1
|
Zhang X, Xiong S, Sathiyaseelan A, Zhang L, Lu Y, Chen Y, Jin T, Wang MH. Recent advances in photocatalytic nanomaterials for environmental remediation: Strategies, mechanisms, and future directions. CHEMOSPHERE 2024; 364:143142. [PMID: 39168377 DOI: 10.1016/j.chemosphere.2024.143142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Innovative and efficient strategies are urgently needed for wastewater treatment and environmental remediation. The photocatalytic degradation properties of photo-responsive nanomaterials (NMs) have become a prime candidate due to their low negative impact and photo-adjustability. Photocatalytic NMs vary in their degradation of different pollutants depending on the type of synthetic material, excitation light source, and physicochemical properties. Essentially, photocatalytic NMs excited by light produce reactive oxygen species (ROS) or metal ions that can degrade complex structure pollutants. Therefore, this review summarises the recent advances of photocatalytic NMs in the environmental application within the last 3 years, focusing on the development schemes, structural analyses, photocatalytic mechanisms, and the degradation effects of dyes, antibiotics, pesticides, phenolic compounds, metals, hormones, and other contaminants. The limitations and future directions are also explained. This review hopes to provide a possible pathway for the subsequent development of novel and efficient photocatalytic NMs to cope with complex and variable polluted environments.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Sirui Xiong
- College of Food Science and Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Lina Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Chen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Tieyan Jin
- College of Food Science and Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Zhang L, Dong G, Liu X, Niu Y, Gao W, Yang Q, Li Z. Decolorization of RhB on three-dimensional porous CeO 2/LaFeO 3/SrTiO 3 catalyst via photo-fenton-like catalysis. Photochem Photobiol Sci 2024:10.1007/s43630-024-00619-1. [PMID: 39186185 DOI: 10.1007/s43630-024-00619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
The catalysts with three-dimensional porous (3DP) CeO2, LaFeO3 and SrTiO3 are synthesized by sol-gel method and chemical precipitation method. The resulting multi-component 3DP CeO2/LaFeO3/SrTiO3 composite material featured a high specific surface area (26.08 m2/g), which can provide more surface active sites to improve adsorption capacity and catalytic performance. The photocatalytic, Fenton-like, photo-Fenton-like performance of the catalyst are studied on decolorization of RhB under UV irradiation, respectively. 3DP CeO2/LaFeO3/SrTiO3 exhibits high catalytic performance. Compared with photocatalytic or Fenton-like performance, 3DP CeO2/LaFeO3/SrTiO3 catalyst exhibits higher photo-Fenton-like performance, facilitating efficient decolorization of the rhodamine B. Moreover, the initial reaction rate on decolorization of RhB with 3DP CeO2/LaFeO3/SrTiO3 is 10.55, 5.52, 3.67 and 1.51 times higher than that with SrTiO3, LaFeO3, 3DP CeO2 and 3DP CeO2/LaFeO3, respectively. Meanwhile, 3DP LaFeO3/CeO2/SrTiO3 has a wider pH usage range in the synergistic reaction. Finally, a catalytic mechanism for the decolorization of rhodamine B is proposed. The continuous cycling of Fe3+/Fe2+ and Ce4+/Ce3+ and the production of active substances are achieved under the photo-Fenton-like effect of the catalyst.
Collapse
Affiliation(s)
- Lihua Zhang
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management, School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, China
| | - Guowen Dong
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management, School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, China
| | - Xiaomin Liu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Yu Niu
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management, School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, China
| | - Wei Gao
- Sinopec Cangzhou Refining and Chemical Company, Cangzhou, 061000, China
| | - Qiong Yang
- Xinhua Branch of Loudi Ecological Environment Bureau, Xinhua, 417600, China
| | - Zaixing Li
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| |
Collapse
|
3
|
Habibi M, Habibi-Yangjeh A, Khataee A. Synthesis of visible-light-activated CeO 2-x/BiCrO 3 photocatalysts with S-scheme mechanism: Effectual performances in detoxification of various antibiotics and organic pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121890. [PMID: 39029170 DOI: 10.1016/j.jenvman.2024.121890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
In today's world, the development of an efficient water treatment strategy requires a prospective approach for the production of active and stable photocatalysts. The construction of heterojunctions with different semiconductors is a promising procedure for improving photocatalytic performances. In the present research, binary CeO2-x/BiCrO3 photocatalysts were synthesized using a hydrothermal route preceded by a calcination step. The CeO2-x/BiCrO3 (15%) photocatalyst proved its unique performance of 29.3, 11.4, 11.7, and 23.0 times better than CeO2 for photodegradation of respectively tetracycline hydrochloride (TCH), metronidazole (MET), azithromycin (AZM), and cephalexin (CPN), as antibiotic pollutants, upon visible light. The effective photocatalytic ability, which was caused by the impressive suppression of charge carriers, can be understood by the developed S-scheme mechanism. Moreover, the lower resistance of CeO2-x/BiCrO3 (15%) compared to CeO2, CeO2-x, and BiCrO3 against the charges transfer was another confirmation for boosted photocatalytic performance of the CeO2-x/BiCrO3 (15%) nanocomposite. Ultimately, the boosted activity, repeated utilization for five runs, and biocompatibility confirmation of the purified solution through pinto bean cultivation exhibited that CeO2-x/BiCrO3 photocatalysts could have the promising capability for detoxification of polluted water.
Collapse
Affiliation(s)
- Meysam Habibi
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Department of Chemical Engineering, Istanbul Technical University, 34469, Istanbul, Turkey; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey
| |
Collapse
|
4
|
Zhang X, Blackman C, Palgrave RG, Ashraf S, Dey A, Blunt MO, Zhang X, Liu T, Sun S, Zhu L, Guan J, Lu Y, Keal TW, Buckeridge J, Catlow CRA, Sokol AA. Environment-Driven Variability in Absolute Band Edge Positions and Work Functions of Reduced Ceria. J Am Chem Soc 2024; 146:16814-16829. [PMID: 38837941 PMCID: PMC11191696 DOI: 10.1021/jacs.4c05053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
The absolute band edge positions and work function (Φ) are the key electronic properties of metal oxides that determine their performance in electronic devices and photocatalysis. However, experimental measurements of these properties often show notable variations, and the mechanisms underlying these discrepancies remain inadequately understood. In this work, we focus on ceria (CeO2), a material renowned for its outstanding oxygen storage capacity, and combine theoretical and experimental techniques to demonstrate environmental modifications of its ionization potential (IP) and Φ. Under O-deficient conditions, reduced ceria exhibits a decreased IP and Φ with significant sensitivity to defect distributions. In contrast, the IP and Φ are elevated in O-rich conditions due to the formation of surface peroxide species. Surface adsorbates and impurities can further augment these variabilities under realistic conditions. We rationalize the shifts in energy levels by separating the individual contributions from bulk and surface factors, using hybrid quantum mechanical/molecular mechanical (QM/MM) embedded-cluster and periodic density functional theory (DFT) calculations supported by interatomic-potential-based electrostatic analyses. Our results highlight the critical role of on-site electrostatic potentials in determining the absolute energy levels in metal oxides, implying a dynamic evolution of band edges under catalytic conditions.
Collapse
Affiliation(s)
- Xingfan Zhang
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Christopher Blackman
- Department
of Chemistry, University College London, Christopher Ingold Building, 20
Gordon Street, London WC1H
0AJ, U.K.
| | - Robert G. Palgrave
- Department
of Chemistry, University College London, Christopher Ingold Building, 20
Gordon Street, London WC1H
0AJ, U.K.
| | - Sobia Ashraf
- Department
of Chemistry, University College London, Christopher Ingold Building, 20
Gordon Street, London WC1H
0AJ, U.K.
| | - Avishek Dey
- Department
of Chemistry, University College London, Christopher Ingold Building, 20
Gordon Street, London WC1H
0AJ, U.K.
| | - Matthew O. Blunt
- Department
of Chemistry, University College London, Christopher Ingold Building, 20
Gordon Street, London WC1H
0AJ, U.K.
| | - Xu Zhang
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
- School of
Chemical Engineering and Technology, Tianjin
University, Tianjin 300350, P. R. China
| | - Taifeng Liu
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
- National
& Local Joint Engineering Research Center for Applied Technology
of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China
| | - Shijia Sun
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Lei Zhu
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Jingcheng Guan
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - You Lu
- Scientific
Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, Cheshire, U.K.
| | - Thomas W. Keal
- Scientific
Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, Cheshire, U.K.
| | - John Buckeridge
- School
of Engineering, London South Bank University, London SE1 OAA, U.K.
| | - C. Richard A. Catlow
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 1AT, U.K.
| | - Alexey A. Sokol
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| |
Collapse
|
5
|
Herzog AE, Michael TJ, Dunkelberger AD, Johannes MD, Rolison DR, DeSario PA, Novak TG. Nanostructured CeO 2 photocatalysts: optimizing surface chemistry, morphology, and visible-light absorption. NANOSCALE 2024; 16:9659-9679. [PMID: 38683667 DOI: 10.1039/d4nr00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Emerging photocatalytic applications of cerium dioxide (CeO2) include green hydrogen production, CO2 conversion to fuels, and environmental remediation of various toxic molecules. These applications leverage the oxygen storage capacity and tunable surface chemistry of CeO2 to photocatalyze the chosen reaction, but many open questions remain regarding the fundamental physics of photocatalysis over CeO2. The commonly ascribed 'bandgap' of CeO2 (∼3.1 eV) differs fundamentally from other photocatalytic oxides such as TiO2; UV light excites an electron from the CeO2 valence band into a 4f state, generating a polaron as the lattice distorts around the localized charge. Researchers often disregard the distinction between the 4f state and a traditional, delocalized conduction band, resulting in ambiguity regarding mechanisms of charge transfer and visible-light absorption. This review summarizes modern literature regarding CeO2 photocatalysis and discusses commonly reported photocatalytic reactions and visible light-sensitization strategies. We detail the often misunderstood fundamental physics of CeO2 photocatalysis and supplement previous work with original computational insights. The exceptional progress and remaining challenges of CeO2-based photocatalysts are highlighted, along with suggestions for further research directions based on the observed gaps in current understanding.
Collapse
Affiliation(s)
- Austin E Herzog
- NRC Postdoctoral Associate, U.S. Naval Research Laboratory, Washington, D.C., 20375, USA
| | - Tara J Michael
- NRC Postdoctoral Associate, U.S. Naval Research Laboratory, Washington, D.C., 20375, USA
| | - Adam D Dunkelberger
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory, Washington, D.C., 20375, USA.
| | - Michelle D Johannes
- Materials Science and Technology Division (Code 6300), U.S. Naval Research Laboratory, Washington, D.C., 20375, USA
| | - Debra R Rolison
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory, Washington, D.C., 20375, USA.
| | - Paul A DeSario
- Former NRL Staff Scientist in Code 6100, Advanced Naval Platforms Division, Office of Naval Research, Arlington, VA, 22203, USA
| | - Travis G Novak
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory, Washington, D.C., 20375, USA.
| |
Collapse
|
6
|
Dhruv SD, Kolte J, Solanki P, Deshpande MP, Solanki V, Tailor J, Agrawal N, Patel VA, Markna JH, Kataria B, Dhruv DK. Synthesis, microstructural and optical characterizations of sol-gel grown gadolinium doped cerium oxide ceramics. RSC Adv 2024; 14:15455-15467. [PMID: 38741952 PMCID: PMC11090017 DOI: 10.1039/d4ra01902d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
In this study, through the utilization of the sol-gel combustion tactic, gadolinium (Gd)-doped cerium oxide (CeO2), Ce1-xGdxO2 (x = 0.00, 0.10, 0.20 and 0.30 (GDC)) ceramics were attained. The synthesized GDC ceramics were investigated using X-ray diffraction (XRD) to scrutinize their crystal structures and phase clarities. The obtained GDC ceramics have a single-phase cubic structure and belong to the crystallographic space group fm3̄m (225). The measurement of the diffraction angle of each reflection and the subsequent smearing of the renowned Bragg's relation provided coarse d-interplanar spacings. The stacking fault (SF) values of pure and Gd-doped CeO2 ceramics were assessed. To muse the degree of preferred orientation (σ) of crystallites along a crystal plane (h k l), the texture coefficient (Ci) of each XRD peak of GDC ceramics is gauged. By determining the interplanar distance (dh k l), the Bravais theory sheds light on the material's development. By exploiting Miller indices for the prime (1 1 1) plane, the lattice constants of GDC ceramics and cell volumes were obtained. Multiple techniques were employed to ascertain the microstructural parameters of GDC ceramics. A pyrometer substantiated the density of GDC ceramics. The room temperature (RT) Fourier transform infrared (FTIR) spectra of both un-doped and Gd-doped CeO2 were obtained. The UV-vis-NIR spectrometer recorded the GDC ceramics' reflectance (R) spectra at RT. For both undoped and Gd-doped CeO2, the absorption coefficient (α) spectra showed two distinct peaks. The R-dependent refractive index (η) and the α-dependent extinction coefficient (k) were determined for all GDC samples. The optical band gap (Eg) was obtained by integrating the Tauc and Kubelka-Munk approaches for GDC ceramics. For each GDC sample, the imaginary (εi) and real (εr) dielectric constants, as well as the dissipation factor (tan δ), were determined local to the characteristic wavelength (λc). Calculations were made for the Urbach energy (EU) and Urbach absorption coefficient (α0) for GDC ceramics. The minimum and maximum values of optical (σo) and electrical (σe) conductivity for GDC ceramics were determined. The volume (VELF) and surface (SELF) energy loss functions, which depend on the constants εi and εr, were used to measure electrons' energy loss rates as they travel across the surface. Raman spectroscopy revealed various vibrational modes in GDC ceramics. Finally, the implications are discussed herein.
Collapse
Affiliation(s)
- S D Dhruv
- NatubhaiV. Patel College of Pure and Applied Sciences, The Charutar Vidya Mandal University Vallabh Vidyanagar-388120 Anand Gujarat India
| | - Jayant Kolte
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology Patiala-147004 Punjab India
| | - Pankaj Solanki
- Department of Nanoscience and Advanced Materials, Saurashtra University Rajkot-360005 Gujarat India
| | - Milind P Deshpande
- Department of Physics, Sardar Patel University Vallabh Vidyanagar-388120 Anand Gujarat India
| | - Vanaraj Solanki
- Dr K. C. Patel R & D Centre, Charotar University of Science and Technology Changa 388421 Gujarat India
| | - Jiten Tailor
- Department of Physics, M. B. Patel Science College, Sardar Patel University Anand 388001 Gujarat India
| | - Naveen Agrawal
- NatubhaiV. Patel College of Pure and Applied Sciences, The Charutar Vidya Mandal University Vallabh Vidyanagar-388120 Anand Gujarat India
| | - V A Patel
- Sophisticated Instrumentation Centre for Applied Research and Testing Vallabh Vidyanagar 388120 Gujarat India
| | - J H Markna
- Department of Nanoscience and Advanced Materials, Saurashtra University Rajkot-360005 Gujarat India
| | - Bharat Kataria
- Department of Nanoscience and Advanced Materials, Saurashtra University Rajkot-360005 Gujarat India
| | - D K Dhruv
- NatubhaiV. Patel College of Pure and Applied Sciences, The Charutar Vidya Mandal University Vallabh Vidyanagar-388120 Anand Gujarat India
| |
Collapse
|
7
|
Abdulrazaq HA, Alwared AI. Bio-synthesis of TiO 2 using grape leaves extract and its application for photocatalytic degradation of ibuprofen from aqueous solution. ENVIRONMENTAL TECHNOLOGY 2024; 45:2493-2505. [PMID: 36735351 DOI: 10.1080/09593330.2023.2176791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
ABSTRACTIn this study, titanium oxide nanoparticle was fabricated using the extract of grape leaves (referred asGL-TiO2 NPs), using the green synthesis process, and then explores its ability for photodegradation of ibuprofen (IBU) under UV light in the batch system. UV-Vis, BET, FTIR, XRD, and SEM-EDX tests were made to identify the catalyst's structure and shape. Moreover, the effects of different operating parameters, specifically pH of (3, 5, 7, and 9), IBU concentration (10, 20, 40, and 80) mg/L, GL-TiO2 concentrations (15, 30, and 60) mg/L, H2O2 (100, 300, and 500) mg/L, and contact time were studied. According to the results, the synthetic TiO2 NPs have a spherical shape and 39.608 m2/g of BET surface area. In addition, the findings showed that the removal efficiency reached 92.32% under optimum conditions of 5, 10, 30, 300 mg/L, and 150 min, respectively. In addition, the reaction followed a first-order kinetics model with R2 > 97. According to the finding of this study, GL-TiO2 NPs has an acceptable efficiency in the elimination of IBU, as their relatively simple synthesis, could be a suitable catalyst for the degradation and elimination of pharmaceutical residues.
Collapse
Affiliation(s)
- Haneen Ali Abdulrazaq
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Abeer I Alwared
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
8
|
Krishnan A, Swarnalal A, Das D, Krishnan M, Saji VS, Shibli SMA. A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. J Environ Sci (China) 2024; 139:389-417. [PMID: 38105064 DOI: 10.1016/j.jes.2023.02.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 12/19/2023]
Abstract
This review provides insight into the current research trend in transition metal oxides (TMOs)-based photocatalysis in removing the organic colouring matters from water. For easy understanding, the research progress has been presented in four generations according to the catalyst composition and mode of application, viz: single component TMOs (the first-generation), doped TMOs/binary TMOs/doped binary TMOs (the second-generation), inactive/active support-immobilized TMOs (the third-generation), and ternary/quaternary compositions (the fourth-generation). The first two generations represent suspended catalysts, the third generation is supported catalysts, and the fourth generation can be suspended or supported. The review provides an elaborated comparison between suspended and supported catalysts, their general/specific requirements, key factors controlling degradation, and the methodologies for performance evaluation. All the plausible fundamental and advanced dye degradation mechanisms involved in each generation of catalysts were demonstrated. The existing challenges in TMOs-based photocatalysis and how the researchers approach the hitch to resolve it effectively are discussed. Future research trends are also presented.
Collapse
Affiliation(s)
- Athira Krishnan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690 525, India.
| | - Anna Swarnalal
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690 525, India
| | - Divine Das
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690 525, India
| | - Midhina Krishnan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690 525, India
| | - Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - S M A Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695 581, India
| |
Collapse
|
9
|
Balu S, Ganapathy D, Arya S, Atchudan R, Sundramoorthy AK. Advanced photocatalytic materials based degradation of micropollutants and their use in hydrogen production - a review. RSC Adv 2024; 14:14392-14424. [PMID: 38699688 PMCID: PMC11064126 DOI: 10.1039/d4ra01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
The use of pharmaceuticals, dyes, and pesticides in modern healthcare and agriculture, along with expanding industrialization, heavily contaminates aquatic environments. This leads to severe carcinogenic implications and critical health issues in living organisms. The photocatalytic methods provide an eco-friendly solution to mitigate the energy crisis and environmental pollution. Sunlight-driven photocatalytic wastewater treatment contributes to hydrogen production and valuable product generation. The removal of contaminants from wastewater through photocatalysis is a highly efficient method for enhancing the ecosystem and plays a crucial role in the dual-functional photocatalysis process. In this review, a wide range of catalysts are discussed, including heterojunction photocatalysts and various hybrid semiconductor photocatalysts like metal oxides, semiconductor adsorbents, and dual semiconductor photocatalysts, which are crucial in this dual function of degradation and green fuel production. The effects of micropollutants in the ecosystem, degradation efficacy of multi-component photocatalysts such as single-component, two-component, three-component, and four-component photocatalysts were discussed. Dual-functional photocatalysis stands out as an energy-efficient and cost-effective method. We have explored the challenges and difficulties associated with dual-functional photocatalysts. Multicomponent photocatalysts demonstrate superior efficiency in degrading pollutants and producing hydrogen compared to their single-component counterparts. Dual-functional photocatalysts, incorporating TiO2, g-C3N4, CeO2, metal organic frameworks (MOFs), layered double hydroxides (LDHs), and carbon quantum dots (CQDs)-based composites, exhibit remarkable performance. The future of synergistic photocatalysis envisions large-scale production facilitate integrating advanced 2D and 3D semiconductor photocatalysts, presenting a promising avenue for sustainable and efficient pollutant degradation and hydrogen production from environmental remediation technologies.
Collapse
Affiliation(s)
- Surendar Balu
- Department of Prosthodontics, Centre for Nano-Biosensors, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University Chennai 600077 Tamil Nadu India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Centre for Nano-Biosensors, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University Chennai 600077 Tamil Nadu India
| | - Sandeep Arya
- Department of Physics, University of Jammu 180006 Jammu Jammu and Kashmir India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University 38541 Gyeongsan Republic of Korea
| | - Ashok K Sundramoorthy
- Department of Prosthodontics, Centre for Nano-Biosensors, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University Chennai 600077 Tamil Nadu India
| |
Collapse
|
10
|
Hu C, Chen Q, Wu S, Wang J, Zhang S, Chen L. Coupling harmful algae derived nitrogen and sulfur co-doped carbon nanosheets with CeO 2 to enhance the photocatalytic degradation of isothiazolinone biocide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120621. [PMID: 38520860 DOI: 10.1016/j.jenvman.2024.120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Removing the algae from water bodies is an effective treatment toward the worldwide frequently occurred harmful algae blooms (HAB), but processing the salvaged algae waste without secondary pollution places another burden on the economy and environment. Herein, a green hydrothermal process without any chemical addition was developed to resource the HAB algae (Microcystis sp.) into autogenous nitrogen and sulfur co-doped carbon nanosheet materials C-CNS and W-CNS, whose alga precursors were collected from pure culture and a wild bloom pond, respectively. After coupling with CeO2, the obtained optimal C-CNS/CeO2 and W-CNS/CeO2 composites photocatalytically degraded 95.4% and 88.2% of the marine pollutant 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in 90 min, significantly higher than that of pure CeO2 (63.15%). DCOIT degradation on CNS/CeO2 was further conducted under different conditions, including pH value, coexisting cations and anions, and artificial seawater. Although different influences were observed, the removal efficiencies were all above 76%. Along with the ascertained good stability and reusability in five consecutive runs, the great potential of CNS/CeO2 for practical application was validated. UV-vis DRS showed the increased light absorption of CNS/CeO2 in comparison to pure CeO2. PL spectra and photoelectrochemical measurements suggested the lowered charge transfer resistance and thereby inhibited charge recombination of CNS/CeO2. Meanwhile, trapping experiments and electron paramagnetic resonance (EPR) detection verified the primary roles of hydroxyl radical (OH) and superoxide radical (O2-) in DCOIT degradation, as well as their notably augmented generation by CNS. Consequently, a mechanism of CNS enhanced photocatalytic degradation of DCOIT was proposed. The intermediates involved in the reaction were identified by LC-QTOF-MS, giving rise to a deduced degradation pathway for DCOIT. This study offers a new approach for resourceful utilization of the notorious HAB algae waste. Besides that, photocatalytic degradation has been explored as an effective measure to remove DCOIT from the ocean.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Qingdi Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Suxin Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Jiali Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Shizhen Zhang
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
11
|
Cao J, Liu S, Wu J, Ding B, Mao L, Zhang L, Zheng S, Zhang J. Construction of a novel S-type γ-Bi 2O 3/CeO 2 heterojunction for highly efficient photocatalytic degradation of antibiotics. Phys Chem Chem Phys 2024; 26:10243-10253. [PMID: 38497485 DOI: 10.1039/d3cp03990k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cubic nanoparticles of CeO2 were partly covered on the tetrahedron surface of γ-Bi2O3 through a hydrothermal reaction and then a calcination process to construct a novel S-type γ-Bi2O3/CeO2 heterojunction. The optimized sample removed 96% of lomefloxacin and 81% of tetracycline. During the cycling test, the photocatalytic efficiency of lomefloxacin and tetracycline was maintained above 87% and 80%, respectively, for five consecutive cycles. According to XRD and Raman spectra characterization, the sample after cycling held a stable crystal structure. Holes, OH-˙, O2˙, and electrons participated in the degradation of lomefloxacin, while tetracycline was removed via the effect of the former three active substances. Based on theoretical calculation and experimental tests, the excellent photocatalytic activity of γ-Bi2O3/CeO2 came from the fast transfer of charge carriers along the S-type path. Moreover, the CB electrons of γ-Bi2O3 and VB holes of CeO2 were preserved to generate free radicals for antibiotic degradation. The colony numbers of Escherichia coli were 1.50 × 10-6 CFU mL-1 and 1.39 × 10-6 CFU mL-1 in solutions after the degradation of the two pollutants, which represents the non-toxicity of the final products. The γ-Bi2O3/CeO2 sample has a potential application for antibiotic removal from modern sewage.
Collapse
Affiliation(s)
- Jun Cao
- Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China.
| | - Shuai Liu
- Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China.
| | - Jiawei Wu
- Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China.
| | - Bangfu Ding
- Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China.
| | - Liang Mao
- School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Lei Zhang
- Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China.
| | - Shukai Zheng
- Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China.
| | - Junying Zhang
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
12
|
Siddiqui H, Kumar S, Naidu P, Gupta S, Mishra S, Goswami M, Sairkar PK, Atram L, Sathish N, Kumar S. Solanum tuberosum tuber-driven starch-mediated green-hydrothermal synthesis of cerium oxide nanoparticles for efficient photocatalysis and antimicrobial activities. CHEMOSPHERE 2024; 352:141418. [PMID: 38340994 DOI: 10.1016/j.chemosphere.2024.141418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
In this study, we are reporting for the first time the utilization of Solanum tuberosum tuber-driven, starch-mediated, green-hydrothermally synthesized cerium oxide nanoparticles (G-CeO2 NPs) for the antibacterial activity and photodegradation of cationic (methylene blue, MB) and anionic (methyl orange, MO) dyes separately and in combination, aimed at environmental remediation. The XRD analysis confirms the fluorite structure of G-CeO2 NPs, displaying an average crystallite size of 9.6 nm. Further, XPS confirms the existence of 24% of Ce3+ oxidation states within G-CeO2 NPs. Morphological studies through FE-SEM and TEM reveal that starch-driven OH- ion production leads to a high percentage of active crystal facets, favoring the formation of Ce3+-rich CeO2 NPs. Photocatalytic experiments conducted under UV-A illumination demonstrate the superior degradation performance of G-CeO2 NPs, with MB degradation reaching 93.4% and MO degradation at 77.2% within 90 min. This outstanding catalytic activity is attributed to the mesoporous structure (pore diameter of 5.63 nm) with a narrow band gap, a large surface area (103.38 m2g-1), and reduced charge recombination, as validated by BET, UV-visible, and electrochemical investigations. The identification of photogenerated intermediates is achieved through LCMS, while the mineralization is monitored via total organic carbon analysis. Moreover, the scavenging experiments point towards the involvement of reactive oxygen species in organic oxidation, demonstrating efficiency over five consecutive trials. Additionally, G-CeO2 NPs exhibit potent antibacterial activity against both gram-positive and gram-negative bacteria. This study presents an innovative, and efficient approach to environmental remediation, shedding light on the potential of G-CeO2 NPs in addressing environmental pollution challenges.
Collapse
Affiliation(s)
- Hafsa Siddiqui
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Bhopal, 462026, India
| | - Satendra Kumar
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palash Naidu
- Rani Durgavati Vishwavidyalaya, Jabalpur, 482001, India
| | - Shaily Gupta
- Department of Chemical Engineering, Vellore Institute of Technology, Vellore, 632014, India
| | - Shivi Mishra
- Rani Durgavati Vishwavidyalaya, Jabalpur, 482001, India
| | - Manoj Goswami
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pramod Kumar Sairkar
- Centre of Excellence in Biotechnology, Madhya Pradesh Council of Science & Technology, Bhopal, 462003, India
| | - Lakshmikant Atram
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Bhopal, 462026, India
| | - N Sathish
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Surender Kumar
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Subagyo R, Yudhowijoyo A, Sholeha NA, Hutagalung SS, Prasetyoko D, Birowosuto MD, Arramel A, Jiang J, Kusumawati Y. Recent advances of modification effect in Co 3O 4-based catalyst towards highly efficient photocatalysis. J Colloid Interface Sci 2023; 650:1550-1590. [PMID: 37490835 DOI: 10.1016/j.jcis.2023.07.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Tricobalt tetroxide (Co3O4) has been developed as a promising photocatalyst material for various applications. Several reports have been published on the self-modification of Co3O4 to achieve optimal photocatalytic performance. The pristine Co3O4 alone is inadequate for photocatalysis due to the rapid recombination process of photogenerated (PG) charge carriers. The modification of Co3O4 can be extended through the introduction of doping elements, incorporation of supporting materials, surface functionalization, metal loading, and combination with other photocatalysts. The addition of doping elements and support materials may enhance the photocatalysis process, although these modifications have a slight effect on decreasing the recombination process of PG charge carriers. On the other hand, combining Co3O4 with other semiconductors results in a different PG charge carrier mechanism, leading to a decrease in the recombination process and an increase in photocatalytic activity. Therefore, this work discusses recent modifications of Co3O4 and their effects on its photocatalytic performance. Additionally, the modification effects, such as enhanced surface area, generation of oxygen vacancies, tuning the band gap, and formation of heterojunctions, are reviewed to demonstrate the feasibility of separating PG charge carriers. Finally, the formation and mechanism of these modification effects are also reviewed based on theoretical and experimental approaches to validate their formation and the transfer process of charge carriers.
Collapse
Affiliation(s)
- Riki Subagyo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia
| | - Azis Yudhowijoyo
- Nano Center Indonesia, Jl PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Novia Amalia Sholeha
- College of Vocational Studies, Bogor Agricultural University (IPB University), Jalan Kumbang No. 14, Bogor 16151, Indonesia
| | | | - Didik Prasetyoko
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore
| | - Arramel Arramel
- Nano Center Indonesia, Jl PUSPIPTEK, South Tangerang, Banten 15314, Indonesia.
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, Hubei, PR China.
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia.
| |
Collapse
|
14
|
Moradian S, Badiei A, Mohammadi Ziarani G, Mohajer F, Varma RS, Iravani S. Black Phosphorus-based Photocatalysts: Synthesis, Properties, and Applications. ENVIRONMENTAL RESEARCH 2023; 237:116910. [PMID: 37597834 DOI: 10.1016/j.envres.2023.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Photocatalysis is considered as an eco-friendly and sustainable strategy, since it uses abundant light for the advancement of the reaction, which is freely accessible and is devoid of environmental pollution. During the last decades, (nano)photocatalysts have gained broad industrial applications in terms of purification and detoxification of water as well as production of green fuels and hydrogen gas due to their special attributes. The degradation or remediation of toxic and hazardous compounds from the environment or changing them into non-toxic entities is a significant endeavor and necessary for the safety of humans, animals, and the environment. Black phosphorus (BP), a two-dimensional single-element material, has a marvelous structure, tunable bandgap, changeable morphology from bulk to nanosheet/quantum dot, and unique physicochemical properties, which makes it attractive material for photocatalytic applications, especially for sustainable development purposes. Since it can serve as a photocatalyst with or without coupling with other semiconductors, various aspects for multidimensional exploitation of BP are deliberated including their preparation via solvothermal, ball milling, calcination, and sonication methods to obtain BP from red phosphorus. The techniques for improving the photocatalytic and stability of BP-based composites are discussed along with their multifaceted applications for environmental remediation, pollution degradation, water splitting, N2 fixation, CO2 reduction, bacterial disinfection, H2 generation, and photodynamic therapy. Herein, most recent advancements pertaining to the photocatalytic applications of BP-based photocatalyst are cogitated, with a focus on their synthesis and properties as well as crucial challenges and future perspectives.
Collapse
Affiliation(s)
- Sahar Moradian
- School of Chemistry, College of Science, University of Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Iran.
| | | | - Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| |
Collapse
|
15
|
Habibi M, Habibi-Yangjeh A, Akinay Y, Khataee A. Oxygen vacancy-rich CeO 2 decorated with Cu 3BiS 3 nanoparticles: Outstanding visible-light photocatalytic performance towards tetracycline degradation. CHEMOSPHERE 2023; 340:139828. [PMID: 37586492 DOI: 10.1016/j.chemosphere.2023.139828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Recently, the degradation of antibiotics has attracted a lot of attention all over the world, because the accumulation of these recalcitrant compounds in the environment, and their entry into the food chain have severely affected on human health. Herein, oxygen vacancy-rich CeO2 was decorated with Cu3BiS3 nanoparticles to fabricate Z-scheme CeO2-x/Cu3BiS3 photocatalysts with a simple procedure. Intriguingly, photocatalytic ability of CeO2-x/Cu3BiS3 (30%) nanocomposite in the detoxification of tetracycline hydrochloride, cephalexin, azithromycin, and rhodamine B was elevated 31.3, 28.2, 45.2, and 10.1-folds as much as CeO2, and 5.19, 5.97, 32.2, and 4.69-folds compared with the CeO2-x photocatalyst, respectively. The admirable activity of CeO2-x/Cu3BiS3 (30%) nanocomposite was ascribed to the production of many charge carriers, efficacious segregation and transfer of charges, and improved textural features, which were confirmed by UV-vis DRS, EIS, photocurrent density, PL, and BET analyses. In addition, the TC degradation pathway was investigated with LC-MS analysis, and also the biocompatibility of the purified solution was displayed with wheat seed cultivation. Regarding outstanding activity and facile synthesis, the CeO2-x/Cu3BiS3 (30%) photocatalyst could be utilized for wastewater treatment.
Collapse
Affiliation(s)
- Meysam Habibi
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Yuksel Akinay
- Department of Engineering, Faculty of Mining Engineering, Van Yuzuncu Yil University, Van, Turkey
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| |
Collapse
|
16
|
Abdulwahab K, Khan MM, Jennings JR. Doped Ceria Nanomaterials: Preparation, Properties, and Uses. ACS OMEGA 2023; 8:30802-30823. [PMID: 37663502 PMCID: PMC10468777 DOI: 10.1021/acsomega.3c01199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 09/05/2023]
Abstract
Doping is a powerful strategy for enhancing the performance of ceria (CeO2) nanomaterials in a range of catalytic, photocatalytic, biomedical, and energy applications. The present review summarizes recent developments in the doping of ceria nanomaterials with metal and non-metal dopants for selected applications. The most important metal dopants are grouped into s, p, d, and f block elements, and the relevant synthetic methods, novel properties, and key applications of metal doped ceria are collated and critically discussed. Non-metal dopants are similarly examined and compared with metal dopants using the same performance criteria. The review reveals that non-metal (N, S, P, F, and Cl) doped ceria has mainly been synthesized by calcination and hydrothermal methods, and it has found applications mostly in photocatalysis or as a cathode material for LiS batteries. In contrast, metal doped ceria nanomaterials have been prepared by a wider range of synthetic routes and evaluated for a larger number of applications, including as catalysts or photocatalysts, as antibacterial agents, and in devices such as fuel cells, gas sensors, and colorimetric detectors. Dual/co-doped ceria containing both metals and non-metals are also reviewed, and it is found that co-doping often leads to improved properties compared with single-element doping. The review concludes with a future outlook that identifies unaddressed issues in the synthesis and applications of doped ceria nanomaterials.
Collapse
Affiliation(s)
- Khadijat
Olabisi Abdulwahab
- Applied
Physics, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
- Department
of Chemistry, Faculty of Science, University
of Lagos, Akoka, Yaba, Lagos 101017, Nigeria
| | - Mohammad Mansoob Khan
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan
Tungku Link, Gadong BE
1410, Brunei Darussalam
- Optoelectronic
Device Research Group, Universiti Brunei
Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei
Darussalam
| | - James Robert Jennings
- Applied
Physics, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
- Optoelectronic
Device Research Group, Universiti Brunei
Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei
Darussalam
| |
Collapse
|
17
|
Alsolami ES, Mkhalid IA, Shawky A, Hussein MA. AgVO3-anchored 2D CeO2 nanocrystals prepared by solution process for visible-light-driven photooxidation of ciprofloxacin antibiotic in water. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
Kumari N, Harsh TK, Bhattacharya AS, Gaurav K, Verma R, Samdarshi SK. Enhanced photocatalytic activity of ceria-doped zinc oxide under UV illumination prepared via chemical precipitation. LUMINESCENCE 2023; 38:1282-1286. [PMID: 36255132 DOI: 10.1002/bio.4396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Abstract
Transition metal oxide has emerged as one of the most potential candidates for environment remediation by utilizing solar energy through photocatalysis. This study compares the optical characteristics of zinc oxide (ZnO) and ceria-doped zinc oxide (CeZnO) nanoparticles synthesized through a facile chemical precipitation method without using any assistant catalyst. The present work investigates the consequences of ceria (cerium dioxide, CeO2 ) intrusion on the photocatalytic activity of ZnO nanoparticles using methylene blue (MB) as a probe pollutant. The CeZnO showed an increase in photoactivity when compared to ZnO nanoparticles for degradation of MB in an aqueous solution under ultraviolet (UV) irradiance. The resulting heterojunction between ZnO and that of ceria enhances the charge separation efficiency showing a strong correlation between ZnO and CeO2 heterojunction on the charge transfer mechanism across the interface.
Collapse
Affiliation(s)
- Neha Kumari
- Centre for Excellence in Green and Efficient Energy Technology (CoE GEET), Central University of Jharkhand, Ranchi, Jharkhand, India
- Department of Energy Engineering, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Tripurari Kumar Harsh
- Department of Energy Engineering, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Arnab S Bhattacharya
- Centre for Excellence in Green and Efficient Energy Technology (CoE GEET), Central University of Jharkhand, Ranchi, Jharkhand, India
- Department of Nanoscience and Technology, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Kumar Gaurav
- Centre for Excellence in Green and Efficient Energy Technology (CoE GEET), Central University of Jharkhand, Ranchi, Jharkhand, India
- Department of Energy Engineering, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Ranjana Verma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanjoy K Samdarshi
- Centre for Excellence in Green and Efficient Energy Technology (CoE GEET), Central University of Jharkhand, Ranchi, Jharkhand, India
- Department of Energy Engineering, Central University of Jharkhand, Ranchi, Jharkhand, India
| |
Collapse
|
19
|
Fifere N, Airinei A, Doroftei F, Ardeleanu TS, Dobromir M, Tîmpu D, Ursu EL. Phytomediated-Assisted Preparation of Cerium Oxide Nanoparticles Using Plant Extracts and Assessment of Their Structural and Optical Properties. Int J Mol Sci 2023; 24:ijms24108917. [PMID: 37240263 DOI: 10.3390/ijms24108917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cerium oxide nanoparticles were obtained using aqueous extracts of Chelidonium majus and Viscum album. X-ray diffractometry analysis confirmed the crystalline structure of the synthesized cerium oxide nanoparticles calcined at 600 °C. Scanning electron microscopy, UV-Vis reflectance and Raman spectroscopy, XPS, and fluorescence studies were utilized to interpret the morphological and optical properties of these nanoparticles. The STEM images revealed the spherical shape of the nanoparticles and that they were predominantly uniform in size. The optical band gap of our cerium nanoparticles was determined to be 3.3 and 3.0 eV from reflectance measurements using the Tauc plots. The nanoparticle sizes evaluated from the Raman band at 464 cm-1 due to the F2g mode of the cubic fluorite structure of cerium oxide are close to those determined from the XRD and STEM data. The fluorescence results showed emission bands at 425, 446, 467, and 480 nm. The electronic absorption spectra have exhibited an absorption band around 325 nm. The antioxidant potential of the cerium oxide nanoparticles was estimated by DPPH scavenging assay.
Collapse
Affiliation(s)
- Nicusor Fifere
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Anton Airinei
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Tudor Stefan Ardeleanu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Marius Dobromir
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania
| | - Daniel Tîmpu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Elena-Laura Ursu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
20
|
Liu D, Shu H, Zhou J, Bai X, Cao P. Research Progress on New Environmentally Friendly Antifouling Coatings in Marine Settings: A Review. Biomimetics (Basel) 2023; 8:biomimetics8020200. [PMID: 37218786 DOI: 10.3390/biomimetics8020200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Any equipment submerged in the ocean will have its surface attacked by fouling organisms, which can cause serious damage. Traditional antifouling coatings contain heavy metal ions, which also have a detrimental effect on the marine ecological environment and cannot fulfill the needs of practical applications. As the awareness of environmental protection is increasing, new environmentally friendly and broad-spectrum antifouling coatings have become the current research hotspot in the field of marine antifouling. This review briefly outlines the formation process of biofouling and the fouling mechanism. Then, it describes the research progress of new environmentally friendly antifouling coatings in recent years, including fouling release antifouling coatings, photocatalytic antifouling coatings and natural antifouling agents derived from biomimetic strategies, micro/nanostructured antifouling materials and hydrogel antifouling coatings. Highlights include the mechanism of action of antimicrobial peptides and the means of preparation of modified surfaces. This category of antifouling materials has broad-spectrum antimicrobial activity and environmental friendliness and is expected to be a new type of marine antifouling coating with desirable antifouling functions. Finally, the future research directions of antifouling coatings are prospected, which are intended to provide a reference for the development of efficient, broad-spectrum and green marine antifouling coatings.
Collapse
Affiliation(s)
- De Liu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haobo Shu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jiangwei Zhou
- School of International Education, Wuhan University of Technology, Wuhan 430070, China
| | - Xiuqin Bai
- State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
| | - Pan Cao
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
21
|
Xu Y, Gao L, Yang J, Yang Q, Peng W, Ding Z. Effective and Efficient Porous CeO 2 Adsorbent for Acid Orange 7 Adsorption. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2650. [PMID: 37048943 PMCID: PMC10095680 DOI: 10.3390/ma16072650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
A porous CeO2 was synthesized following the addition of guanidine carbonate to a Ce3+ aqueous solution, the subsequent addition of hydrogen peroxide and a final hydrothermal treatment. The optimal experimental parameters for the synthesis of porous CeO2, including the amounts of guanidine carbonate and hydrogen peroxide and the hydrothermal conditions, were determined by taking the adsorption efficiency of acid orange 7 (AO7) dye as the evaluation. A template-free hydrothermal strategy could avoid the use of soft or hard templates and the subsequent tedious procedures of eliminating templates, which aligned with the goals of energy conservation and emission reduction. Moreover, both the guanidine carbonate and hydrogen peroxide used in this work were accessible and eco-friendly raw materials. The porous CeO2 possessed rapid adsorption capacities for AO7 dye. When the initial concentration of AO7 was less than 130 mg/L, removal efficiencies greater than 90.0% were obtained, achieving a maximum value of 97.5% at [AO7] = 100 mg/L and [CeO2] = 2.0 g/L in the first 10 min of contact. Moreover, the adsorption-desorption equilibrium between the porous CeO2 adsorbent and the AO7 molecule was basically established within the first 30 min. The saturated adsorption amount of AO7 dye was 90.3 mg/g based on a Langmuir linear fitting of the experimental data. Moreover, the porous CeO2 could be recycled using a NaOH aqueous solution, and the adsorption efficiency of AO7 dye still remained above 92.5% after five cycles. This study provided an alternative porous adsorbent for the purification of dye wastewater, and a template-free hydrothermal strategy was developed to enable the design of CeO2-based catalysts or catalyst carriers.
Collapse
Affiliation(s)
- Yaohui Xu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
- Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan 614000, China
| | - Liangjuan Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinyuan Yang
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
| | - Qingxiu Yang
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
| | - Wanxin Peng
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
| | - Zhao Ding
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
22
|
Zhang H, Wan Y, Shang S, Cheng Q, Pan Z. Construction of a direct Z-scheme CeO 2/UiO-66-NH 2 heterojunction for boosting photocatalytic organic pollutant degradation and H 2 evolution performance. Dalton Trans 2023; 52:4562-4573. [PMID: 36938860 DOI: 10.1039/d2dt03797a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
In this study, hollow CeO2 nanospheres were grown on UIO-66-NH2 nanosheets to form a novel CeO2/UiO-66-NH2 (abbreviation, CUx) Z-scheme heterojunction photocatalyst by calcination and hydrothermal method for hydrogen production and photocatalytic degradation of organic pollutants. Under visible light, the H2 generation rate of the CU0.50 composite was 5662.1 μmol g-1 h-1, which was 22 and 7 fold than that of pure CeO2 and pure UiO-66-NH2, respectively. In addition, compared with CeO2 and UiO-66-NH2, the as-prepared CUx composites exhibited enhanced photo-degradation efficiencies for tetracycline (TC) and 2,4-dichlorophenol (DCP) under simulated solar light irradiation. Among them, the CU0.50 composite demonstrated the highest photocatalytic performance and reached 91.5% for TC, and 94.3% for DCP. In addition, a logical solid-state Z-type electron transfer mechanism is presented with the results of radical scavenging and ESR experiments to illustrate the intensive decomposed ability of the photocatalytic system. The enhanced photocatalytic performance of CUx heterostructures can be attributed to the formation of a band-position-matched hollow structure heterojunction between CeO2 and UIO-66-NH2, which can effectively inhibit the recombination of carriers and increase the specific surface area as well as the light absorption. Moreover, the oxidation and reduction ability of the charge carriers was also increased. This work resulted in a feasible idea for removing organic pollutants and hydrogen production by traditional inorganic semiconductor/MOF-based heterostructured photocatalysts.
Collapse
Affiliation(s)
- Heling Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Yuqi Wan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 99907, PR China
| | - Simin Shang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Qingrong Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Zhiquan Pan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
23
|
Mao Z, Hao W, Wang W, Ma F, Ma C, Chen S. BiOI@CeO 2@Ti 3C 2 MXene composite S-scheme photocatalyst with excellent bacteriostatic properties. J Colloid Interface Sci 2023; 633:836-850. [PMID: 36495806 DOI: 10.1016/j.jcis.2022.11.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
As an influential antifouling material, photocatalytic materials have drawn attention increasingly over recent years owing to their potential bacteriostatic property in the domain of marine antifouling. Herein, a flower-like BiOI@CeO2@Ti3C2 S-scheme photocatalyst was contrived and prepared by hydrothermal method. The innovative combination of Ti3C2 and narrow band gap semiconductor BiOI was implemented to modify CeO2 and the photocatalytic bacteriostatic mechanism of BiOI@CeO2@Ti3C2 was elucidated. Schottky junction was formed between CeO2 and Ti3C2, and a p-n junction was formed between CeO2 and BiOI. By photoelectrochemical characterization, BCT-10 exhibits the best photoelectrochemical performance of which photogenerated carrier transport can be performed more readily at 10 % CeO2@Ti3C2 addition. 99.76 % and 99.89 % of photocatalytic bacteriostatic efficiency of BCT-10 against Escherichia coli and Staphylococcus aureus were implemented respectively, which were 2.98 and 3.07 times higher than that of pure CeO2. The ternary heterojunction can suppress photogenerated electron-hole complexes more effectively and enhance the photocatalytic bacteriostatic effect of CeO2, which also provided a new concept to the further broadened application of CeO2 in the marine bacteriostatic and antifouling field.
Collapse
Affiliation(s)
- Zhipeng Mao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Wei Hao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
| | - Fubin Ma
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 168 Wenhai Middle Road, Qingdao, 266237, P. R. China; Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000, P. R. China
| | - Chengcheng Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
| |
Collapse
|
24
|
Alanazi HM, AlHaddad M, Shawky A, Mohamed RM. Platinum oxide-supported sol-gel prepared CeO2 nanocubes for promoted photodestruction of atrazine under visible light irradiation. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
25
|
Kowsuki K, Nirmala R, Ra YH, Navamathavan R. Recent advances in cerium oxide-based nanocomposites in synthesis, characterization, and energy storage applications: A comprehensive review. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
26
|
Munawar T, Sardar S, Mukhtar F, Nadeem MS, Manzoor S, Ashiq MN, Khan SA, Koc M, Iqbal F. Fabrication of fullerene-supported La 2O 3-C 60 nanocomposites: dual-functional materials for photocatalysis and supercapacitor electrodes. Phys Chem Chem Phys 2023; 25:7010-7027. [PMID: 36809534 DOI: 10.1039/d2cp05357h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nowadays, water pollution and energy crises worldwide force researchers to develop multi-functional and highly efficient nanomaterials. In this scenario, the present work reports a dual-functional La2O3-C60 nanocomposite fabricated by a simple solution method. The grown nanomaterial worked as an efficient photocatalyst and proficient electrode material for supercapacitors. The physical and electrochemical properties were studied by state-of-the-art techniques. XRD, Raman spectroscopy, and FTIR spectroscopy confirmed the formation of the La2O3-C60 nanocomposite with TEM nano-graphs, and EDX mapping exhibits the loading of C60 on La2O3 particles. XPS confirmed the presence of varying oxidation states of La3+/La2+. The electrochemical capacitive properties were tested by CV, EIS, GCD, ECSA, and LSV, which indicated that the La2O3-C60 nanocomposite can be effectively used as an electrode material for durable and efficient supercapacitors. The photocatalytic test using methylene blue (MB) dye revealed the complete photodegradation of the MB dye under UV light irradiation after 30 min by a La2O3-C60 catalyst with a reusability up to 7 cycles. The lower energy bandgap, presence of deep-level emissions, and lower recombination rate of photoinduced charge carriers in the La2O3-C60 nanocomposite than those of bare La2O3 are responsible for enhanced photocatalytic activity with low-power UV irradiation. The fabrication of multi-functional and highly efficient electrode materials and photocatalysts such as La2O3-C60 nanocomposites is beneficial for the energy industry and environmental remediation applications.
Collapse
Affiliation(s)
- Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Sonia Sardar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Faisal Mukhtar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | | | - Sumaira Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shoukat Alim Khan
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Muammer Koc
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| |
Collapse
|
27
|
Singh KB, Upadhyay D, Gautam N, Snigdha, Gautam A, Pandey G. Sonochemical reassembling of Acacia nilotica bark extract mediated Mg doped WO3@g-C3N4 ternary nanocomposite: A robust nanophotocatalyst. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
28
|
Dynamic Light Scattering: A Powerful Tool for In Situ Nanoparticle Sizing. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Due to surface effects and quantum size effects, nanomaterials have properties that are vastly different from those of bulk materials due to surface effects. The particle size distribution plays an important role in chemical and physical properties. The measurement and control of this parameter are crucial for nanomaterial synthesis. Dynamic light scattering (DLS) is a fast and non-invasive tool used to measure particle size, size distribution and stability in solutions or suspensions during nanomaterial preparation. In this review, we focus on the in situ sizing of nanomaterial preparation in the form of colloids, especially for metal oxide nanoparticles (MONs). The measuring principle, including an overview of sizing techniques, advantages and limitations and theories of DLS were first discussed. The instrument design was then investigated. Ex-situ and in situ configuration of DLS, sample preparations, measurement conditions and reaction cell design for in situ configuration were studied. The MONs preparation monitored by DLS was presented, taking into consideration both ex situ and in situ configuration.
Collapse
|
29
|
Elmas F, Kırkgeçit R, Torun HÖ, Öztürk E. Investigation of Photochemical Properties of CeO2:0.1Nd and CeO2:0.05Nd0.05M(M: Dy, Sm, Tb). J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
30
|
Hassan NS, Jalil AA, Khusnun NF, Bahari MB, Hussain I, Firmansyah ML, Nugraha RE. Extra-modification of zirconium dioxide for potential photocatalytic applications towards environmental remediation: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116869. [PMID: 36455446 DOI: 10.1016/j.jenvman.2022.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic degradation is a valuable direction for eliminating organic pollutants in the environment because of its exceptional catalytic activity and low energy requirements. As one of the prospective photocatalysts, zirconium dioxide (ZrO2) is a promising candidate for photoactivity due to its favorable redox potential and higher chemical stability. ZrO2 has a high rate of electron-hole recombination and poor light-harvesting capabilities. Still, modification has demonstrated enhancements, especially extra-modification, and is therefore worthy of investigation. This present review provides a comprehensive overview of the extra-modifications of ZrO2 for enhanced photocatalytic performance, including coupling with other semiconductors, doping with metal, non-metal, and co-doping with metal and non-metal. The extra-modified ZrO2 showed superior performance in degrading the organic pollutant, particularly dyes and phenolic compounds. Interestingly, this review also briefly highlighted the probable mechanisms of the extra-modification of ZrO2 such as p-n heterojunction, type II heterojunction, and Z-scheme heterojunction. The latter heterojunction with excellent electron-hole space separation improved the photoactivity. Extensive research on ZrO2's photocatalytic potential is presented, including the removal of heavy metals, the redox of heavy metals and organic pollutants, and the evolution of hydrogen. Modified ZrO2's photocatalytic effectiveness depends on its band position, oxygen vacancy concentration, and metal defect sites. The opportunities and future problems of the extra-modified ZrO2 photocatalyst are also discussed. This review aims to share knowledge regarding extra-modified ZrO2 photocatalysts and inspire new environmental remediation applications.
Collapse
Affiliation(s)
- N S Hassan
- Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - A A Jalil
- Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - N F Khusnun
- Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia
| | - M B Bahari
- Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - I Hussain
- Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - M L Firmansyah
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Airlangga University, Jl. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
| | - R E Nugraha
- Department of Chemical Engineering, Faculty of Engineering, Universitas Pembangunan Nasional "Veteran" Jawa Timur, Surabaya 60294, Indonesia
| |
Collapse
|
31
|
Zulfa LL, Ediati R, Hidayat ARP, Subagyo R, Faaizatunnisa N, Kusumawati Y, Hartanto D, Widiastuti N, Utomo WP, Santoso M. Synergistic effect of modified pore and heterojunction of MOF-derived α-Fe 2O 3/ZnO for superior photocatalytic degradation of methylene blue. RSC Adv 2023; 13:3818-3834. [PMID: 36756550 PMCID: PMC9890639 DOI: 10.1039/d2ra07946a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023] Open
Abstract
Mesoporous heterojunction MOF-derived α-Fe2O3/ZnO composites were prepared by a simple calcination of α-Fe2O3/ZIF-8 as a sacrificial template. The optical properties confirm that coupling of both the modified pore and the n-n heterojunction effectively reduces the possibility of photoinduced charge carrier recombination under irradiation. The mesoporous Fe(25)ZnO with 25% loading of α-Fe2O3 exhibited the best performance in MB degradation, up to ∼100% after 150 minutes irradiation, higher than that of pristine ZnO and α-Fe2O3. Furthermore, after three cycles reusability, mesoporous Fe(25)ZnO still showed an excellent stability performance of up to 95.42% for degradation of MB. The proposed photocatalytic mechanism of mesoporous Fe(25)ZnO for the degradation of MB corresponds to the n-n heterojunction system. This study provides a valuable reference for preparing mesoporous MOF-derived metal oxides with an n-n heterojunction system to enhance MB photodegradation.
Collapse
Affiliation(s)
- Liyana Labiba Zulfa
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Ratna Ediati
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | | | - Riki Subagyo
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Nuhaa Faaizatunnisa
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Djoko Hartanto
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Nurul Widiastuti
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Wahyu Prasetyo Utomo
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia .,School of Energy and Environment, City University of Hong Kong Hong Kong 999077 China
| | - Mardi Santoso
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| |
Collapse
|
32
|
Apostolescu N, Tataru Farmus RE, Harja M, Vizitiu MA, Cernatescu C, Cobzaru C, Apostolescu GA. Photocatalytic Removal of Antibiotics from Wastewater Using the CeO 2/ZnO Heterojunction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:850. [PMID: 36676586 PMCID: PMC9866605 DOI: 10.3390/ma16020850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
CeO2/ZnO-based photocatalytic materials were synthesized by the sol-gel method in order to establish heterojunctions that increase the degradation efficiency of some types of antibiotics by preventing the recombination of electron-hole pairs. The synthesized materials were analysed by XRD, SEM, EDAX, FTIR, and UV-Vis. After several tests, the optimal concentration of the catalyst was determined to be 0.05 g‧L-1 and 0.025 g‧L-1 for chlortetracycline and 0.05 g‧L-1 for ceftriaxone. CeO2/ZnO assemblies showed much better degradation efficiency compared to ZnO or CeO2 tested individually. Sample S3 shows good photocatalytic properties for the elimination of ceftriaxone and tetracycline both from single solutions and from the binary solution. This work provides a different perspective to identify other powerful and inexpensive photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
| | | | - Maria Harja
- Correspondence: (M.H.); (G.A.A.); Tel.: +407-4790-9645 (M.H.); +407-542-4231 (G.A.A.)
| | | | | | | | | |
Collapse
|
33
|
Xue Y, Kamali M, Zhang X, Askari N, De Preter C, Appels L, Dewil R. Immobilization of photocatalytic materials for (waste)water treatment using 3D printing technology - advances and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120549. [PMID: 36336185 DOI: 10.1016/j.envpol.2022.120549] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Photocatalysis has been considered a promising technology for the elimination of a wide range of pollutants in water. Various types of photocatalysts (i.e., homojunction, heterojunction, dual Z-scheme photocatalyst) have been developed in recent years to address the drawbacks of conventional photocatalysts, such as the large energy band gap and rapid recombination rate of photogenerated electrons and holes. However, there are still challenges in the design of photocatalytic reactors that limit their wider application for real (waste)water treatment, such as difficulties in their recovery and reuse from treated (waste)waters. 3D printing technologies have been introduced very recently for the immobilization of materials in novel photocatalytic reactor designs. The present review aims to summarize and discuss the advances and challenges in the application of various 3D printing technologies (i.e., stereolithography, inkjet printing, and direct ink writing) for the fabrication of stable photocatalytic materials for (waste)water treatment purposes. Furthermore, the limitations in the implementation of these technologies to design future generations of photocatalytic reactors have been critically discussed, and recommendations for future studies have been presented.
Collapse
Affiliation(s)
- Yongtao Xue
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Xi Zhang
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Najmeh Askari
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Clem De Preter
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom.
| |
Collapse
|
34
|
Qamar MT, Iqbal S, Aslam M, Alhujaily A, Bilal A, Rizwan K, Farooq HMU, Sheikh TA, Bahadur A, Awwad NS, Ibrahium HA, Almufarij RS, Elkaeed EB. Transition metal doped CeO 2 for photocatalytic removal of 2-chlorophenol in the exposure of indoor white light and antifungal activity. Front Chem 2023; 11:1126171. [PMID: 37201130 PMCID: PMC10186159 DOI: 10.3389/fchem.2023.1126171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/08/2023] [Indexed: 05/20/2023] Open
Abstract
Besides natural sunlight and expensive artificial lights, economical indoor white light can play a significant role in activating a catalyst for photocatalytic removal of organic toxins from contaminated water. In the current effort, CeO2 has been modified with Ni, Cu, and Fe through doping methodology to study the removal of 2-chlorophenol (2-CP) in the illumination of 70 W indoor LED white light. The absence of additional diffractions due to the dopants and few changes such as reduction in peaks' height, minor peak shift at 2θ (28.525°) and peaks' broadening in XRD patterns of modified CeO2 verifies the successful doping of CeO2. The solid-state absorption spectra revealed higher absorbance of Cu-doped CeO2 whereas a lower absorption response was observed for Ni-doped CeO2. An interesting observation regarding the lowering of indirect bandgap energy of Fe-doped CeO2 (∼2.7 eV) and an increase in Ni-doped CeO2 (∼3.0 eV) in comparison to pristine CeO2 (∼2.9 eV) was noticed. The process of e -- h + recombination in the synthesized photocatalysts was also investigated through photoluminescence spectroscopy. The photocatalytic studies revealed the greater photocatalytic activity of Fe-doped CeO2 with a higher rate (∼3.9 × 10-3 min-1) among all other materials. Moreover, kinetic studies also revealed the validation of the Langmuir-Hinshelwood kinetic model (R2 = 0.9839) while removing 2-CP in the exposure of indoor light with a Fe-doped CeO2 photocatalyst. The XPS analysis revealed the existence of Fe3+, Cu2+ and Ni2+ core levels in doped CeO2. Using the agar well-diffusion method, the antifungal activity was assessed against the fungus M. fructicola and F. oxysporum. Compared to CeO2, Ni-doped CeO2, and Cu-doped CeO2 nanoparticles, the Fe-doped CeO2 nanoparticles have outstanding antifungal properties.
Collapse
Affiliation(s)
- M. Tariq Qamar
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), Islamabad, Pakistan
- *Correspondence: Shahid Iqbal, ; Ali Bahadur, ; Eslam B. Elkaeed,
| | - M. Aslam
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Alhujaily
- Biology Department, College of Science, Taibah University, Al Madinah Al Munawarah, Saudi Arabia
| | - Anum Bilal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | | | - Tahir Ali Sheikh
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ali Bahadur
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- *Correspondence: Shahid Iqbal, ; Ali Bahadur, ; Eslam B. Elkaeed,
| | - Nasser S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, El Maadi, Egypt
| | - Rasmiah S. Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- *Correspondence: Shahid Iqbal, ; Ali Bahadur, ; Eslam B. Elkaeed,
| |
Collapse
|
35
|
Ce 2(MoO 4) 3 synthesized with oleylamine and oleic acid as additives for photocatalysis: effect of preparation method. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:241-250. [PMID: 36156208 DOI: 10.1007/s43630-022-00308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023]
Abstract
Ce2(MoO4)3 was prepared using dielectric barrier discharge (DBD) plasma method, co-precipitation method and hydrothermal method, respectively, with water/ethanol (W/O) as solvent, oleylamine (OAm) and oleic acid (OAc) as additives. Preparation method showed significant influence on the morphological and structural properties, as well as photocatalytic performance. Ce2(MoO4)3 synthesized with DBD plasma (MO-P) was mainly flowerlike nanosheets, which were beneficial to promoting electron transfer and providing more space for catalytic activity. Also, MO-P samples exhibited more oxygen vacancies, which were conducive to the photocatalytic performance. What's more, MO-P showed lower PL intensity and narrow energy gap, which implied a slow photoelectron-hole pair recombination rate and an increased electron transfer rate. The degradation rate of methyl orange (50 mg/L) could achieve 98% within 12 min with 0.5 g/L MO-P. Hydroxyl radicals (·OH) and superoxide radicals (·O2-) played a major effect. Plasma synthesis method exhibited potential application prospect in photocatalysts preparation.
Collapse
|
36
|
Prasetyoko D, Sholeha NA, Subagyo R, Ulfa M, Bahruji H, Holilah H, Pradipta MF, Jalil AA. Mesoporous ZnO nanoparticles using gelatin — Pluronic F127 as a double colloidal system for methylene blue photodegradation. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Madaan V, Mohan B, Bhankar V, Ranga R, Kumari P, Singh P, Sillanpää M, Kumar A, Solovev AA, Kumar K. Metal-Decorated CeO2 nanomaterials for photocatalytic degradation of organic pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Mukhtar F, Munawar T, Nadeem MS, Naveed Ur Rehman M, Khan SA, Koc M, Batool S, Hasan M, Iqbal F. Dual Z-scheme core-shell PANI-CeO 2-Fe 2O 3-NiO heterostructured nanocomposite for dyes remediation under sunlight and bacterial disinfection. ENVIRONMENTAL RESEARCH 2022; 215:114140. [PMID: 36002044 DOI: 10.1016/j.envres.2022.114140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, environmental pollution due to discharge of organic pollutants from food, textile, and pharmaceutical industries into clean water and development of contagious diseases due to pathogenic organisms provide impetus to material researcher to fabricate novel design for efficient photocatalyst and antimicrobial agents. In this regard, designing a core-shell heterojunction catalyst based on metal oxides is considered an auspicious approach. In present study, combating the problems of singular oxides, core-shell PANI-CeO2-Fe2O3-NiO nanocomposite (PCFN) and CeO2-Fe2O3-NiO nanocomposite (CFN) was synthesized through sol-gel and oxidative polymerization route with cetyletrimethylammonium bromide (CTAB) as surfactant. The XRD, FTIR, and Raman confirmed the formation of nanocomposites with core-shell morphology composed of PANI (shell) and oxides (Core) in PCFN with a particle size of 52 nm (TEM). Surprisingly, PCFN has lower band gap, e-/h+ recombination, and larger charge transfer character than CFN. The decomposition test using MB and MO dyes showed that PCFN degraded 99%, 98%, while CFN degraded only 73% and 54%, respectively, under 50 min sunlight illumination. The reusability was assessed up to 7th cycle for PCFN. The influence of operational parameters (catalyst dose, dye concentration, pH) was tested for PCFN. Further, the antimicrobial action against S. aureus (gram + ve), E. coli (gram -ve) were also tested. The supreme performance of PCFN has been credited to heterostructure dual Z-scheme formation and core-shell morphology supported with PANI, which suppresses the e-/h+ recombination process by promoting their separation. The present finding indicated that the PCFN is a promising modifier for bacterial disinfection and acts as a superb photocatalyst through core-shell formation with PANI support.
Collapse
Affiliation(s)
- Faisal Mukhtar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan
| | | | | | - Shoukat Alim Khan
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Muammer Koc
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sana Batool
- Institute of Bio-Chemistry, Bio-Technology, and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Murtaza Hasan
- Institute of Bio-Chemistry, Bio-Technology, and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| |
Collapse
|
39
|
Pournemati K, Habibi-Yangjeh A, Khataee A. Rational design of TiO2/MnMoO4/MoO3 nanocomposites: Visible-light-promoted photocatalysts for decomposition of tetracycline with tandem n-n heterojunctions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Wei Y, Chen Y, Yuan R, Xue Z, Zhao L. Substitution effects of zinc porphyrin-sensitized TiO2 nanoparticles for photodegradation of AB1. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Keyikoğlu R, Doğan IN, Khataee A, Orooji Y, Kobya M, Yoon Y. Synthesis of visible light responsive ZnCoFe layered double hydroxide towards enhanced photocatalytic activity in water treatment. CHEMOSPHERE 2022; 309:136534. [PMID: 36210593 DOI: 10.1016/j.chemosphere.2022.136534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In this study, a ternary layered double hydroxide containing Zn, Co, and Fe transition metals (ZnCoFe LDH) was developed using a co-precipitation procedure. The as-synthesized photocatalyst was evaluated for its performance in the degradation of methylene blue (MB) under visible light irradiation. The effects of various process conditions including photocatalyst dosage, pollutant concentration, pH, lamp distance, and lamp power were investigated. The ZnCoFe LDH achieved approximately 74% photodegradation efficiency owing to the narrow bandgap of 2.14 eV. The Langmuir-Hinselwood rate constants were calculated as 1.17 min-1 and 3.55 min-1 for photolysis by LED lamp alone and for photocatalysis by LED/ZnCoFe LDH, respectively. The photocatalytic ability of the LDH was attributed to the generation of radical species like •OH and O2•-. The photocatalytic degradation intermediates of MB were determined by GC-MS analysis. The catalyst retained its performance throughout seven reuse cycles with only a 4.17% reduction in removal efficiency. The energy per order EEO of the ZnCoFe/LED process in 180 min treatment time was determined as 5.41 kWh.m-3. order-1. This study shows that ZnCoFe LDH has sufficient activity and photostability for long-term application in photocatalytic water treatment.
Collapse
Affiliation(s)
- Ramazan Keyikoğlu
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310, Bursa, Turkey
| | - Irmak Naz Doğan
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Mehmet Kobya
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Environmental Engineering, Kyrgyz-Turkish Manas University, 720038, Bishkek, Kyrgyzstan
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
42
|
Yang J, Long J, Huang H, Yang X, Wei L. Synthesis of visible-light driven CeO2/g-C3N5 heterojunction with enhanced photocatalytic performance for organic dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Novel Indium Vanadium Oxide Nanosheet-Supported Nickel Iron Oxide Nanoplate Heterostructure for Synergistically Enhanced Photocatalytic Degradation of Tetracycline. Catalysts 2022. [DOI: 10.3390/catal12111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Semiconductor-based heterogeneous photocatalytic oxidation processes have received considerable attention for the remediation of toxic pollutants. Herein, InVO4/NiFe2O4 nanocomposites were synthesized using a facile hydrothermal technique. Furthermore, various characterization results revealed the successful loading of NiFe2O4 nanoplates over InVO4 nanosheets, thereby signifying the formation of a heterostructure. The performance of the synthesized photocatalyst was tested for tetracycline (TC) antibiotic removal. The optimized InVO4/NiFe2O4 nanocomposite exhibits maximum photodegradation of TC molecules (96.68%) in 96 min; this is approximately 6.47 and 4.93 times higher than that observed when using NiFe2O4 and InVO4, respectively. The strong interaction between the InVO4 nanosheets and NiFe2O4 nanoplates can improve the visible-light absorption and hinder the recombination of charge carriers, further enhancing the photocatalytic performance. Moreover, hydroxyl radicals play a crucial role in the photodegradation of TC antibiotics.
Collapse
|
44
|
Fifere N, Airinei A, Asandulesa M, Rotaru A, Ursu EL, Doroftei F. Investigating the Vibrational, Magnetic and Dielectric Properties, and Antioxidant Activity of Cerium Oxide Nanoparticles. Int J Mol Sci 2022; 23:ijms232213883. [PMID: 36430362 PMCID: PMC9698846 DOI: 10.3390/ijms232213883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Dielectric, magnetic and Raman measurements of cerium oxide nanoparticles obtained by the precipitation method are discussed. Morphological study was performed by scanning electron microscopy, confirming the formation of nanoparticles of 5-27 nm. The Raman spectra exhibited a strong band around 465 cm-1, corresponding to the symmetrical stretching mode of the Ce-O8 vibrational unit. The nature of the room temperature ferromagnetism of cerium oxide nanoparticles was analyzed, taking into account the oxygen defects at the surface or interface of the nanoparticles. The evolution of dielectric constant, ε', and dielectric loss, ε″ was studied as a function of frequency at different temperatures. Additionally, the variation of the electric conductivity versus temperature was investigated. Finally, complex impedance study of the cerium oxide nanoparticles was performed.
Collapse
Affiliation(s)
- Nicusor Fifere
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Anton Airinei
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Correspondence:
| | - Mihai Asandulesa
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Aurelian Rotaru
- Faculty of Electrical Engineering and Computer Science & MANSiD Research Center, Stefan cel Mare University, 13 Str. Universitatii, 720229 Suceava, Romania
| | - Elena Laura Ursu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
45
|
Mao Z, Yang Z, Tao W, Tang Q, Xiao Y, Jiang Y, Guo S. Ultrafine Ag Nanoparticles Anchored on Hollow S-Doped CeO 2 Spheres for Synergistically Enhanced Tetracycline Degradation under Visible Light. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zifei Mao
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Ziang Yang
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Wei Tao
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Qiaoya Tang
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Yuting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People’s Republic of China
| | - Yong Jiang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, People’s Republic of China
| | - Shien Guo
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| |
Collapse
|
46
|
Jasim SA, Amin HIM, Rajabizadeh A, Nobre MAL, Borhani F, Jalil AT, Saleh MM, Kadhim MM, Khatami M. Synthesis characterization of Zn-based MOF and their application in degradation of water contaminants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2303-2335. [PMID: 36378182 PMCID: wst_2022_318 DOI: 10.2166/wst.2022.318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields such as medicine and engineering. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of ZnMOFs and the latest research progress of Zn MOF-based photocatalysts to degrade organic pollutants in water, such as organic dyes. This nanomaterial is being used to treat wastewater and has proven to be very efficient because of its exceptionally large surface area and porous nature. The results show that Zn-MOFs are capable of high degradation of the above pollutants and over 90% of degradation was observed in publications. In addition, the reusability percentage was examined and studies showed that the Zn-MOF nanostructure has very good stability and can continue to degrade a high percentage of pollutants after several cycles. This review focuses on Zn-MOFs and their composites. First, the methods of synthesis and characterization of these compounds are given. Finally, the application of these composites in the process of photocatalytic degradation of dye pollutants such as methylene blue, methyl orange, crystal violet, rhodamine B, etc. is explained.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Hawraz Ibrahim M Amin
- Chemistry Department, Salahaddin University-Erbil, Erbil, Iraq; Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Iraq
| | - Ahmad Rajabizadeh
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Marcos Augusto Lima Nobre
- School of Technology and Sciences, São Paulo State University (Unesp), Presidente Prudente, SP 19060-900, Brazil
| | - Fariba Borhani
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail:
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mustafa M Kadhim
- Department of Medical Laboratory Techniques, Dijlah University College, Baghdad 10021, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
47
|
Shi B, Zhang L, Sun H, Ren J, Wang H, Tang H, Bian Z. Efficient and recyclable Ni-Ce-Mn-N modified ordered mesoporous carbon electrode during electrocatalytic ozonation process for the degradation of simulated high-salt phenol wastewater. CHEMOSPHERE 2022; 304:135258. [PMID: 35679983 DOI: 10.1016/j.chemosphere.2022.135258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/23/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, an efficient and stable NiO/CeO2/MnO2-modified nitrogen-doped ordered mesoporous carbon (NOMC) particle electrode was developed, in which the metal oxides were mosaicked within the pore channels by one-pot skeleton hybridization, and the comodification of NiO/CeO2/MnO2/N was found to improve the electrocatalytic activity and stability of the particle electrode. The improved stability of the ordered mesoporous carbon towards pore collapse was applied to the degradation of simulated high-salt phenol wastewater by an electrocatalytic ozonation process using simple binder pelletization. The modified ordered mesoporous carbon shows a specific surface area of 269.7 m2 g-1 and a pore size of 3.17 nm, and SEM and TEM were used to show that the mesoporous structure is well maintained and the metal nanoparticles are well dispersed. The electrochemically active area of the Ni2%/Ce0.5%/Mn2.5%-NOMC particle electrode reaches 224.65 mF cm-2, which indicates that NiO improves the capacitance of the ordered mesoporous carbon and accelerates the electron transfer efficiency. Encouragingly, the phenol removal efficiency is found to reach up to 93.0% for 60 min over a wide range of pH values, with an initial phenol concentration of 150 mg L-1, low current (0.03 A) and fast reaction rate (0.0895 min-1), and the presence of CeO2 ameliorates the low activity of the particle electrode under acidic conditions. These results indicate that the presence of pyridine-N and β-MnO2 effectively mitigates carbon corrosion and improves electrode stability, as the accumulation of large amounts of ·OH at 20 min and the maintenance of a degradation efficiency of more than 90% after eight cycles provides a viable solution for the widespread practical application of ordered mesoporous carbon particle electrodes.
Collapse
Affiliation(s)
- Bingyu Shi
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Lu Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Haiying Sun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Jianan Ren
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China.
| | - Hanyu Tang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
48
|
Catalytic Dye Oxidation over CeO2 Nanoparticles Supported on Regenerated Cellulose Membrane. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.3.15384.554-564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel regenerated cellulose (RC) membrane containing cerium oxide (CeO2) nanoparticles is described in detail. In this work, CeO2 nanoparticles with high surface area and mesoporosity were prepared by a modified template-assisted precipitation method. Successful synthesis was achieved using cerium nitrate as a precursor, adjusting the final pH solution to around 11 by ammonium hydroxide and ethylene diamine, and annealing at 550 °C for 3 hours under a protective gas flow. This resulted in a surface area of 55.55 m².g–1 for the nanoparticles. The regenerated cellulose membrane containing CeO2 particles was synthesized by the novel and environmentally friendly method. The catalyst CeO2 and cellulose/CeO2 membrane were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Electron paramagnetic resonance (EPR), and Brunauer-Emmett-Teller (BET) measurements. The g-value of 2.276 has confirmed the presence of the surface superoxide species of CeO2 nanoparticles in EPR. The photocatalytic activity of the catalyst and the membrane containing the catalyst was evaluated through the degradation of methylene blue under visible light irradiation by UV-VIS measurements. The cellulose/CeO2 membrane degraded 80% of the methylene blue solution in 120 minutes, showing a better photocatalytic activity than the CeO2 catalyst, which degraded approximately 62% in the same period. It has been proven that the RC membrane is not only a good transparent supporting material but also a good adsorption for high-performance of CeO2 catalyst. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
49
|
Deka T, Ningthoukhongjam P, Yadav M, G. Nair R. Optimization of various photocatalytic reaction parameters of Degussa P25 under UV irradiation. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
50
|
Pei H, Jia Q, Guo R, Zhang T, Liu N, Mo Z. Flower-like CeO2/CdS quantum dots heterojunction nanocomposites with high photocatalytic activity for RhB degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|