorus, nitrogen, or carbon source and subsequently degrade glyphosate into harmless products by cleaving C-N and C-P bonds, in which enzymes and functional genes related to glyphosate degradation play an indispensable role. There have been many studies on the abiotic and biotic treatment technologies, microbial degradation pathways and intermediate products of glyphosate, but the related enzymes and functional genes involved in the glyphosate degradation pathways have not been further discussed. There is little information on the resistance mechanisms of bacteria and fungi to glyphosate, and previous investigations of resistance mechanisms have mainly focused on how bacteria resist glyphosate damage. Therefore, this review explores the microorganisms, enzymes and functional genes related to the microbial degradation of glyphosate and discusses the pathways of microbial degradation and the resistance mechanisms of microorganisms to glyphosate. This review is expected to provide reference for the application and improvement of the microbial degradation of glyphosate in microbial remediation.
Collapse
Affiliation(s)
- Yongsheng Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jianfeng Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, 47906, USA.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
33
|
Insights into the toxicity and biodegradation of fipronil in contaminated environment. Microbiol Res 2022; 266:127247. [DOI: 10.1016/j.micres.2022.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
34
|
Huang Y, Chen WJ, Li J, Ghorab MA, Alansary N, El-Hefny DE, El-Sayyad GS, Mishra S, Zhang X, Bhatt P, Chen S. Novel mechanism and degradation kinetics of allethrin using Bacillus megaterium strain HLJ7 in contaminated soil/water environments. ENVIRONMENTAL RESEARCH 2022; 214:113940. [PMID: 35952736 DOI: 10.1016/j.envres.2022.113940] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
As a common pyrethroid insecticide, allethrin is widely used for various purposes in agriculture and home applications. At present, allethrin residues have been frequently detected worldwide, yet little is known about the kinetics and degradation mechanisms of this insecticide. In this study, a highly efficient allethrin-degrading bacterium, Bacillus megaterium strain HLJ7, was obtained through enrichment culture technology. Strain HLJ7 can remove 96.5% of 50 mg L-1 allethrin in minimal medium within 11 days. The first-order kinetic analysis of degradation demonstrated that the half-life of allethrin degradation by strain HLJ7 was 3.56 days, which was significantly shorter than the 55.89 days of the control. The Box-Behnken design of the response surface method optimized the degradation conditions for strain HLJ7: temperature 32.18 °C, pH value 7.52, and inoculation amount 1.31 × 107 CFU mL-1. Using Andrews equation, the optimal concentration of strain HLJ7 to metabolize allethrin was determined to be 21.15 mg L-1, and the maximum specific degradation rate (qmax), half-rate constant (Ks) and inhibition coefficient (Ki) were calculated to be 1.80 d-1, 1.85 mg L-1 and 68.13 mg L-1, respectively. Gas chromatography-mass spectrometry identified five intermediate metabolites, suggesting that allethrin could be degraded firstly by cleavage of its carboxylester bond, followed by degradation of the five-carbon ring and subsequent metabolism. The results of soil remediation experiments showed that strain HLJ7 has excellent bioremediation potential in the soils. After 15 days of treatment, about 70.8% of the initial allethrin (50 mg kg-1) was removed and converted into nontoxic intermediate metabolites, and its half-life was significantly reduced in the soils. Taken together, these findings shed light on the degradation mechanisms of allethrin and also highlight the promising potentials of B. megaterium HLJ7 in bioremediation of allethrin-comtaminated environment.
Collapse
Affiliation(s)
- Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Mohamed A Ghorab
- Wildlife Toxicology Laboratory, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Nasser Alansary
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Plant Protection Department, Division of Pesticides, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Dalia E El-Hefny
- Pesticide Residues and Environmental Pollution Department, Central of Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt; Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Xidong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, 47906, USA.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
35
|
Xiao Y, Wu N, Wang L, Chen L. A Novel Paper-Based Electrochemical Biosensor Based on N,O-Rich Covalent Organic Frameworks for Carbaryl Detection. BIOSENSORS 2022; 12:899. [PMID: 36291036 PMCID: PMC9599374 DOI: 10.3390/bios12100899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/28/2023]
Abstract
A new N,O-rich covalent organic framework (COFDHNDA-BTH) was synthesized by an amine-aldehyde condensation reaction between 2,6-dialdehyde-1,5-dihydroxynaphthalene (DHNDA) and 1,3,5-phenyltriformylhydrazine (BTH) for carbaryl detection. The free NH, OH, and C=O groups of COFDHNDA-BTH not only covalently couples with acetylcholinesterase (AChE) into the pores of COFDHNDA-BTH, but also greatly improves the catalytic activity of AChE in the constrained environment of COFDHNDA-BTH's pore. Under the catalysis of AChE, the acetylthiocholine (ATCl) was decomposed into positively charged thiocholine (TCl), which was captured on the COFDHNDA-BTH modified electrode. The positive charges of TCl can attract anionic probe [Fe(CN)6]3-/4- on the COFDHNDA-BTH-modified electrode to show a good oxidation peak at 0.25 V (versus a saturated calomel electrode). The carbaryl detection can inhibit the activity of AChE, resulting in the decrease in the oxidation peak. Therefore, a turn-off electrochemical carbaryl biosensor based on a flexible carbon paper electrode loaded with COFDHNDA-BTH and AChE was constructed using the oxidation peak of an anionic probe [Fe(CN)6]3-/4- as the detection signal. The detection limit was 0.16 μM (S/N = 3), and the linear range was 0.48~35.0 μM. The sensor has good selectivity, repeatability, and stability, and has a good application prospect in pesticide detection.
Collapse
Affiliation(s)
| | | | | | - Lili Chen
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
36
|
Lara-Moreno A, Morillo E, Merchán F, Madrid F, Villaverde J. Bioremediation of a trifluralin contaminated soil using bioaugmentation with novel isolated bacterial strains and cyclodextrin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156695. [PMID: 35709999 DOI: 10.1016/j.scitotenv.2022.156695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Trifluralin (TFL) is a highly persistent with a strong adsorption capacity on soil particles herbicide. This study was to isolate microbial consortia and bacterial strains from a soil with a historical application of pesticides to evaluate their potential to degrade TFL in soil. Different bioremediation techniques were considered for increasing the effectiveness of TFL degradation in soil. These techniques consisted of: i) biostimulation, using a nutrients solution (NS); ii) bioaugmentation, using a natural microbial consortium (NMC), seven individual bacterial strains isolated from NMC, and an artificial bacterial consortium formed by the seven TFL-degrading bacterial strains (ABC); iii) bioavailability enhancement, using a biodegradable compound, a randomly methylated cyclodextrin, RAMEB. Biostimulation using NS leads up to 34 % of soil TFL biodegraded after 100 d. When the contaminated soil was inoculated with NMC or ABC consortia, TFL loss increased up to 62 % and 74 %, respectively, with DT50 values (required time for the pollutant concentration to decline to half of its initial value) of 5.9 and 11 d. In the case of soil inoculation with the isolated individual bacterial strains, the extent of TFL biodegradation ranged widely from 2.3 % to 55 %. The most efficient bacterial strain was Arthrobacter aurescens CTFL7 which had not been previously described in the literature as a TFL-degrading bacterium. Bioaugmentation with CTFL7 bacterium was also tested in the presence of RAMEB, provoking a drastic increase in herbicide biodegradation up to 88 %, achieving a DT50 of only 19 d. Cyclodextrins had never been tested before for enhancement of TFL biodegradation. An ecotoxicity assay was performed to confirm that the proposed bioremediation techniques were also capable to reduce toxicity. A Microtox® test showed that after application A. aurescens CTF7 and A. aurescens CTF7 + RAMEB, the TFL-contaminated soil, which initially presented acute toxicity, became non-toxic at the end of the biodegradation experiments.
Collapse
Affiliation(s)
- A Lara-Moreno
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Seville, Spain; Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - E Morillo
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Seville, Spain
| | - F Merchán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - F Madrid
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Seville, Spain
| | - J Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Seville, Spain.
| |
Collapse
|
37
|
Bhatt P, Bhandari G, Turco RF, Aminikhoei Z, Bhatt K, Simsek H. Algae in wastewater treatment, mechanism, and application of biomass for production of value-added product. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119688. [PMID: 35793713 DOI: 10.1016/j.envpol.2022.119688] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/21/2022] [Accepted: 06/24/2022] [Indexed: 05/16/2023]
Abstract
The pollutants can enter water bodies at various point and non-point sources, and wastewater discharge remains a major pathway. Wastewater treatment effectively reduces contaminants, it is expensive and requires an eco-friendly and sustainable alternative approach to reduce treatment costs. Algae have recently emerged as a potentially cost-effective method to remediate toxic pollutants through the mechanism of biosorption, bioaccumulation, and intracellular degradation. Hence, before discharging the wastewater into the natural environment better solutions for environmental resource recovery and sustainable developments can be applied. More importantly, algae are a potential feedstock material for various industrial applications such as biofuel production. Currently, researchers are developing algae as a source for pharmaceuticals, biofuels, food additives, and bio-fertilizers. This review mainly focused on the potential of algae and their specific mechanisms involved in wastewater treatment and energy recovery systems leading to important industrial precursors. The review is highly beneficial for scientists, wastewater treatment plant operators, freshwater managers, and industrial communities to support the sustainable development of natural resources.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, 248016, Uttarakhand, India
| | - Ronald F Turco
- Department of Agronomy, Purdue University, West Lafayette, IN, 47906, USA
| | - Zahra Aminikhoei
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Offshore Fisheries Research Center, Chabahar, Iran
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
38
|
Jaffar S, Ahmad S, Lu Y. Contribution of insect gut microbiota and their associated enzymes in insect physiology and biodegradation of pesticides. Front Microbiol 2022; 13:979383. [PMID: 36187965 PMCID: PMC9516005 DOI: 10.3389/fmicb.2022.979383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022] Open
Abstract
Synthetic pesticides are extensively and injudiciously applied to control agriculture and household pests worldwide. Due to their high use, their toxic residues have enormously increased in the agroecosystem in the past several years. They have caused many severe threats to non-target organisms, including humans. Therefore, the complete removal of toxic compounds is gaining wide attention to protect the ecosystem and the diversity of living organisms. Several methods, such as physical, chemical and biological, are applied to degrade compounds, but as compared to other methods, biological methods are considered more efficient, fast, eco-friendly and less expensive. In particular, employing microbial species and their purified enzymes makes the degradation of toxic pollutants more accessible and converts them into non-toxic products by several metabolic pathways. The digestive tract of insects is usually known as a superior organ that provides a nutrient-rich environment to hundreds of microbial species that perform a pivotal role in various physiological and ecological functions. There is a direct relationship between pesticides and insect pests: pesticides reduce the growth of insect species and alter the phyla located in the gut microbiome. In comparison, the insect gut microbiota tries to degrade toxic compounds by changing their toxicity, increasing the production and regulation of a diverse range of enzymes. These enzymes breakdown into their derivatives, and microbial species utilize them as a sole source of carbon, sulfur and energy. The resistance of pesticides (carbamates, pyrethroids, organophosphates, organochlorines, and neonicotinoids) in insect species is developed by metabolic mechanisms, regulation of enzymes and the expression of various microbial detoxifying genes in insect guts. This review summarizes the toxic effects of agrochemicals on humans, animals, birds and beneficial arthropods. It explores the preferential role of insect gut microbial species in the degradation process and the resistance mechanism of several pesticides in insect species. Additionally, various metabolic pathways have been systematically discussed to better understand the degradation of xenobiotics by insect gut microbial species.
Collapse
Affiliation(s)
- Saleem Jaffar
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
39
|
Bhatt P, Rene ER, Huang Y, Wu X, Zhou Z, Li J, Kumar AJ, Sharma A, Chen S. Indigenous bacterial consortium-mediated cypermethrin degradation in the presence of organic amendments and Zea mays plants. ENVIRONMENTAL RESEARCH 2022; 212:113137. [PMID: 35358545 DOI: 10.1016/j.envres.2022.113137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Cypermethrin is a toxic pyrethroid insecticide that is widely used in agricultural and household activities. One of the most serious issues is its persistence in the environment, because it is easily transported to the soil and aquatic ecosystem. The biodegradation of cypermethrin is emerging as an environmentally friendly method for large-scale treatment. This study examined the application of a novel binary bacterial combination-based (Bacillus thuringiensis strain SG4 and Bacillus sp. strain SG2) approach used for the enhanced degradation of cypermethrin from the environment. The bacterial strains degraded cypermethrin (80% and 85%) in the presence of external nitrogen sources (KNO3 and NaNO3). Furthermore, when immobilized in agar disc beads, the co-culture degraded cypermethrin (91.3%) with a half-life (t1/2) of 4.3 days compared to 4.9 days using sodium alginate beads. Cereal straw, farmyard manure, press mud compost, fresh cow dung, and gypsum were used as organic amendments in the soil to stimulate cypermethrin degradation. Cereal straw promoted the fastest cypermethrin degradation among the different organic amendments tested, with a t1/2 of 4.4 days. The impact of cypermethrin-degrading bacterial consortium on cypermethrin rhizoremediation was also investigated. Bacterial inoculums exhibited beneficial effects on plant biomass. Moreover, Zea mays and the bacterial partnership substantially enhanced cypermethrin degradation in soil. Six intermediate metabolites were detected during the degradation of cypermethrin, indicating that cypermethrin could be degraded first by the hydrolysis of its carboxyl ester bond, followed by the cleavage of the diaryl linkage and subsequent metabolism. Our findings highlight the promising potential and advantages of the bacterial consortium for the bioremediation of a cypermethrin-contaminated environment.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Microbiology, G. B Pant University of Agriculture and Technology, Pantnagar, U. S Nagar, 263145, India.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | | | - Anita Sharma
- Department of Microbiology, G. B Pant University of Agriculture and Technology, Pantnagar, U. S Nagar, 263145, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
40
|
Wu X, Chen L, Li X, Cao X, Zheng X, Li R, Zhang J, Luo X, Mai B. Trophic transfer of methylmercury and brominated flame retardants in adjacent riparian and aquatic food webs: 13C indicates biotransport of contaminants through food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119433. [PMID: 35550129 DOI: 10.1016/j.envpol.2022.119433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Biomagnification of persistent toxic substances (PTSs) in food chains is of environmental concern, but studies on biotransport of PTSs across aquatic and riparian food chains are still incomplete. In this study, biomagnification of several PTSs including methylmercury (MeHg), polybrominated diphenyl ethers (PBDEs), and 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE) was investigated in adjacent aquatic and riparian food webs. Concentrations of MeHg and PBDEs ranged from 2.37 to 353 ng/g dry weight (dw) and not detected (Nd) to 65.1 ng/g lipid weight (lw) in riparian samples, respectively, and ranged from Nd to 705 ng/g dw and Nd to 187 ng/g lw in aquatic samples, respectively. Concentrations of MeHg were significantly correlated with δ13C (p < 0.01) rather than δ15N (p > 0.05) values in riparian organisms, while a significant correlation was observed between concentrations of MeHg and δ15N (p < 0.01) in aquatic organisms. Biomagnification factors (BMFs) and trophic magnification factors (TMFs) of PBDE congeners were similar in riparian and aquatic food webs, while BMFs and TMFs of MeHg were much higher in aquatic food web than those in riparian food web. The results indicate the biotransport of MeHg from aquatic insects to terrestrial birds, and δ13C can be a promising ecological indicator for biotransport of pollutants across ecosystems.
Collapse
Affiliation(s)
- Xiaodan Wu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Laiguo Chen
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, MEE, Guangzhou, 510655, PR China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xingpei Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaobo Zheng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Ronghua Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jia'en Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
41
|
Biancardi A, Aimo C, Piazza P, Lo Chiano F, Rubini S, Baldini E, Vertuani S, Manfredini S. Acetylcholinesterase (AChE) Reversible Inhibitors: The Role of Oxamyl in the Production of Poisoned Baits. TOXICS 2022; 10:432. [PMID: 36006110 PMCID: PMC9412330 DOI: 10.3390/toxics10080432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Oxamyl is a highly toxic carbamate molecule with toxicological risk from contamination, used as an insecticide, nematicide, and acaricide on many field crops, vegetables, fruits, and ornamentals. Suspected poisoned animals and baits were collected between January 2018 and August 2021 from Lombardy and Emilia-Romagna regions and analyzed at the chemical toxicology laboratory of the Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna, located in Brescia. The analyses were carried out by an ion trap GC-MS system in 2467 suspected samples and showed the presence of oxamyl in 67 of these. In this study, we analyzed 47 (out of 67) positive baits: the provinces in which more cases have been recorded are Mantua, Ferrara, and Cremona, which overall had 72% of positivity. The nature of the analyzed samples was mostly corn (55.3%), followed by bird carcasses (19.1%), apples (14.8%), meatballs (2.1%), bread (2.1%), and other (8.5%). The use of oxamyl to produce poisoned baits is constantly increasing, proving that it must be considered as a public health risk for the possible consequences on target and non-target organisms, including humans.
Collapse
Affiliation(s)
- Alberto Biancardi
- Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna, Via A. Bianchi 9, 25124 Brescia, Italy; (A.B.); (C.A.); (P.P.)
| | - Cristina Aimo
- Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna, Via A. Bianchi 9, 25124 Brescia, Italy; (A.B.); (C.A.); (P.P.)
| | - Pierluigi Piazza
- Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna, Via A. Bianchi 9, 25124 Brescia, Italy; (A.B.); (C.A.); (P.P.)
| | - Federica Lo Chiano
- Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna, Via Modena 483, 44124 Ferrara, Italy; (F.L.C.); (S.R.)
| | - Silva Rubini
- Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna, Via Modena 483, 44124 Ferrara, Italy; (F.L.C.); (S.R.)
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Science, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Science, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Science, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| |
Collapse
|
42
|
Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2022; 240:114606. [PMID: 35858523 DOI: 10.1016/j.ejmech.2022.114606] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), as the fourth leading cause of death among the elderly worldwide, has brought enormous challenge to the society. Due to its extremely complex pathogeneses, the development of multi-target directed ligands (MTDLs) becomes the major strategy for combating AD. Carbamate moiety, as an essential building block in the development of MTDLs, exhibits structural similarity to neurotransmitter acetylcholine (ACh) and has piqued extensive attention in discovering multifunctional cholinesterase inhibitors. To date, numerous preclinical studies demonstrate that carbamate-based cholinesterase inhibitors can prominently increase the level of ACh and improve cognition impairments and behavioral deficits, providing a privileged strategy for the treatment of AD. Based on the recent research focus on the novel cholinesterase inhibitors with multiple biofunctions, this review aims at summarizing and discussing the most recent studies excavating the potential carbamate-based MTDLs with cholinesterase inhibition efficacy, to accelerate the pace of pleiotropic cholinesterase inhibitors for coping AD.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
43
|
Jing X, Liu T, Fateh B, Chen J, Zheng Y, Xu G. Effect of methomyl on water quality, growth performance and antioxidant system in liver of GIFT ( Oreochromis niloticus) in the presence of peppermint ( Mentha haplocalyx Briq.) as a floating bed. Sci Prog 2022; 105:368504221124047. [PMID: 36113148 PMCID: PMC10450472 DOI: 10.1177/00368504221124047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was conducted to investigate the effect of methomyl (MET) on water quality, growth and antioxidant system of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) in the presence of peppermint as a floating bed. The concentration of NH3-N, NO2--N, NO3--N and TP in T3 (with 200 g wet peppermint) was significantly lower (P < 0.05) than that in T2 (100 g), T1 (50 g) and control, and the nutrient removal rates were 61.90%, 31.59%, 59.86% and 45.92% in 20 days, respectively. Juveniles GIFT (5.1 ± 0.2 g) were exposed to sub-lethal concentrations of 0.2, 2.0, 20 and 200 µg/L of MET for 45 days. After 6 weeks of a feeding trial, percentage weight gain (PWG), specific growth rate (SGR) and feed conversion ratio (FCR) were significantly decreased in 0.2, 2.0, 20 µg/L MET groups respectively and increased in the 200 µg/L MET group. Compared with the control, no significant changes in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) were detected in the 0.2 µg/L group. The significant increase in activities of SOD, CAT and GPx was accompanied by a diminution in reduced glutathione (GSH) levels resulting with tilapia exposed to 2.0, 20, or 200 µg/L for 45 days. The highest rates observed in SOD, CAT, GPx were 157.63%, 164.05% and 167.46% of the control respectively, and the lowest inhibition rate in GSH was 66.42% of the control. Peppermint as a floating bed can alleviate the adverse effects of MET, such as growth retardation and oxidative stress.
Collapse
Affiliation(s)
- Xiaojun Jing
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, China
| | - Tingyan Liu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Benkhelifa Fateh
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Jiazhang Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, China
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Yao Zheng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, China
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, China
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| |
Collapse
|
44
|
Mirgorodskaya AB, Kushnazarova RA, Kuznetsov DM, Tyryshkina AA, Zakharova LY. Aggregation Behavior and Catalytic Action of Carbamate-Bearing Surfactants in Aqueous Solutions. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Zhang W, Li J, Zhang Y, Wu X, Zhou Z, Huang Y, Zhao Y, Mishra S, Bhatt P, Chen S. Characterization of a novel glyphosate-degrading bacterial species, Chryseobacterium sp. Y16C, and evaluation of its effects on microbial communities in glyphosate-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128689. [PMID: 35325860 DOI: 10.1016/j.jhazmat.2022.128689] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Widespread use of the herbicide glyphosate in agriculture has resulted in serious environmental problems. Thus, environment-friendly technological solutions are urgently needed for the removal of residual glyphosate from soil. Here, we successfully isolated a novel bacterial strain, Chryseobacterium sp. Y16C, which efficiently degrades glyphosate and its main metabolite aminomethylphosphonic acid (AMPA). Strain Y16C was found to completely degrade glyphosate at 400 mg·L-1 concentration within four days. Kinetics analysis indicated that glyphosate biodegradation was concentration-dependent, with a maximum specific degradation rate, half-saturation constant, and inhibition constant of 0.91459 d-1, 15.79796 mg·L-1, and 290.28133 mg·L-1, respectively. AMPA was identified as the major degradation product of glyphosate degradation, suggesting that glyphosate was first degraded via cleavage of its C-N bond prior to subsequent metabolic degradation. Strain Y16C was also found to tolerate and degrade AMPA at concentrations up to 800 mg·L-1. Moreover, strain Y16C accelerated glyphosate degradation in soil indirectly by inducing a slight alteration in the diversity and composition of soil microbial community. Taken together, our results suggest that strain Y16C may be a potential microbial agent for bioremediation of glyphosate-contaminated soil.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yingjie Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
46
|
Liu Y, Wang X, Nong S, Bai Z, Han N, Wu Q, Huang Z, Ding J. Display of a novel carboxylesterase CarCby on Escherichia coli cell surface for carbaryl pesticide bioremediation. Microb Cell Fact 2022; 21:97. [PMID: 35643494 PMCID: PMC9148518 DOI: 10.1186/s12934-022-01821-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/13/2022] [Indexed: 09/24/2024] Open
Abstract
Background Carbamate pesticides have been widely used in agricultural and forestry pest control. The large-scale use of carbamates has caused severe toxicity in various systems because of their toxic environmental residues. Carbaryl is a representative carbamate pesticide and hydrolase/carboxylesterase is the initial and critical enzyme for its degradation. Whole-cell biocatalysts have become a powerful tool for environmental bioremediation. Here, a whole cell biocatalyst was constructed by displaying a novel carboxylesterase/hydrolase on the surface of Escherichia coli cells for carbaryl bioremediation. Results The carCby gene, encoding a protein with carbaryl hydrolysis activity was cloned and characterized. Subsequently, CarCby was displayed on the outer membrane of E. coli BL21(DE3) cells using the N-terminus of ice nucleation protein as an anchor. The surface localization of CarCby was confirmed by SDS–PAGE and fluorescence microscopy. The optimal temperature and pH of the engineered E. coli cells were 30 °C and 7.5, respectively, using pNPC4 as a substrate. The whole cell biocatalyst exhibited better stability and maintained approximately 8-fold higher specific enzymatic activity than purified CarCby when incubated at 30 °C for 120 h. In addition, ~ 100% and 50% of the original activity was retained when incubated with the whole cell biocatalyst at 4 ℃ and 30 °C for 35 days, respectively. However, the purified CarCby lost almost 100% of its activity when incubated at 30 °C for 134 h or 37 °C for 96 h, respectively. Finally, approximately 30 mg/L of carbaryl was hydrolyzed by 200 U of the engineered E. coli cells in 12 h. Conclusions Here, a carbaryl hydrolase-containing surface-displayed system was first constructed, and the whole cell biocatalyst displayed better stability and maintained its catalytic activity. This surface-displayed strategy provides a new solution for the cost-efficient bioremediation of carbaryl and could also have the potential to be used to treat other carbamates in environmental bioremediation. Supplementary information The online version contains supplementary material available at 10.1186/s12934-022-01821-5.
Collapse
|
47
|
Climate-Resilient Microbial Biotechnology: A Perspective on Sustainable Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14095574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We designed this review to describe a compilation of studies to enlighten the concepts of plant–microbe interactions, adopted protocols in smart crop farming, and biodiversity to reaffirm sustainable agriculture. The ever-increasing use of agrochemicals to boost crop production has created health hazards to humans and the environment. Microbes can bring up the hidden strength of plants, augmenting disease resistance and yield, hereafter, crops could be grown without chemicals by harnessing microbes that live in/on plants and soil. This review summarizes an understanding of the functions and importance of indigenous microbial communities; host–microbial and microbial–microbial interactions; simplified experimentally controlled synthetic flora used to perform targeted operations; maintaining the molecular mechanisms; and microbial agent application technology. It also analyzes existing problems and forecasts prospects. The real advancement of microbiome engineering requires a large number of cycles to obtain the necessary ecological principles, precise manipulation of the microbiome, and predictable results. To advance this approach, interdisciplinary collaboration in the areas of experimentation, computation, automation, and applications is required. The road to microbiome engineering seems to be long; however, research and biotechnology provide a promising approach for proceeding with microbial engineering and address persistent social and environmental issues.
Collapse
|
48
|
Mishra S, Huang Y, Li J, Wu X, Zhou Z, Lei Q, Bhatt P, Chen S. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. CHEMOSPHERE 2022; 294:133609. [PMID: 35051518 DOI: 10.1016/j.chemosphere.2022.133609] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Biofilm-mediated bioremediation is an attractive approach for the elimination of environmental pollutants, because of its wide adaptability, biomass, and excellent capacity to absorb, immobilize, or degrade contaminants. Biofilms are assemblages of individual or mixed microbial cells adhering to a living or non-living surface in an aqueous environment. Biofilm-forming microorganisms have excellent survival under exposure to harsh environmental stressors, can compete for nutrients, exhibit greater tolerance to pollutants compared to free-floating planktonic cells, and provide a protective environment for cells. Biofilm communities are thus capable of sorption and metabolization of organic pollutants and heavy metals through a well-controlled expression pattern of genes governed by quorum sensing. The involvement of quorum sensing and chemotaxis in biofilms can enhance the bioremediation kinetics with the help of signaling molecules, the transfer of genetic material, and metabolites. This review provides in-depth knowledge of the process of biofilm formation in microorganisms, their regulatory mechanisms of interaction, and their importance and application as powerful bioremediation agents in the biodegradation of environmental pollutants, including hydrocarbons, pesticides, and heavy metals.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
49
|
Ahmad S, Ahmad HW, Bhatt P. Microbial adaptation and impact into the pesticide's degradation. Arch Microbiol 2022; 204:288. [PMID: 35482163 DOI: 10.1007/s00203-022-02899-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The imprudent use of agrochemicals to control agriculture and household pests is unsafe for the environment. Hence, to protect the environment and diversity of living organisms, the degradation of pesticides has received widespread attention. There are different physical, chemical, and biological methods used to remediate pesticides in contaminated sites. Compared to other methods, biological approaches and their associated techniques are more effective, less expensive and eco-friendly. Microbes secrete several enzymes that can attach pesticides, break down organic compounds, and then convert toxic substances into carbon and water. Thus, there is a lack of knowledge regarding the functional genes and genomic potential of microbial species for the removal of emerging pollutants. Here we address the knowledge gaps by highlighting systematic biology and their role in adaptation of microbial species from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Moreover, by co-metabolism, the microbial species fulfill their nutritional requirements and perform more efficiently than single microbial-free cells. But in an open environment, free cells of microbes are not much prominent in the degradation process due to environmental conditions, incompatibilities with mechanical equipment and difficulties associated with evenly distributing inoculum through the agroecosystem. This review highlights emerging techniques involving the removal of pesticides in a field-scale environment like immobilization, biobed, biocomposites, biochar, biofilms, and bioreactors. In these techniques, different microbial cells, enzymes, natural fibers, and strains are used for the effective biodegradation of xenobiotic pesticides.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Pankaj Bhatt
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
50
|
Pang S, Lin Z, Li J, Zhang Y, Mishra S, Bhatt P, Chen S. Microbial Degradation of Aldrin and Dieldrin: Mechanisms and Biochemical Pathways. Front Microbiol 2022; 13:713375. [PMID: 35422769 PMCID: PMC9002305 DOI: 10.3389/fmicb.2022.713375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
As members of the organochlorine group of insecticides, aldrin and dieldrin are effective at protecting agriculture from insect pests. However, because of excessive use and a long half-life, they have contributed to the major pollution of the water/soil environments. Aldrin and dieldrin have been reported to be highly toxic to humans and other non-target organisms, and so their use has gradually been banned worldwide. Various methods have been tried to remove them from the environment, including xenon lamps, combustion, ion conversion, and microbial degradation. Microbial degradation is considered the most promising treatment method because of its advantages of economy, environmental protection, and convenience. To date, a few aldrin/dieldrin-degrading microorganisms have been isolated and identified, including Pseudomonas fluorescens, Trichoderma viride, Pleurotus ostreatus, Mucor racemosus, Burkholderia sp., Cupriavidus sp., Pseudonocardia sp., and a community of anaerobic microorganisms. Many aldrin/dieldrin resistance genes have been identified from insects and microorganisms, such as Rdl, bph, HCo-LGC-38, S2-RDLA302S, CSRDL1A, CSRDL2S, HaRdl-1, and HaRdl-2. Aldrin degradation includes three pathways: the oxidation pathway, the reduction pathway, and the hydroxylation pathway, with dieldrin as a major metabolite. Degradation of dieldrin includes four pathways: oxidation, reduction, hydroxylation, and hydrolysis, with 9-hydroxydieldrin and dihydroxydieldrin as major products. Many studies have investigated the toxicity and degradation of aldrin/dieldrin. However, few reviews have focused on the microbial degradation and biochemical mechanisms of aldrin/dieldrin. In this review paper, the microbial degradation and degradation mechanisms of aldrin/dieldrin are summarized in order to provide a theoretical and practical basis for the bioremediation of aldrin/dieldrin-polluted environment.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|