1
|
Arslan Yüce P, Günal AÇ, Erkmen B, Yurdakok-Dikmen B, Çağan AS, Çırak T, Başaran Kankılıç G, Seyfe M, Filazi A, Tavşanoğlu ÜN. In vitro and in vivo effects of commercial and environmental microplastics on Unio delicatus. ECOTOXICOLOGY (LONDON, ENGLAND) 2024:10.1007/s10646-024-02807-2. [PMID: 39387969 DOI: 10.1007/s10646-024-02807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Microplastics (MPs) are ubiquitous pollutants in freshwater environments. In this study, freshwater mussels, Unio delicatus, were exposed to both environmental MPs (e-MP) and commercial MPs (c-MP) that include green fluorescent MP (gf-MP), polyethylene (c-PE) and polystyrene (c-PS) at environmental concentrations (5 mg/L and 50 mg/L) over duration of 7 and 30 days. According to in vivo experiment results, both e-MPs and c-MPs induced significant changes in the total hemocyte counts of mussels (p < 0.05). Exposure to high concentrations of e-MPs and c-MPs for 7 days led to decreased cellular glutathione levels in the mussels, while exposure to low concentrations of e-MPs and c-PS for 7 days resulted in increased advanced oxidation protein products (AOPP). Mussels exposed to high concentrations of e-MPs for 30 days exhibited decreases in both glutathione levels and AOPP values. Although no damage was observed in tissues other than gills and digestive gland, histopathological alterations were observed in these tissues following exposure to 50 mg/L c-MPs. Additionally, MPs were observed in the intestine tissues. In vitro experiments using the MTT assay showed no significant difference in cell viability between the MP-exposed group and the control group at tested concentrations, with no observed dose-response relationship (p > 0.05). Nevertheless, certain cells exhibited signs of cell death, such as disrupted cellular structures, condensed nuclei, and loss of cellular integrity. These observations were consistent with mechanical compression, indicating that physical contact with MPs may result in cell damage or death. These findings demonstrate that environmentally relevant concentrations of MPs have toxic effects on freshwater mussels and multiple parameters provide valuable insight for the evaluation of health risks of organisms.
Collapse
Affiliation(s)
- Pınar Arslan Yüce
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Türkiye
| | - Aysel Çağlan Günal
- Biology Education Department, Faculty of Gazi Education, Gazi University, Ankara, Türkiye
| | - Belda Erkmen
- Biology Department, Faculty of Science, Aksaray University, Aksaray, Türkiye
| | - Begüm Yurdakok-Dikmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Türkiye
| | - Ali Serhan Çağan
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Türkiye
- Kastamonu University, Araç Rafet Vergili Vocational School, Wildlife Programme, Kastamonu, Türkiye
| | - Tamer Çırak
- Aksaray Technical Sciences Vocational School, Alternative Energy Sources Technology Program, Aksaray University, Aksaray, Türkiye
| | - Gökben Başaran Kankılıç
- Biology Department, Faculty of Engineering and Natural Sciences, Kırıkkale University, Kırıkkale, Türkiye
| | - Melike Seyfe
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Türkiye
| | - Ayhan Filazi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Türkiye
| | - Ülkü Nihan Tavşanoğlu
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Türkiye.
| |
Collapse
|
2
|
El Kholy S, Ayorinde T, Sayes CM, Al Naggar Y. Microplastic exposure reduced the defecation rate, altered digestive enzyme activities, and caused histological and ultracellular changes in the midgut tissues of the ground beetle (Blaps polychresta). JOURNAL OF INSECT PHYSIOLOGY 2024; 158:104697. [PMID: 39154709 DOI: 10.1016/j.jinsphys.2024.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Concerns about microplastic (MP) pollution in terrestrial systems are increasing. It is believed that the overall amount of MPs in the terrestrial system could be 4-23 times higher than that in the ocean. Agricultural ecosystems are among the most polluted areas with MPs. Terrestrial organisms such as ground beetles, will be more vulnerable to MPs in various agricultural soil types because they are common in garden and agricultural areas. Therefore, this work aims to assess for the first time the potential adverse effects of chronic exposure for 30 days of ground beetles to a field-realistic concentration of 2 % (w/w) of three different irregularly shaped MPs polymers: Polystyrene (PS), polyethylene terephthalate (PET), and polyamide 6 (PA; i.e., nylon 6) on their health. The results showed no effect on beetle survival; nevertheless, there was a decrease in beetle defecation rate, particularly in beetles exposed to PS-MPs, and a change in the activity of midgut digestive enzymes. The effects on digestive enzymes (amylase, protease, lipase, and α-glucosidase) were polymer and enzyme specific. Furthermore, histological and cytological studies demonstrated the decomposition of the midgut peritrophic membrane, as well as abnormally shaped nuclei, vacuolation, disordered microvilli, necrosis of goblet and columnar cells, and necrosis of mitochondria in midgut cells. Given the importance of ground beetles as predators in most agricultural and garden settings, the reported adverse impacts of MPs on their health may impact their existence and ecological functions.
Collapse
Affiliation(s)
- Samar El Kholy
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Taiwo Ayorinde
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Applied College, Center of Bee Research and its Products, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| |
Collapse
|
3
|
Büchner-Miranda JA, Jaramillo HN, Ramírez-Kuschel EF, Salas-Yanquin LP, Pérez-Echeverría I, Paredes-Molina FJ, Sabja-Llanos EN, Cubillos VM, Montory JA, Chaparro OR. Volcanic ash in the water column: Cellular, physiological and anatomical implications for the gastropod suspension-feeder Crepipatella peruviana (Lamarck, 1822). CHEMOSPHERE 2024; 365:143294. [PMID: 39265734 DOI: 10.1016/j.chemosphere.2024.143294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
The influx of volcanic ash into seawater alters particle composition with implications for the cellular, physiological and anatomical response of suspension-feeding organisms. Adult females of Crepipatella peruviana were exposed to three diets consisting of a fixed concentration of 50,000 cells ml-1 of the microalga Isochrysis galbana plus different concentrations of ash particles (30, 90 and 150 mg L-1). The objective was to determine the cellular, physiological and anatomical responses. Mortality increased with ash concentrations, while feeding and respiration rates, tissue weight, and condition index decreased. The gills showed severe degradation of cilia and the presence of large mucous aggregates of cilia and ash. An increase in ash resulted in decreased lipid peroxidation and protein carbonyls, but increased total antioxidant capacity and phenols. Thus, volcanic ash particles may exert a high impact at both cellular and physiological levels for C. peruviana, where inhibition of gill function reduces the ability to acquire food.
Collapse
Affiliation(s)
| | - Hans N Jaramillo
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | | | - Luis P Salas-Yanquin
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | | | | | - Elayne N Sabja-Llanos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Victor M Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime A Montory
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Oscar R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
4
|
Farhan M, Yaqin K, Djawad MI. Microplastic's Contamination in the Hemolymph and Organs (Gills and Hepatopancreas) of Perna viridis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:321-334. [PMID: 39384581 DOI: 10.1007/s00244-024-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024]
Abstract
The issue of microplastics (MPs) has emerged as a significant concern globally, with discussions surrounding the potential environmental impact of these tiny plastic particles becoming increasingly prevalent. This study aimed to identify the concentration and characteristics of MPs in hemolymph and organs (gills and hepatopancreas) of green mussels (Perna viridis) that are frequently consumed by people in Pangkajene Kepulauan, South Sulawesi Province, Indonesia. Green mussels were collected from two different sampling sites for comparison. Screening was carried out on dispensed hemolymph and dissected organs to identify the characteristics of MPs. Surface seawater sampling was added as information on MP's characteristics from the mussel habitat. Visual observation of MP's characteristics using a stereomicroscope in laminar flow is to prevent contamination. The identification of MP's polymer type is using FTIR-ATR. The results showed that hemolymph, hepatopancreas, gills, and surface water were concentrated with MPs. Small (2-3.9 cm) green mussels accumulated more MPs than medium (4-5.9 cm) and large (> 6 cm). MPs characteristics of fiber shape, transparent color, and size 0.1-0.5 mm were dominant in all samples. A total of seven polymers of MPs were identified with polyethylene and polystyrene types most frequently found from all samples. Based on this study, green mussels are good for biomonitoring of MPs.
Collapse
Affiliation(s)
- Muh Farhan
- Postgraduate School of Fisheries, Hasanuddin University, Perintis Kemerdekaan Km 17, Makassar, South Sulawesi, 90245, Indonesia
| | - Khusnul Yaqin
- Postgraduate School of Fisheries, Hasanuddin University, Perintis Kemerdekaan Km 17, Makassar, South Sulawesi, 90245, Indonesia.
| | - Muhammad Iqbal Djawad
- Postgraduate School of Fisheries, Hasanuddin University, Perintis Kemerdekaan Km 17, Makassar, South Sulawesi, 90245, Indonesia
| |
Collapse
|
5
|
Jeyasanta I, Sathish MN, Patterson J, Esmeralda VG, R L L. Microplastics contamination in commercial fish meal and feed: a major concern in the cultured organisms. CHEMOSPHERE 2024; 363:142832. [PMID: 39002652 DOI: 10.1016/j.chemosphere.2024.142832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The growing scale of plastic pollution causes a devastating impact on the aquatic ecosystem. The people largely depend on animal-based food for their protein requirements. In this study, we analysed 10 different fish meal samples and 20 feed samples used in farming to understand the level of microplastic (MPs) contamination and estimate the amount of MPs ingested by farmed fish, shrimp, and chicken through feed. The abundance of MPs in fish meal samples ranges from 210 ± 98.21 to 1154 ± 235.55 items/kg. The fish meal produced from dried fish is more prone to MPs contamination than that produced from fresh fish. In the case of fish feed, MP abundances range from 50 ± 22.36 to 160 ± 36.57 items/kg in shrimp feeds, 60 ± 26.74 to 230 ± 52.32 items/kg in fish feeds and 90 ± 25.11 to 330 ± 36.12 items/kg in chicken feeds. The exposure rate of MPs is higher in the grower- and finisher-stage feeds than in the starter feed. Fiber-shaped MPs of size 100-500 μm with PE and PP polymers were predominantly found in fish meal and feed samples. EDAX analysis showed the presence of Cr, Cd, Ti, Ni, Cu, As, Al, Pb, Hg, Cd, Ti, Fe, Ca, K, and Si in fish meal samples and Ca, Na, Zn, Cu, Ni, Cl, Al, Si, S, Pb, Cd, Ti, Cr, Mg and Fe in feed samples. The possible level of exposure of microplastic particles was calculated based on MP contamination in feed, feed consumption rate, and body weight. We estimated an MP exposure level of 531-1434 items/kg feed for farmed shrimp, 234-4480 items/kg feed for fishes, and 3519-434,280 items/kg feed for chicken. This study concludes that fish meal and feed are one of the important exposure routes of MPs to the farmed animals.
Collapse
Affiliation(s)
| | - M Narmatha Sathish
- Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India
| | - Jamila Patterson
- Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India
| | - V Glen Esmeralda
- Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India
| | - Laju R L
- Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India
| |
Collapse
|
6
|
Badakumar B, Inbakandan D, Venkatnarayanan S, Krishna Mohan TV, Nancharaiah YV, Pandey NK, Veeramani P, Sriyutha Murthy P. Physiological and biochemical response in green mussel Perna viridis subjected to continuous chlorination: Perspective on cooling water discharge criteria. CHEMOSPHERE 2024; 359:142191. [PMID: 38697563 DOI: 10.1016/j.chemosphere.2024.142191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Heavy infestation by Perna viridis has been observed in the sub-seabed seawater intake tunnel and CWS of a tropical coastal power station in-spite of continuous low dose chlorination regime (0.2 ± 0.1 mg L-1) (CLDC), indicating periodical settlement and growth. Continuous arrival of mussels (colonized in the sub seabed tunnel intake section) at the pump house indicated that the mussels were able to tolerate and survive in a chlorinated environment, for varying time periods and were dislodged when they become weak and subsequent death, leading to flushing out of the system. In the present study, effect of continuous chlorination [0.2 mg L-1 (in-plant use); 0.5 mg L-1 (shock dose) & 1.0 mg L-1 (high levels)] was evaluated on mussels to assess; (a) time taken for mortality, (b) action of chlorine on physiological, genetic, metabolic and neuronal processes. 100% mortality of mussels was observed after 15 (0.2 mg L-1); 9 (0.5 mg L-1) and 6 days (1.0 mg L-1) respectively. Extended valve closure due to chlorination resulted in stress, impairing the respiratory and feeding behavior leading to deterioration in mussel health. Pseudofaeces excretion reduced to 68% (0.2 mg L-1); 10% (0.5 mg L-1) and 89% (1.0 mg L-1) compared to controls. Genotoxicity was observed with increase in % tail DNA fraction in all treatments such as 86% (0.2 mg L-1); 76% (0.5 mg L-1) and 85% (1.0 mg L-1). Reactive Oxygen Species (ROS) stress biomarkers increased drastically/peaked within the first 3 days of continuous chlorination with subsequent quenching by antioxidant enzymes. Gill produced highest generation of ROS; 38% (0.2 mg L-1); 97% (0.5 mg L-1); 98% (1.0 mg L-1). Additionally, it was shown that 84% (0.2 mg L-1), 72% (0.5 mg L-1), and 80.4% (1.0 mg L-1) of the neurotransmitter acetylcholinesterase activity was inhibited by chlorine at the nerve synapse. The cumulative impact of ROS generation, neuronal toxicity, and disrupted functions weakens the overall health of green mussels resulting in mortality.
Collapse
Affiliation(s)
- Bandita Badakumar
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India; Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| | - D Inbakandan
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India.
| | - S Venkatnarayanan
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India
| | - T V Krishna Mohan
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - N K Pandey
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India
| | - P Veeramani
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India
| | - P Sriyutha Murthy
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
7
|
Joshi K, Rabari V, Patel H, Patel K, Rakib MRJ, Trivedi J, Paray BA, Walker TR, Jakariya M. Microplastic contamination in filter-feeding oyster Saccostrea cuccullata: Novel insights in a marine ecosystem. MARINE POLLUTION BULLETIN 2024; 202:116326. [PMID: 38583217 DOI: 10.1016/j.marpolbul.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
Microplastic (MP) pollution has become a pressing global concern. Oysters are well-known filter feeders who ingest food by filtering microscopic particles suspended in the surrounding water. Along with organic matter, filter-feeding also causes accidental ingestion of MP by oysters. Hence, the aim of the current investigation is to understand the MP contamination in filter-feeding oysters. A total of 500 specimens of oyster Saccostrea cuccullata collected from the intertidal zone of five sampling locations on the Gujarat coast, India. Specimens underwent analysis following established protocols. Each specimen was found to exhibit MP contamination, showing an abundance of 2.72 ± 1.98 MPs/g. A negative relationship was found between shell length and MP abundance. Predominantly, fibers were documented across all study sites. Black, blue, and red-colored MPs with 1-2 mm sizes were most dominant. MP polymer composition was identified as polyethylene terephthalate and polypropylene. Findings provide baseline information on levels of MPs contamination, which can be used to monitor future effects of MP pollution.
Collapse
Affiliation(s)
- Komal Joshi
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India
| | - Vasantkumar Rabari
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India
| | - Heris Patel
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India
| | - Krupal Patel
- Marine Biodiversity and Ecology Laboratory, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Md Refat Jahan Rakib
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka 1229, Bangladesh.
| | - Jigneshkumar Trivedi
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India..
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Md Jakariya
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka 1229, Bangladesh
| |
Collapse
|
8
|
Impellitteri F, Briglia M, Porcino C, Stoliar O, Yunko K, Germanà A, Piccione G, Faggio C, Guerrera MC. The odd couple: Caffeine and microplastics. Morphological and physiological changes in Mytilus galloprovincialis. Microsc Res Tech 2024; 87:1092-1110. [PMID: 38251430 DOI: 10.1002/jemt.24483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024]
Abstract
In recent years, the presence of pharmaceuticals and microplastics (MPs) in aquatic ecosystems has raised concerns about their environmental impact. This study explores the combined effects of caffeine, a common pharmaceutical pollutant, and MPs on the marine mussel Mytilus galloprovincialis. Caffeine, at concentrations of 20.0 μg L-1, and MPs (1 mg L-1, 35-50 μm size range), was used to mimic real-world exposure scenarios. Two hundred M. galloprovincialis specimens were divided into four groups: caffeine, MPs, Mix (caffeine + MPs), and Control. After a two-week acclimation period, the mollusks were subjected to these pollutants in oxygen-aerated aquariums under controlled conditions for 14 days. Histopathological assessments were performed to evaluate gill morphology. Cellular volume regulation and digestive gland cell viability were also analyzed. Exposure to caffeine and MPs induced significant morphological changes in M. galloprovincialis gills, including cilia loss, ciliary disk damage, and cellular alterations. The chitinous rod supporting filaments also suffered damage, potentially due to MP interactions, leading to hemocyte infiltration and filament integrity compromise. Hemocytic aggregation suggested an inflammatory response to caffeine. In addition, viability assessments of digestive gland cells revealed potential damage to cell membranes and function, with impaired cell volume regulation, particularly in the Mix group, raising concerns about nutrient metabolism disruption and organ function compromise. These findings underscore the vulnerability of M. galloprovincialis to environmental pollutants and emphasize the need for monitoring and mitigation efforts. RESEARCH HIGHLIGHTS: The synergy of caffeine and microplastics (MPs) in aquatic ecosystems warrants investigation. MPs and caffeine could affect gill morphology of Mytilus galloprovincialis. Caffeine-exposed cells had lower viability than the control group in the NR retention test. MPs and mix-exposed cells struggled to recover their volume.
Collapse
Affiliation(s)
| | - Marilena Briglia
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| | - Caterina Porcino
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Katerina Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Antonino Germanà
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Sun Y, Zhao X, Sui Q, Sun X, Zhu L, Booth AM, Chen B, Qu K, Xia B. Polystyrene nanoplastics affected the nutritional quality of Chlamys farreri through disturbing the function of gills and physiological metabolism: Comparison with microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168457. [PMID: 37981153 DOI: 10.1016/j.scitotenv.2023.168457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Although microplastics (MPs) and nanoplastics (NPs) have become a global concern because of their possible hazards to marine organisms, few studies have investigated the effects of MPs/NPs on the nutritional quality of marine economic species, and the toxicity mechanisms remain unclear. We therefore investigated the effects of polystyrene MPs (PS-MPs, 5 μm) and NPs (PS-NPs, 100 nm) at an environmentally relevant concentration on adult scallops Chlamys farreri through the determination of nutritional composition, physiological metabolism, enzymatic response, and histopathology. Results showed that plastic particles significantly decreased the plumpness (by 33.32 % for PS-MPs and 36.69 % for PS-NPs) and protein content of the adductor muscle (by 4.88 % for PS-MPs and 8.77 % for PS-NPs) in scallops, with PS-NPs causing more notable impacts than PS-MPs. Based on the integrated biomarker response analysis, PS-NPs exhibited greater toxicity than PS-MPs, suggesting a size-dependent effect for plastic particle. Furthermore, PS-NPs significantly affected the physiological metabolism (e.g., filtration and ammonia excretion) than PS-MPs. Using gill transcriptomics analysis, the key toxicological mechanisms caused by NPs exposure included enrichment of the mitophagy pathway, responses to oxidative stress, and changes related to genes associated with nerves. This study provides new insights into the potential negative effects of MPs/NPs on the mariculture industry.
Collapse
Affiliation(s)
- Yejiao Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China; Ocean University of China, Qingdao 266100, China
| | - Xinguo Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Qi Sui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Xuemei Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Lin Zhu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Andy M Booth
- SINTEF Ocean, Department of Climate and Environment, Trondheim 7465, Norway.
| | - Bijuan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Bin Xia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
10
|
Wang S, Ma L, Chen L, Sokolova IM, Huang W, Li D, Hu M, Khan FU, Shang Y, Wang Y. The combined effects of phenanthrene and micro-/nanoplastics mixtures on the cellular stress responses of the thick-shell mussel Mytilus coruscus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122999. [PMID: 37995954 DOI: 10.1016/j.envpol.2023.122999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Pollution with complex mixtures of contaminants including micro- and nano-plastics (MNPs) and organic pollutants like polycyclic aromatic hydrocarbons (PAH) poses a major threat to coastal marine ecosystems. Toxic mechanisms of contaminant mixtures are not well understood in marine organisms. We studied the effects of single and combined exposures to polycyclic aromatic hydrocarbon phenanthrene (Phe) and MNPs mixture with sizes of 70 nm, 5 μm and 100 μm on the immune health and oxidative stress parameters in the thick-shell mussel Mytilus coruscus. Immune cells (hemocytes) were more sensitive to the pollutant-induced oxidative stress than the gills. In hemocytes of co-exposed mussels, elevated mortality, lower lysosomal content, high production of reactive oxygen species (ROS) and decrease mitochondrial were found. Disparate responses of antioxidant enzymes in the hemolymph (e.g. increased superoxide dismutase (SOD) activity without a corresponding increase in catalase (CAT) in Phe exposures and an increase in CAT without a change in SOD in MNPs exposures) suggests misbalance of the antioxidant defense in the pollutant-exposed mussels. Gill lacked pronounced oxidative stress response showing a decline in ROS and antioxidant levels. Tissue-specific single and combined effects of Phe and MNPs suggest variation in bioavailability and/or different sensitivity to these pollutants in the studied tissues. Notably, the combined effects of MNPs and Phe were additive or antagonistic, showing that MNPs do not enhance and occasionally mitigate the toxic effects of Phe on the hemocytes and the gills of the mussels. Overall, our study sheds light on the impact of long-term exposure to MNPs and Phe mixtures on mussels, showing high sensitivity of the immune system and modulation of the Phe toxicity by MNPs co-exposure. These findings that may have implications for understanding the impacts of combined PAH and MNPs pollution on the health of mussel populations from polluted coastal habitats.
Collapse
Affiliation(s)
- Shixiu Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Lukuo Ma
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
11
|
Mai NTQ, Batjargal U, Kim WS, Kim JH, Park JW, Kwak IS, Moon BS. Microplastic induces mitochondrial pathway mediated cellular apoptosis in mussel (Mytilus galloprovincialis) via inhibition of the AKT and ERK signaling pathway. Cell Death Discov 2023; 9:442. [PMID: 38057300 DOI: 10.1038/s41420-023-01740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
Microplastics (MPs) is an escalating aquatic environmental crisis that poses significant threats to marine organisms, especially mussels. Here, we compare the cumulative toxic effects of the two most abundant morphotypes of MPs in the environment, microspheres, and microfibers, on the gill and digestive gland (DG) of Mytilus galloprovincialis in a dose-dependent (1, 10, and 100 mg/L) and time-dependent (1, 4, 7, 14, 21 days exposure) manner. DNA fragmentation assessment through TUNEL assay revealed consistency in the pattern of morphological disturbance degree and cell apoptosis proportions indicated by histopathological analysis. Upon the acute phase of exposure (day 1-4), gill and DG treated with low MPs concentration exhibited preserved morphology and low proportion of TUNEL+ cells. At higher concentrations, spherical and fibrous MP-induced structural impairments and DNA breakage occurred at distinct levels. 100 mg/L microfibers was lethal to all mussels on day 21, indicating the higher toxicity of the fibrous particles. During the chronic phase, both morphological abnormalities degree and DNA fragmentation level increased over time and with increasing concentration, but the differentials between the spherical and fibrous group was gradually reduced, particularly diminished in 10 and 100 mg/L in the last 2 weeks. Furthermore, analysis of transcriptional activities of key genes for apoptosis of 100 mg/L-day 14 groups revealed the upregulation of both intrinsic and extrinsic apoptotic induction pathway and increment in gene transcripts involving genotoxic stress and energy metabolism according to MP morphotypes. Overall, microfibers exert higher genotoxic effects on mussel. In response, mussels trigger more intense apoptotic responses together with enhanced energy metabolism to tolerate the adverse effects in a way related to the accumulation of stimuli.
Collapse
Affiliation(s)
- Nhu Thi Quynh Mai
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
- Department of Integrative Biotechnology, Chonnam National University, Yeosu, 59626, Korea
| | - Ulziituya Batjargal
- Department of Integrative Biotechnology, Chonnam National University, Yeosu, 59626, Korea
| | - Won-Seok Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, Korea
| | - Ji-Hoon Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, Korea
| | - Ji-Won Park
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, Korea.
| | - Byoung-San Moon
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea.
- Department of Integrative Biotechnology, Chonnam National University, Yeosu, 59626, Korea.
| |
Collapse
|
12
|
Ferreira O, Barboza LGA, Rudnitskaya A, Moreirinha C, Vieira LR, Botelho MJ, Vale C, Fernandes JO, Cunha S, Guilhermino L. Microplastics in marine mussels, biological effects and human risk of intake: A case study in a multi-stressor environment. MARINE POLLUTION BULLETIN 2023; 197:115704. [PMID: 37944437 DOI: 10.1016/j.marpolbul.2023.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
This study documented seasonal levels of microplastics (MPs) and biomarkers (condition index, neurotoxicity, energy, oxidative stress) in mussels (Mytilus galloprovincialis), and water physico-chemical parameters in the Douro estuary (NE Atlantic coast), and estimated the human risk of MP intake (HRI) through mussels. Mussel stress was determined through the Integrated Biomarker Response (IBR). HRI was estimated from mussel MP concentrations and consumer habits. MPs were mainly micro-fibres (72 %) with varied chemical composition. Seasonal MP means (±SEM) in mussels ranged from 0.111 ± 0.044 (spring) to 0.312 ± 0.092 MPs/g (summer). Seasonal variations of mussel stress (IBR: 1.4 spring to 9.7 summer) and MP concentrations were not related. MeO-BDEs, PBDEs, temperature, salinity and other factors likely contributed to mussel stress variation. HRI ranged from 2438 to 2650 MPs/year. Compared to the literature, MP contamination in mussels is low, as well as the human risk of MP intake through their consumption.
Collapse
Affiliation(s)
- Orlanda Ferreira
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - L Gabriel A Barboza
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| | - Alisa Rudnitskaya
- Chemistry Department and CESAM, Centre for Environmental and Marine Studies, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Catarina Moreirinha
- Chemistry Department and CESAM, Centre for Environmental and Marine Studies, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Luís R Vieira
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| | - M João Botelho
- CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; IPMA - IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal.
| | - Carlos Vale
- CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Sara Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Lúcia Guilhermino
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
13
|
Bayo J, López-Castellanos J, Olmos S, Rojo D. Characterization and removal efficiencies of microplastics discharged from sewage treatment plants in Southeast Spain. WATER RESEARCH 2023; 244:120479. [PMID: 37634462 DOI: 10.1016/j.watres.2023.120479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants that can effectively harm different ecosystems. The information on the relative contribution of wastewater treatment plants (WWTPs) to the surrounding environment is important, in order to understand ecological health risks and implement measures to reduce their presence. This focus article presents a quantitative assessment on the relative concentration and types of MPs delivered from four WWTPs located at the Southeast of Spain. Samples from WWTPs were collected throughout a four-year period, comprising more than 1,200 L of analyzed wastewater and 3,215 microparticles isolated. Density extraction with 1.08 g/mL NaCl salt solution was systematically used as the main separation method, in a simple and reliable manner, and repeat extraction cycles did not play any significant impact on the study outcomes. The four WWTPs had removal efficiencies between 64.3% and 89.2% after primary, secondary, and tertiary treatment phases, without diurnal or daily variations. Advanced treatment methods displayed a lower removal rate for fibers than for particulate MPs. The abundance of MPs was always higher and with a lower mean size in wastewater samples collected in Autumn than for the rest of seasons. MPs dumped from WWTPs in large quantities into the environment are meant to be regarded as an important point source for aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Javier Bayo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain.
| | - Joaquín López-Castellanos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain
| | - Sonia Olmos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain
| | - Dolores Rojo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain
| |
Collapse
|
14
|
Liu F, Rasmussen LA, Klemmensen NDR, Zhao G, Nielsen R, Vianello A, Rist S, Vollertsen J. Shapes of Hyperspectral Imaged Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12431-12441. [PMID: 37561646 PMCID: PMC10448723 DOI: 10.1021/acs.est.3c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
Shape matters for microplastics, but its definition, particularly for hyperspectral imaged microplastics, remains ambiguous and inexplicit, leading to incomparability across data. Hyperspectral imaging is a common approach for quantification, yet no unambiguous microplastic shape classification exists. We conducted an expert-based survey and proposed a set of clear and concise shapes (fiber, rod, ellipse, oval, sphere, quadrilateral, triangle, free-form, and unidentifiable). The categories were validated on images of 11,042 microplastics from four environmental compartments (seven matrices: indoor air; wastewater influent, effluent, and sludge; marine water; stormwater; and stormwater pond sediments), by inviting five experts to score each shape. We found that the proposed shapes were well defined, representative, and distinguishable to the human eye, especially for fiber and sphere. Ellipse, oval, and rod were though less distinguishable but dominated in all water and solid matrices. Indoor air held more unidentifiable, an abstract shape that appeared mostly for particles below 30 μm. This study highlights the need for assessing the recognizability of chosen shape categories prior to reporting data. Shapes with a clear and stringent definition would increase comparability and reproducibility across data and promote harmonization in microplastic research.
Collapse
Affiliation(s)
- Fan Liu
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| | - Lasse A. Rasmussen
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| | | | - Guohan Zhao
- Research
Centre for Built Environment, Energy, Water and Climate, VIA University College, 8700 Horsens, Denmark
| | - Rasmus Nielsen
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| | - Alvise Vianello
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| | - Sinja Rist
- National
Institute of Aquatic Resources, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jes Vollertsen
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| |
Collapse
|
15
|
Sunil Z, Thomas J, Mukherjee A, Chandrasekaran N. Microplastics and leachate materials from pharmaceutical bottle: An in vivo study in Donax faba (Marine Clam). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104205. [PMID: 37392975 DOI: 10.1016/j.etap.2023.104205] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 07/03/2023]
Abstract
Most pharmaceuticals are stored in synthetic polymer bottles, manufactured using polyethylene as the base material. The toxicological impact of pharmaceutical container leachate was studied on Donax faba. Several organics and inorganics were identified from the leachate. The concentrations of heavy metals in the leachate was higher than standard reference value for drinking water. In the leachate treatment the protein concentration increased to 8.5% more than the control. The reactive oxygen species (ROS) level elevated by 3 folds and malondialdehyde (MDA) increased by 4.3% in comparison to the control. Superoxide dismutase (SOD) and catalase (CAT) showed a decrease by 14 and 70.5% respectively. The leachate affected the antioxidant machinery of D. faba. Similarly, these PET (polyethylene terephthalate) pharmaceutical containers could potentially leach additives into the drugs and may cause oxidative and metabolic damages to higher organisms including human beings.
Collapse
Affiliation(s)
- Zachariah Sunil
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu
| | | |
Collapse
|
16
|
Du Y, Zhao J, Teng J, Ren J, Shan E, Zhu X, Zhang W, Wang L, Hou C, Wang Q. Combined effects of salinity and polystyrene microplastics exposure on the Pacific oysters Crassostrea gigas: Oxidative stress and energy metabolism. MARINE POLLUTION BULLETIN 2023; 193:115153. [PMID: 37327720 DOI: 10.1016/j.marpolbul.2023.115153] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) pollution and salinity variation are two environmental stressors, but their combined effects on marine mollusks are rarely known. Oysters (Crassostrea gigas) were exposed to 1 × 104 particles L-1 spherical polystyrene MPs (PS-MPs) of different sizes (small polystyrene MPs (SPS-MPs): 6 μm, large polystyrene MPs (LPS-MPs): 50-60 μm) under three salinity levels (21, 26, and 31 psu) for 14 days. Results demonstrated that low salinity reduced PS-MPs uptake in oysters. Antagonistic interactions between PS-MPs and low salinity mainly occurred, and partial synergistic effects were mainly induced by SPS-MPs. SPS-MPs induced higher lipid peroxidation (LPO) levels than LPS-MPs. In digestive glands, low salinity decreased LPO levels and glycometabolism-related gene expression, which was related to salinity levels. Low salinity instead of MPs mainly affected metabolomics profiles of gills through energy metabolism and osmotic adjustment pathway. In conclusion, oysters can adapt to combined stressors through energy and antioxidative regulation.
Collapse
Affiliation(s)
- Yunchao Du
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingying Ren
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Encui Shan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaopeng Zhu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenjing Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Lei Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Chaowei Hou
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
17
|
Oliveira AM, Patrício Silva AL, Soares AMVM, Barceló D, Duarte AC, Rocha-Santos T. Current knowledge on the presence, biodegradation, and toxicity of discarded face masks in the environment. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:109308. [PMID: 36643396 PMCID: PMC9832688 DOI: 10.1016/j.jece.2023.109308] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
During the first year of the COVID-19 pandemic, facemasks became mandatory, with a great preference for disposable ones. However, the benefits of face masks for health safety are counteracted by the environmental burden related to their improper disposal. An unprecedented influx of disposable face masks entering the environment has been reported in the last two years of the pandemic, along with their implications in natural environments in terms of their biodegradability, released contaminants and ecotoxicological effects. This critical review addresses several aspects of the current literature regarding the (bio)degradation and (eco)toxicity of face masks related contaminants, identifying uncertainties and research needs that should be addressed in future studies. While it is indisputable that face mask contamination contributes to the already alarming plastic pollution, we are still far from determining its real environmental and ecotoxicological contribution to the issue. The paucity of studies on biodegradation and ecotoxicity of face masks and related contaminants, and the uncertainties and uncontrolled variables involved during experimental procedures, are compromising eventual comparison with conventional plastic debris. Studies on the abundance and composition of face mask-released contaminants (microplastics/fibres/ chemical compounds) under pre- and post-pandemic conditions should, therefore, be encouraged, along with (bio)degradation and ecotoxicity tests considering environmentally relevant settings. To achieve this, methodological strategies should be developed to overcome technical difficulties to quantify and characterise the smallest MPs and fibres, adsorbents, and leachates to increase the environmental relevancy of the experimental conditions.
Collapse
Affiliation(s)
- Ana M Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Damià Barceló
- Catalan Institute for Water research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101,17003 Girona, Spain
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Chen Q, Gao Z, Wang K, Magnuson JT, Chen Y, Li M, Shi H, Xu L. High accumulation of microplastic fibers in fish hindgut induces an enhancement of triphenyl phosphate hydroxylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120804. [PMID: 36470455 DOI: 10.1016/j.envpol.2022.120804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Fiber shedding from artificial textiles is among the primary sources of pervasive microplastics in various aquatic habitats. To avoid molten drop burning, triphenyl phosphate (TPhP), a typical flame retardant additive, is commonly incorporated into textile fibers. However, the role of microplastic fibers (MFs) as a vehicle for TPhP remains largely unknown. In this study, we investigated the effects of MFs on the bioaccumulation and metabolism of TPhP in zebrafish. We applied the compound spinning technique for a non-disruptive in situ measurement of fluorescent MFs in fish, and the desorption electrospray ionization mass spectrometry (DESI-MS) to display the tissue distribution of TPhP and its metabolites vividly. Laboratory results showed that ingested MFs did not change the TPhP distribution in fish; however, they statistically increased the metabolite p-OH-TPhP concentration in the fish hindgut, which was probably because the high accumulation of MFs there enhanced the TPhP hydroxylation. Field investigation further supported the lab-based analyses. Higher concentrations of MFs did cause a higher ratio of [p-OH-TPhP]/[TPhP] in the wild fish gut, particularly in the hindgut. Collectively, our results demonstrated that MFs can change the distribution and bioavailability of TPhP metabolites, which was confirmed by both laboratory and fieldwork. Therefore, the ingestion of MFs can indirectly but substantially influence the bioaccumulation and biotransformation of co-existing pollutants.
Collapse
Affiliation(s)
- Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Zhuo Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Kang Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021, Stavanger, Norway
| | - Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Mingyuan Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
19
|
Nunes BZ, Huang Y, Ribeiro VV, Wu S, Holbech H, Moreira LB, Xu EG, Castro IB. Microplastic contamination in seawater across global marine protected areas boundaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120692. [PMID: 36402421 DOI: 10.1016/j.envpol.2022.120692] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/26/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Despite the relatively rich literature on the omnipresence of microplastics in marine environments, the current status and ecological impacts of microplastics on global Marine Protected Areas (MPAs) are still unknown. Their ubiquitous occurrence, increasing volume, and ecotoxicological effects have made microplastic an emerging marine pollutant. Given the critical conservation roles of MPAs that aim to protect vulnerable marine species, biodiversity, and resources, it is essential to have a comprehensive overview of the occurrence, abundance, distribution, and characteristics of microplastics in MPAs including their buffer zones. Here, extensive data were collected and screened based on 1565 peer-reviewed literature from 2017 to 2020, and a GIS-based approach was applied to improve the outcomes by considering boundary limits. Microplastics in seawater samples were verified within the boundaries of 52 MPAs; after including the buffer zones, 1/3 more (68 MPAs) were identified as contaminated by microplastics. A large range of microplastic levels in MPAs was summarized based on water volume (0-809,000 items/m3) or surface water area (21.3-1,650,000,000 items/km2), which was likely due to discrepancy in sampling and analytical methods. Fragment was the most frequently observed shape and fiber was the most abundant shape. PE and PP were the most common and also most abundant polymer types. Overall, 2/3 of available data reported that seawater microplastic levels in MPAs were higher than 12,429 items/km2, indicating that global MPAs alone cannot protect against microplastic pollution. The current limitations and future directions were also discussed toward the post-2020 Global Biodiversity Framework goals.
Collapse
Affiliation(s)
| | - Yuyue Huang
- Department of Biology, University of Southern Denmark, 5230, Odense, Denmark
| | | | - Siqi Wu
- College of Environment and Ecology, Chongqing University, 400044, China
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, 5230, Odense, Denmark
| | | | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, 5230, Odense, Denmark.
| | - Italo B Castro
- Institute of Oceanography, Universidade Federal Do Rio Grande, Brazil; Institute of Marine Science, Universidade Federal de São Paulo, Brazil
| |
Collapse
|
20
|
Gonçalves JM, Beckmann C, Bebianno MJ. Assessing the effects of the cytostatic drug 5-Fluorouracil alone and in a mixture of emerging contaminants on the mussel Mytilus galloprovincialis. CHEMOSPHERE 2022; 305:135462. [PMID: 35753414 DOI: 10.1016/j.chemosphere.2022.135462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The assessment of contaminants of emerging concern, alone and in mixtures, and their effects on marine biota requires attention. 5-Fluorouracil is a cytostatic category 3 anti-cancer medication (IARC) that is used to treat a variety of cancers, including colon, pancreatic, and breast cancer. In the presence of other pollutants, this pharmaceutical can interact and form mixtures of contaminants, such as adhering to plastics and interaction with metal nanoparticles. This study aimed to comprehend the effects of 5-Fluorouracil (5FU; 10 ng/L) and a mixture of emerging contaminants (Mix): silver nanoparticles (nAg; 20 nm; 10 μg/L), polystyrene nanoparticles (nPS; 50 nm; 10 μg/L) and 5FU (10 ng/L), in an in vivo (21 days) exposure of the mussel Mytilus galloprovincialis. A multibiomarker approach namely genotoxicity, the antioxidant defence system (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), glutathione - S - transferases (GST) activities), and oxidative damage (LPO) was used to assess the effects in gills and digestive gland of mussels. Both treatments cause genotoxicity in mussel's haemolymph, and antagonism between contaminants was observed in the Mix. Genotoxicity observed confirms 5FU's mode of action (MoA) by DNA damage. The antioxidant defence system of mussels exposed to 5FU kicked in and counter balanced ROS generated during the exposure, though the same was not seen in Mix-exposed mussels. Mussels were able to withstand the effects of the single compound but not the effects of the Mix. For oxidative stress and damage, the interactions of the components of the mixture have a synergistic effect.
Collapse
Affiliation(s)
- Joanna M Gonçalves
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Clara Beckmann
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Maria João Bebianno
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
21
|
Jong MC, Li J, Noor HM, He Y, Gin KYH. Impacts of size-fractionation on toxicity of marine microplastics: Enhanced integrated biomarker assessment in the tropical mussels, Perna viridis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155459. [PMID: 35472354 DOI: 10.1016/j.scitotenv.2022.155459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Accumulation of microplastics (MP) in oceanic waters is eroding the health of marine biota. We investigated how size-fractionated MP influence the toxicity risks towards a tropical keystone species, Perna viridis. Tissue-specific bioaccumulation and in vivo toxicity of polystyrene (PS) particles (0.5, 5, and 50 μm) were measured upon continuous exposure for 7 days, followed by 7 days depuration. P. viridis were exposed to equivalent mass (0.6 mg/L), corresponding to 4.0-4.6 particles/mL, 4.6-7.1 × 103 particles/mL, and 1.1-4.8 × 106 particles/mL for 50 μm, 5 μm and 0.5 μm PS particles, respectively. Onset toxicity were quantified through the enhanced integrated multi-biomarker response (EIBR) model, measured by weighting of biological organisation levels of eight biomarkers: (i) molecular (i.e., DNA damage (comet), 7-ethoxy resorufin O-deethylase (EROD), Catalase (CAT), Superoxide dismutase (SOD), Ferric Reducing Antioxidant Power (FRAP)); (ii) cellular (i.e., Neutral red retention (NRR), phagocytosis); and (iii) physiological (i.e., filtration rate). Data showed slightly elevated lysosomal instability (NRR) and antioxidant defences (FRAP, SOD, CAT, EROD) in specimens exposed to nano-PS (0.5 μm) compared to micro-PS (5 and 50 μm). Immunotoxicity (phagocytosis) and genotoxicity (comet) for haemocyte cells were significantly higher in specimens exposed to nano-PS (p < 0.05). EIBR index corroborated increasing toxicity modulated by MP sizes in descending order: 0.5 μm > 5 μm > 50 μm, with nano-PS exerted significantly higher biological effects (EIBR = 19.77 ± 5.89) than the unexposed group (EIBR = 10.97 ± 2.02; p < 0.05). Symptomatic organismal depression was manifested by the depleting filtering proficiency and weakened defence against invasive Zymosan bioparticles in the phagocytosis assay. Although impaired mussels duly recovered during depuration, individuals affected by nano-PS showed immunocompetence deficiency and gill responses that were not readily reversible, which could potentially increase their vulnerability towards further environmental stressors.
Collapse
Affiliation(s)
- Mui-Choo Jong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Junnan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hairati Mohd Noor
- Faculty of Resource Science and Technology, University of Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; E2S2-CREATE, NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore.
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Block E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; E2S2-CREATE, NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore.
| |
Collapse
|
22
|
Uncontrolled Disposal of Used Masks Resulting in Release of Microplastics and Co-Pollutants into Environment. WATER 2022. [DOI: 10.3390/w14152403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The global panic caused by COVID-19 has continued to increase people’s demand for masks. However, due to inadequate management and disposal practice, these masks have, unfortunately, entered the environment and release a large amount of microplastics (MPs), posing a serious threat to the environment and human health. Understanding the occurrence of mask waste in various environments, release of mask-origin MPs, and related environmental risk is essential to mask-waste management in current and future epidemic prevention and control. This paper focuses on the global distribution of mask waste, the potential release of waste-origin MPs, and the impact on the environment. Specifically, the physical and chemical properties of polypropylene (the most common plastic material in a mask), which show a high adsorption capacity for heavy metals and organic pollutants and play a role as a support for microbial growth, were extensively reported. In addition, several important issues that need to be resolved are raised, which offers a direction for future research. This review focuses on the essentiality of handling masks to avoid potential environmental issues.
Collapse
|
23
|
Santos D, Luzio A, Félix L, Bellas J, Monteiro SM. Oxidative stress, apoptosis and serotonergic system changes in zebrafish (Danio rerio) gills after long-term exposure to microplastics and copper. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109363. [PMID: 35525464 DOI: 10.1016/j.cbpc.2022.109363] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 02/06/2023]
Abstract
Fish gills are in direct contact with the surrounding pollutants, and thus, potentially more vulnerable to microplastics (MPs) and heavy metals. The present study aimed to evaluate the long-term exposure effects of MPs and copper (Cu) in the gills of adult zebrafish (Danio rerio). To this end, zebrafish were exposed to MPs (2 mg/L), Cu (Cu25, 25 μg/L) and their mixture (Cu25 + MPs) for 30 days, and then oxidative stress, detoxification, antioxidant, metabolic and neurotoxicity enzymes/genes, as well serotonergic system and apoptosis genes, were evaluated in gills. In the mixture group, ROS levels were increased, while CAT and GPx activities were inhibited, indicating the induction of oxidative stress in zebrafish gills. This was followed by an increase of LPO levels and potential oxidative damage in zebrafish gills. The tryptophan hydroxylase 1a (tph1a) and caspase-3 (casp3) genes were significantly upregulated in Cu25 + MPs group, indicating a potential dysregulation of serotonin synthesis and apoptosis pathways, respectively. Overall, the present study contributes to improving the knowledge about the response of aquatic organisms to MPs and the potential ecological risk that these particles represent to the ecosystems.
Collapse
Affiliation(s)
- Dércia Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal
| |
Collapse
|
24
|
Joshy A, Krupesha Sharma SR, Mini KG. Microplastic contamination in commercially important bivalves from the southwest coast of India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119250. [PMID: 35398155 DOI: 10.1016/j.envpol.2022.119250] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Due to the ever-increasing production of plastic litter and its subsequent accumulation as microplastic in the environment, the pollution caused by microplastics is considered as a global menace, especially in the coastal ecosystem. Occurrence of microplastics in water and three commercially important bivalves, Viz. green mussel (Perna viridis), edible oyster (Magallana bilineata) and black clam (Villorita cyprinoides) from five different locations of southwest coast of India was studied. The highest abundance of microplastics was observed in water samples from Periyar River (163.67 items L-1). Among bivalves, the highest abundance of microplastics was observed in clams from Periyar River (digestive gland: 22.8 g-1; gill: 29.6 g-1), whereas the lowest abundance was observed in mussels sampled from Vembanad estuary (digestive gland: 5.6 g-1; gill: 8.5 g -1). Fibers were the most prevalent type of microplastics found in bivalve tissues across each location. Microplastics less than 2 mm were the most prevalent based on size. Polypropylene and high-density polyethylene were the two types of microplastics observed based on the results of Raman spectroscopy. No relationship was observed between shell length, tissue weight and microplastic abundance. A strong positive correlation was observed between the microplastic presence in water and bivalve tissues. The usefulness of sedentary bivalves in assessing the aquatic pollution has been validated through this study.
Collapse
Affiliation(s)
- Aswathy Joshy
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, 682018, Kerala, India
| | - S R Krupesha Sharma
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, 682018, Kerala, India.
| | - K G Mini
- Fisheries Resource Assessment Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, 682018, Kerala, India
| |
Collapse
|
25
|
Govarthanan M, Liang Y, Kamala-Kannan S, Kim W. Eco-friendly and sustainable green nano-technologies for the mitigation of emerging environmental pollutants. CHEMOSPHERE 2022; 287:132234. [PMID: 34826925 DOI: 10.1016/j.chemosphere.2021.132234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea.
| | - Yanna Liang
- Department of Environmental & Sustainable Engineering, College of Engineering & Applied Sciences, University at Albany, SUNY, USA
| | - Seralathan Kamala-Kannan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea
| |
Collapse
|