1
|
Wang Y, Wang Y, Liu M, Jia R, Zhang Y, Sun G, Zhang Z, Liu M, Jiang Y. Micro-/nano-plastics as vectors of heavy metals and stress response of ciliates using transcriptomic and metabolomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124667. [PMID: 39103036 DOI: 10.1016/j.envpol.2024.124667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The escalating presence of microplastics and heavy metals in marine environments significantly jeopardizes ecological stability and human health. Despite this, research on the combined effects of microplastics/nanoplastics (MPs/NPs) and heavy metals on marine organisms remains limited. This study evaluated the impact of two sizes of polystyrene beads (approximately 2 μm and 200 nm) combined with cadmium (Cd) on the ciliate species Euplotes vannus. Results demonstrated that co-exposure of MPs/NPs and Cd markedly elevated reactive oxygen species (ROS) levels in ciliates while impairing antioxidant enzyme activities, thus enhancing oxidative damage and significantly reducing carbon biomass in ciliates. Transcriptomic profiling indicated that co-exposure of MPs/NPs and Cd potentially caused severe DNA damage and protein oxidation, as evidenced by numerous differentially expressed genes (DEGs) associated with mismatch repair, DNA replication, and proteasome function. Integrated transcriptomic and metabolomic analysis revealed that DEGs and differentially accumulated metabolites (DAMs) were significantly enriched in the TCA cycle, glycolysis, tryptophan metabolism, and glutathione metabolism. This suggests that co-exposure of MPs/NPs and Cd may reduce ciliate abundance and carbon biomass by inhibiting energy metabolism and antioxidant pathways. Additionally, compared to MPs, the co-exposure of NPs and Cd exhibited more severe negative effects due to the larger specific surface area of NPs, which can carry more Cd. These findings provide novel insights into the toxic effects of MPs/NPs and heavy metals on protozoan ciliates, offering foundational data for assessing the ecological risks of heavy metals exacerbated by MPs/NPs.
Collapse
Affiliation(s)
- Yunlong Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yaxin Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Minhao Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yan Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Gaojingwen Sun
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhaoji Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Mingjian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Evolution & Marine Biodiversity of Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Liu F, Lu J, Li J, Feng Q, Tan S, Wang J, Bao Z, Xu Z. Efficient microplastics adsorption in aqueous environments via bidirectional ordered graphene oxide/nanocellulose aerogels. Int J Biol Macromol 2024; 282:137021. [PMID: 39481731 DOI: 10.1016/j.ijbiomac.2024.137021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Microplastics not only accumulate various harmful substances but also are ingested by marine organisms and humans, causing immeasurable impacts. Therefore, the removal of microplastics has become a crucial proposition for addressing the issue of microplastic pollution. This study investigated a bidirectional ordered graphene oxide (GO)/nanocellulose aerogels (D-DPGG) to remove microplastics from water bodies. The concentration of microplastics before and after adsorption was measured using a fluorescence spectrophotometer. D-DPGG aerogel exhibited excellent adsorption performance for microplastics (241.56 mg/g) and maintained high adsorption efficiency (>80 %) over 20 cycles of adsorption testing. Additionally, the link between GO and dual-directional treatment significantly improved the aerogel microstructure. It had an apparent layered structure in the transverse direction and improves the mechanical properties. D-DPGG aerogel not only served as an effective solution in adsorption but also held promise as a novel material in directional structural design.
Collapse
Affiliation(s)
- Fei Liu
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Jiarui Lu
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Jiatian Li
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Qian Feng
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Sicong Tan
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Jinze Wang
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Zhikun Bao
- School of Foreign Studies, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Zhaoyang Xu
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China.
| |
Collapse
|
3
|
Nhon NTT, Nguyen NT, Hai HTN, Minh TH, Hien TT. Microplastic pollution in coastal surface seawater of Southern Vietnam. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1077. [PMID: 39424672 DOI: 10.1007/s10661-024-13243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Microplastics have recently emerged as a significant environmental concern due to their direct impacts on marine ecosystems. Vietnam, with its 3260-km coastline, faces an elevated risk of microplastic pollution due to various coastal anthropogenic activities. This study explored microplastic distribution in coastal surface seawater in the Southern Vietnam regions of Tien Giang, Can Gio, and Vung Tau. A total of 45 samples were collected in April, 2019, and the results showed that microplastics present at all sampling sites, with the abundance varying from 0.074 ± 0.109 pieces/m3 in Can Gio to 0.56 ± 0.35 pieces/m3 in Tien Giang. Estuarial sites showed higher abundances for all regions. Most microplastics were under 2.8 mm, fragmented, and primarily white or transparent. Polypropylene, polyethylene, and ethylene-vinyl acetate were the dominant polymers. This research indicates the urgency of further investigations to comprehensively understand the influence of wind patterns and other environmental factors on microplastic distribution.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Nhon
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen Thao Nguyen
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Ho Truong Nam Hai
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Tran Hoang Minh
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - To Thi Hien
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
4
|
Wang X, Li J, Wang D, Sun C, Zhang X, Zhao J, Teng J, Wang Q. Unveiling microplastic's role in nitrogen cycling: Metagenomic insights from estuarine sediment microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124591. [PMID: 39043311 DOI: 10.1016/j.envpol.2024.124591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/30/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Marine microplastics (MPs) pollution, with rivers as a major source, leads to MPs accumulation in estuarine sediments, which are also nitrogen cycling hotspots. However, the impact of MPs on nitrogen cycling in estuarine sediments has rarely been documented. In this study, we conducted microcosm experiment to investigate the effects of commonly encountered polyethylene (PE) and polystyrene (PS) MPs, with two MPs concentrations (0.3% and 3% wet sediment weight) based on environmental concentration considerations and dose-response effects, on sediment dissolved oxygen (DO) diffusion capacity and microbial communities using microelectrode system and metagenomic analysis respectively. The results indicated that high concentrations of PE-MPs inhibited DO diffusion during the mid-phase of the experiment, an effect that dissipated in the later stages. Metagenomic analysis revealed that MP treatments reduced the relative abundance of dominant microbial colonies in the sediments. The PCoA results demonstrated that MPs altered the microbial community structure, particularly evident under high concentration PE-MPs treatments. Functional analysis related to the nitrogen cycle suggested that PS-MPs promoted the nitrification, denitrification, and DNRA processes, but inhibited the ANRA process, while PE-MPs had an inhibitory effect on the nitrate reduction process and the ANRA process. Additionally, the high concentration of PE-MPs treatment significantly stimulated the abundance of genus (Bacillus) by 34.1% and genes (lip, pnbA) by 100-187.5% associated with plastic degradation, respectively. Overall, in terms of microbial community structure and the abundance of nitrogen cycling functional genes, PE- and PS- MPs exhibit both similarities and differences in their impact on nitrogen cycling. Our findings highlight the complexity of MP effects on nitrogen cycling in estuarine sediments and high concentrations of PE-MP stimulated plastic-degrading genus and genes.
Collapse
Affiliation(s)
- Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jiasen Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Dongyu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiaoli Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
5
|
Yang Y, Sun H, Liu Z, Wang H, Zheng R, Kanchanatip E, Yan M. Monomer production from supercritical ethanol depolymerization of PET plastic waste using Ni-ZnO/Al 2O 3 catalyst. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:318-328. [PMID: 39383572 DOI: 10.1016/j.wasman.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/02/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Plastic waste poses a serious threat to the global environment, with recycled polyethylene terephthalate (PET) plastic accounting for a considerable portion. The application of supercritical ethanol depolymerization technology presents an effective method for recycling PET waste. This study investigated using Ni as an additive to enhance the catalytic activity of ZnO/Al2O3 catalyst for PET waste depolymerization. The effects of different catalysts, catalyst dosage, reaction temperature, and reaction time on PET waste depolymerization were studied using the single-factor controlled variable method. The results showed that the 3Ni-ZnO/Al2O3 was the optimal catalyst, and under the optimal conditions with catalyst dosage of 4 %, reaction temperature of 260 °C, and reaction time of 60 min, the depolymerization efficiency of PET waste could reach 100 %, with the highest yields of diethyl terephthalate (DET) and ethylene glycol (EG) of 93.6 % and 90.2 %, respectively. Response surface methodology (RSM) was used to optimize the operating conditions to obtain the highest monomer yields. The predicted optimal parameters from RSM were as follows: reaction temperature = 262.8 °C, reaction time = 63.2 min, catalyst dosage = 3.8 wt%, with the predicted highest DET and EG yields of 95.9 % and 90.7 %, respectively. The analysis of variance (ANOVA) results for DET and EG possessed the R2 values of 0.9921 and 0.9885, respectively, with p-values < 0.0001, indicating a good fit for the models. Furthermore, after five times reuse, the 3Ni-ZnO/Al2O3 catalyst still exhibited good catalytic activity and stability. In conclusion, this study offers a clean, green, and sustainable alternative to recycling plastic waste.
Collapse
Affiliation(s)
- Yayong Yang
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongyu Sun
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zihao Liu
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haocheng Wang
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rendong Zheng
- Hangzhou Linjiang Environmental Energy Co. Ltd., Hangzhou 310018, China
| | - Ekkachai Kanchanatip
- Department of Civil and Environmental Engineering, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; Center of Excellence in Environmental Catalysis and Adsorption, Faculty of Engineering, Thammasat University, Pathumthani 12120, Thailand
| | - Mi Yan
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Mercedi A, Gentili G, Poli V, Philipp C, Rosso B, Lavagnolo MC, Hallanger I, Corami F, Meneghetti M, Litti L. Selective Labeling of Small Microplastics with SERS-Tags Based on Gold Nanostars: Method Optimization Using Polystyrene Beads and Application in Environmental Samples. ACS OMEGA 2024; 9:40821-40831. [PMID: 39371984 PMCID: PMC11447870 DOI: 10.1021/acsomega.4c05693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
Microplastics pollution is being unanimously recognized as a global concern in all environments. Routine analysis protocols foresee that samples, which are supposed to contain up to hundreds of microplastics, are eventually collected on nanoporous filters and inspected by microspectroscopy techniques like micro-FTIR or micro-Raman. All particles, whether made of plastic or not, must be inspected one by one to detect and count microplastics. This makes it extremely time-consuming, especially when Raman is adopted, and indeed mandatory for the small microplastic fraction. Inspired by the principles of cell labeling, the present study represents the first report in which gold nanostars (AuNS) are functionalized to act as SERS-tags and used to selectively couple to microplastics. The intrinsic bright signals provided by the SERS-tags are used to run a quick scan over a wide filter area with roughly 2 orders of magnitude shorter analysis time in respect of state of the art in micro- and nanoplastics detection by μ-Raman. The applicability of the present protocol has been validated at the proof-of-concept level on both fabricated and real offshore marine samples. It is indeed worth mentioning that a SERS-based approach is herein successfully applied on filters and protocols routinely adopted in environmental microplastics monitoring, paving the way for future implementations and applications.
Collapse
Affiliation(s)
- Anna Mercedi
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giulia Gentili
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Valentina Poli
- DICEA,
Department of Civil, Environmental and Architectural Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| | | | - Beatrice Rosso
- Institute
of Polar Sciences, CNR-ISP, Campus Scientifico, Via Torino 155, 30172 Venezia-Mestre, Italy
- Department
of Environmental Sciences, Informatics, and Statistics, DAIS, Campus
Scientifico, Ca’Foscari University
of Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Maria Cristina Lavagnolo
- DICEA,
Department of Civil, Environmental and Architectural Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| | | | - Fabiana Corami
- Institute
of Polar Sciences, CNR-ISP, Campus Scientifico, Via Torino 155, 30172 Venezia-Mestre, Italy
- Department
of Environmental Sciences, Informatics, and Statistics, DAIS, Campus
Scientifico, Ca’Foscari University
of Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Moreno Meneghetti
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Lucio Litti
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
7
|
Aydin S, Ulvi A, Aydin ME. Occurrence, characteristics, and risk assessment of microplastics and polycyclic aromatic hydrocarbons associated with microplastics in surface water and sediments of the Konya Closed Basin, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57989-58009. [PMID: 39305415 DOI: 10.1007/s11356-024-35029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/15/2024] [Indexed: 10/11/2024]
Abstract
The presence of polycyclic hydrocarbons (PAHs) and microplastics (MPs) in aquatic environments affects the ecosystems and threatens human health. In this study, the abundance, composition, and morphological characteristics of MPs were determined for the first time in the inland freshwater resources of the Konya Closed Basin, Turkey. The abundance of MPs ranged from 1139 to 23,444 particles/m3 and 150 to 3510 particles/kg in the surface water and sediment, respectively. Fragments and fibers were the most abundant MP shapes in the surface waters (51%, 34%) and sediments (29%, 40%), followed by films, pellets, and foams. Transparent and white MPs were present at the highest percentage in surface waters (72%) and sediments (69%), followed by blue, grey, black, brown, and green. In addition, polyethylene, polypropylene, and cellophane were identified as the main polymers in surface waters (34%, 25%, 24%) and sediments (37%, 17%, 31%). In the Konya Closed Basin, 35% of the surface water samples and 54% of the sediment samples were exposed to very high contamination (CF ≥ 6). Surface waters (PLI: 2.51) and sediments (PLI: 1.67) in the basin were contaminated (PLI > 1) with MPs. The 16 PAHs sorbed on MPs in the surface water and sediment ranged from 394 to 24,754 ng/g and from 37 to 18,323 ng/g, respectively. Phenanthrene and fluoranthene were the most abundant PAHs sorbed on MPs in all surface waters and sediments. Two to three-ring PAH compounds sorbed on MPs were also dominantly detected in surface waters and sediments, accounting for 68% and 78% of the total 16 PAHs, respectively. The source of PAHs carried by MPs in the Konya Closed Basin was mainly of petrogenic origin. Incremental lifetime cancer risk (ILCR) results indicated that the maximum ILCR values were higher than the EPA acceptable level (10-6) for child (2.95 × 10-5) and adult (1.46 × 10-4), indicating a potential cancer risk.
Collapse
Affiliation(s)
- Senar Aydin
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| | - Arzu Ulvi
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Emin Aydin
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
8
|
Kwiatkowska K, Ormaniec P. Microbial Succession on Microplastics in Wastewater Treatment Plants: Exploring the Complexities of Microplastic-Microbiome Interactions. MICROBIAL ECOLOGY 2024; 87:105. [PMID: 39133233 PMCID: PMC11319512 DOI: 10.1007/s00248-024-02422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Despite some effectiveness of wastewater treatment processes, microplastics accumulate in sewage sludge and their further use may contribute to the release of plastic microplastics into the environment. There is an urgent need to reduce the amount of microplastics in sewage sludge. Plastic particles serve as solid substrates for various microorganisms, promoting the formation of microbial biofilms with different metabolic activities. The biofilm environment associated with microplastics will determine the efficiency of treatment processes, especially biological methods, and the mechanisms of organic compound conversion. A significant source of microplastics is the land application of sewage sludge from wastewater treatment plants. The detrimental impact of microplastics affects soil enzymatic activity, soil microorganisms, flora, fauna, and plant production. This review article summarizes the development of research related to microplastics and discusses the issue of microplastic introduction from sewage sludge. Given that microplastics can contain complex composite polymers and form a plastisphere, further research is needed to understand their potential environmental impact, pathogenicity, and the characteristics of biofilms in wastewater treatment systems. The article also discusses the physicochemical properties of microplastics in wastewater treatment plants and their role in biofilm formation. Then, the article explained the impact of these properties on the possibility of the formation of biofilms on their surface due to the peculiar structure of microorganisms and also characterized what factors enable the formation of specific plastisphere in wastewater treatment plants. It highlights the urgent need to understand the basic information about microplastics to assess environmental toxicity more rationally, enabling better pollution control and the development of regulatory standards to manage microplastics entering the environment.
Collapse
Affiliation(s)
- Klaudia Kwiatkowska
- Department of Environmental Technologies, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland.
| | - Paulina Ormaniec
- Department of Environmental Technologies, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
| |
Collapse
|
9
|
Luo W, Fu H, Lu Q, Li B, Cao X, Chen S, Liu R, Tang B, Yan X, Zheng J. Microplastic pollution differences in freshwater river according to stream order: Insights from spatial distribution, annual load, and ecological assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121836. [PMID: 39018841 DOI: 10.1016/j.jenvman.2024.121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Microplastic (MP) pollution has become a pressing concern in global freshwater ecosystems because rivers serve as essential channels for the transport of terrestrial debris to the ocean. The current researches mostly focus on the large catchments, but the impact on the small catchments remains underexplored. In this study, we employed Strahler's stream order classification to delineate the catchment structure of the Beijiang River in South China. The distribution pattern of MP contamination and the factors influencing the distribution pattern, were assessed across the streams at different orders. We found that the Beijiang River was moderately polluted compare to other rivers in China, with an average MP abundance of 2.15 ± 1.65 items/L. MP abundance ranged from 3.17 to 1.45 items/L in the streams at different orders, and significantly decreased with increasing stream order (R2 = 0.93). This highlights the key role of small rivers as the channels for the transport of MPs from watersheds to main streams. The high abundance of PP and PE fibers, the high correlation between the stream order and the resin proportion (R2 = 0.89), and the significant correlation between MP abundance and proximity to urban centers (P = 0.02), indicated that MP pollution across the streams at different orders was predominantly influenced by anthropogenic activities, rather than natural environmental factors. By integrating MP data with hydrographic information, the annual MP loads for the streams at Orders 1 to Order 5 were estimated to be 4.63, 39.38, 204.63, 503.06, and 1137.88 tons/yr, respectively. Additionally, an ecological risk assessment indicates that MP pollution led to a low risk in the Beijiang River. Our findings deepen the understanding of MP pollution within freshwater river networks, and emphasize the crucial role of tributary systems in transporting MPs to main river channels.
Collapse
Affiliation(s)
- Weikeng Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongyu Fu
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Qiyuan Lu
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China.
| | - Bowen Li
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China.
| | - Xue Cao
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Sifan Chen
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Ruijuan Liu
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Bin Tang
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Xiao Yan
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Jing Zheng
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| |
Collapse
|
10
|
Zhang Y, Zhao B, Zhang X, Li Y, Liu H, Zhang J, Wang T. Effect of Polystyrene Microplastics on Pb(II) Adsorption onto a Loessial Soil (Sierozem) and Its Mechanism. ACS OMEGA 2024; 9:32021-32032. [PMID: 39072141 PMCID: PMC11270551 DOI: 10.1021/acsomega.4c03809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Microplastics (MPs) have received significant attention recently. However, their influence on soil heavy metal adsorption remains unclear. The effect of polystyrene (PS) MPs on the adsorption of Pb(II) onto a loessial soil (sierozem) was studied by batch experiments in single soil (S), soil with 1 mm PS (S-PS1), and soil with 100 μm PS (S-PS100) systems. The mechanisms of Pb(II) adsorption reduction were investigated. The adsorption of Pb(II) reached equilibrium within 12 h, and the pseudo-second-order model fitted the adsorption processes best. The Langmuir adsorption model provided a better fit to the isotherms, compared to the Freundlich one. The presence of PS decreased the level of adsorption of Pb(II). Larger PS particle size, dose, and fulvic acid (FA) concentration inhibited Pb(II) adsorption onto the soil. The solution pH value showed a positive correlation with the adsorption amount. The adsorption amounts (q e) of Pb(II) in binary metal systems (Cu-Pb and Cd-Pb) were lower than those in single Pb systems, indicating the competitive adsorption among the ions. The adsorption amount presented a trend of S > S-PS100 > S-PS1. The primary mechanism on which PS reduced the adsorption of Pb(II) was the "dilution effect" of MPs. Conclusively, the presence of MPs might elevate the availability of heavy metals by reducing the soil's adsorption capacity for them and then amplifying the risk of heavy metal contamination and migration.
Collapse
Affiliation(s)
- Yin Zhang
- School of Environmental and
Municipal Engineering, Lanzhou Jiaotong
University, Lanzhou 730070, Gansu Province, P. R. China
| | - Baowei Zhao
- School of Environmental and
Municipal Engineering, Lanzhou Jiaotong
University, Lanzhou 730070, Gansu Province, P. R. China
| | - Xin Zhang
- School of Environmental and
Municipal Engineering, Lanzhou Jiaotong
University, Lanzhou 730070, Gansu Province, P. R. China
| | - Yingquan Li
- School of Environmental and
Municipal Engineering, Lanzhou Jiaotong
University, Lanzhou 730070, Gansu Province, P. R. China
| | - Hui Liu
- School of Environmental and
Municipal Engineering, Lanzhou Jiaotong
University, Lanzhou 730070, Gansu Province, P. R. China
| | - Jian Zhang
- School of Environmental and
Municipal Engineering, Lanzhou Jiaotong
University, Lanzhou 730070, Gansu Province, P. R. China
| | - Tao Wang
- School of Environmental and
Municipal Engineering, Lanzhou Jiaotong
University, Lanzhou 730070, Gansu Province, P. R. China
| |
Collapse
|
11
|
Zhao P, Wang X, Jiang H, Zhang B, Chen L, Zhao J, Teng J, Wang Q. Vertical distribution of microplastics in sediment columns along the coastline of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174685. [PMID: 38997042 DOI: 10.1016/j.scitotenv.2024.174685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
At present, there has been relatively less coverage of microplastics (MPs) pollution in sediment columns, especially across a large geographical span. This study collected sediment columns across 11 provinces along the coastline of China for MPs pollution investigation. The study found higher MPs diversity (Simpson diversity index) in sediment columns than in surface sediments, mostly comprising fiber MPs with dominant transparent and blue colors. Lower MPs pollution was noted in mangrove reserves, while estuarine and coastal areas showed higher pollution levels. Spearman correlation analysis shows that vertical of MPs abundance significantly decreased with depth at 6 of 11 sites. Large-sized MPs with diverse colors in deeper sediments (>40 cm) suggests that burial processes may render MPs more resistant to degradation. Our research highlights varied MPs distribution in coastal sediment, aiding future marine MPs pollution prediction and assessment.
Collapse
Affiliation(s)
- Peng Zhao
- School of Marine Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Hongyou Jiang
- Tianjin Marine Environment Monitoring Center, SOA, Tianjin 300457, PR China
| | - Bin Zhang
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, PR China
| | - Liang Chen
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
12
|
Kazmi SSUH, Tayyab M, Pastorino P, Barcelò D, Yaseen ZM, Grossart HP, Khan ZH, Li G. Decoding the molecular concerto: Toxicotranscriptomic evaluation of microplastic and nanoplastic impacts on aquatic organisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134574. [PMID: 38739959 DOI: 10.1016/j.jhazmat.2024.134574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The pervasive and steadily increasing presence of microplastics/nanoplastics (MPs/NPs) in aquatic environments has raised significant concerns regarding their potential adverse effects on aquatic organisms and their integration into trophic dynamics. This emerging issue has garnered the attention of (eco)toxicologists, promoting the utilization of toxicotranscriptomics to unravel the responses of aquatic organisms not only to MPs/NPs but also to a wide spectrum of environmental pollutants. This review aims to systematically explore the broad repertoire of predicted molecular responses by aquatic organisms, providing valuable intuitions into complex interactions between plastic pollutants and aquatic biota. By synthesizing the latest literature, present analysis sheds light on transcriptomic signatures like gene expression, interconnected pathways and overall molecular mechanisms influenced by various plasticizers. Harmful effects of these contaminants on key genes/protein transcripts associated with crucial pathways lead to abnormal immune response, metabolic response, neural response, apoptosis and DNA damage, growth, development, reproductive abnormalities, detoxification, and oxidative stress in aquatic organisms. However, unique challenge lies in enhancing the fingerprint of MPs/NPs, presenting complicated enigma that requires decoding their specific impact at molecular levels. The exploration endeavors, not only to consolidate existing knowledge, but also to identify critical gaps in understanding, push forward the frontiers of knowledge about transcriptomic signatures of plastic contaminants. Moreover, this appraisal emphasizes the imperative to monitor and mitigate the contamination of commercially important aquatic species by MPs/NPs, highlighting the pivotal role that regulatory frameworks must play in protecting all aquatic ecosystems. This commitment aligns with the broader goal of ensuring the sustainability of aquatic resources and the resilience of ecosystems facing the growing threat of plastic pollutants.
Collapse
Affiliation(s)
- Syed Shabi Ul Hassan Kazmi
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Muhammad Tayyab
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, PR China
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| | - Damià Barcelò
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, (IGB), Alte Fischerhuette 2, Neuglobsow, D-16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, D-14469 Potsdam, Germany
| | - Zulqarnain Haider Khan
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| |
Collapse
|
13
|
Solhaug A, Vlegels S, Eriksen GS. Atlantic salmon gill epithelial cell line ASG-10, an in vitro model for studying effects of microplastics in gills. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106946. [PMID: 38759525 DOI: 10.1016/j.aquatox.2024.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Microplastics are ubiquitous environmental pollutants frequently detected in aquatic environments. Here we used the Atlantic salmon epithelial gill cell line (ASG-10) to investigate the uptake and effects of polystyrene (PS) microplastic. The ASG-10 cell line has phagocytotic/endocytic capacities and can take up clear PS particles at 0.2 and 1.0 µm, while PS at 10 µm was not taken up. As a response to the uptake, the ASG-10 cells increased their lysosomal activity. Furthermore, no effects on the mitochondria were found, neither on the mitochondrial membrane potential nor the mitochondria morphology (branch length and diameter). Interestingly, even a very high concentration of PS (200 µg/ml) with all tested particle sizes had no effects on cell viability or cell cycle. The environmental toxin Benzo(a)pyrene (B(a)P), a known inducer of CYP1A, is highly hydrophobic and thus sticks to the PS particles. However, co-exposure of B(a)P and PS the particles did not increase the induction of CYP1A activity compared to B(a)P alone. Our study contributes to the understanding of the cellular effects of PS particles using a highly relevant Atlantic salmon gill epithelium in vitro model.
Collapse
Affiliation(s)
- Anita Solhaug
- Chemistry and Toxinology Research group, Norwegian Veterinary Institute, 1431 Ås, Norway.
| | - Sarah Vlegels
- Chemistry and Toxinology Research group, Norwegian Veterinary Institute, 1431 Ås, Norway
| | | |
Collapse
|
14
|
Xiong G, Zhang H, Peng Y, Shi H, Han M, Hu T, Wang H, Zhang S, Wu X, Xu G, Zhang J, Liu Y. Subchronic co-exposure of polystyrene nanoplastics and 3-BHA significantly aggravated the reproductive toxicity of ovaries and uterus in female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124101. [PMID: 38710361 DOI: 10.1016/j.envpol.2024.124101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Both nanoplastics (NPs) and 3-tert-butyl-4-hydroxyanisole (3-BHA) are environmental contaminants that can bio-accumulate through the food chain. However, the combined effects of which on mammalian female reproductive system remain unclear. Here, the female ICR-CD1 mice were used to evaluate the damage effects of ovaries and uterus after NPs and 3-BHA co-treatment for 35 days. Firstly, co-exposure significantly reduced the body weight and organ index of ovaries and uterus in mice. Secondly, combined effects of NPs and 3-BHA exacerbated the histopathological abnormalities to the ovaries and uterus and decreased female sex hormones such as FSH and LH while increased antioxidant activities including CAT and GSH-Px. Moreover, the apoptotic genes, inflammatory cytokines and the key reproductive development genes such as FSTL1 were significantly up-regulated under co-exposure conditions. Thirdly, through transcriptional and bioinformatics analysis, immunofluorescence and western blotting assays, together with molecular docking simulation, we determined that co-exposure up-regulated the FSTL1, TGF-β and p-Smad1/5/9 but down-regulated the expression of BMP4. Finally, the pharmacological rescue experiments further demonstrated that co-exposure of NPs and 3-BHA mainly exacerbated the female reproductive toxicity through FSTL1-mediated BMP4/TGF-β/SMAD signaling pathway. Taken together, our studies provided the theoretical basis of new environmental pollutants on the reproductive health in female mammals.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Haiyan Zhang
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China; College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Yulin Peng
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Huangqi Shi
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Meiling Han
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Tianle Hu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Hongcheng Wang
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Shangrong Zhang
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xiaoqing Wu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Gaoxiao Xu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Jun'e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Yong Liu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China.
| |
Collapse
|
15
|
Sacco VA, Zuanazzi NR, Selinger A, Alliprandini da Costa JH, Spanhol Lemunie É, Comelli CL, Abilhoa V, Sousa FCD, Fávaro LF, Rios Mendoza LM, de Castilhos Ghisi N, Delariva RL. What are the global patterns of microplastic ingestion by fish? A scientometric review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123972. [PMID: 38642794 DOI: 10.1016/j.envpol.2024.123972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
The billions of tons of plastic released into the environment mostly fragment into smaller particles that reach rivers and oceans, posing toxicity risks to aquatic organisms. As fish serve as excellent environmental indicator organisms, this study aims to comprehensively review and quantify published data regarding the abundance of microplastics (MPs) ingested by fish through scientometric analysis. Systematic analysis reveals that global aquatic ecosystems are contaminated by MPs, with the characteristics of these contaminants stemming from inadequate disposal management practices. The abundance of MPs was recorded in several fish species, notably Cyprinus carpio in natural environments and Danio rerio in controlled environments. According to the surveyed studies, laboratory experiments do not accurately represent the conditions found in natural environments. The results suggest that, in natural environments, the predominant colors of MPs are blue, black, and red. Fibers emerged as the most prevalent type, with polyethylene (PE) and polypropylene (PP) being the most frequently identified chemical compositions. On the other hand, laboratory studies showed that the spheres and fragments ingested were predominantly polystyrene (PS) green, followed by the colors blue and red. This discrepancy complicates drawing accurate conclusions regarding the actual effects of plastic particles on aquatic biota. Given the enduring presence of plastic in the environment, it is imperative to consider and implement environmental monitoring for effective, long-term management.
Collapse
Affiliation(s)
- Vania Aparecida Sacco
- Graduate Program in Comparative Biology, State University of Maringá (UEM), Maringá, Brazil.
| | - Natana Raquel Zuanazzi
- Graduate Program in Comparative Biology, State University of Maringá (UEM), Maringá, Brazil.
| | - Amanda Selinger
- Laboratory of Biology of Marine and Coastal Organisms, Santa Cecília University (UNISANTA), Santos, São Paulo State, Brazil.
| | - João Henrique Alliprandini da Costa
- Laboratory of Ecophysiology and Aquatic Toxicology, São Paulo State University "Júlio de Mesquita Filho" - (UNESP), Campus do Litoral Paulista, 11330-900, São Vicente, SP, Brazil.
| | - Érika Spanhol Lemunie
- Graduate Program in Conservation and Management of Natural Resources, State University of West Paraná (Unioeste), Cascavel, Brazil.
| | - Camila Luiza Comelli
- Graduate Program in Biotechnology - PPGBIOTEC - Universidade Tecnológica Federal do Paraná (UTFPR) Dois Vizinhos, Brazil.
| | - Vinícius Abilhoa
- Laboratório de Ictiologia, Museu de História Natural Capão da Imbuia. Prefeitura Municipal de Curitiba, Secretaria Municipal do Meio Ambiente, Rua Prof. Benedito Conceição, 407 - Capão da Imbuia, CEP 82810080, Curitiba, PR, Brazil.
| | - Fernando Carlos de Sousa
- Laboratório de Anatomia Humana, Universidade Tecnológica Federal do Paraná (UTFPR) Dois Vizinhos, Brazil.
| | - Luis Fernando Fávaro
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| | - Lorena M Rios Mendoza
- Program of Chemistry and Physics, Department of Natural Sciences, University of Wisconsin-Superior, Belknap and Catlin, P.O. Box 2000, Superior, WI, 54880, USA.
| | - Nédia de Castilhos Ghisi
- Graduate Program in Biotechnology - PPGBIOTEC - Universidade Tecnológica Federal do Paraná (UTFPR) Dois Vizinhos, Brazil.
| | - Rosilene Luciana Delariva
- Graduate Program in Comparative Biology, State University of Maringá (UEM), Maringá, Brazil; Laboratory of Ichthyology, Ecology and Biomonitoring, State University of West Paraná (Unioeste), Rua Universitária, University Garden, 1619, Cascavel, PR, Brazil.
| |
Collapse
|
16
|
Devi SS, Gouri BR, Anjali S, Kumar AB. Microplastic contamination in Ashtamudi Lake, India: Insights from a Ramsar wetland. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104367. [PMID: 38772271 DOI: 10.1016/j.jconhyd.2024.104367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Estuaries function as temporary storage sites for plastic debris, influencing the distribution of microplastics (MPs) across ecosystems. This research delves into the presence of MPs in the water, sediment, fish, and shellfish of Ashtamudi Lake, a Ramsar wetland with brackish water located on the southwest coast of India. Given the lake's significance in supporting the livelihoods of numerous fishers and acting as a vital source of fishery resources for both local consumption and export, examining the contamination of the system by MPs becomes particularly pertinent. The highest percentage composition of MPs was found in macrofauna at 60.6% (with fish at 19.6% and shellfish at 40.9%), followed by sediment (22.8%) and water (16.7%). The primary types of MPs identified in all samples were fibers (35.6%), fragments (33.3%), and films (28%), with beads being the least represented at 3.03%. ATR-FTIR and Raman spectra analysis identified five polymers from shellfish (polypropylene, polyethylene, polystyrene, nylon, and polyvinyl chloride), five from fish guts (nylon, polypropylene, polyethylene, polyurethane, and polysiloxane), four in sediment (polypropylene, polyethylene, nylon, rayon), and four in water samples (polypropylene, polyethylene, nylon, and polystyrene). SEM-EDAX analysis of MPs obtained from the samples revealed degradation and the presence of inorganic elements such as Na, Mg, Al, Si, S, K, Cl, P, and Ca, as well as heavy metals like Pb, Mo, Rh, Pd, Ti, and Fe. The existence of these plastic polymers and heavy metals in microplastic samples poses a threat to vulnerable biota; people consume contaminated fish and shellfish, underscoring the importance of monitoring MPs in lake water. This investigation of MPs in Ashtamudi Lake highlights the system's susceptibility to plastic pollution and the bioavailability of smaller MPs to aquatic organisms. Identified sources of MPs in the lake include fishing and aquaculture activities, sewage pollution, improper solid waste management in lake watersheds, and unsustainable tourism. Upstream and downstream management interventions are recommended to address MP pollution in Ashtamudi Lake.
Collapse
Affiliation(s)
- Suvarna S Devi
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | - Beena Ramachandran Gouri
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | - S Anjali
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | - Appukuttannair Biju Kumar
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
17
|
Lin H, Li X, Hu W, Yu S, Li X, Lei L, Yang F, Luo Y. Landscape and risk assessment of microplastic contamination in farmed oysters and seawater along the coastline of China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134169. [PMID: 38565022 DOI: 10.1016/j.jhazmat.2024.134169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Microplastic (MP) pollution poses a significant threat to marine ecosystem and seafood safety. However, comprehensive and comparable assessments of MP profiles and their ecological and health in Chinese farming oysters are lacking. This study utilized laser infrared imaging spectrometer (LDIR) to quantify MPs in oysters and its farming seawater at 18 sites along Chinese coastlines. Results revealed a total of 3492 MPs in farmed oysters and seawater, representing 34 MP types, with 20-100 µm MP fragments being the dominant. Polyurethane (PU) emerged as the predominant MP type in oysters, while polysulfones were more commonly detected in seawater. Notably, oysters from the Bohai Sea exhibited a higher abundance of MPs (13.62 ± 2.02 items/g) and estimated daily microplastic intake (EDI, 2.14 ± 0.26 items/g/kg·bw/day), indicating a greater potential health risk in the area. Meanwhile, seawater from the Yellow Sea displayed a higher level (193.0 ± 110.7 items/L), indicating a greater ecological risk in this region. Given the pervasiveness and abundance of PU and its high correlation with other MP types, we proposed PU as a promising indicator for monitoring and assessing the risk MP pollution in mariculture in China. These findings provide valuable insights into the extent and characteristics of MP pollution in farmed oysters and seawater in China.
Collapse
Affiliation(s)
- Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Xin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Shenbo Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Tural Affairs, Tianjin 300191, China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
18
|
Nyaga MP, Shabaka S, Oh S, Osman DM, Yuan W, Zhang W, Yang Y. Microplastics in aquatic ecosystems of Africa: A comprehensive review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 248:118307. [PMID: 38307187 DOI: 10.1016/j.envres.2024.118307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Microplastic pollution is a global issue of great public concern. Africa is flagged to host some of the most polluted water bodies globally, but there is no enough information on the extent of microplastic contamination and the potential risks of microplastic pollution in African aquatic ecosystems. This meta-analysis has integrated data from published articles about microplastic pollution in African aquatic ecosystems. The data on the microplastic distribution and morphological characteristics in water, sediments and biota from African rivers, lakes, oceans and seas were extracted from 75 selected studies. Multivariate statistics were used to critically analyze the effects of sampling and detection methods, ecological risks, spatial distribution and similarity of microplastics in relation to the geographical distance between sampling sites. This study found that sampling methods have significant effect on abundance and morphological characteristics of microplastics and that African aquatic ecosystems are highly contaminated with microplastics compared to global data. The most prevalent colors were white, transparent and black, the most prevalent shapes were fibres and fragments, and the most available polymers were polypropylene (PP), polystyrene (PS) and polyethene terephthalate (PET). Microplastic polymers similarity decreased with an increase in geographical distance between sites. Risk levels of microplastics in African aquatic ecosystems were comparatively high, and more than 40 % of water and sediments showed highest level of ecological risk. This review provides recent information on the prevalence, distribution and risks of microplastics in African aquatic ecosystems.
Collapse
Affiliation(s)
- Muthii Patrick Nyaga
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Soha Shabaka
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Donia M Osman
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
19
|
Ribeiro VV, Avelino Soares TM, De-la-Torre GE, Casado-Coy N, Sanz-Lazaro C, Castro ÍB. Microplastics in rocky shore mollusks of different feeding habits: An assessment of sentinel performance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123571. [PMID: 38373623 DOI: 10.1016/j.envpol.2024.123571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Microplastics (MPs) accumulation in rocky shore organisms has limited knowledge. This study investigated MPs accumulation in filter-feeding oysters, herbivorous limpets and carnivorous snails to assess their performance as sentinel species in the MPs trophic transfer. The samples were obtained along a contamination gradient in the Santos Estuarine System, Brazil. All three studied species showed MPs concentrations related to the contamination gradient, being the oysters the species that showed the highest levels, followed by limpets and snails (average of less and most contaminated sites of 1.06-8.90, 2.28-5.69 and 0.44-2.10 MP g-1, respectively), suggesting that MPs ingestion rates are linked to feeding habits. MPs were mainly polystyrene and polyacetal. The polymer types did not vary among sites nor species. Despite minor differences in percentages and diversity of size, shape, and color classes, the analyzed species were equally able to demonstrate dominance of small, fiber, transparent, black and blue MPs. Thus, oysters, limpets, and snails are proposed as sentinels of MPs in monitoring assessments.
Collapse
Affiliation(s)
| | | | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Nuria Casado-Coy
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, Spain
| | - Carlos Sanz-Lazaro
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, Spain; Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | | |
Collapse
|
20
|
Theobald B, Risani R, Donaldson L, Bridson JH, Kingsbury JM, Pantos O, Weaver L, Lear G, Pochon X, Zaiko A, Smith DA, Anderson R, Davy B, Davy S, Doake F, Masterton H, Audrezet F, Maday SDM, Wallbank JA, Barbier M, Greene AF, Parker K, Harris J, Northcott GL, Abbel R. An investigation into the stability and degradation of plastics in aquatic environments using a large-scale field-deployment study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170301. [PMID: 38272094 DOI: 10.1016/j.scitotenv.2024.170301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The fragmentation of plastic debris is a key pathway to the formation of microplastic pollution. These disintegration processes depend on the materials' physical and chemical characteristics, but insight into these interrelationships is still limited, especially under natural conditions. Five plastics of known polymer/additive compositions and processing histories were deployed in aquatic environments and recovered after six and twelve months. The polymer types used were linear low density polyethylene (LLDPE), oxo-degradable LLDPE (oxoLLDPE), poly(ethylene terephthalate) (PET), polyamide-6 (PA6), and poly(lactic acid) (PLA). Four geographically distinct locations across Aotearoa/New Zealand were chosen: three marine sites and a wastewater treatment plant (WWTP). Accelerated UV-weathering under controlled laboratory conditions was also carried out to evaluate artificial ageing as a model for plastic degradation in the natural environment. The samples' physical characteristics and surface microstructures were studied for each deployment location and exposure time. The strongest effects were found for oxoLLDPE upon artificial ageing, with increased crystallinity, intense surface cracking, and substantial deterioration of its mechanical properties. However, no changes to the same extent were found after recovery of the deployed material. In the deployment environments, the chemical nature of the plastics was the most relevant factor determining their behaviours. Few significant differences between the four aquatic locations were identified, except for PA6, where indications for biological surface degradation were found only in seawater, not the WWTP. In some cases, artificial ageing reasonably mimicked the changes which some plastic properties underwent in aquatic environments, but generally, it was no reliable model for natural degradation processes. The findings from this study have implications for the understanding of the initial phases of plastic degradation in aquatic environments, eventually leading to microplastics formation. They can also guide the interpretation of accelerated laboratory ageing for the fate of aquatic plastic pollution, and for the testing of aged plastic samples.
Collapse
Affiliation(s)
| | | | | | - James H Bridson
- Scion, Rotorua 3010, New Zealand; University of Canterbury, Christchurch 8140, New Zealand
| | - Joanne M Kingsbury
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Gavin Lear
- University of Auckland, Auckland 1010, New Zealand
| | - Xavier Pochon
- University of Auckland, Auckland 1010, New Zealand; Cawthron Institute, Nelson 7010, New Zealand
| | | | | | | | - Ben Davy
- Scion, Rotorua 3010, New Zealand
| | | | - Fraser Doake
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Hayden Masterton
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - François Audrezet
- University of Auckland, Auckland 1010, New Zealand; Cawthron Institute, Nelson 7010, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shao Y, Hua X, Li Y, Wang D. Comparison of reproductive toxicity between pristine and aged polylactic acid microplastics in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133545. [PMID: 38244453 DOI: 10.1016/j.jhazmat.2024.133545] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Caenorhabditis elegans was employed as model to compare reproductive toxicity between pristine and aged polylactic acid microplastics (PLA-MPs). Aged PLA-MPs induced by UV irradiation showed degradation reflected by decrease in size and alteration in morphological surface. Aged PLA-MPs also exhibited some certain changes of chemical properties compared to pristine PLA-MP. Compared with pristine PLA-MPs, more severe toxicity on reproductive capacity and gonad development was detected in 1-100 μg/L aged PLA-MPs. Meanwhile, aged PLA-MPs caused more severe enhancement in germline apoptosis and alterations in expressions of ced-9, ced-4, ced-3, and egl-1 governing cell apoptosis. In addition, aged PLA-MPs resulted in more severe increase in expression of DNA damage related genes (cep-1, mrt-2, hus-1, and clk-2) compared to pristine PLA-MPs, and the alterations in expression of ced-9, ced-4, ced-3, and egl-1 in pristine and aged PLA-MPs could be reversed by RNAi of cep-1, mrt-2, hus-1, and clk-2. Besides this, enhanced germline apoptosis in pristine and aged PLA-MPs exposed animals was also suppressed by RNAi of cep-1, mrt-2, hus-1, and clk-2. Therefore, our results suggested the more severe exposure risk of aged PLA-MPs than pristine PLA-MPs in causing reproductive toxicity, which was associated with the changed physicochemical properties and DNA damage induced germline apoptosis.
Collapse
Affiliation(s)
- Yuting Shao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xin Hua
- Medical School, Southeast University, Nanjing, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
22
|
Jia R, Zhang Y, Wang Y, Wang Y, Sun G, Jiang Y. Toxic effects on ciliates under nano-/micro-plastics coexist with silver nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133058. [PMID: 38006860 DOI: 10.1016/j.jhazmat.2023.133058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Owing to the degradation of plastics, microplastics (MPs) and nanoplastics (NPs) have remained the focus of global attention. Silver nanoparticles (AgNPs) could adversely affect marine organisms due to their broad application. So far, the combined effects of MPs/NPs (strong adsorbents) with AgNPs on marine organisms are scant. Thus, four sizes polystyrene beads (80 nm, 220 nm, 1.07 µm, and 2.14 µm) combined with AgNPs (30 nm) were assessed using ciliated protozoa Uronema marinum. Results showed that MPs/NPs dramatically decrease the abundance, biovolume, and carbon biomass of U. marinum. And, exposure could cause changes of antioxidant enzyme activity and antioxidant content on U. marinum. The combined toxicity of MPs/NPs with AgNPs to ciliates showed an enhanced effect compared to exposure alone. Additionally, the negative effects under exposure of NPs plus AgNPs were more significant than those of MPs plus AgNPs. Transcriptome sequencing showed that co-exposure could affect the energy metabolism and lipid metabolism of ciliates, even cause DNA and protein damage. Our study provided a novel insight and first-hand basic data for the understanding of combined toxicity of MPs /NPs with AgNPs on the basic trophic level ciliated protozoa in marine ecosystems.
Collapse
Affiliation(s)
- Ruiqi Jia
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Zhang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yaxin Wang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunlong Wang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Gaojingwen Sun
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
23
|
Liu S, Chen H, Ding Y, Zhou X, Ding Y, Liu S, Ke Z. Thermal aging of polystyrene microplastics within mussels (Mytilus coruscus) under boiling and drying processing. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133282. [PMID: 38142652 DOI: 10.1016/j.jhazmat.2023.133282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Aged microplastics (MPs) in the environment are a growing concern due to their higher ecological toxicity compared to pristine MPs. While previous studies have explored aging behaviors of MPs under various stress conditions, little is known about their aging during food processing. In this study, we investigated the effects of different thermal food processing methods on the aging of polystyrene (PS) MPs within mussels. We subjected the mussels containing PS MPs to boiling, boiling/solar drying, boiling/hot air drying, and boiling/microwave drying treatments, all of which are common preservation methods used in industry. We analyzed the particle size, surface morphology, yellowing, crystallinity, chemical groups, and hydrophilicity of the PS MPs to understand the aging process. Results show that all processing methods led to aging of PS MPs, with boiling/microwave drying having the most significant impact, followed by boiling/hot air drying, boiling/solar drying, and boiling alone. The aged PS MPs exhibited smaller size, morphological changes, reduced crystallinity, increased yellowness index and carbonyl index, higher presence of O-containing groups, and enhanced hydrophilicity. These findings provide evidence of MPs aging during thermal food processing and emphasize the potential risks associated with this pathway.
Collapse
Affiliation(s)
- Siyu Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Zhigang Ke
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China.
| |
Collapse
|
24
|
Wang N, Wang Q, Song S, Sun Z, Zhao A, Ali A, Xu G, Zhong X, Wang F, Xu H. Microplastics drive community dynamics of periphytic protozoan fauna in marine environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13327-13334. [PMID: 38244160 DOI: 10.1007/s11356-024-32054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
The pollution of microplastics (MPs) to the marine environment has become a widespread focus of attention. To assess MP-induced ecotoxicity on marine ecosystems, periphytic protozoan communities were used as test organisms and exposed to five concentrations of MPs: 0, 1, 5, 25, and 125 mg l-1. Protozoan samples were collected using microscope slides from coastal waters of the Yellow Sea, northern China. A total of 13 protozoan species were identified and represented different tolerance to MP-induced ecotoxicity. Inhibition effects of MPs on the test protozoan communities were clearly shown in terms of both the species richness and individual abundance and followed linear relationships to MP concentrations. The community patterns were driven by MPs and significantly shifted at concentrations over 5 mg l-1. Our findings demonstrated that MPs may induce the community-level ecotoxic response of periphytic protozoan fauna and followed significant community dynamics. Thus, it is suggested that periphytic protozoan fauna may be used as useful community-based test model organisms for evaluating MP-induced ecotoxicity in marine environments.
Collapse
Affiliation(s)
- Ning Wang
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Qiaoling Wang
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Suihan Song
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Zhiyi Sun
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Anqi Zhao
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Awais Ali
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiaoxiao Zhong
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Henglong Xu
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
25
|
Ariefdien R, Pfaff M, Awe A, Sparks C. Stormwater outlets: A source of microplastics in coastal zones of Cape Town, South Africa. MARINE POLLUTION BULLETIN 2024; 198:115800. [PMID: 37995591 DOI: 10.1016/j.marpolbul.2023.115800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
The runoff from stormwater outlets are potential sources of microplastics (MPs) in coastal zones. The characteristics and concentrations of MPs in coastal water, sediment and biota (mussels, whelks and sea urchins) were measured in summer (2020/2021) (dry season) and winter (2021) (wet season) from three sites (Camps Bay, Mouille Point and Three Anchor Bay) in Cape Town. MPs were characterised visually using a stereo microscope and chemically using spectroscopy. MP concentrations were higher in water and sediment during winter, and higher in biota in summer. Compared to control sites, MPs were higher at all impact sites sampled. MPs extracted were mainly black polyester (PEST) fibres, 1000 to 2000 μm in length averaging 0.15 MPs/L in water, 52.11 MPs/kg dry weight in sediment and 1.35 MPs/g soft tissue wet weight in biota. The results indicate that coastal stormwater systems are potential sources of MPs in the coastal environment of Cape Town.
Collapse
Affiliation(s)
- Rushdi Ariefdien
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Maya Pfaff
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Adetunji Awe
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Conrad Sparks
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa; Centre for Sustainable Oceans, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa.
| |
Collapse
|
26
|
da Costa ID, Costa LL, Zalmon IR. Are fishes selecting the trash they eat? Influence of feeding mode and habitat on microplastic uptake in an artificial reef complex (ARC). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166788. [PMID: 37666344 DOI: 10.1016/j.scitotenv.2023.166788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Every year, coastal countries generate ∼275 million tons of plastic, and the oceans receive from 4.8 to 12.7 million tons3. Pollution by synthetic polymers is even more problematic for the environment when this material is fragmented into small portions, forming microplastics (MPs). In the present study, we analyze the selection of MPs by the ichthyofauna based on the availability of the morphotypes and polymeric composition of microplastic in the environment and compare the amount of MP in surface water, water column, sediments and fish in different organs, trophic categories, habitats and areas with and without artificial reefs. In order to achieve this goal, the shape, color, abundance and chemical composition of MPs in the digestive tract and gills of 18 fish species in artificial reefs area and control area, were evaluated. A total of 216 fish were analyzed, and 149 (60 %) had MPs in at least one organ and showed a mean concentration of 1.55 ± 3.31 MPs/g. Of the 18 fish species collected in the reef complex area, 17 (94 %) included individuals with at least one MP in digestive tract or gills. Four species showed the higher selectivity of MP types, colors, and polymers. More MPs were found in the fish, surface water, water column and sediment in the artificial reef area compared to the control areas. This is the first evidence of MP selection by commercially important fish species in artificial marine structures worldwide. These results provide useful information on MP pollution in RAs and highlight yet another issue that must be considered in the management of fisheries resources in the region and in other reef complexes around the world.
Collapse
Affiliation(s)
- Igor David da Costa
- Departamento de Ciências Exatas, Biológicas e da Terra, Universidade Federal Fluminense, Santo Antônio de Pádua 28470-000, Rio de Janeiro, Brazil; Mestrado Profissional em Gestão e Regulação de Recursos Hídricos, Universidade Federal de Rondônia, 76900-726 Rondônia, Brazil; Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil.
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| | - Ilana Rosental Zalmon
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Abd Rahim NH, Cannicci S, Ibrahim YS, Not C, Idris I, Mohd Jani J, Dahdouh-Guebas F, Satyanarayana B. Commercially important mangrove crabs are more susceptible to microplastic contamination than other brachyuran species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166271. [PMID: 37586534 DOI: 10.1016/j.scitotenv.2023.166271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Brachyuran crabs are ecologically and economically important macrofauna in mangrove habitats. However, they are exposed to various contaminants, including plastics, which bioaccumulate in relation to their feeding modes. Setiu Wetlands is a unique place on the east coast of Peninsular Malaysia where different ecosystems such as mangroves, lagoon, beaches, etc., are duly connected and influencing each other. In recent years, the shifted river mouth has threatened these wetlands, causing severe hydrodynamic changes in the lagoon, especially in the core mangrove zone. The present study tested microplastics (MPs) contamination in the mangroves through brachyuran crabs as indicators. Three sampling sites, namely Pulau Layat, Kampung Pengkalan Gelap, and Pulau Sutung were chosen. The four abundant crab species Parasesarma eumolpe, Metaplax elegans, Austruca annulipes, and Scylla olivacea, which display different feeding behaviours were collected from all sites covering the dry (Feb-Mar 2021) and the wet (Dec 2021-Jan 2022) seasonal periods. There were significant differences in the seasonal abundance of MPs among crab species. The highest accumulation of MPs in the crab stomachs in the dry season could be linked to subdued water circulation and poor material dispersion. Besides the lower MPs in the wet period due to improved water exchange conditions, its significant presence in the stomachs of S. olivacea indicates the role of its feeding behaviour as a carnivore. In addition, the micro-Fourier transform infrared spectroscopy (micro-FTIR) revealed the widespread occurrence of polymers such as rayon and polyester in all species across the sites. Given the fact that crabs like S. olivacea are commercially important and the ones contaminated with MPs can cause detrimental effects on the local community's health, further managerial actions are needed to assure sustainable management of the Setiu Wetlands.
Collapse
Affiliation(s)
- Nur Hannah Abd Rahim
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia.
| | - Stefano Cannicci
- Department of Biology, University of Florence, 50019 Florence, Italy; Swire Institute for Marine Science, The University of Hong Kong, Hong Kong; Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), c/o Zoological Society of London, London, United Kingdom
| | - Yusof Shuaib Ibrahim
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia; Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia
| | - Christelle Not
- Environmental Geochemistry & Oceanography Research Group, Department of Earth Sciences, The University of Hong Kong, Hong Kong
| | - Izwandy Idris
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia; South China Sea Repository and Reference Centre, Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia
| | - Jarina Mohd Jani
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia; Biodiversity Conservation and Management Program, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia
| | - Farid Dahdouh-Guebas
- Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), c/o Zoological Society of London, London, United Kingdom; Systems Ecology and Resource Management Research Unit (SERM), Université Libre de Bruxelles-ULB, 1050 Brussels, Belgium; Ecology & Biodiversity Research Unit, Department of Biology, Vrije Universiteit Brussel-VUB, 1050 Brussels, Belgium
| | - Behara Satyanarayana
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia; Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), c/o Zoological Society of London, London, United Kingdom; Systems Ecology and Resource Management Research Unit (SERM), Université Libre de Bruxelles-ULB, 1050 Brussels, Belgium.
| |
Collapse
|
28
|
Zeng C, Ding F, Zhou J, Dong W, Cui Z, Yan X. Biodegradation of Poly(ethylene terephthalate) by Bacillus safensis YX8. Int J Mol Sci 2023; 24:16434. [PMID: 38003625 PMCID: PMC10671283 DOI: 10.3390/ijms242216434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Due to the extensive utilization of poly (ethylene terephthalate) (PET), a significant amount of PET waste has been discharged into the environment, endangering both human health and the ecology. As an eco-friendly approach to PET waste treatment, biodegradation is dependent on efficient strains and enzymes. In this study, a screening method was first established using polycaprolactone (PCL) and PET nanoparticles as substrates. A PET-degrading strain YX8 was isolated from the surface of PET waste. Based on the phylogenetic analysis of 16S rRNA and gyrA genes, this strain was identified as Bacillus safensis. Strain YX8 demonstrated the capability to degrade PET nanoparticles, resulting in the production of terephthalic acid (TPA), mono (2-hydroxyethyl) terephthalic acid (MHET), and bis (2-hydroxyethyl) terephthalic acid (BHET). Erosion spots on the PET film were observed after incubation with strain YX8. Furthermore, the extracellular enzymes produced by strain YX8 exhibited the ability to form a clear zone on the PCL plate and to hydrolyze PET nanoparticles to generate TPA, MHET, and BHET. This work developed a method for the isolation of PET-degrading microorganisms and provides new strain resources for PET degradation and for the mining of functional enzymes.
Collapse
Affiliation(s)
- Caiting Zeng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (F.D.); (Z.C.)
| | - Fanghui Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (F.D.); (Z.C.)
| | - Jie Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Z.); (W.D.)
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Z.); (W.D.)
| | - Zhongli Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (F.D.); (Z.C.)
| | - Xin Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (F.D.); (Z.C.)
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Nguyen MK, Lin C, Nguyen HL, Le VG, Haddout S, Um MJ, Chang SW, Nguyen DD. Ecotoxicity of micro- and nanoplastics on aquatic algae: Facts, challenges, and future opportunities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118982. [PMID: 37741192 DOI: 10.1016/j.jenvman.2023.118982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/22/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023]
Abstract
The production of plastic has exponentially increased in recent years, leading to the release of millions of tons of plastic waste into the environment annually. This waste can break down into smaller micro- and nanoplastics (MNPs) that are toxic and reactive to life forms, including humans. MNPs are particularly concerning for marine biologists and environmental scientists due to their toxic impacts on aquatic organisms, including algae, which are the foundation of the food chain. The review provides a comprehensive overview of the (eco)toxicity assessment of MNPs on aquatic algal communities, highlighting the novel insights gained into the ecotoxicity of various MNPs on algae and the associated health risks for aquatic ecosystems, food chains, and humans. This article also discusses current challenges and future research opportunities to address these challenges, making it a valuable contribution to the field of environmental science. Overall, this work is one of the first efforts to comprehensively assess the effects of MNPs on aquatic algae, emphasizing the significant risks that MNPs pose to essential ecosystems and human health.
Collapse
Affiliation(s)
- Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 111000, Viet Nam
| | - S Haddout
- Department of Physics, Ibn Tofail University, Morocco
| | - Myoung-Jin Um
- Department of Civil & Energy System Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Soon W Chang
- Department of Civil & Energy System Engineering, Kyonggi University, 442-760, Republic of Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, 442-760, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Viet Nam.
| |
Collapse
|
30
|
Deng L, Yuan Y, Xi H, Wan C, Yu Y, Wu C. The destiny of microplastics in one typical petrochemical wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165274. [PMID: 37406692 DOI: 10.1016/j.scitotenv.2023.165274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Microplastic (MP) is a type of emerging contaminant that is verified to be threatening to some organisms. Controlling MP emission from the source is preferred for its refractory characteristic. The petrochemical industry is a possible contributor, responsible for the most plastic production, and wastewater is the most possible sink of MP. This study applied the Agilent 8700 Laser infrared imaging spectrometer (LDIR) to detect MPs in one typical petrochemical wastewater treatment plant (PWWTP). It was determined that the abundances of MPs in the influent and effluent of the target PWWTP were as high as 7706 and 608 particles/L. The primary treatment removed most MPs (87.5 %) with a final removal efficiency of 92.1 %. 23 types of MPs were identified, and Polyethylene (PE), Polypropylene (PP), Silicone resin prevailed in the effluent. All the MPs were smaller than 483.9 μm. All in all, this study preliminarily unveiled the ignorable status of the petrochemical industry in releasing MPs into the water environment for the first time.
Collapse
Affiliation(s)
- Liyan Deng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yue Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongbo Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changyong Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
31
|
Li J, Li Y, Maryam B, Chen X, Zong Y, Tu J, Zhang P, Liu X. Microplastic aging alters the adsorption-desorption behaviors of sulfamethoxazole in marine animals: A study in simulated biological liquids. MARINE POLLUTION BULLETIN 2023; 195:115473. [PMID: 37659385 DOI: 10.1016/j.marpolbul.2023.115473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Antibiotics and microplastics (MPs) coexisting as unique environmental contaminants may cause unintended environmental issues. In this study, the adsorption-desorption behaviors of sulfamethoxazole (SMX) on both original and UV-aged MPs were examined. Polyhydroxyalkanoates (PHA) and polyethylene (PE), which represent degradable and refractory MPs, respectively, were chosen as two distinct types of MPs. Furthermore, simulated fish intestinal fluids (SFIF) and simulated mammalian stomach fluids (SMGF) were employed to evaluate the desorption behaviors of SMX from aged MPs. Our findings demonstrate that UV-aging altered the polarity, hydrophilicity, and structure of the MPs. Aged MPs showed a higher adsorption capacity than the original MPs and they have a higher desorption capacity than original MPs in simulated body fluids. PE has a higher SMX desorption capacity in SFIF and the opposite happened in SMGF. Our results highlight the importance of considering the different adsorption-desorption behaviors of antibiotics on MPs when evaluating their environmental impact.
Collapse
Affiliation(s)
- Jiaxuan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Yunxue Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Bushra Maryam
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Xiaochen Chen
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, PR China
| | - Yanping Zong
- Tianjin Marine Environment Monitoring Center Station of State Oceanic Administration, Tianjin 300457, PR China
| | - Jianbo Tu
- Tianjin Marine Environment Monitoring Center Station of State Oceanic Administration, Tianjin 300457, PR China
| | - Pingping Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300384, PR China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
32
|
Tran TV, Jalil AA, Nguyen TM, Nguyen TTT, Nabgan W, Nguyen DTC. A review on the occurrence, analytical methods, and impact of microplastics in the environment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104248. [PMID: 37598982 DOI: 10.1016/j.etap.2023.104248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Nowadays, microplastic pollution is one of the globally urgent concerns as a result of discharging plastic products into the atmosphere, aquatic and soil environments. Microplastics have average size of less than 5 mm, are non-biodegradable, accumulative, and highly persistent substances. Thousands of tons of microplastics are still accumulated in various environments, posing an enormous threat to human health and living creatures. Here, we review the occurrence and analytical methods, and impact of microplastics in the environments including soil, aquatic media, and atmosphere. Analytical methods including visual observation, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and pyrolysis-gas chromatography-mass spectrometry were evaluated. We elucidated the environmental and human health impacts of microplastics with emphasis on life malfunction, immune disruption, neurotoxicity, diseases and other tangible health risks. This review also found some shortages of analytical equivalence and/or standardization, inconsistence in sampling collection and limited knowledge of microplastic toxicity. It is hopeful that the present work not only affords a more insight into the potential dangers of microplastics on human health but also urges future researches to establish new standardizations in analytical methods.
Collapse
Affiliation(s)
- Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Tung M Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain.
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
33
|
Yusof KMKK, Anuar ST, Mohamad Y, Jaafar M, Mohamad N, Bachok Z, Mohamad N, Ibrahim YS. First evidence of microplastic pollution in the surface water of Malaysian Marine Park islands, South China Sea during COVID-19. MARINE POLLUTION BULLETIN 2023; 194:115268. [PMID: 37451046 DOI: 10.1016/j.marpolbul.2023.115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Malaysia is bounded by the South China Sea with many islands that support species megadiversity and coral reef ecosystems. This study investigates the distribution of microplastics (MPs) in the surface water around the four marine park islands (Perhentian, Redang, Kapas, and Tenggol) during COVID-19. The global pandemic has reset human activities, impacting the environment while possibly reducing anthropogenic contributions of microplastic pollution near the South China Sea islands. It was found that Pulau Perhentian recorded the most abundance of MPs (588.33 ± 111.77 items/L), followed by Pulau Redang (314.67 ± 58.08 items/L), Pulau Kapas (359.8 ± 87.70 items/L) and Pulau Tenggol (294.33 ± 101.64 items/L). Kruskal-Wallis analysis indicates a significant difference in total MPs abundance between islands. There are moderate correlations between salinity, pH, temperature and MPs variability. Among these parameters, only temperature is significant (p < 0.05) as proven by the principal component analysis and multiple linear regression analysis. Nearly 99 % of MPs are fiber type, with the majority of them being black and transparent. Micro-FTIR spectroscopy revealed polyethylene, polypropylene, polyvinyl methyl ether, polyamide, phenoxy-resins and polyurethane-acrylic are associated with MPs. The findings provide a new baseline reference for the MPs distribution on Malaysian islands, which contributes to a potential future direction regarding marine sustainability.
Collapse
Affiliation(s)
- Ku Mohd Kalkausar Ku Yusof
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Sabiqah Tuan Anuar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Yuzwan Mohamad
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Maisarah Jaafar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Noorlin Mohamad
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Zainudin Bachok
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Najihah Mohamad
- Fisheries Research Institute, 11960, Batu Maung, Penang, Malaysia.
| | - Yusof Shuaib Ibrahim
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
34
|
Shen M, Zhao Y, Liu S, Hu T, Zheng K, Wang Y, Lian J, Meng G. Recent advances on micro/nanoplastic pollution and membrane fouling during water treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163467. [PMID: 37062323 DOI: 10.1016/j.scitotenv.2023.163467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Effluent from sewage treatment plant, as an important source of microplastics (MPs) in receiving water, has attracted extensive attention. Membrane separation process shows good microplastic removal performance in the existing tertiary water treatment process. Problematically, membrane fouling and insufficient removal of small organic molecules are still the key obstacles to its further extensive application. Dissolved organics, extracellular polymers and suspended particles in the influent are deposited on the membrane surface and internal structure, reducing the number and pore diameter of effective membrane aperture, and increasing the resistance of membrane filtration. Exploring the mechanism and approach of membrane fouling caused by micro/nanoplastics is the key to alleviate fouling and allow membranes to operate longer. In this paper, removal performance of micro/nanoplastics by current membrane filtration and the contribution to membrane fouling during water treatment are thoroughly reviewed. The coupling mechanisms between micro/nanoplastics and other pollutants and mechanism of membrane fouling caused by composite micro/nanoplastics are discussed. Additionally, on this basis, the prospect of combined process for micro/nanoplastic removal and membrane fouling prevention is also proposed and discussed, which provides a valuable reference for the preferential removal of micro/nanoplastics and development of antifouling membrane.
Collapse
Affiliation(s)
- Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Tong Hu
- Department of Environment Science, Zhejiang University, Hangzhou 310058, PR China
| | - Kaixuan Zheng
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Jianjun Lian
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Guanhua Meng
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
35
|
Yi Y, Kong L, Wang X, Li Y, Cheng J, Han J, Chen H, Zhang N. Distribution and characteristics of microplastics in sediment at representative dredged material ocean dumping sites, China. MARINE POLLUTION BULLETIN 2023; 193:115201. [PMID: 37385180 DOI: 10.1016/j.marpolbul.2023.115201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
Dredged material ocean dumping activities are likely an important source of microplastics (MPs) in coastal areas but have received little attention globally. In this study, we investigated the spatiotemporal distribution and characteristics of MPs in sediments at eight dredged material dumping sites of China. MPs were separated from sediment through density flotation, and polymer types were identified using μ-FTIR. The results showed that the average MP abundance was 112.82 ± 109.68 items/kg d.w. The MPs were more abundant at nearshore dumping sites than at distant dumping sites. Dumping activities may be the main contributor of MPs to Site BD1, the farthest dumping site from shore, but only a minor source of MPs at the other dumping sites. The characteristics of MPs were dominated by transparent PET fibers <1 mm. Overall, sediments at the dumping sites exhibited relatively low to moderate concentrations of MPs in comparison to most other coastal sediments.
Collapse
Affiliation(s)
- Yuying Yi
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Lingna Kong
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaomeng Wang
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Yuxia Li
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jiayi Cheng
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jianbo Han
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Hong Chen
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Naidong Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
36
|
Wang X, Zhang X, Yao C, Shan E, Lv X, Teng J, Zhao J, Wang Q. Impact of aged and virgin microplastics on sedimentary nitrogen cycling and microbial ecosystems in estuaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162977. [PMID: 36963689 DOI: 10.1016/j.scitotenv.2023.162977] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
Microplastics (MPs) entering the environment undergo complex weathering (aging) processes, however, the impacts of aged MPs on estuarine nitrogen cycling and microbial ecosystems remain largely unknown. In this study, a 50 days microcosm experiment was conducted to investigate the response of sedimentary nitrogen (N) transformation processes, N2O emission and microbial communities to virgin and aged MPs (PE and PS) exposure. We found that aged MPs influenced sediment nitrogen turnover more rapidly and profoundly than virgin MPs and showed type and dose-response effect. During the first 10 days, higher concentration (3 % by weight of sediment) aged MPs (both PS and PE) treatments significantly promoted denitrification (ANOVA, P < 0.05), while virgin MPs treatments had weak effect on denitrification, compared with the control (P > 0.05). Moreover, higher concentration aged PS-MPs remarkably enhanced N2O emission on the 10th day, while N2O was consumed in the control. After 50 days incubation, there was an overall increase in nirK gene abundance exposed to MPs, and nosZ gene copies in aged PS treatments were around twice that in the control based on qPCR (P < 0.05). The function prediction also showed significant elevation of relative abundance of denitrification and DNRA relevant genes in bacterial community. In addition, aged PS treatment (3 %) recruited specific bacterial and archaeal assemblies, with Sedimenticolaceae, Lentimicrobiaceae, SCGC_AAA011-D5, SG8-5, Lokiarchaeia, and Odinarchaeia selectively enriched in the treatment. Our study highlighted that virgin and aged MPs had different impact on sediment nitrogen cycling, and the ecological risks of aged MPs should be concerned since all MPs eventually get weathered when they enter the environment.
Collapse
Affiliation(s)
- Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoli Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Cheng Yao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Encui Shan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaojing Lv
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
37
|
Qiu Y, Zhou S, Zhang C, Qin W, Lv C. A framework for systematic microplastic ecological risk assessment at a national scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121631. [PMID: 37058862 DOI: 10.1016/j.envpol.2023.121631] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Microplastic pollution is widespread in terrestrial and aquatic environments; however, a systematic assessment of the ecological risks of microplastics is lacking. This study collected research studies on microplastics in soil, aquatic and sediment environments, and screened 128 articles including 3459 sites to assess the ecological risks posed by microplastics in China following a literature quality assessment. We developed a systematic ecological risk assessment framework for microplastics in terms of spatial characterization, biotoxicity and anthropogenic impacts. The results of the pollution load index indicated that 74% and 47% of the soil and aquatic environments studied, respectively, faced a medium or higher level of pollution. Comparing predicted no effect concentrations (PNEC) and measured environmental concentrations (MECs), revealed that soil (97.70%) and aquatic (50.77%) environmental studies were at serious ecological risk from microplastics. The results of the pressure-state-response model showed that the microplastic pollution in Pearl River Delta was in a high-risk state. In addition, we found that ultraviolet radiation and rainfall exacerbate soil microplastic pollution, and higher river runoff may carry large amounts of microplastic from the source. The framework developed in this study will help assess the ecological risks of microplastics in the region to promote the mitigation of plastic pollution.
Collapse
Affiliation(s)
- Yifei Qiu
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China.
| | - Chuchu Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China
| | - Wendong Qin
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Chengxiang Lv
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| |
Collapse
|
38
|
Deng L, Xi H, Wan C, Fu L, Wang Y, Wu C. Is the petrochemical industry an overlooked critical source of environmental microplastics? JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131199. [PMID: 36933504 DOI: 10.1016/j.jhazmat.2023.131199] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are ubiquitous in the environment and have been verified to be harmful to organisms. The petrochemical industry is a possible contributor, for it is the primary plastic producer but is not focused on. In this background, MPs in the influent, effluent, activated sludge, and expatriate sludge of a typical petrochemical wastewater treatment plant (PWWTP) were identified by the laser infrared imaging spectrometer (LDIR). It revealed that the abundances of MPs in the influent and effluent were as high as 10310 and 1280 items/L with a removal efficiency of 87.6%. The removed MPs accumulated in the sludge, and the MP abundances in activated and expatriate sludge reached 4328 and 10767 items/g, respectively. It is estimated that 1440,000 billion MPs might be released into the environment by the petrochemical industry in 2021 globally. For the specific PWWTP, 25 types of MPs were identified, among which Polypropylene (PP), Polyethylene (PE), and Silicone resin were dominant. All of the detected MPs were smaller than 350 µm, and those smaller than 100 µm prevailed. As for the shape, the fragment was dominant. The study confirmed the critical status of the petrochemical industry in releasing MPs for the first time.
Collapse
Affiliation(s)
- Liyan Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongbo Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Liya Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yue Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changyong Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
39
|
Dong H, Yang X, Shi J, Xiao C, Zhang Y. Exploring the Feasibility of Cell-Free Synthesis as a Platform for Polyhydroxyalkanoate (PHA) Production: Opportunities and Challenges. Polymers (Basel) 2023; 15:polym15102333. [PMID: 37242908 DOI: 10.3390/polym15102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The extensive utilization of traditional petroleum-based plastics has resulted in significant damage to the natural environment and ecological systems, highlighting the urgent need for sustainable alternatives. Polyhydroxyalkanoates (PHAs) have emerged as promising bioplastics that can compete with petroleum-based plastics. However, their production technology currently faces several challenges, primarily focused on high costs. Cell-free biotechnologies have shown significant potential for PHA production; however, despite recent progress, several challenges still need to be overcome. In this review, we focus on the status of cell-free PHA synthesis and compare it with microbial cell-based PHA synthesis in terms of advantages and drawbacks. Finally, we present prospects for the development of cell-free PHA synthesis.
Collapse
Affiliation(s)
- Huaming Dong
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jingjing Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Chunqiao Xiao
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
40
|
Lihua C, Zhiyin T. Microplastics aggravates rheumatoid arthritis by affecting the proliferation/migration/inflammation of fibroblast-like synovial cells by regulating mitochondrial homeostasis. Int Immunopharmacol 2023; 120:110268. [PMID: 37201404 DOI: 10.1016/j.intimp.2023.110268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving multiple joints. RA is a systemic disease characterized by chronic synovial inflammation and destruction of articular cartilage and bone. As a new pollutant, microplastics can enter the body through the respiratory and digestive tract and cause health damage. However, to date, the impact of microplastics on RA has not been revealed. Therefore, in the current research, we explored the impact of microplastics on RA. First, FLS (fibroblast-like synoviocytes) from RA was isolated and identified. FLS has been used as a cell model in vivo to study the potential impact of microplastics on FLS. Therefore, a series of biochemical experiments have been carried out, such as indirect immunofluorescence, western blotting and flow cytometry. First, we found that microplastics promote the proliferation of RA-FLSs through the MTT assay and the detection of cell proliferation markers and the cell cycle analysis through flow cytometry. On this basis, further research showed that microplastics also promoted the invasion and migration ability of RA-FLSs through Transwell experiments. In addition, microplastics also promote the secretion of inflammatory factors in RA-FLSs. In in vivo studies, the effect of microplastics on RA cartilage damage was evaluated. The results showed that RA cartilage damage was aggravated by microplastics, as determined by Alcian blue, toluidine blue and safranin O-fast green staining. Current research shows that microplastics, as a new pollutant, can promote sustained damage in RA.
Collapse
Affiliation(s)
- Chang Lihua
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tang Zhiyin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
41
|
Yang L, Ma C. Toward a better understanding of microalgal photosynthesis in medium polluted with microplastics: a study of the radiative properties of microplastic particles. Front Bioeng Biotechnol 2023; 11:1193033. [PMID: 37214287 PMCID: PMC10192614 DOI: 10.3389/fbioe.2023.1193033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Due to the wide presence of microplastics in water, the interaction between microplastic particles and microalgae cells in medium merits the attention of researchers. Microplastic particles can impact the original transmission of light radiation in water bodies since the refractive index of microplastics is different from that of water bodies. Accordingly, the accumulation of microplastics in water bodies will certainly impact microalgal photosynthesis. Therefore, experimental measurements and theoretical studies characterizing the radiative properties of the interaction between light and microplastic particles are highly significant. The extinction and absorption coefficient/cross-section of polyethylene terephthalate and polypropylene were experimentally measured using transmission and integrating methods in the spectral range of 200-1,100 nm. The absorption cross-section of PET shows remarkable absorption peaks in the vicinity of 326 nm, 700 nm, 711 nm, 767 nm, 823 nm, 913 nm, and 1,046 nm. The absorption cross-section of PP has distinctive absorption peaks near 334 nm, 703 nm, and 1,016 nm. The measured scattering albedo of the microplastic particles is above 0.7, indicating that both microplastics are scattering dominant media. Based on the results of this work, an in-depth understanding of the interaction between microalgal photosynthesis and microplastic particles in the medium will be obtained.
Collapse
Affiliation(s)
- Limin Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chunyang Ma
- School of Advanced Manufacturing, Nanchang University, Nanchang, China
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Bao ZZ, Lu SQ, Wang G, Cai Z, Chen ZF. Adsorption of 2-hydroxynaphthalene, naphthalene, phenanthrene, and pyrene by polyvinyl chloride microplastics in water and their bioaccessibility under in vitro human gastrointestinal system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162157. [PMID: 36775174 DOI: 10.1016/j.scitotenv.2023.162157] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The interaction of microplastics (MPs) and organic pollutants has recently become a focus of investigation. To understand how microplastic residues affect the migration of organic pollutants, it is necessary to examine the adsorption and desorption behavior of organic pollutants on MPs. In this study, integrated adsorption/desorption experiments and theoretical calculations were used to clarify the adsorption mechanism of 2-hydroxynaphthalene (2-OHN), naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by polyvinyl chloride microplastics (PVC-MPs). Based on the phenomenological mathematical models, the rate-limiting step for analyte adsorption onto PVC-MPs was adsorption onto active sites (R2 = 0.865-0.995). Except for PHE, analyte adsorption isotherms were well described by the Freundlich model (R2 = 0.992-0.998), and adsorption thermodynamics showed that analyte adsorption on PVC-MPs was a spontaneous exothermic process (ΔH0 < 0; ΔG0 < 0). Based on the order of adsorption efficiency of 2-OHN < NAP < PHE < PYR, which is identical to the competitive adsorption experiment, polycyclic aromatic hydrocarbon (PAH) adsorption on PVC-MPs increased as the aromatic ring number increased and the hydroxyl content decreased. The release of 2-OHN (49 %-52 %) from PVC-MPs into the simulated gastrointestinal environment was greater than that of NAP (5.5 %-5.7 %). Theoretical calculations and adsorption tests indicated that hydrophobic interaction was the primary influence on the adsorption of PAHs and their hydroxylated derivatives by PVC-MPs. These findings improve our understanding of MPs' behavior and dangers as pollutant carriers in the aquatic environment and help us develop recommendations for the pollution control of MPs.
Collapse
Affiliation(s)
- Zhen-Zong Bao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Si-Qi Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangzhao Wang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
43
|
Yu YB, Choi JH, Choi CY, Kang JC, Kim JH. Toxic effects of microplastic (polyethylene) exposure: Bioaccumulation, hematological parameters and antioxidant responses in crucian carp, Carassius carassius. CHEMOSPHERE 2023; 332:138801. [PMID: 37121290 DOI: 10.1016/j.chemosphere.2023.138801] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
The purpose of this study was to evaluate the toxic effects of polyethylene microplastics (PE-MPs) by measuring the bioaccumulation, hematological parameters, and antioxidant responses in crucian carp (Carassius Carassius) exposed to waterborne 22-71 μm PE-MPs. C. carassius (mean weight, 24.0 ± 2.1 g; mean length, 13.1 ± 1.2 cm) were exposed to PE-MPs at concentration of 0, 4, 8, 16, 32, and 64 mg/L for 2 weeks. The accumulation of PE-MPs in each tissue of C. carassius was significantly increased in proportion to the PE-MPs concentration; the highest accumulation was observed in the intestine, followed by the gills and liver. Hematological parameters, plasma components and antioxidants responses were significantly affected by PE-MPs in a concentration-dependent manner. Exposure to ≥32 mg/L PE-MPs induced a significant decrease in red blood cells (RBCs), hemoglobin (Hb) content, and hematocrit values. However, exposure to ≥32 mg/L PE-MPs induced oxidative stress in the liver, gill, and intestine of C. carassius, thereby resulting in a significant increase in the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) and a decrease in glutathione (GSH) levels. The effects of interaction between the PE-MPs and exposure periods showed no significant changes in bioaccumulation, hematological parameters, plasma components and antioxidant responses. These finding indicate that the exposure to ≥32 mg/L PE-MPs could cause a significant accumulation in specific tissues of C. carassius, resulting in changes in hematological parameters, plasma components, and antioxidant responses. However, the interaction between PE-MPs and exposure periods had no significant effects, thereby suggesting the lack of toxicological interactions between PE-MPs and exposure periods in C. carassius.
Collapse
Affiliation(s)
- Young-Bin Yu
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea.
| | - Jun-Hwan Kim
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si, South Korea.
| |
Collapse
|
44
|
Zheng X, Sun R, Dai Z, He L, Li C. Distribution and risk assessment of microplastics in typical ecosystems in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163678. [PMID: 37100141 DOI: 10.1016/j.scitotenv.2023.163678] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Microplastic pollution in the marine environment has attracted worldwide attention. The South China Sea is considered a hotspot for microplastic pollution due to the developed industries and high population density around the South China Sea. The accumulation of microplastics in ecosystems can adversely affect the health of the environment and organisms. This paper reviews the recent microplastic studies conducted in the South China Sea, which novelty summarizes the abundance, types, and potential hazards of microplastics in coral reef ecosystems, mangrove ecosystems, seagrass bed ecosystems, and macroalgal ecosystems. A summary of the microplastic pollution status of four ecosystems and a risk assessment provides a more comprehensive understanding of the impact of microplastic pollution on marine ecosystems in the South China Sea. Microplastic abundances of up to 45,200 items/m3 were reported in coral reef surface waters, 5738.3 items/kg in mangrove sediments, and 927.3 items/kg in seagrass bed sediments. There are few studies of microplastics in the South China Sea macroalgae ecosystems. However, studies from other areas indicate that macroalgae can accumulate microplastics and are more likely to enter the food chain or be consumed by humans. Finally, this paper compared the current risk levels of microplastics in the coral reef, mangrove, and seagrass bed ecosystems based on available studies. Pollution load index (PLI) ranges from 3 to 31 in mangrove ecosystems, 5.7 to 11.9 in seagrass bed ecosystems, and 6.1 to 10.2 in coral reef ecosystems, respectively. The PLI index varies considerably between mangroves depending on the intensity of anthropogenic activity around the mangrove. Further studies on seagrass beds and macroalgal ecosystems are required to extend our understanding of microplastic pollution in marine environments. Recent microplastic detection in fish muscle tissue in mangroves requires more research to further the biological impact of microplastic ingestion and the potential food safety risks.
Collapse
Affiliation(s)
- Xuanjing Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
45
|
Morgado V, Palma C, Bettencourt da Silva RJN. Determination of microplastic contamination levels and trends in vast oceanic sediment areas with uncertainty. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163612. [PMID: 37100132 DOI: 10.1016/j.scitotenv.2023.163612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023]
Abstract
Small plastic particles, designated as microplastics, are known vehicles of several contaminants desorbed from their surface after being ingested by marine organisms. The monitoring of the levels and trends of microplastics in oceanic areas is essential to identify relevant threats and respective sources whose management should be improved to protect the environmental resources. However, the assessment of contamination trends in large oceanic areas is affected by contamination heterogeneity, sampling representativeness, and the uncertainty of collected sample analyses. Only contamination variations not justifiable by system heterogeneity and their characterisation uncertainty are meaningful and should be taken seriously by the authorities. This work describes a novel methodology for the objective identification of meaningful variation of microplastic contamination in vast oceanic areas by the Monte Carlo simulation of all uncertainty components. This tool was successfully applied to the monitoring of the levels and trends of microplastic contamination in sediments from a 700 km2 oceanic area from 3 km to 20 km offshore Sesimbra and Sines (Portugal). This work allowed concluding that contamination has not varied between 2018 and 2019 (difference of mean total microplastic contamination between -40 kg-1 and 34 kg-1) but that microparticles made of PET are the major type of studied microplastics (in 2019, mean contamination is between 36 kg-1 and 85 kg-1). All assessments were performed for a 99 % confidence level.
Collapse
Affiliation(s)
- Vanessa Morgado
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Hidrográfico, R. Trinas 49, 1249-093 Lisboa, Portugal
| | - Carla Palma
- Instituto Hidrográfico, R. Trinas 49, 1249-093 Lisboa, Portugal
| | - Ricardo J N Bettencourt da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
46
|
Li T, Liu K, Tang R, Liang JR, Mai L, Zeng EY. Environmental fate of microplastics in an urban river: Spatial distribution and seasonal variation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121227. [PMID: 36758926 DOI: 10.1016/j.envpol.2023.121227] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/31/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Rivers are recognized as an important pathway for transport of microplastics (MPs) from land to sea, but limited information is available on the spatial distribution and seasonal variation of riverine MPs from upper reaches to estuaries. Such information is critical for source apportionment and development of effective management measures for riverine MPs. To fill the knowledge gap, we investigated the occurrence of MPs in surface water along an urban river in Guangzhou, southern China in wet and dry seasons. The abundances of MPs from 16 sampling sites in the wet and dry seasons varied from 0.123 to 1.84 particles m-3 and from 0.046 to 4.21 particles m-3, respectively. The spatial distribution of MP abundances showed an increasing trend from upstream to midstream and a decreasing trend from midstream to downstream and estuaries. The abundances of MPs peaked at the midstream, which is surrounded by a highly urbanized region with high population density (∼2530 persons per km2). The large surface water runoff during the wet season elevated the MP abundance in riverine water, except for that flowing through the central urban area where the abundance of MPs collected in the dry season was higher than that in the wet season. This was mainly ascribed to the large input from extensive anthropogenic activities and slow water flow rate in urban areas. The estimated monthly riverine MP fluxes from Humen, Hongqili, and Jiaomen were 7.42, 2.38, and 2.3 billion particles, respectively, in the wet season, and 0.86, 0.71, and 0.19 billion particles, respectively, in the dry season. An increase of riverine MP fluxes from Humen, Hongqili, and Jiaomen in the past three years was evident. The results from the present study provide valuable information for source apportionment of riverine MPs and support the initialization of possible MPs controlling measures.
Collapse
Affiliation(s)
- Ting Li
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Kai Liu
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Rui Tang
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Jun-Rong Liang
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Lei Mai
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Eddy Y Zeng
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Research Center of Low Carbon Economy for Guangzhou Region, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
47
|
Rodrigues de Souza A, Bernardes RC, Barbosa WF, Viana TA, do Nascimento FS, Lima MAP, Martins GF. Ingestion of polystyrene microparticles impairs survival and defecation in larvae of Polistes satan (Hymenoptera: Vespidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58527-58535. [PMID: 36988811 DOI: 10.1007/s11356-023-26695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
Microplastics (MPs) are widespread pollutants of emerging concern, and the risks associated with their ingestion have been reported in many organisms. Terrestrial environments can be contaminated with MPs, and terrestrial organisms, including arthropods, are predisposed to the risk of ingesting MPs. In the current study, the larvae of the paper wasp Polistes satan were fed two different doses (6 mg or 16 mg at once) of polystyrene MPs (1.43 mm maximum length), and the effects of these treatments on immature development and survival till adult emergence were studied. Ingestion of the two doses resulted in mortality due to impaired defecation prior to pupation. The survival of larvae that ingested 16 mg of MPs was significantly lower than that of the control. The ingestion of 16 mg of MPs also reduced the adult emergence (11.4%) in comparison to the control (44.4%). MPs were not transferred from the larvae to the adults that survived. These findings demonstrate that MP ingestion can be detrimental to P. satan, e.g. larval mortality can decrease colony productivity and thus the worker force, and that MPs can potentially affect natural enemies that occur in crops, such as predatory social wasps.
Collapse
Affiliation(s)
- André Rodrigues de Souza
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
| | | | - Wagner Faria Barbosa
- Departamento de Estatística, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Thaís Andrade Viana
- Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Fábio Santos do Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, MinasGerais, Brazil
| |
Collapse
|
48
|
Liu W, Chen X, Liang T, Mu T, Ding Y, Liu Y, Liu X. Varying abundance of microplastics in tissues associates with different foraging strategies of coastal shorebirds in the Yellow Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161417. [PMID: 36621485 DOI: 10.1016/j.scitotenv.2023.161417] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
With the wide application of plastic products, microplastics are now ubiquitous in coastal wetlands, representing a serious threat to the health of coastal organisms. In East Asia, millions of migratory shorebirds depend on the tidal flats of Yellow Sea in China, and they have experienced rapid populations declines due at least partially to the environmental pollution. However, our understanding about the specific exposures and hazards of microplastics, and the factors affecting the bioavailability of microplastics to different shorebird species remains limited, which hinders our ability to address the potential detrimental effects of microplastic accumulation to these fast-disappearing birds. Therefore, this study aims to assess the risk of microplastic exposure in shorebirds, determine the enrichment of microplastics in different tissues, and establish the relationship between shorebirds' foraging strategies and microplastic intake. We extracted and identified microplastics in different tissues sample from the carcasses of 13 individuals in four shorebird species, and measure the abundance, color, size, and roughness of all microplastics found. Microplastics were found in all species except one red-necked stint (Calidris ruficollis). Polyethylene, silicone, polypropylene, and polyurethane were the main polymers identified in shorebirds. Microplastics found in shorebirds that use mixed tactile and visual foraging strategy were smaller, less rough, and low in color diversity, compared to those found in shorebirds that forage predominately using visual cues. In addition, ingested microplastics were disproportionately enriched in different tissues; in particular, the abundance and size of microplastics in the digestive tract were significantly higher than those in the pectoral muscles. Understanding the stress of microplastics posed to coastal shorebirds is critical to facilitate more effective and targeted measurements in coastal pollution control.
Collapse
Affiliation(s)
- Wei Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Xiaomei Chen
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ting Liang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tong Mu
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA
| | - Yanzhe Ding
- Nantong Marine Environmental Monitoring Center, Ministry of Natural Resources of the People's Republic of China, Nantong 226334, China
| | - Yan Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| | - Xiaoshou Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
49
|
Wu X, Liu H, Guo X, Zhang Z, Zhang J, Huang X. Microplastic distribution and migration in soil, water and sediments in Caohai Lake under the different hydrological periods, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161292. [PMID: 36596426 DOI: 10.1016/j.scitotenv.2022.161292] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
An increasing number of researchers have focused on microplastics (MPs) pollution in inland freshwater lakes due to its ecotoxicity, while little is known about the effects of hydrological periods on MPs distribution. Therefore, this study aims to investigate MPs distribution, morphological characteristics and physicochemical indices in various environments in dry and wet periods in Caohai Lake. The results exhibited that cultivated soil, water, and sediment in Caohai Lake have been polluted by MPs in dry and wet periods. There were pellets, fragments, film, and fibers of MPs in both dry and wet periods, and MP foam was additionally found in the wet period. MPs with 0 to 0.5 mm possessed the largest proportion in the five environments in dry and wet periods, followed by MPs with 0.5 to 1 mm and 1 to 5 mm. In Caohai Lake, the black, white, green, red, and transparent MPs in dry period, and black, colourful, grey, red and transparent MPs in wet period were found. The developed structural equation model confirmed that MPs in sediment were probably mainly from soil. There are negative effects of the relative abundance of MPs from cultivated soil to lake water in the dry period, whereas the opposite is true in the wet period. Interestingly, the complex and fast water velocity in the estuary in the wet period led to a lower relative abundance of MPs in its sediment in comparison with the dry period. The distribution model of MPs in estuary and lake water in dry and wet periods is not inconsistent. Our results suggest that the related government department should take measures to reduce the MPs pollution in Caohai Lake, especially from the source.
Collapse
Affiliation(s)
- Xianliang Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550003, China; Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, Guizhou 550009, China
| | - Huijuan Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zhenming Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550003, China; Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, Guizhou 550009, China.
| | - Jiachun Zhang
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang 550004, Guizhou, China.
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang 550001, Guizhou, China
| |
Collapse
|
50
|
Mehmood T, Mustafa B, Mackenzie K, Ali W, Sabir RI, Anum W, Gaurav GK, Riaz U, Liu X, Peng L. Recent developments in microplastic contaminated water treatment: Progress and prospects of carbon-based two-dimensional materials for membranes separation. CHEMOSPHERE 2023; 316:137704. [PMID: 36592840 DOI: 10.1016/j.chemosphere.2022.137704] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Micro (nano)plastics pollution is a noxious menace not only for mankind but also for marine life, as removing microplastics (MPs) is challenging due to their physiochemical properties, composition, and response toward salinity and pH. This review provides a detailed assessment of the MPs pollution in different water types, environmental implications, and corresponding treatment strategies. With the advancement in nanotechnology, mitigation strategies for aqueous pollution are seen, especially due to the fabrication of nanosheets/membranes mostly utilized as a filtration process. Two-dimensional (2D) materials are increasingly used for membranes due to their diverse structure, affinity, cost-effectiveness, and, most importantly, removal efficiency. The popular 2D materials used for membrane-based organic and inorganic pollutants from water mainly include graphene and MXenes however their effectiveness for MPs removal is still in its infancy. Albeit, the available literature asserts a 70- 99% success rate in micro/nano plastics removal achieved through membranes fabricated via graphene oxide (GO), reduced graphene oxide (rGO) and MXene membranes. This review examined existing membrane separation strategies for MPs removal, focusing on the structural properties of 2D materials, composite, and how they adsorb pollutants and underlying physicochemical mechanisms. Since MPs and other contaminants commonly coexist in the natural environment, a brief examination of the response of 2D membranes to MPs removal was also conducted. In addition, the influencing factors regulate MPs removal performance of membranes by impacting their two main operating routes (filtration and adsorption). Finally, significant limitations, research gaps, and future prospects of 2D material-based membranes for effectively removing MPs are also proposed. The conclusion is that the success of 2D material is strongly linked to the types, size of MPs, and characteristics of aqueous media. Future perspectives talk about the problems that need to be solved to get 2D material-based membranes out of the lab and onto the market.
Collapse
Affiliation(s)
- Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany.
| | - Beenish Mustafa
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Katrin Mackenzie
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Raja Irfan Sabir
- Faculty of Management Sciences, University of Central Punjab, Lahore; Pakistan
| | - Wajiha Anum
- Regional Agricultural Research Institute, Bahawalpur, Pakistan
| | - Gajendra Kumar Gaurav
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic; School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China
| | - Umair Riaz
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
| | - Licheng Peng
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province, 570228, China.
| |
Collapse
|