1
|
Zhang R, Li M, Ma H, Wang Y, Xin B, Guo J. Performance of a novel annular electric field membrane bioreactor and its membrane fouling control in treating catering wastewater. CHEMOSPHERE 2024; 368:143756. [PMID: 39551193 DOI: 10.1016/j.chemosphere.2024.143756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
This study aimed to investigate the effects of different voltage and aeration conditions on catering wastewater treatment and membrane fouling in a novel annular electric field membrane bioreactor (AEMBR). The results indicated that the synergistic effect of annular electric field and aeration promoted the degradation of wastewater and the alleviation of membrane fouling. The treatment effect was optimal under a micro electric field of 0.5 V, with removal rates for COD, NH4+-N, TP, and oil ranging from 96.85% to 99.36%, 80.43%-83.01%, 95.46%-97.79%, and 98.83%-99.15%, respectively. Additionally, the fluorescence intensity of macromolecular proteins and small molecular acids decreased. Simultaneously, the average growth rate of transmembrane pressure (TMP) reduced by approximately 0.4 kPa/d. The species abundance and diversity of activated sludge increased, promoting the growth of dominant bacteria, all while maintaining low energy consumption. The aeration intensity had relatively little impact on system operation, and the force of the annular electric field was greater than the force of aeration. This study verified the optimal benefits under micro electric field conditions and provided a basis for the optimization of future process design to achieve a more efficient and economical wastewater treatment system.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China.
| | - Mengqian Li
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China.
| | - Huan Ma
- Powerchina Northwest Engineering Corporation, Xi 'an, 710065, PR China.
| | - Yanyan Wang
- Shaanxi Applied Physics-Chemistry Research Institute, Xi 'an, 710061, PR China.
| | - Beiyu Xin
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China.
| | - Jifeng Guo
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China.
| |
Collapse
|
2
|
Arliyani I, Noori MT, Ammarullah MI, Tangahu BV, Mangkoedihardjo S, Min B. Constructed wetlands combined with microbial fuel cells (CW-MFCs) as a sustainable technology for leachate treatment and power generation. RSC Adv 2024; 14:32073-32100. [PMID: 39399250 PMCID: PMC11467719 DOI: 10.1039/d4ra04658g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024] Open
Abstract
The physical and chemical treatment processes of leachate are not only costly but can also possibly produce harmful by products. Constructed wetlands (CW) has been considered a promising alternative technology for leachate treatment due to less demand for energy, economic, ecological benefits, and simplicity of operations. Various trends and approaches for the application of CW for leachate treatment have been discussed in this review along with offering an informatics peek of the recent innovative developments in CW technology and its perspectives. In addition, coupling CW with microbial fuel cells (MFCs) has proven to produce renewable energy (electricity) while treating contaminants in leachate wastewaters (CW-MFC). The combination of CW-MFC is a promising bio electrochemical that plays symbiotic among plant microorganisms in the rhizosphere of an aquatic plant that convert sun electricity is transformed into bioelectricity with the aid of using the formation of radical secretions, as endogenous substrates, and microbial activity. Several researchers study and try to find out the application of CW-MFC for leachate treatment, along with this system and performance. Several key elements for the advancement of CW-MFC technology such as bioelectricity, reactor configurations, plant species, and electrode materials, has been comprehensively discussed and future research directions were suggested for further improving the performance. Overall, CW-MFC may offer an eco-friendly approach to protecting the aquatic environment and come with built-in advantages for visual appeal and animal habitats using natural materials such as gravel, soil, electroactive bacteria, and plants under controlled condition.
Collapse
Affiliation(s)
- Isni Arliyani
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
- Bioinformatics Research Center, INBIO Indonesia Malang 65162 East Java Indonesia
| | - Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University Yongin 17104 Gyeonggi Republic of Korea
| | - Muhammad Imam Ammarullah
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Bioengineering and Environmental Sustainability Research Centre, University of Liberia Monrovia 1000 Montserrado Liberia
| | - Bieby Voijant Tangahu
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
| | - Sarwoko Mangkoedihardjo
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University Yongin 17104 Gyeonggi Republic of Korea
| |
Collapse
|
3
|
Shaw DR, Tobon Gonzalez J, Bibiano Guadarrama C, Saikaly PE. Emerging biotechnological applications of anaerobic ammonium oxidation. Trends Biotechnol 2024; 42:1128-1143. [PMID: 38519307 DOI: 10.1016/j.tibtech.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an energy-efficient method for nitrogen removal that opens the possibility for energy-neutral wastewater treatment. Research on anammox over the past decade has primarily focused on its implementation in domestic wastewater treatment. However, emerging studies are now expanding its use to novel biotechnological applications and wastewater treatment processes. This review highlights recent advances in the anammox field that aim to overcome conventional bottlenecks, and explores novel and niche-specific applications of the anammox process. Despite the promising results and potential of these advances, challenges persist for their real-world implementation. This underscores the need for a transition from laboratory achievements to practical, scalable solutions for wastewater treatment which mark the next crucial phase in the evolution of anammox research.
Collapse
Affiliation(s)
- Dario Rangel Shaw
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Julian Tobon Gonzalez
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Carlos Bibiano Guadarrama
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Pascal E Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Environmental Science and Engineering Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
4
|
Weiler J, Edel M, Gescher J. Biofilms for Production of Chemicals and Energy. Annu Rev Chem Biomol Eng 2024; 15:361-387. [PMID: 38382126 DOI: 10.1146/annurev-chembioeng-100522-110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The twenty-first century will be the century of biology. This is not only because of breakthrough advances in molecular biology tools but also because we need to reinvent our economy based on the biological principles of energy efficiency and sustainability. Consequently, new tools for production routines must be developed to help produce platform chemicals and energy sources based on sustainable resources. In this context, biofilm-based processes have the potential to impact future production processes, because they can be carried out continuously and with robust stationary biocatalysts embedded in an extracellular matrix with different properties. We review productive biofilm systems used for heterotrophic and lithoautotrophic production and attempt to identify fundamental reasons why they may be particularly suitable as future production systems.
Collapse
Affiliation(s)
- Janek Weiler
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| | - Miriam Edel
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| |
Collapse
|
5
|
Ao TJ, Liu CG, Sun ZY, Zhao XQ, Tang YQ, Bai FW. Anaerobic digestion integrated with microbial electrolysis cell to enhance biogas production and upgrading in situ. Biotechnol Adv 2024; 73:108372. [PMID: 38714276 DOI: 10.1016/j.biotechadv.2024.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.
Collapse
Affiliation(s)
- Tian-Jie Ao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhao-Yong Sun
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yue-Qin Tang
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
7
|
Saravanan A, Yaashikaa PR, Ramesh B, Shaji A, Deivayanai VC. Microorganism-mediated bioremediation of dyes from contaminated soil: Mechanisms, recent advances, and future perspectives. Food Chem Toxicol 2024; 185:114491. [PMID: 38325634 DOI: 10.1016/j.fct.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Many methods have been proposed for the remediation of dye-contaminated soils, a widespread form of environment pollution. Bioremediation, it is hoped, can combine ecological benefits with efficiency of dye decontamination. We review the types and sources of dye contaminants; their possible effects on plant, animal, and human health; and emerging strategies for microbial bioremediation. Challenges, limitations, recommendations for future research, and prospects for large-scale commercialization of microbial bioremediation are discussed.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - B Ramesh
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
8
|
Wang N, Gao M, Liu S, Zhu W, Zhang Y, Wang X, Sun H, Guo Y, Wang Q. Electrochemical promotion of organic waste fermentation: Research advances and prospects. ENVIRONMENTAL RESEARCH 2024; 244:117422. [PMID: 37866529 DOI: 10.1016/j.envres.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
The current methods of treating organic waste suffer from limited resource usage and low product value. Research and development of value-added products emerges as an unavoidable trend for future growth. Electro-fermentation (EF) is a technique employed to stimulate cell proliferation, expedite microbial metabolism, and enhance the production of value-added products by administering minute voltages or currents in the fermentation system. This method represents a novel research direction lying at the crossroads of electrochemistry and biology. This article documents the current progress of EF for a range of value-added products, including gaseous fuels, organic acids, and other organics. It also presents novel value-added products, such as 1,3-propanediol, 3-hydroxypropionic acid, succinic acid, acrylic acid, and lysine. The latest research trends suggest a focus on EF for cogeneration of value-added products, studying microbial community structure and electroactive bacteria, exploring electron transfer mechanisms in EF systems, developing effective methods for nutrient recovery of nitrogen and phosphorus, optimizing EF conditions, and utilizing biosensors and artificial neural networks in this area. In this paper, an analysis is conducted on the challenges that currently exist regarding the selection of conductive materials, optimization of electrode materials, and development of bioelectrochemical system (BES) coupling processes in EF systems. The aim is to provide a reference for the development of more efficient, advanced, and value-added EF technologies. Overall, this paper aims to provide references and ideas for the development of more efficient and advanced EF technology.
Collapse
Affiliation(s)
- Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuo Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuanchun Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Tianjin College, University of Science and Technology Beijing, Tianjin, 301811, China.
| |
Collapse
|
9
|
Fathima A, Ilankoon IMSK, Zhang Y, Chong MN. Scaling up of dual-chamber microbial electrochemical systems - An appraisal using systems design approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169186. [PMID: 38086487 DOI: 10.1016/j.scitotenv.2023.169186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Impetus to minimise the energy and carbon footprints of evolving wastewater resource recovery facilities has promoted the development of microbial electrochemical systems (MES) as an emerging energy-neutral and sustainable platform technology. Using separators in dual-chamber MES to isolate anodic and cathodic environments creates endless opportunities for its myriad applications. Nevertheless, the high internal resistance and the complex interdependencies among various system factors have challenged its scale-up. This critical review employed a systems approach to examine the complex interdependencies and practical issues surrounding the implementation and scalability of dual-chamber MES, where the anodic and cathodic reactions are mutually appraised to improve the overall system efficiency. The robustness and stability of anodic biofilms in large-volume MES is dependent on its inoculum source, antecedent history and enrichment strategies. The composition and anode-respiring activity of these biofilms are modulated by the anolyte composition, while their performance demands a delicate balance between the electrode size, macrostructure and the availability of substrates, buffers and nutrients when using real wastewater as anolyte. Additionally, the catholyte governed the reduction environment and associated energy consumption of MES with scalable electrocatalysts needed to enhance the sluggish reaction kinetics for energy-efficient resource recovery. A comprehensive assessment of the dual-chamber reactor configuration revealed that the tubular, spiral-wound, or plug-in modular MES configurations are suitable for pilot-scale, where it could be designed more effectively using efficient electrode macrostructure, suitable membranes and bespoke strategies for continuous operation to maximise their performance. It is anticipated that the critical and analytical understanding gained through this review will support the continuous development and scaling-up of dual-chamber MES for prospective energy-neutral treatment of wastewater and simultaneous circular management of highly relevant environmental resources.
Collapse
Affiliation(s)
- Arshia Fathima
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - I M S K Ilankoon
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Meng Nan Chong
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
10
|
Salar-García MJ, Ortiz-Martínez VM, Sánchez-Segado S, Valero Sánchez R, Sáez López A, Lozano Blanco LJ, Godínez-Seoane C. Sustainable Production of Biofuels and Biochemicals via Electro-Fermentation Technology. Molecules 2024; 29:834. [PMID: 38398584 PMCID: PMC10891623 DOI: 10.3390/molecules29040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The energy crisis and climate change are two of the most concerning issues for human beings nowadays. For that reason, the scientific community is focused on the search for alternative biofuels to conventional fossil fuels as well as the development of sustainable processes to develop a circular economy. Bioelectrochemical processes have been demonstrated to be useful for producing bioenergy and value-added products from several types of waste. Electro-fermentation has gained great attention in the last few years due to its potential contribution to biofuel and biochemical production, e.g., hydrogen, methane, biopolymers, etc. Conventional fermentation processes pose several limitations in terms of their practical and economic feasibility. The introduction of two electrodes in a bioreactor allows the regulation of redox instabilities that occur in conventional fermentation, boosting the overall process towards a high biomass yield and enhanced product formation. In this regard, key parameters such as the type of culture, the nature of the electrodes as well as the operating conditions are crucial in order to maximize the production of biofuels and biochemicals via electro-fermentation technology. This article comprises a critical overview of the benefits and limitations of this emerging bio-electrochemical technology and its contribution to the circular economy.
Collapse
Affiliation(s)
- María José Salar-García
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Alfonso XIII, Aulario C, 30203 Cartagena, Spain;
| | - Víctor Manuel Ortiz-Martínez
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Sergio Sánchez-Segado
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Raúl Valero Sánchez
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Alfonso XIII, Aulario C, 30203 Cartagena, Spain;
| | - Antonia Sáez López
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Luis Javier Lozano Blanco
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Carlos Godínez-Seoane
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| |
Collapse
|
11
|
Wang G, Chen L, Xing Y, Sun C, Fu P, Li Q, Chen R. Biochar establishing syntrophic partnership between exoelectrogens to facilitate extracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166549. [PMID: 37633395 DOI: 10.1016/j.scitotenv.2023.166549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Biochar was regarded as a promising accelerator for extracellular electron transfer (EET), while the mechanism of biochar facilitating electricity harvest in bioelectrochemical system (BES) was in debates. In this study, sawdust-based biochar with low conductivity but strong redox-based electron exchange capacity was added into BES with two forms, including a suspended form (S-BC) added in anode chamber and a fixed form closely wrapping up the anode (F-BC). Compared with the control group, S-BC and F-BC addition dramatically increased accumulated electricity output by 2.0 and 5.1 times. However, electrochemical analysis characterized the lowest electrochemical property on anode surface in F-BC modified group. A 2nd period conducted by separating F-BC modified group with "aged F-BC + new anode" group and "single aged anode" group demonstrated that F-BC contributed >95 % to the current generation of F-BC modified group, while the anode almost acted as a conductor to transfer the generated electrons to cathode. Microbial community analysis revealed that both heterotrophic and autotrophic exoelectrogens contributed to current generation. The presence of biochar upregulated functional genes encoding cytochrome-c and type IV pilus, thereby boosting electricity harvest efficiency. Interestingly, the heterotrophic exoelectrogens of Geobacter/Desulfovibrio tended to attach on fixed surfaces of both biochar and anode, and the autotrophic exelectrogen of Hydrogenophaga was selectively enriched on biochar surfaces whatever fixed or suspended form. Consequently, a syntrophic partnership between Geobacter/Desulfovibrio and Hydrogenophaga was potentially establishment on F-BC surface for highly-efficient electricity harvest. In this syntrophic EET model, biochar potentially acted as the redox-active mediator, which temporarily accepted electron released by Geobacter/Desulfovibrio via acetate oxidation, and then donated them to Hydrogenophaga attached on biochar surfaces for autotrophic EET. This was distinct from a regular EET conducted by heterotrophic exoelectrogens. These findings provided new insights to understand the mechanisms of biochar facilitating EET by syntrophic metabolism pathway.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Lu Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yao Xing
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Xingrong (Xi'an) Environmental Development Co., No. 3160, Dazhai Road, Xi'an 710055, PR China
| | - Changxi Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Peng Fu
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
12
|
Zhu Q, Li X, Nie Z, Wang Y, Dang T, Papadakis VG, Goula MA, Wang W, Yang Z. In-situ microbial protein production by using nitrogen extracted from multifunctional bio-electrochemical system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119050. [PMID: 37751664 DOI: 10.1016/j.jenvman.2023.119050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Upgrading of waste nitrogen sources is considered as an important approach to promote sustainable development. In this study, a multifunctional bio-electrochemical system with three chambers was established, innovatively achieving 2.02 g/L in-situ microbial protein (MP) production via hydrogen-oxidizing bacteria (HOB) in the protein chamber (middle chamber), along with over 2.9 L CO2/(L·d) consumption rate. Also, 69% chemical oxygen demand was degraded by electrogenic bacteria in the anode chamber, resulting in the 394.67 J/L electricity generation. Focusing on the NH4+-N migration in the system, the current intensity contributed 4%-9% in the anode and protein chamber, whereas, the negative effect of -6.69% on contribution was shown in the cathode chamber. On the view of kinetics, NH4+-N migration in anode and cathode chambers was fitted well with Levenberg-Marquardt equation (R2 > 0.92), along with the well-matched results of HOB growth in the protein chamber based on Gompertz model (R2 > 0.99). Further evaluating MPs produced by HOB, 0.45 g/L essential amino acids was detected, showing the better amino acid profile than fish and soybean. Multifunctional bio-electrochemical system revealed the economic potential of producing 6.69 €/m3 wastewater according to a simplified economic evaluation.
Collapse
Affiliation(s)
- Qile Zhu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyue Li
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenchuan Nie
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiwen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianqi Dang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Vagelis G Papadakis
- Department of Civil Engineering, University of Patras, 26500, Rio, Patras, Greece
| | - Maria A Goula
- Laboratory of Alternative Fuels and Environmental Catalysis, Department of Chemical Engineering, University of Western Macedonia, GR-50100, Greece
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
13
|
Mosquera-Romero S, Ntagia E, Rousseau DP, Esteve-Núñez A, Prévoteau A. Water treatment and reclamation by implementing electrochemical systems with constructed wetlands. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100265. [PMID: 37101565 PMCID: PMC10123341 DOI: 10.1016/j.ese.2023.100265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Seasonal or permanent water scarcity in off-grid communities can be alleviated by recycling water in decentralized wastewater treatment systems. Nature-based solutions, such as constructed wetlands (CWs), have become popular solutions for sanitation in remote locations. Although typical CWs can efficiently remove solids and organics to meet water reuse standards, polishing remains necessary for other parameters, such as pathogens, nutrients, and recalcitrant pollutants. Different CW designs and CWs coupled with electrochemical technologies have been proposed to improve treatment efficiency. Electrochemical systems (ECs) have been either implemented within the CW bed (ECin-CW) or as a stage in a sequential treatment (CW + EC). A large body of literature has focused on ECin-CW, and multiple scaled-up systems have recently been successfully implemented, primarily to remove recalcitrant organics. Conversely, only a few reports have explored the opportunity to polish CW effluents in a downstream electrochemical module for the electro-oxidation of micropollutants or electro-disinfection of pathogens to meet more stringent water reuse standards. This paper aims to critically review the opportunities, challenges, and future research directions of the different couplings of CW with EC as a decentralized technology for water treatment and recovery.
Collapse
Affiliation(s)
- Suanny Mosquera-Romero
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, BOX9050, Ecuador
- Department of Green Chemistry and Technology, Ghent University, Sint-Martens-Latemlaan 2B, B-8500, Kortrijk, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium
| | - Eleftheria Ntagia
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Université Paris-Saclay, INRAE, PROSE, 92160, Antony, France
| | - Diederik P.L. Rousseau
- Department of Green Chemistry and Technology, Ghent University, Sint-Martens-Latemlaan 2B, B-8500, Kortrijk, Belgium
| | - Abraham Esteve-Núñez
- Universidad de Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Alcalá de Henares, Spain
| | - Antonin Prévoteau
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium
| |
Collapse
|
14
|
Ochiai I, Harada T, Jomori S, Kouzuma A, Watanabe K. Bioaugmentation of microbial electrolysis cells with Geobacter sulfurreducens YM18 for enhanced hydrogen production from starch. BIORESOURCE TECHNOLOGY 2023; 386:129508. [PMID: 37468016 DOI: 10.1016/j.biortech.2023.129508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Double-chamber microbial electrolysis cells (MECs) were operated using starch-based medium as the anolyte and rice paddy-field soil as the anode inoculum, and hydrogen production from the cathode chamber was examined. In order to enhance current generation and hydrogen production, the anode chamber was bioaugmented with Geobacter sulfurreducens strain YM18, and its effects were evaluated based on the performances of non-bioaugmented controls. Results show that the bioaugmented MEC generated threefold greater current during one-month operation and produced sixfold greater amounts of hydrogen than those of the non-bioaugmented control. Quantitative PCR and metabarcoding analyses confirmed successful colonization of anode surfaces with YM18, suggesting the utility of bioaugmentation with YM18 for enhancing the performance of bioelectrochemical systems, including MECs treating biomass wastes.
Collapse
Affiliation(s)
- Itta Ochiai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Tomoka Harada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shinji Jomori
- Advanced Material Engineering Division, Toyota Motor Corporation, Susono, Shizuoka 410-1193, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
15
|
Bhattacharya A, Garg S, Chatterjee P. Examining current trends and future outlook of bio-electrochemical systems (BES) for nutrient conversion and recovery: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86699-86740. [PMID: 37438499 DOI: 10.1007/s11356-023-28500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
Nutrient-rich waste streams from domestic and industrial sources and the increasing application of synthetic fertilizers have resulted in a huge-scale influx of reactive nitrogen and phosphorus in the environment. The higher concentrations of these pollutants induce eutrophication and foster degradation of aquatic biodiversity. Besides, phosphorus being non-renewable resource is under the risk of rapid depletion. Hence, recovery and reuse of the phosphorus and nitrogen are necessary. Over the years, nutrient recovery, low-carbon energy, and sustainable bioremediation of wastewater have received significant interest. The conventional wastewater treatment technologies have higher energy demand and nutrient removal entails a major cost in the treatment process. For these issues, bio-electrochemical system (BES) has been considered as sustainable and environment friendly wastewater treatment technologies that utilize the energy contained in the wastewater so as to recovery nutrients and purify wastewater. Therefore, this article comprehensively focuses and critically analyzes the potential sources of nutrients, working mechanism of BES, and different nutrient recovery strategies to unlock the upscaling opportunities. Also, economic analysis was done to understand the technical feasibility and potential market value of recovered nutrients. Hence, this review article will be useful in establishing waste management policies and framework along with development of advanced configurations with major emphasis on nutrient recovery rather than removal from the waste stream.
Collapse
Affiliation(s)
- Ayushman Bhattacharya
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India, 502285
| | - Shashank Garg
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India, 502285
| | - Pritha Chatterjee
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India, 502285.
| |
Collapse
|
16
|
Hou X, Chu L, Wang Y, Song X, Liu Y, Li D, Zhao X. Microelectrolysis-integrated constructed wetland with sponge iron filler to simultaneously enhance nitrogen and phosphorus removal. BIORESOURCE TECHNOLOGY 2023:129270. [PMID: 37290705 DOI: 10.1016/j.biortech.2023.129270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Integrating sponge iron (SI) and microelectrolysis individually into constructed wetlands (CWs) to enhance nitrogen and phosphorus removal are challenged by ammonia (NH4+-N) accumulation and limited total phosphorus (TP) removal efficiency, respectively. In this study, a microelectrolysis-assisted CW using SI as filler surrounding the cathode (e-SICW) was successfully established. Results indicated that e-SICW reduced NH4+-N accumulation and intensified nitrate (NO3--N), the total nitrogen (TN) and TP removal. The concentration of NH4+-N in the effluent from e-SICW was lower than that from SICW in the whole process with 39.2-53.2 % decrease, and as the influent NO3--N concentration of 15 mg/L and COD/N ratio of 3, the removal efficiencies of NO3--N, TN and TP in e-SICW achieved 95.7 ± 1.9 %, 79.8 ± 2.5 % and 98.0 ± 1.3 %, respectively. Microbial community analysis revealed that hydrogen autotrophic denitrifying bacteria of Hydrogenophaga was highly enriched in e-SICW.
Collapse
Affiliation(s)
- Xiaoxiao Hou
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Linglong Chu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Yifei Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Yingying Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Dongpeng Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Xiaoxiang Zhao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
17
|
Feng H, Yang W, Zhang Y, Ding Y, Chen L, Kang Y, Huang H, Chen R. Electroactive microorganism-assisted remediation of groundwater contamination: Advances and challenges. BIORESOURCE TECHNOLOGY 2023; 377:128916. [PMID: 36940880 DOI: 10.1016/j.biortech.2023.128916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Groundwater contamination has become increasingly prominent, therefore, the development of efficient remediation technology is crucial for improving groundwater quality. Bioremediation is cost-effective and environmentally friendly, while coexisting pollutant stress can affect microbial processes, and the heterogeneous character of groundwater medium can induce bioavailability limitations and electron donor/acceptor imbalances. Electroactive microorganisms (EAMs) are advantageous in contaminated groundwater because of their unique bidirectional electron transfer mechanism, which allows them to use solid electrodes as electron donors/acceptors. However, the relatively low-conductivity groundwater environment is unfavorable for electron transfer, which becomes a bottleneck problem that limits the remediation efficiency of EAMs. Therefore, this study reviews the recent advances and challenges of EAMs applied in the groundwater environment with complex coexisting ions, heterogeneity, and low conductivity and proposes corresponding future directions.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Wanyue Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Ying Kang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Huan Huang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
18
|
Garbini GL, Barra Caracciolo A, Grenni P. Electroactive Bacteria in Natural Ecosystems and Their Applications in Microbial Fuel Cells for Bioremediation: A Review. Microorganisms 2023; 11:1255. [PMID: 37317229 DOI: 10.3390/microorganisms11051255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Electroactive bacteria (EAB) are natural microorganisms (mainly Bacteria and Archaea) living in various habitats (e.g., water, soil, sediment), including extreme ones, which can interact electrically each other and/or with their extracellular environments. There has been an increased interest in recent years in EAB because they can generate an electrical current in microbial fuel cells (MFCs). MFCs rely on microorganisms able to oxidize organic matter and transfer electrons to an anode. The latter electrons flow, through an external circuit, to a cathode where they react with protons and oxygen. Any source of biodegradable organic matter can be used by EAB for power generation. The plasticity of electroactive bacteria in exploiting different carbon sources makes MFCs a green technology for renewable bioelectricity generation from wastewater rich in organic carbon. This paper reports the most recent applications of this promising technology for water, wastewater, soil, and sediment recovery. The performance of MFCs in terms of electrical measurements (e.g., electric power), the extracellular electron transfer mechanisms by EAB, and MFC studies aimed at heavy metal and organic contaminant bioremediationF are all described and discussed.
Collapse
Affiliation(s)
- Gian Luigi Garbini
- Department of Ecology and Biological Sciences, Tuscia University, 01100 Viterbo, Italy
- Water Research Institute, National Research Council, Montelibretti, 00010 Rome, Italy
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council, Montelibretti, 00010 Rome, Italy
| | - Paola Grenni
- Water Research Institute, National Research Council, Montelibretti, 00010 Rome, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
19
|
Martinez Ostormujof L, Teychené S, Achouak W, Fochesato S, Bakarat M, Rodriguez‐Ruiz I, Bergel A, Erable B. Systemic Analysis of the Spatiotemporal Changes in Multi‐Species Electroactive Biofilms to Clarify the Gradual Decline of Current Generation in Microbial Anodes. ChemElectroChem 2023. [DOI: 10.1002/celc.202201135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
20
|
Zhang S, Xu B, Chen M, Zhang Q, Huang J, Cao Y, Li B. Profile and actual transmissibility of Carbapenem resistance genes: Intracellular and extracellular DNA in hospital wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117085. [PMID: 36571956 DOI: 10.1016/j.jenvman.2022.117085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 05/10/2023]
Abstract
The current worldwide spread of carbapenem resistance genes (CRGs) has posed a major public health threat, which continues to grow in severity. Hospital wastewaters (HWWs) are major reservoirs for antibiotic resistance genes, while resistomes in HWWs are still poorly characterized when it comes to CRGs. We comprehensively characterized the profile and actual transmissibility of extracellular CRGs (eCRGs) and intracellular CRGs (iCRGs) in HWWs for the first time. In this study, CRGs showed similar relative abundance in treated and untreated HWWs. Meanwhile, HWWs treatments led to the enrichment of blaIMP-8, probably attributed to the promotion of Novosphingobium and Prosthecobacter after treatment. To evaluate the transmission potential of CRGs, extracellular and intracellular carbapenem-resistant plasmids were captured from HWWs by transformation and conjugation, respectively. We found an interesting phenomenon regarding the transmission characteristics of CRGs: blaKPC-carrying plasmids could only be captured by transformation, while blaNDM-carrying plasmids were captured by conjugation. Further experiments showed that HWW treatments increased the conjugation ability of blaNDM. In conclusion, our study demonstrated that HWWs are significant reservoirs of CRGs and various CRGs exhibit different modes of transmission in HWWs. CRGs cannot be removed by membrane bioreactor and chlorine disinfection. An urgent need is to develop more efficient wastewater treatments to limit CRG dissemination.
Collapse
Affiliation(s)
- Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Binbin Xu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Mo Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian,350001, China
| | - Qianwen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Jiangqing Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
21
|
Liu H, Qin S, Li A, Wen J, Lichtfouse E, Zhao H, Zhang X. Bioelectrochemical systems for enhanced nitrogen removal with minimal greenhouse gas emission from carbon-deficient wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160183. [PMID: 36384176 DOI: 10.1016/j.scitotenv.2022.160183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen pollution and the rising amount of wastewater generation are calling for advanced wastewater treatments, which is particularly necessary for carbon-deficient wastewater that contains multi-species inorganic nitrogen, since conventional heterotrophic denitrification processes cannot remove nitrogen completely when carbon sources are insufficient. For that, bioelectrochemical systems (BES) have been recently developed because they can simultaneously produce electricity and remove resistant nitrogen from the carbon-deficient wastewater. However, the simultaneous removal of multi-species inorganic nitrogen cannot be achieved by electroautotrophic denitrification using BES alone. Moreover, the efficiency of nitrogen removal and power generation has been thwarted by the low energy output, high internal resistance of the device, and electron competition in non-denitrification pathways. This review article discusses the latest developments for nitrogen removal through BES-enhanced denitrification and elucidates multiple coupled BES-based denitrification pathways to remove multi-species inorganic nitrogen simultaneously. Focus points of the research area include coupling BES technologies with emerged methods, electron transfer enhancement, and avoiding electron competition that improves performance with less cost. The prospect of reducing emissions of greenhouse gases is also critically reviewed, in the hope of reducing potential intermediate products of denitrification, such as nitrous oxide (a potent greenhouse gas), through multi-factor regulation. We imply that BES is a good choice for future scale-up applications of MFC coupled with MEC to treat carbon-deficient wastewater. Overall, this review will provide useful information for the development of advanced technologies to treat carbon-deficient wastewater with less emission of greenhouse gases.
Collapse
Affiliation(s)
- Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China.
| | - Song Qin
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Anze Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Jian Wen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, 13100 Aix en Provence, France.
| | - Heping Zhao
- College of Environmental and Resources Sciences, Zhejiang University, 866 Yuhang Tang Road, 310058 Hangzhou, China.
| | - Xianzhong Zhang
- Shanghai Urban Construction Design & Research Institute [Group] Co., Ltd., 3447 Dongfang Road, 200125 Shanghai, China
| |
Collapse
|
22
|
Wang Z, Liao C, Zhong Z, Liu S, Li M, Wang X. Design, optimization and application of a highly sensitive microbial electrolytic cell-based BOD biosensor. ENVIRONMENTAL RESEARCH 2023; 216:114533. [PMID: 36241074 DOI: 10.1016/j.envres.2022.114533] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Biochemical oxygen demand (BOD) is an important biochemical indicator for determining the degree of water pollution and guiding the design of wastewater treatment processes. BOD sensors based on microbial electrochemical technology can conduct real-time online monitoring of organic matter and have attracted extensive attention. However, research on microbial electrolytic cell (MEC)-type BOD sensors is at the stage of theoretical exploration. Here, we designed and optimized a highly sensitive MEC-type BOD sensor by screening inoculants, comparing electrode materials, and optimizing the reactor configuration. The results showed that effective means to optimize a BOD sensor for fast activation and sensitive testing included the inoculation of the MEC reactor effluent with large amounts of biomass and highly active bacteria, selection of carbon felt electrodes with excellent adsorption and permeability, miniaturization of the reactor, regulation of suitable electrode spacing, and design of the penetrating fluid structure. Then, the optimized sensing system was applied to determine the BOD concentration in model solutions of sodium acetate in a laboratory environment, where it accurately measured BOD concentrations in the range of 10-500 mg/L and maintained good parallelism during long-term operation. Next, the MEC-type BOD sensors were put into practice in the field as an alarm for accidents at an actual sewage plant. The whole BOD sensing system was quickly assembled on site and started up, and it gave an early warning shortly after the concentration of organic matter in the water suddenly increased, thus showing a high potential for engineering applications. This study broadened the domains of application of MEC-type BOD sensors in environmental monitoring, and promoted the development of technological innovation in water ecology and environmental monitoring.
Collapse
Affiliation(s)
- Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Zihan Zhong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Siyan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Ming Li
- Engelbart (Beijing) Ecological Technology Co., Ltd, Beijing Shunyi Sino-German Industrial Park Sino-German Building 6F, Beijing, 101399, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
23
|
Wang S, Zhang X, Marsili E. Electrochemical Characteristics of Shewanella loihica PV-4 on Reticulated Vitreous Carbon (RVC) with Different Potentials Applied. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165330. [PMID: 36014568 PMCID: PMC9413302 DOI: 10.3390/molecules27165330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022]
Abstract
The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen Shewanella loihica PV-4, which is limited in conventional flat electrodes. S. loihica PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of S. loihica PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES.
Collapse
Affiliation(s)
- Shixin Wang
- School of Science, Minzu University of China, Beijing 100081, China
| | - Xiaoming Zhang
- School of Science, Minzu University of China, Beijing 100081, China
- Correspondence: (X.Z.); (E.M.)
| | - Enrico Marsili
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Correspondence: (X.Z.); (E.M.)
| |
Collapse
|
24
|
Cao H, Sun J, Wang K, Zhu G, Li X, Lv Y, Wang Z, Feng Q, Feng J. Performance of bioelectrode based on different carbon materials in bioelectrochemical anaerobic digestion for methanation of maize straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154997. [PMID: 35381255 DOI: 10.1016/j.scitotenv.2022.154997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The performance of the bioelectrochemical anaerobic digestion (BEAD) reactor was investigated with different carbon material-modified electrodes for the methanation of maize straw. The carbon material-modified electrodes used titanium (Ti) mesh modified with carbon nanotube (CNT), carbon black (CB), and activated carbon (AC). The maximum cumulative methane production obtained in the Ti-CNT reactor was (616.4 ± 9.3) mL/g VS, while the maximum methane production rate in the Ti-AC reactor was (61.9 ± 1.0) mL/g VS.d.The electroactive bacteria were well enriched by the different electrodes, and the enriched electroactive bacteria further facilitate the direct interspecies electron transfer (DIET) for methane production. Additionally, we found the phylum Firmicutes showed a linear relationship to methanogenic performance, as well as the Genus Proteiniborus. The Ti-CNT electrode shows better performance by the electrochemical analysis. These findings provide critical knowledge for the large-scale use of the BEAD process and the treatment of maize straw.
Collapse
Affiliation(s)
- Hongrui Cao
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jin Sun
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Keqiang Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guanyu Zhu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoxiang Li
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yaowei Lv
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zejie Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qing Feng
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jie Feng
- School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| |
Collapse
|
25
|
Bajracharya S, Krige A, Matsakas L, Rova U, Christakopoulos P. Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation. BIORESOURCE TECHNOLOGY 2022; 354:127178. [PMID: 35436538 DOI: 10.1016/j.biortech.2022.127178] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas-liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected.
Collapse
Affiliation(s)
- Suman Bajracharya
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden.
| | - Adolf Krige
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| |
Collapse
|
26
|
Sun L, Mo Y, Zhang L. A mini review on bio-electrochemical systems for the treatment of azo dye wastewater: State-of-the-art and future prospects. CHEMOSPHERE 2022; 294:133801. [PMID: 35104551 DOI: 10.1016/j.chemosphere.2022.133801] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Azo dyes are typical toxic and refractory organic pollutants widely used in the textile industry. Bio-electrochemical systems (BESs) have great potential for the treatment of azo dyes with the help of microorganisms as biocatalysts and have advanced significantly in recent years. However, the latest and significant advancement and achievements of BESs treating azo dyes have not been reviewed since 8 years ago. This review thus focuses on the recent investigations of BESs treating azo dyes from the year of 2013-2020 in order to broaden the knowledge and deepen the understanding in this field. In this review, azo dyes degradation mechanisms of BESs are first elaborated, followed by the introduction of BES configurations with the emphasis on the novelties. The azo dye degradation performance of BESs is then presented to demonstrate their effectiveness in azo dye removal. Effects of various operating parameters on the overall performance of BESs are comprehensively elucidated, including electrode materials, external resistances and applied potentials, initial concentrations of azo dyes, and co-substrates. Predominant microorganisms responsible for degradation of azo dyes in BESs are highlighted in details. Furthermore, the combination of BESs with other processes to further improve the azo dye removal are discussed. Finally, an outlook on the future research directions and challenges is provided from the viewpoint of realistic applications of the technology.
Collapse
Affiliation(s)
- Liping Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
27
|
Apollon W, Rusyn I, González-Gamboa N, Kuleshova T, Luna-Maldonado AI, Vidales-Contreras JA, Kamaraj SK. Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153055. [PMID: 35032528 DOI: 10.1016/j.scitotenv.2022.153055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Microbial energy generation systems, i.e., bioelectrochemical systems (BESs) are promising sustainable technologies that have been used in different fields of application such as biofuel production, biosensor, nutrient recovery, wastewater treatment, and heavy metals removal. However, BESs face great challenges such as large-scale application in real time, low power performance, and suitable materials for their configuration. This review paper aimed to discuss the use of BES systems such as conventional microbial fuel cells (MFCs), as well as plant microbial fuel cell (P-MFC), sediment microbial fuel cell (S-MFC), constructed wetland microbial fuel cell (CW-MFC), osmotic microbial fuel cell (OsMFC), photo-bioelectrochemical fuel cell (PBFC), and MFC-Fenton systems in the zero waste sustainable recovery process. Firstly, the configuration and electrode materials used in BESs as the main sources to improve the performance of these technologies are discussed. Additionally, zero waste recovery process from solid and wastewater feedstock, i.e., energy recovery: electricity generation (from 12 to 26,680 mW m-2) and fuel generation, i.e., H2 (170 ± 2.7 L-1 L-1 d-1) and CH4 (107.6 ± 3.2 mL-1 g-1), nutrient recovery of 100% (PO43-P), and 13-99% (NH4+-N), heavy metal removal/recovery: water recovery, nitrate (100%), sulfate (53-99%), and sulfide recovery/removal (99%), antibiotic, dye removal, and other product recovery are critically analyzed in this review paper. Finally, the perspective and challenges, and future outlook are highlighted. There is no doubt that BES technologies are an economical option for the simultaneous zero waste elimination and energy recovery. However, more research is required to carry out the large-scale application of BES, as well as their commercialization.
Collapse
Affiliation(s)
- Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico.
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera st., 12, Lviv 79013, Ukraine
| | - Nancy González-Gamboa
- Renewable Energy Unit, Yucatan Center for Scientist Research, Carretera Sierra Papacal-Chuburná Puerto Km 5, CP 97302 Sierra Papacal, Yucatan, Mexico
| | - Tatiana Kuleshova
- Agrophysical Research Institute, Department of Plant Lightphysiology and Agroecosystem Bioproductivity, 195220 Saint-Petersburg 14, Grazhdanskiy pr., Russia
| | - Alejandro Isabel Luna-Maldonado
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Juan Antonio Vidales-Contreras
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Sathish-Kumar Kamaraj
- TecNM-Instituto Tecnológico El Llano Aguascalientes (ITEL), Laboratorio de Medio Ambiente Sostenible, Km.18 Carretera Aguascalientes-San Luis Potosí, El Llano Ags. C.P. 20330, Mexico.
| |
Collapse
|
28
|
Renewable Energy-Driven Desalination: New Trends and Future Prospects of Small Capacity Systems. Processes (Basel) 2022. [DOI: 10.3390/pr10040745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
New trends and future prospects for small capacity systems of Renewable Energy-driven DESalination (REDES) are reviewed and assessed in this paper over a nominal desalination capacity range of 3–1000 m3/d. A thorough literature review is reported in order to evaluate current research and developing activities. Outstanding commercial prospects in the near future are identified for two off-grid REDES technologies under development. First, wave energy converters with direct coupling to seawater desalination. Second, solar micro gas turbines with biofuel backup coupled to reverse osmosis (RO) desalination and/or zero liquid discharge water treatment. These systems, as well as mature REDES plants (namely PV/RO and wind turbines/RO), will benefit from forthcoming advances in energy efficiency in the RO process itself. The Closed Circuit RO desalination (CCROTM) concept may be a key configuration for enhancing RE-driven RO desalination. Additionally, opportunities for innovation in seawater RO desalination with variable power consumption are highlighted. On the other hand, our conclusions highlight opportunities for developing novel portable REDES systems based on solar membrane distillation with a portable linear Fresnel concentrator manufactured by SOLATOM. Additionally, the concept of portable systems could foster the commercial development of microbial desalination cells combined with solar PV energy and RO powered by tidal currents.
Collapse
|
29
|
Hou B, Liu X, Zhang R, Li Y, Liu P, Lu J. Investigation and evaluation of membrane fouling in a microbial fuel cell-membrane bioreactor systems (MFC-MBR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152569. [PMID: 34973325 DOI: 10.1016/j.scitotenv.2021.152569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Two membrane bioreactors with and without adding an electric circuit (named as MFC-MBR and C-MBR, respectively) were established to investigate the effects of micro-electric field on membrane fouling. With the aeration rate of 1.5 L/min, the synergistic effect of aeration and micro-electric field was the best in reducing membrane fouling and COD in treatment of a simulated phenol wastewater. Compared with C-MBR, the running time of MFC-MBR was extended for 16 days. Scanning electron microscope (SEM) and energy-dispersive X-ray detector (SEM-EDX) demonstrated that less foulants were attached to the membrane and the attachment was loosend in MFC-MBR. The decreased absolute value of zeta potential indicated repulsion among the negatively-charged sludge particles was reduced and flocculation of the sludge was improved, which alleviated the membrane fouling. The soluble microbial products (SMP) and loosely-bound extracellular polymeric substances (LB-EPS) were also decreased in MFC-MBR. It was found that migration and neutralization of the negatively-charged particles, and degradation of microorganisms contributed to the alleviation of membrane fouling. Moreover, the decreases of carbohydrates in LB-EPS led to higher protein/carbohydrates (PN/PS) ratio, which was a key parameter for alleviating membrane fouling. Meanwhile, the increase of tightly bound extracellular polymeric substances (TB-EPS) could also slow down membrane fouling. Because TB-EPS can be used as a binder to strengthen the flocculation of sludge particles.
Collapse
Affiliation(s)
- Bin Hou
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Xiaoyu Liu
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Rong Zhang
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Ying Li
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Pengxiao Liu
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Jing Lu
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
30
|
Chaudhary S, Yadav S, Singh R, Sadhotra C, Patil SA. Extremophilic electroactive microorganisms: Promising biocatalysts for bioprocessing applications. BIORESOURCE TECHNOLOGY 2022; 347:126663. [PMID: 35017088 DOI: 10.1016/j.biortech.2021.126663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Electroactive microorganisms (EAMs) use extracellular electron transfer (EET) processes to access insoluble electron donors or acceptors in cellular respiration. These are used in developing microbial electrochemical technologies (METs) for biosensing and bioelectronics applications and the valorization of liquid and gaseous wastes. EAMs from extreme environments can be useful to overcome the existing limitations of METs operated with non-extreme microorganisms. Studying extreme EAMs is also necessary to improve understanding of respiratory processes involving EET. This article first discusses the advantages of using extreme EAMs in METs and summarizes the diversity of EAMs from different extreme environments. It is followed by a detailed discussion on their use as biocatalysts in various bioprocessing applications via bioelectrochemical systems. Finally, the challenges associated with operating METs under extreme conditions and promising research opportunities on fundamental and applied aspects of extreme EAMs are presented.
Collapse
Affiliation(s)
- Srishti Chaudhary
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Sukrampal Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Ramandeep Singh
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Chetan Sadhotra
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India.
| |
Collapse
|
31
|
Dey N, Samuel GV, Raj DS, Gajalakshmi B. Nanomaterials as potential high performing electrode materials for microbial fuel cells. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02371-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
The Effect of Anode Material on the Performance of a Hydrogen Producing Microbial Electrolysis Cell, Operating with Synthetic and Real Wastewaters. ENERGIES 2021. [DOI: 10.3390/en14248375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the study was to assess the effect of anode materials, namely a carbon nanotube (CNT)-buckypaper and a commercial carbon paper (CP) on the performance of a two-chamber microbial electrolysis cell (MEC), in terms of hydrogen production and main electrochemical characteristics. The experiments were performed using both acetate-based synthetic wastewater and real wastewater, specifically the effluent of a dark fermentative hydrogenogenic reactor (fermentation effluent), using cheese whey (CW) as substrate. The results showed that CP led to higher hydrogen production efficiency and current density compared to the CNT-buckypaper anode, which was attributed to the better colonization of the CP electrode with electroactive microorganisms, due to the negative effects of CNT-based materials on the bacteria metabolism. By using the fermentation effluent as substrate, a two-stage process is developed, where dark fermentation (DF) of CW for hydrogen production occurs in the first step, while the DF effluent is used as substrate in the MEC, in the second step, to further increase hydrogen production. By coupling DF-MEC, a dual environmental benefit is provided, combining sustainable bioenergy generation together with wastewater treatment, a fact that is also reinforced by the toxicity data of the current study.
Collapse
|
33
|
Xie J, Zou X, Chang Y, Chen C, Ma J, Liu H, Cui MH, Zhang TC. Bioelectrochemical systems with a cathode of stainless-steel electrode for treatment of refractory wastewater: Influence of electrode material on system performance and microbial community. BIORESOURCE TECHNOLOGY 2021; 342:125959. [PMID: 34852439 DOI: 10.1016/j.biortech.2021.125959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The large-scale application of the bioelectrochemical system (BES) is limited by the cost-effective electrode materials. In this study, five kinds of stainless-steel materials were used as the cathode of the BES coupled with anaerobic digestion (BES-AD) for the treatment of diluted N, N-dimethylacetamide (DMAC) wastewater. Compared with a carbon-cloth cathode, BES-AD with a stainless-steel cathode had more engineering due to its low cost, although the operating efficiencies were slightly inferior. Stainless-steel mesh with a 100 µm aperture (SSM-100 μm) was the most cost-effective electrode and the implanted BES exhibited better COD removal efficiency, electrochemical performance and biodegradability. Analysis of microbial community revealed the synergetic effect between exoelectrogen and fermentative bacteria had been strengthened in the SSM-100 μm cathode biofilm. Function analysis of the microbial community based on PICRUSt predicted metagenomes revealed that the metabolic pathways of xenobiotics biodegradation and metabolism in the SSM-100 μm cathode were stimulated.
Collapse
Affiliation(s)
- Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xinyi Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaofeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Ji Ma
- Jiangsu Sujing Group Co., Ltd, Suzhou 215122, PR China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Min-Hua Cui
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Dept, University of Nebraska-Lincoln (Omaha Campus), Omaha, NE 68182-0178, USA
| |
Collapse
|