1
|
Ding X, Liu Y, Wan S, Yang Y, Liang R, Yang S, Zhang J, Cao X, Zhou M, Chen W. Cross-sectional and longitudinal associations of PAHs exposure with serum uric acid and hyperuricemia among Chinese urban residents: The potential role of oxidative damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124664. [PMID: 39098642 DOI: 10.1016/j.envpol.2024.124664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/13/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
A few studies found polycyclic aromatic hydrocarbons (PAHs) were associated with serum uric acid (SUA) or hyperuricemia (HUA). However, the longitudinal study is vacant, and the underlying mechanisms remain unclear. We aimed to assess the cross-sectional and longitudinal associations of urinary PAHs metabolites with SUA levels and HUA risk, and explore the mediating effects of oxidative stress and inflammation. 10 urinary mono-hydroxylated PAHs metabolites and SUA levels were measured among 4047 Chinese urban residents at baseline and 1496 individuals at 6-year follow-up. Biomarkers of oxidative damage and inflammation in urine/plasma were determined at baseline. We adopted generalized linear mixed models and logistic regression to assess the associations of PAHs metabolites with SUA and HUA, weighted quantile sum regression and adaptive elastic net regression to evaluate the overall effects of multi-PAHs mixture, and mediation analysis to estimate the mediating roles of the biomarkers. In the cross-sectional study, each 1-unit increase in the ln-transformed values of 2-OHNa, 2-OHFlu, 4-OHPh, 9-OHPh, 3-OHPh, 2-OHPh, ΣOHNa, ΣOHPh, and ΣOHPAHs was associated with a 4.10-, 3.90-, 6.42-, 7.33-, 4.85-, 5.43-, 4.47-, 7.67-, and 5.22-μmol/L increase in SUA, respectively. Meanwhile, each 1-unit increase in the ln-transformed values of 1-OHNa, 2-OHNa, 4-OHPh, 9-OHPh, 3-OHPh, 2-OHPh, ΣOHNa, ΣOHPh, and ΣOHPAHs was associated with a 17, 14, 15, 22, 14, 19, 18, 27, and 21% increment in HUA risk, respectively. After 6 years, individuals with persistent high level of 9-OHPh had a 12.5 μmol/L increase in SUA compared with those with persistent low level. The overall effects of multi-PAHs mixture on SUA and HUA remain positive. 8-hydroxy-deoxyguanosine mediated the associations of PAHs metabolites with SUA and HUA, and the mediated proportion ranged from 5.39% to 15.34%. PAHs exposure was associated with the elevated SUA levels and increased HUA risk, and oxidative DNA damage may be one of the underlying mechanisms.
Collapse
Affiliation(s)
- Xuejie Ding
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yang Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shuhui Wan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yueru Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ruyi Liang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Jiake Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiuyu Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
2
|
Dulsat-Masvidal M, Ciudad C, Infante O, Mateo R, Lacorte S. Impact of organic contaminants in soils from Important Bird and Biodiversity areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35274-7. [PMID: 39436512 DOI: 10.1007/s11356-024-35274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Soils act as sinks for many organic contaminants, posing a threat to biodiversity and essential ecosystem services. In this study, we assessed the contamination status of soils in 140 Important Bird and Biodiversity Areas (IBAs) in Spain. Fifty-two organic contaminants including organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and plasticizers or plastic related such as phthalates, bisphenol A, nonylphenol, and organophosphate esters (OPEs) were analyzed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). The mean soil concentration ranged from 1.41 to 917 ng/g and plasticizer and PAHs were detected at the highest concentrations, while OCPs were the most frequently detected. Hierarchical clustering on principal components (HCPC) and land use data associated PCBs with artificial land, phthalates with industrial sites and incineration plants and PAHs with burned areas, and in a lesser extent pesticides with agricultural activities. A tier I environmental risk assessment (ERA) was performed to identify the most impacted natural areas and the most concerning compounds. Out of the 140 IBAs, 95 presented at least one compound at high-risk concentrations (RQ > 1) for soil organisms. The OPPs chlorpyrifos and malathion, together with the PAH benzo[b]fluoranthene, were detected at high-risk concentrations. Overall, this study highlights the widespread presence of organic contaminants in areas of high natural value and the importance of implementing monitoring studies to identify potential contaminated sites that require conservation and remediation actions for the protection of biodiversity.
Collapse
Affiliation(s)
- Maria Dulsat-Masvidal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Carlos Ciudad
- SEO/BirdLife, Melquiades Biencinto, 34, 28053, Madrid, Spain
| | - Octavio Infante
- SEO/BirdLife, Melquiades Biencinto, 34, 28053, Madrid, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13005, Ciudad Real, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
3
|
Nuerla A, Xie X, Hua Z, Ma J, Abliz A, Mamtimin Y, Mamat A, Fan Y, Jiang N, An J. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons in surface soils and plants from industrial and agricultural areas, Junggar Basin, Xinjiang. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122340. [PMID: 39232321 DOI: 10.1016/j.jenvman.2024.122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
The contamination characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) in different environmental functional areas are different. In this study, the contamination of PAHs in soils and common plants in typical mining and farmland areas in Xinjiang, China, was analyzed. The results showed that the contamination levels of PAHs in mining soils were significantly higher than those in farmland soils, and the mining soils were dominated by 4-5-ring PAHs and farmland soils by 3-4-ring PAHs. Analysis of their sources using a positive definite factor matrix model showed that PAHs in mining soils mainly originated from coal and natural gas combustion, and transportation processes; while farmland soils mainly came from biomass and coal combustion, and fossil fuel volatile spills. The cancer risk of PAHs in soils was evaluated using a combination of the Monte Carlo and the lifetime carcinogenic risk models, and the results showed that the overall level of cancer risk for mining soils was higher than that for farmland soils, and can put some people in high risk of cancer. For plant samples, except for individual crop samples, the contamination levels of mining plants and crops were similar, with 4-5-ring PAHs dominating in desert plants in mining areas and the highest proportion of 3-ring PAHs in crops in agricultural fields, and PAHs in both plants were mainly from biomass and coal combustion. The results of correlation analysis showed that 2-ring PAHs in crop roots were significantly positively correlated with it in corresponding soils, and some high-ring PAHs in crop leaves were significantly negatively correlated with it in corresponding soils. Therefore, there were significant differences in the pollution characteristics of PAHs in soils and common plants in mining and agricultural areas. Human health risks and ecological risks are mainly concentrated in mining areas, and appropriate intervention measures should be taken for pollution remediation.
Collapse
Affiliation(s)
- Ailijiang Nuerla
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China.
| | - Xuanxuan Xie
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Zhengyu Hua
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Xinjiang Academy of Agricultural Sciences Institute of Quality Standards & Testing Technology for Agro-Products, Urumqi, 830091, PR China
| | - Junxuan Ma
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Abdugheni Abliz
- School of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, 830017, PR China
| | - Yusuyunjiang Mamtimin
- School of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, 830017, PR China
| | - Anwar Mamat
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China
| | - Yue Fan
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Na Jiang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Xinjiang Academy of Agricultural Sciences Institute of Quality Standards & Testing Technology for Agro-Products, Urumqi, 830091, PR China
| | - Jing An
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Xinjiang Academy of Agricultural Sciences Institute of Quality Standards & Testing Technology for Agro-Products, Urumqi, 830091, PR China
| |
Collapse
|
4
|
Qutob M, Rafatullah M, Muhammad SA, Siddiqui MR, Alam M. A sustainable method for oxidizing phenanthrene in tropical soil using natural iron as a catalyst in a slurry phase reactor with persulfate assistance. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1391-1404. [PMID: 38973648 DOI: 10.1039/d4em00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The presence of impurities is a significant restriction to the use of natural iron minerals as catalysts in the advanced oxidation process (AOP), especially if applied for soil remediation. This study evaluated the catalytic activity of tropical soil, which has relatively low impurities and naturally contains iron, for the remediation of phenanthrene (PHE) contamination. The system showed good performance, and the best result was 81% PHE removal after 24 h under experimental conditions of pH 7, [PHE]0 = 300 mg/50 g soil, temperature 55 °C, air flow = 260 mL min-1, and [persulfate]0 = 20 mg kg-1, while the mineralization was 61%. Nevertheless, certain limitations were noted in the soil matrix following the remediation procedure, including the appearance of cracks in the soil aggregate, reduction in the crystal size of the soil particles, and decline in the iron and aluminium contents. The results confirmed that the radicals play a major role in the remediation process. SO4˙- was more dominant than O2˙-, while HO˙ played a minor role. Additionally, the by-products were detected by gas chromatography-mass spectroscopy (GC-MS), and the degradation pathway of PHE is proposed. Toxicity assessment tests were performed by using a computational method. In spite of the challenges, this research achieved notable progress in soil remediation, taking a significant step forward in implementing the AOP without catalysts to activate oxidants and remove PHE within the soil. Also, this approach supports sustainability by reducing the need for extra materials and providing an environmentally friendly way of soil remediation.
Collapse
Affiliation(s)
- Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Syahidah Akmal Muhammad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University, 123, Dongdaero, Gyeongju-si 780714, Republic of Korea
| |
Collapse
|
5
|
Curiel-Alegre S, de la Fuente-Vivas D, Khan AHA, García-Tojal J, Velasco-Arroyo B, Rumbo C, Soja G, Rad C, Barros R. Unveiling the capacity of bioaugmentation application, in comparison with biochar and rhamnolipid for TPHs degradation in aged hydrocarbons polluted soil. ENVIRONMENTAL RESEARCH 2024; 252:118880. [PMID: 38582421 DOI: 10.1016/j.envres.2024.118880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Persistent, aged hydrocarbons in soil hinder remediation, posing a significant environmental threat. While bioremediation offers an environmentally friendly and cost-effective approach, its efficacy for complex contaminants relies on enhancing pollutant bioavailability. This study explores the potential of immobilized bacterial consortia combined with biochar and rhamnolipids to accelerate bioremediation of aged total petroleum hydrocarbon (TPH)-contaminated soil. Previous research indicates that biochar and biosurfactants can increase bioremediation rates, while mixed consortia offer sequential degradation and higher hydrocarbon mineralization. The present investigation aimed to assess whether combining these strategies could further enhance degradation in aged, complex soil matrices. The bioaugmentation (BA) with bacterial consortium increased the TPHs degradation in aged soil (over 20% compared to natural attenuation - NA). However, co-application of BA with biochar and rhamnolipid higher did not show a statistically prominent synergistic effect. While biochar application facilitated the maintenance of hydrocarbon degrading bacterial consortium in soil, the present study did not identify a direct influence in TPHs degradation. The biochar application in contaminated soil contributed to TPHs adsorption. Rhamnolipid alone slightly increased the TPHs biodegradation with NA, while the combined bioaugmentation treatment with rhamnolipid and biochar increased the degradation between 27.5 and 29.8%. These findings encourage further exploration of combining bioaugmentation with amendment, like biochar and rhamnolipid, for remediating diverse environmental matrices contaminated with complex and aged hydrocarbons.
Collapse
Affiliation(s)
- Sandra Curiel-Alegre
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; Research Group in Composting (UBUCOMP), University of Burgos, Faculty of Sciences, Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| | - Dalia de la Fuente-Vivas
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Javier García-Tojal
- Department of Chemistry, University of Burgos, Faculty of Sciences. Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Blanca Velasco-Arroyo
- Department of Biotechnology and Food Science, University of Burgos, Faculty of Sciences, Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Gerhard Soja
- Institute for Chemical and Energy Engineering, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria
| | - Carlos Rad
- Research Group in Composting (UBUCOMP), University of Burgos, Faculty of Sciences, Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
6
|
Hashemi M, Bahrami A, Ghorbani-Shahna F, Afkhami A, Farhadian M, Poormohamadi A. Development of a needle trap device packed with modified PAF-6-MNPs for sampling and analysis of polycyclic aromatic compounds in air. RSC Adv 2024; 14:18588-18598. [PMID: 38860255 PMCID: PMC11163952 DOI: 10.1039/d4ra01651c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
The aim of this study was to develop a new method for sampling and analyzing polycyclic aromatic hydrocarbons in the air. This was achieved by utilizing a needle trap device packed with a modified porous aromatic framework coated with magnetic nanoparticles (PAF-6-MNPs). The modified adsorbent underwent qualitative evaluation using Fourier-transform infrared spectroscopy and X-ray diffraction, as well as scanning and transmission electron microscopy. The optimal conditions for sampling polycyclic aromatic hydrocarbons compounds were determined using a dynamic atmosphere chamber. The method was validated by taking various samples from the standard chamber, and then analyzed under different environmental sampling conditions using a gas chromatography device. The limit of detection (LOD) and limit of quantification (LOQ) values for the analytes of interest, including naphthalene, anthracene, and pyrene, ranged from 0.0034-0.0051 and 0.010-0.015 μg L-1, respectively. Also, the repeatability and reproducibility of the method expressed as relative standard deviation, for the mentioned analyses were found to be in the range of 17.8-20.5% and 20-22.9%. The results indicated that over a 20 day storage period (with the needle trap device containing the analytes of interest kept in the refrigerator), there was no significant decrease in the amount of analytes compared to the initial amount. These findings suggest that, the needle trap packed with the proposed adsorbent offers a reliable, highly-sensitive, easy-to-use, and cost-effective method for sampling polycyclic aromatic hydrocarbons in the air compared to the conventional method recommended by the National Institute of Occupational Safety and Health (NIOSH), method 5515.
Collapse
Affiliation(s)
- Mobina Hashemi
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Abdulrahman Bahrami
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Farshid Ghorbani-Shahna
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Abas Afkhami
- Department of Chemistry, Bu-Ali-Sina University Hamedan Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences Hamadan Iran
| | - Ali Poormohamadi
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
7
|
Hasheminejad S, Moradi H, Soleimani M. Potential of Pinus eldarica Medw. tree bark for biomonitoring polycyclic aromatic hydrocarbons in ambient air. Sci Rep 2024; 14:6259. [PMID: 38491054 PMCID: PMC10943078 DOI: 10.1038/s41598-024-56182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
Urban trees' biomonitoring of pollutants such as polycyclic aromatic hydrocarbons (PAHs) yields pertinent and useful data for air pollution management. The aim of this study was to biomonitor PAHs in pine (Pinus eldarica Medw.) trees in the city of Isfahan and identify their sources. In total, 34 samples of outer bark of the trees were collected and their contents of 16 EPA PAHs were analyzed. With a median value of 136.3 ng/g, the total PAH contents in tree barks varied from 53.4 to 705.2 ng/g. The average values of the diagnostic ratios for Ant/(Ant + Phe), Flu/(Flu + Py), BaA/(BaA + Chr) and IP/(IP + BP) were 0.19, 0.49, 0.45 and 0.49, respectively, revealing the PAHs majority source of pyrogenic. Meanwhile, principal component analysis showed two major types of PAHs sources including pyrogenic (fossil fuel combustion and industrial activities) and petrogenic (uncombusted) sources. The average ratio An/(An + Phe) and Flu/(Flu + Py) in bark samples was close to their relevant ratios in ambient air which demonstrated the potential use of this approach for biomonitoring of PAHs.
Collapse
Affiliation(s)
- Sohrab Hasheminejad
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Hossein Moradi
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 8415683111, Iran.
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 8415683111, Iran
| |
Collapse
|
8
|
Ren C, Carrillo ND, Cryns VL, Anderson RA, Chen M. Environmental pollutants and phosphoinositide signaling in autoimmunity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133080. [PMID: 38091799 PMCID: PMC10923067 DOI: 10.1016/j.jhazmat.2023.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
Environmental pollution stands as one of the most critical challenges affecting human health, with an estimated mortality rate linked to pollution-induced non-communicable diseases projected to range from 20% to 25%. These pollutants not only disrupt immune responses but can also trigger immunotoxicity. Phosphoinositide signaling, a pivotal regulator of immune responses, plays a central role in the development of autoimmune diseases and exhibits high sensitivity to environmental stressors. Among these stressors, environmental pollutants have become increasingly prevalent in our society, contributing to the initiation and exacerbation of autoimmune conditions. In this review, we summarize the intricate interplay between phosphoinositide signaling and autoimmune diseases within the context of environmental pollutants and contaminants. We provide an up-to-date overview of stress-induced phosphoinositide signaling, discuss 14 selected examples categorized into three groups of environmental pollutants and their connections to immune diseases, and shed light on the associated phosphoinositide signaling pathways. Through these discussions, this review advances our understanding of how phosphoinositide signaling influences the coordinated immune response to environmental stressors at a biological level. Furthermore, it offers valuable insights into potential research directions and therapeutic targets aimed at mitigating the impact of environmental pollutants on the pathogenesis of autoimmune diseases. SYNOPSIS: Phosphoinositide signaling at the intersection of environmental pollutants and autoimmunity provides novel insights for managing autoimmune diseases aggravated by pollutants.
Collapse
Affiliation(s)
- Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
9
|
Mukhopadhyay S, Dutta R, Das P. Greenery planning for urban air pollution control based on biomonitoring potential: Explicit emphasis on foliar accumulation of particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120524. [PMID: 38461639 DOI: 10.1016/j.jenvman.2024.120524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
In this study, efficiencies of eight indigenous plants of Baishnabghata Patuli Township (BPT), southeast Kolkata, India, were explored as green barrier species and potentials of plant leaves were exploited for biomonitoring of particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). The present work focused on studying PM capturing abilities (539.32-2766.27 μg cm-2) of plants (T. divaricata, N. oleander and B. acuminata being the most efficient species in retaining PM) along with the estimation of foliar contents of PM adhered to leaf surfaces (total sPM (large + coarse): 526.59-2731.76 μg cm-2) and embedded within waxes (total wPM (large + coarse): 8.73-34.51 μg cm-2). SEM imaging used to analyse leaf surfaces affirmed the presence of innate corrugated microstructures as main drivers for particle capture. Accumulation capacities of PAHs of vehicular origin (total index, TI > 4) were compared among the species based on measured concentrations (159.92-393.01 μg g-1) which indicated T. divaricata, P. alba and N. cadamba as highest PAHs accumulators. Specific leaf area (SLA) of plants (71.01-376.79 cm2 g-1), a measure of canopy-atmosphere interface, had great relevance in PAHs diffusion. Relative contribution (>90%) of 4-6 ring PAHs to total carcinogenic equivalent and potential as well as 5-6 ring PAHs to total mutagenic equivalent and potential had also been viewed with respect to benzo[a]pyrene. In-depth analysis of foliar traits and adoption of plant-based ranking strategies (air pollution tolerance index (APTI) and anticipated performance index (API)) provided a rationale for green belting. Each of the naturally selected plant species showed evidences of adaptations during abiotic stress to maximize survival and filtering effects for reductive elimination of ambient PM and PAHs, allowing holistic management of green spaces.
Collapse
Affiliation(s)
- Shritama Mukhopadhyay
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata 700032, India.
| | - Ratna Dutta
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata 700032, India.
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
10
|
Zhang JB, Dai C, Wang Z, You X, Duan Y, Lai X, Fu R, Zhang Y, Maimaitijiang M, Leong KH, Tu Y, Li Z. Resource utilization of rice straw to prepare biochar as peroxymonosulfate activator for naphthalene removal: Performances, mechanisms, environmental impact and applicability in groundwater. WATER RESEARCH 2023; 244:120555. [PMID: 37666149 DOI: 10.1016/j.watres.2023.120555] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Herein, biochar was prepared using rice straw, and it served as the peroxymonosulfate (PMS) activator to degrade naphthalene (NAP). The results showed that pyrolysis temperature has played an important role in regulating biochar structure and properties. The biochar prepared at 900°C (BC900) had the best activation capacity and could remove NAP in a wide range of initial pH (5-11). In the system of BC900/PMS, multi-reactive species were produced, in which 1O2 and electron transfer mainly contributed to NAP degradation. In addition, the interference of complex groundwater components on the NAP removal rate must get attention. Cl- had a significant promotional effect but risked the formation of chlorinated disinfection by-products. HCO3-, CO32-, and humic acid (HA) had an inhibitory effect; surfactants had compatibility problems with the BC900/PMS system, which could lead to unproductive consumption of PMS. Significantly, the BC900/PMS system showed satisfactory remediation performance in spiked natural groundwater and soil, and it could solve the problem of persistent groundwater contamination caused by NAP desorption from the soil. Besides, the degradation pathway of NAP was proposed, and the BC900/PMS system could degrade NAP into low or nontoxic products. These suggest that the BC900/PMS system has promising applications in in-situ groundwater remediation.
Collapse
Affiliation(s)
- Jun Bo Zhang
- College of Civil Engineering, Tongji University, Shanghai, 200092, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, Shanghai, 200092, China.
| | - Zeyu Wang
- College of Civil Engineering, Tongji University, Shanghai, 200092, China
| | - Xueji You
- College of Civil Engineering, Tongji University, Shanghai, 200092, China
| | - Yanping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Xiaoying Lai
- Department of Management and Economics, Tianjin University, Tianjin, 300072, China
| | - Rongbing Fu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | | | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia
| | - Yaojen Tu
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhi Li
- College of Civil Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
11
|
Li JN, Zhang Y, Wang JX, Xiao H, Nikolaev A, Li YF, Zhang ZF, Tang ZH. Occurrence, Sources, and Health Risks of Polycyclic Aromatic Hydrocarbons in Road Environments from Harbin, a Megacity of China. TOXICS 2023; 11:695. [PMID: 37624200 PMCID: PMC10458957 DOI: 10.3390/toxics11080695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
To obtain a comprehensive understanding about that occurrence, sources, and effects on human health of polycyclic aromatic hydrocarbons (PAHs) in road environmental samples from Harbin, concentrations of 32 PAHs in road dust, green belt soil, and parking lot dust samples were quantified. The total PAH concentrations ranged from 0.95 to 40.7 μg/g and 0.39 to 43.9 μg/g in road dust and green belt soil, respectively, and were dominated by high molecular weight PAHs (HMW-PAHs). Despite the content of PAHs in arterial roads being higher, the composition profile of PAHs was hardly influenced by road types. For parking lot dust, the range of total PAH concentrations was 0.81-190 μg/g, and three-ring to five-ring PAHs produced the maximum contribution. Compared with surface parking lots (mean: 6.12 μg/g), higher total PAH concentrations were detected in underground parking lots (mean: 33.1 μg/g). The diagnostic ratios of PAHs showed that petroleum, petroleum combustion, and biomass/coal combustion were major sources of PAHs in the samples. Furthermore, according to the Incremental Lifetime Cancer Risk model, the cancer risks of three kinds of samples for adults and children were above the threshold (10-6). Overall, this study demonstrated that PAHs in the road environment of Harbin have a certain health impact on local citizens.
Collapse
Affiliation(s)
- Jin-Nong Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (J.-N.L.); (Y.Z.); (J.-X.W.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (J.-N.L.); (Y.Z.); (J.-X.W.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Jian-Xin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (J.-N.L.); (Y.Z.); (J.-X.W.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
| | - Anatoly Nikolaev
- Institute of Natural Sciences, North-Eastern Federal University, 677000 Yakutsk, Russia;
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China;
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- IJRC-PTS-NA, Toronto, ON M2N 6X9, Canada
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China;
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Zhong-Hua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (J.-N.L.); (Y.Z.); (J.-X.W.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
12
|
Mukhopadhyay S, Dutta R, Dhara A, Das P. Biomonitoring of polycyclic aromatic hydrocarbons (PAHs) by Murraya paniculata (L.) Jack in South Kolkata, West Bengal, India: spatial and temporal variations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5761-5781. [PMID: 36823386 DOI: 10.1007/s10653-023-01506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/10/2023] [Indexed: 06/06/2023]
Abstract
Attempts have been made in the present study for ascertaining the concentrations of atmospheric polycyclic aromatic hydrocarbons (PAHs) using passive biosamplers in preference to conventional air sampling methods. Mechanical stirring, sonication, Soxhlet technique and microwave-assisted Soxhlet extraction (MASE) were employed to extract PAHs from an evergreen plant (Murraya paniculata) leaves (having long life-span) sampled from polluted places of South Kolkata, India, with dense population and heavy traffic. Effects of extraction methods and operational parameters (solvent and time) on the recovery levels of PAHs were also investigated. Purified extracts, acquired through adsorption chromatography, were subjected to GC-MS and HPLC-UV analyses for qualitative and quantitative assessment of PAHs. Spatio-temporal distribution of accumulated PAHs across the sampling sites was monitored over premonsoon, postmonsoon and winter supported by pollutant source characterization. The results displayed that the extraction yields of Soxhlet (272.07 ± 26.15 μg g-1) and MASE (280.17 ± 15.46 μg g-1) were the highest among the four techniques. Conditions of extraction with toluene for 6 h were found to be most favorable for PAHs. In spatio-temporal analysis, total concentrations of PAHs in the foliar samples varied from 200.98 ± 2.72 to 550.79 ± 10.11 μg g-1 dry weight, and the highest values being recorded in the samples of Exide More because of daylong inexorable traffic flow/crowding increasing the burden of ambient PAHs. Widespread changes in meteorology exerted influence on seasonal concentrations of PAHs in plant leaves, and extent of leaf contamination by PAHs was observed extreme in winter followed by postmonsoon and then, premonsoon. Foliar accretion of PAHs differed in the study sites with diverse sources of emission from motor vehicles, fossil fuel and biomass burning along with other human interferences.
Collapse
Affiliation(s)
| | - Ratna Dutta
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, India.
| | - Aparna Dhara
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
13
|
Wang H, Huang X, Kuang Z, Zheng X, Zhao M, Yang J, Huang H, Fan Z. Source apportionment and human health risk of PAHs accumulated in edible marine organisms: A perspective of "source-organism-human". JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131372. [PMID: 37060753 DOI: 10.1016/j.jhazmat.2023.131372] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Most PAHs produced by human activities can be absorbed and accumulated by edible organisms and pose a potential hazard to human health. However, the source apportionment and human health risk of PAHs accumulated in edible organisms remains largely unknown. Therefore, we conducted source analysis and health risk assessment based on the PAH concentrations in ten marine fish from coastal areas of Guangdong, China. Results showed that the pollution of PAHs in fish organisms was at "Minimally polluted" level, and that all marine fish had the ability to accumulate PAHs. Risk assessment indicated Carcinogenic risk of PAHs in four populations was at a "Cautionary risk" level, with urban children suffered the highest risk. Petroleum pollution, Coal and biomass combustion, and Marine transport emissions were identified as the main anthropogenic sources for PAHs in organisms, and Marine transport emissions accounted for the highest Carcinogenic risk. The Acceptable daily intake for all populations were far below their actual daily intake without causing "Cautionary risk". Our findings provide new insights into the source apportionment and health risk of PAHs from a "source-organism-human" perspective, and suggested that joint management of three anthropogenic sources would be an effective way to prevent the health risks of PAHs.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xinmiao Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zexing Kuang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xiaowei Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Menglu Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jing Yang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, China
| | - Honghui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
14
|
Thacharodi A, Hassan S, Singh T, Mandal R, Chinnadurai J, Khan HA, Hussain MA, Brindhadevi K, Pugazhendhi A. Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review. CHEMOSPHERE 2023; 328:138498. [PMID: 36996919 DOI: 10.1016/j.chemosphere.2023.138498] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A class of organic priority pollutants known as PAHs is of critical public health and environmental concern due to its carcinogenic properties as well as its genotoxic, mutagenic, and cytotoxic properties. Research to eliminate PAHs from the environment has increased significantly due to awareness about their negative effects on the environment and human health. Various environmental factors, including nutrients, microorganisms present and their abundance, and the nature and chemical properties of the PAH affect the biodegradation of PAHs. A large spectrum of bacteria, fungi, and algae have ability to degrade PAHs with the biodegradation capacity of bacteria and fungi receiving the most attention. A considerable amount of research has been conducted in the last few decades on analyzing microbial communities for their genomic organization, enzymatic and biochemical properties capable of degrading PAH. While it is true that PAH degrading microorganisms offer potential for recovering damaged ecosystems in a cost-efficient way, new advances are needed to make these microbes more robust and successful at eliminating toxic chemicals. By optimizing some factors like adsorption, bioavailability and mass transfer of PAHs, microorganisms in their natural habitat could be greatly improved to biodegrade PAHs. This review aims to comprehensively discuss the latest findings and address the current wealth of knowledge in the microbial bioremediation of PAHs. Additionally, recent breakthroughs in PAH degradation are discussed in order to facilitate a broader understanding of the bioremediation of PAHs in the environment.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Saqib Hassan
- Division of Non-Communicable Diseases, Indian Council of Medical Research (ICMR), New Delhi, 110029, India; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Tripti Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Ramkrishna Mandal
- Department of Chemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Jeganathan Chinnadurai
- Department of Research and Development, Dr. Thacharodi's Laboratories, No. 24, 5th Cross, Thanthaiperiyar Nagar, Ellapillaichavadi, Puducherry, 605005, India
| | - Hilal Ahmad Khan
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Mir Ashiq Hussain
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali,140103, India.
| |
Collapse
|
15
|
Kumari A, Upadhyay V, Kumar S. A critical insight into occurrence and fate of polycyclic aromatic hydrocarbons and their green remediation approaches. CHEMOSPHERE 2023; 329:138579. [PMID: 37031842 DOI: 10.1016/j.chemosphere.2023.138579] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Over the last century, the tremendous growth in industrial activities particularly in the sectors of pharmaceuticals, petrochemicals and the reckless application of fertilizers and insecticides has raised the contamination of polyaromatic hydrocarbons (PAHs) tremendously. For more than a decade, the main focus of environmental experts is to come up with management approaches for the clean-up of sites polluted with PAHs. These are ubiquitous in nature i.e., widely distributed in ecosystem ranging from soil, air and marine water. Most of the PAHs possess immunotoxicity, carcinogenicity and genotoxicity. Being highly soluble in lipids, they are readily absorbed into the mammalian gastro intestinal tract. They are widely distributed with marked tendency of getting localized into body fat in varied tissues. Several remediation technologies have been tested for the removal of these environmental contaminants, particularly bioremediation has turned out to be a hope as the safest and cost-effective option. Therefore, this review first discusses various sources of PAHs, their effect on human health and interactions of PAHs with soils and sediments. In this review, a holistic insight of current scenario of existing remediation technologies and how they can be improvised along with the hindrances in the path of these technologies are properly addressed.
Collapse
Affiliation(s)
- Archana Kumari
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Vidisha Upadhyay
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.
| |
Collapse
|
16
|
Zhang Z, Xia Y, Meng L, Xiao L, Zhang Y, Ye J, Wang F, Deng H. Polycyclic Aromatic Hydrocarbons in Topsoils Along the Taipu River Banks in the Yangtze River Delta, China: Occurrence, Source and Risk Assessment. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:9. [PMID: 37358629 DOI: 10.1007/s00128-023-03751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/23/2023] [Indexed: 06/27/2023]
Abstract
Taipu River is an important transboundary river and drinking water source in the Yangtze River Delta, China. This study collected 15 topsoil samples along the Taipu River banks and subsequently determined the polycyclic aromatic hydrocarbons (PAHs) concentrations, sources, and ecological and health risks. The sum of toxic 15 PAHs concentrations ranged from 83.13 to 28342.53 ng/g, with a mean of 2828.69 ng/g. High molecular weight (HMW) PAHs were the dominant components and Indene (1,2,3, -cd) benzopyrene (InP) accounted for the highest proportion in individuals. The average PAH concentration in residential land was the highest, followed by those in industrial and agricultural land. The PAH concentration was positively related to contents of total carbon, total nitrogen, ammonium nitrogen, and aminopeptidase activity in soils. The mixed combustion of biomass, coal, and petroleum and traffic emissions could be the primary PAH contributors. The total PAHs at over half of sampling points had relatively high risk quotients and incremental lifetime cancer risk (ILCR) values, posing potential or great ecological threats and health risks.
Collapse
Affiliation(s)
- Zhibo Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 201722, China
| | - Yangrongchang Xia
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 201722, China
| | - Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China.
- Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Ministry of Education, Hangzhou, 310058, China.
- The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China.
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 201722, China.
| | - Lishan Xiao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 201722, China
| | - Ying Zhang
- The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Fenghua Wang
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Huan Deng
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
17
|
Zhang Q, Gao M, Sun X, Wang Y, Yuan C, Sun H. Nationwide distribution of polycyclic aromatic hydrocarbons in soil of China and the association with bacterial community. J Environ Sci (China) 2023; 128:1-11. [PMID: 36801025 DOI: 10.1016/j.jes.2022.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 06/18/2023]
Abstract
Soil contamination by polycyclic aromatic hydrocarbons (PAHs) has raised great environmental concerns. However, the information on national wide distribution of PAHs in soil as well as their effect on soil bacterial community are limited. In this study, 16 PAHs were measured in 94 soil samples collected across China. The total concentration of 16 PAHs (∑PAHs) in soil ranged from 74.0 to 17,657 ng/g (dry weight basis), with a median value of 200 ng/g. Pyrene was the major soil PAH, with a median concentration of 71.3 ng/g. Soil samples from Northeast China had a higher median concentration of ∑PAHs (1,961 ng/g) than those from other regions. Petroleum emission and wood/grass/coal combustion were potential sources for soil PAHs based on diagnostic ratios and positive matrix factors analysis. A nonnegligible ecological risk (hazard quotients > 1) was found in over 20% of soil samples analyzed and the highest median total HQs value (8.53) was found in soils from Northeast China. The effect of PAHs on bacterial abundance, α-diversity, and β-diversity was limited in the soils surveyed. Nevertheless, the relative abundance of some members in genera Gaiella, Nocardioides, and Clostridium was significantly correlated with the concentrations of some PAHs. Especially, the bacterium Gaiella Occulta showed potential in indicating soil contamination by PAH, which is worth further exploration.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinhui Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Chaolei Yuan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
18
|
Na M, Zhao Y, Rina S, Wang R, Liu X, Tong Z, Zhang J. Residues, potential source and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface water of the East Liao River, Jilin Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163977. [PMID: 37164080 DOI: 10.1016/j.scitotenv.2023.163977] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
The environmental risks posed by polycyclic aromatic hydrocarbons (PAHs) and the diversity of their anthropogenic origins make them a global issue. Therefore, it is of utmost significance for protecting the aquatic environment and the growth of neighboring populations to identify their possible origins and ecological risk. Here, we detail the contamination profiles of 15 PAHs found in the East Liao River's surface waters in Jilin Province and use the receptor model Absolute Principal Component Analysis - Multiple Linear Regression (APCS-MLR) and diagnostic ratios method to identify the primary potential sources of pollution. Based on the natural hazard risk formation theory (NHRFT), an ecological risk assessment (ERA) model for PAHs in the East Liao River was developed. The method assesses the ecological risk status of PAHs by integrating the risk quotient (RQ) approach and the DPSIRM (driving force, pressure, state, impact, response, management) conceptual framework. Total concentrations in the surface water body were between 396.42 and 624.06 ng/L, with an average of 436.99 ng/L. The source research revealed that coal, biomass, and traffic emission sources are the most likely PAH contributors to the East Liao River. The ERA found that the majority of the sites' locations of the study were at low risk for PAHs in surface water bodies (30.7 % and 32.2 %, respectively), while only a tiny percentage of sites were at high or very high risk (1.8 % and 13.6 %). The study results provide theoretical support for the East Liao River's ecological, environmental protection, and policy formulation.
Collapse
Affiliation(s)
- Mula Na
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Yunmeng Zhao
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Su Rina
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Rui Wang
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Xingpeng Liu
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Zhijun Tong
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Jiquan Zhang
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| |
Collapse
|
19
|
Montuori P, De Rosa E, Cerino P, Pizzolante A, Nicodemo F, Gallo A, Rofrano G, De Vita S, Limone A, Triassi M. Estimation of Polycyclic Aromatic Hydrocarbons in Groundwater from Campania Plain: Spatial Distribution, Source Attribution and Health Cancer Risk Evaluation. TOXICS 2023; 11:toxics11050435. [PMID: 37235250 DOI: 10.3390/toxics11050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
The aim of this study was to evaluate the concentrations of polycyclic aromatic hydrocarbons (PAHs) in 1168 groundwater samples of the Campania Plain (Southern Italy), taken using a municipal environmental pressure index (MIEP), and to analyze the distribution of these compounds to determine source PAHs using ratios of isomers diagnostic. Lastly, this study also aimed to estimate the potential health cancer risk in groundwaters. The data indicated that the highest concentration of PAHs was found in groundwater from Caserta Province and the contents of BghiP, Phe, and Nap were detected in the samples. The spatial distribution of these pollutants was evaluated using the Jenks method; moreover, the data indicated that incremental lifetime cancer risk ILCRingestion ranged from 7.31 × 10-20 to 4.96 × 10-19, while ILCRdermal ranged from 4.32 × 10-11 to 2.93 × 10-10. These research findings may provide information about the Campania Plain's groundwater quality and aid in the development of preventative measures to lessen PAH contamination in groundwater.
Collapse
Affiliation(s)
- Paolo Montuori
- Department of Public Health, "Federico II" University, Via Sergio Pansini No. 5, 80131 Naples, Italy
| | - Elvira De Rosa
- Department of Public Health, "Federico II" University, Via Sergio Pansini No. 5, 80131 Naples, Italy
| | - Pellegrino Cerino
- Department of Public Health, "Federico II" University, Via Sergio Pansini No. 5, 80131 Naples, Italy
| | - Antonio Pizzolante
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Naples, Italy
| | - Federico Nicodemo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Naples, Italy
| | - Alfonso Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Naples, Italy
| | - Giuseppe Rofrano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Naples, Italy
| | - Sabato De Vita
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Naples, Italy
| | - Antonio Limone
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Naples, Italy
| | - Maria Triassi
- Department of Public Health, "Federico II" University, Via Sergio Pansini No. 5, 80131 Naples, Italy
| |
Collapse
|
20
|
Bonatti E, Dos Santos A, Birolli WG, Rodrigues-Filho E. Endophytic, extremophilic and entomophilic fungi strains biodegrade anthracene showing potential for bioremediation. World J Microbiol Biotechnol 2023; 39:152. [PMID: 37029326 DOI: 10.1007/s11274-023-03590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Anthropogenic activities have been increasing Polycyclic Aromatic Hydrocarbons (PAHs) release, promoting an urgent need for decontamination methods. Therefore, anthracene biodegradation by endophytic, extremophilic, and entomophilic fungi was studied. Moreover, a salting-out extraction methodology with the renewable solvent ethanol and the innocuous salt K2HPO4 was employed. Nine of the ten employed strains biodegraded anthracene in liquid medium (19-56% biodegradation) after 14 days at 30 °C, 130 rpm, and 100 mg L-1. The most efficient strain Didymellaceae sp. LaBioMMi 155, an entomophilic strain, was employed for optimized biodegradation, aiming at a better understanding of how factors like pollutant initial concentration, pH, and temperature affected this process. Biodegradation reached 90 ± 11% at 22 °C, pH 9.0, and 50 mg L-1. Futhermore, 8 different PAHs were biodegraded and metabolites were identified. Then, experiments with anthracene in soil ex situ were performed and bioaugmentation with Didymellaceae sp. LaBioMMi 155 presented better results than natural attenuation by the native microbiome and biostimulation by the addition of liquid nutrient medium into soil. Therefore, an expanded knowledge about PAHs biodegradation processes was achieved with emphasis to the action of Didymellaceae sp. LaBioMMi 155, which can be further employed for in situ biodegradation (after strain security test), or for enzyme identification and isolation aiming at oxygenases with optimal activity under alkaline conditions.
Collapse
Affiliation(s)
- Erika Bonatti
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil
| | - Alef Dos Santos
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil
| | - Willian Garcia Birolli
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil.
| | - Edson Rodrigues-Filho
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil.
| |
Collapse
|
21
|
Zhang H, Yuan L, Xue J, Wu H. Polycyclic aromatic hydrocarbons in surface water and sediment from Shanghai port, China: spatial distribution, source apportionment, and potential risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7973-7986. [PMID: 36048385 DOI: 10.1007/s11356-022-22706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The spatial distribution, sources, and potential risk of polycyclic aromatic hydrocarbons (PAHs) were systematically investigated in Shanghai port, one of the most important hubs in international trade. The 16 priority PAHs in surface water and sediment were determined. Total concentrations of 16 PAHs (Σ16PAHs) ranged from 140.6 to 647.4 ng/L in surface water and from 12.7 to 573.2 ng/g (dry weight, dw) in sediment, respectively. The 2-ring and 3-ring PAHs with low molecular weight were main components in water, while the 3-ring and 4-ring PAHs were abundant in sediment. Flu was the main component of the Σ16PAHs in water and sediment. According to the source apportionment, the PAHs in water mostly originated from combustion of fossil fuels and petroleum and petroleum combustion were the main contributors to the PAHs in sediment. The results obtained from potential risk assessment indicate that the PAHs in surface water present a moderate ecological risk, whereas the PAHs in sediment show low ecological risk indicating a less possibility of toxic pollution.
Collapse
Affiliation(s)
- Hui Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Lin Yuan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Junzeng Xue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Huixian Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
22
|
Pandion K, Arunachalam KD, Dowlath MJH, Chinnapan S, Chang SW, Chang W, Milon AR, Gengan RM, Ravindran B. The spatial distribution of physicochemical parameters in coastal sediments along the Bay of Bengal Coastal Zone with statistical analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:126. [PMID: 36401680 DOI: 10.1007/s10661-022-10568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/05/2022] [Indexed: 06/16/2023]
Abstract
The current study focused on the monitoring of pollution loads in the Kalpakkam coastal zone of India in terms of physico-chemical characteristics of sediment. The investigation took place at 12 sampling points around the Kalpakkam coastal zone for one year beginning from 2019. The seasonal change of nutrients in the sediment, such as nitrogen, phosphorus, potassium, total organic carbon, and particles size distribution, was calculated. Throughout the study period, the pH (7.55 to 8.99), EC (0.99 to 4.98 dS/m), nitrogen (21.74 to 58.12 kg/ha), phosphorus (7.5 to 12.9 kg/ha), potassium (218 to 399 kg/ha), total organic carbon (0.11 to 0.88%), and particle size cumulative percent of sediments (from 9.01 to 9.39%) was observed. A number of multivariate statistical techniques were used to examine the changes in sediment quality. The population means were substantially different according to the three-way ANOVA test at the 0.05 level. Principal component analysis and cluster analysis showed a substantial association with all indicators throughout all seasons, implying contamination from both natural and anthropogenic causes. The ecosystem of the Kalpakkam coastal zone has been affected by nutrient contamination.
Collapse
Affiliation(s)
- Kumar Pandion
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, 603203, Kanchipuram, Tamil Nadu, India
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, 603203, Kanchipuram, Tamil Nadu, India.
| | - Mohammed Junaid Hussain Dowlath
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, 603203, Kanchipuram, Tamil Nadu, India
| | - Sasikala Chinnapan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur (South Wing), Jalan Menara Gading, UCSI Heights, No.1, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Soon Wong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-GuGyeonggi-Do, Suwon, 16227, Republic of Korea
| | - Woojin Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-GuGyeonggi-Do, Suwon, 16227, Republic of Korea
| | - Ashequr Rahman Milon
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-GuGyeonggi-Do, Suwon, 16227, Republic of Korea
| | - Robert M Gengan
- Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology, Durban, 4001, South Africa.
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-GuGyeonggi-Do, Suwon, 16227, Republic of Korea
| |
Collapse
|
23
|
Sellamuthu S, Joseph S, Gopalakrishnan S, Sekar S, Khan R, Shukla S. Appraisal of groundwater quality for drinking and irrigation suitability using multivariate statistical approach in a rapidly developing urban area, Tirunelveli, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022:10.1007/s11356-022-23533-4. [PMID: 36331734 DOI: 10.1007/s11356-022-23533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The quantitative and qualitative stress on groundwater resources has been witnessed across the globe. The current study assesses the groundwater quality of Tirunelveli district which faces the hazard of groundwater contamination through seepage of toxins, considering the open dumping of huge volumes of solid waste. The findings from this study confirmed the presence of more than 20% samples in the "poor to very poor" quality with high concentrations of TDS, Cl-, and NO3-, unfit for drinking, and other domestic purposes. The spatial distribution of TDS and NO3- highlighted the potential impact of solid waste dumping in the nearby landfill sites. K-means hierarchical clustering and multivariate analysis suggested that salinization and nitrate pollution was highly influenced by anthropogenic sources in comparison to geogenic sources. Rock water interaction and evaporation processes emerged as the two major dominant natural mechanisms controlling the groundwater chemistry. Four hydro-chemical facies were identified in the order of Ca-HCO3 > Ca-Mg-Cl > Na-Cl > mixed Ca-Na-HCO3. Thus, this study creates an urgent need of mitigation measures towards curbing and management of solid waste disposal and hence, the potential hazard of contaminant seepage into the groundwater.
Collapse
Affiliation(s)
- Selvakumar Sellamuthu
- Centre for Geotechnology, Manonmaniam Sundaranar University, Tirunelveli, 627 012, Tamil Nadu, India
- Department of Environmental Sciences, University of Kerala, Thiruvananthapuram, 695 034, Kerala, India
| | - Sabu Joseph
- Department of Environmental Sciences, University of Kerala, Thiruvananthapuram, 695 034, Kerala, India
| | - Sampath Gopalakrishnan
- Department of Statistics, Government Arts College, Chidambaram, 608 102, Tamil Nadu, India
| | - Selvam Sekar
- Department of Geology, V.O. Chidambaram College, Tuticorin, 628004, Tamil Nadu, India
| | - Ramsha Khan
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, UP, 225003, India
| | - Saurabh Shukla
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, UP, 225003, India.
| |
Collapse
|
24
|
Alam MW, Rahman MM, Bhuyan MS, Senapathi V, Chung SY, Karthikeyan S, Sekar S, Elzain HE, Nadiri AA. Inferences on metal pollution in the natural spawning zone of Bangladesh river and pollution management strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:56. [PMID: 36326897 DOI: 10.1007/s10661-022-10544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to evaluate the metal concentrations in the Halda River in Bangladesh to determine the quality of the water and sediment in the natural spawning zone. Fe > Zn > Cr > Cd > Cu was the order of the metals in water, whereas Fe > Zn > Cd > Cu was the order in sediments. Almost all of the heavy metals in the water and sediment had been found within the established limits, with the exception of Cr and Fe in the river and Cu in the sediment. In the case of water, Cr vs. Zn was found to have the strongest correlation (r = 0.96). Due to the coagulation and adsorption processes, it was shown that Fe and Zn had a substantial correlation of 0.96, Cu and Cd of 0.91, and Cr of 0.78 with Zn. Hazard quotient values of Cd show the not potable nature of Halda river surface water and might give adverse health effects for all age groups except Cu and Zn. Pollution load index values indicated the uncontaminated nature of the river bottom sediments. Natural and human activities were the key factors influencing the accumulation and movement of heavy metals in the water and sediments. Contamination sources are industrial effluents, garbage runoff, farming operations, and oil spills from fishing vessels which are comparable according to multivariate statistical analysis. Ion exchange, absorption, precipitation, complexation, filtration, bio-absorption, redox reaction, and reverse osmosis were considered to be effective for the degradation of metal concentrations. The feasibility of the suggested metal reduction procedures has to be studied to know which is optimally appropriate for this river region. It is expected that this study could provide a useful suggestion to decrease the metal pollution in the river.
Collapse
Affiliation(s)
- Md Wahidul Alam
- Department of Oceanography, Faculty of Marine Sciences & Fisheries, University of Chittagong, Chittagong-4331, Bangladesh
| | - Mohammad Mostafizur Rahman
- Institute of Marine Sciences, Faculty of Marine Sciences & Fisheries, University of Chittagong, Chittagong-4331, Bangladesh
| | - Md Simul Bhuyan
- Bangladesh Oceanographic Research Institute, Cox's Bazar-4730, Bangladesh
| | | | - Sang Yong Chung
- Department of Earth and Environmental Sciences, Pukyong National University, Busan, 608737, South Korea.
| | - Sivakumar Karthikeyan
- Department of Geology, Faculty of Science, Alagappa University, Karaikudi, 630003, India
| | - Selvam Sekar
- Department of Geology, V.O. Chidambaram College, Thoothukudi, 628008, Tamil Nadu, India
| | | | - Ata Allah Nadiri
- Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Institute of Environment, University of Tabriz, Tabriz, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Geography & Environmental Studies, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
25
|
Yang Y, Duan P, Jiao L, He J, Ding S. Particle-scale understanding sorption of phenanthrene on sediment fractions amended with black carbon and humic acid. CHEMOSPHERE 2022; 307:136070. [PMID: 35985379 DOI: 10.1016/j.chemosphere.2022.136070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Black carbon (BC) and humic acid (HA) have been proposed to dominate the sorption behavior of phenanthrene in sediment. Nevertheless, little is known about the sorption mechanism that related to particle-scale by spiking of BC and HA in sediment particle size fractions. In this study, sorption isotherms for phenanthrene were determined in four particle-size sediment fractions (<2 μm, 2-31 μm, 31-63 μm and >63 μm) that amended with BC and HA, or not. The fitting results by Freundlich model indicated that the sediment particle size fractions amended with BC increased the sorption capacity and affinity for phenanthrene. Sediment coarser size fractions (31-63 μm and >63 μm) by spiking of BC contributed higher to sorption capacity factor (KF) and nonlinearity factor (n) than the finer size fractions (2-31 μm and <2 μm). By contrast, the sediment particle size fractions amended with HA enhanced the sorption distribution coefficient (Kd), but reduced the sorption affinity for phenanthrene. All these phenomena are obviously affected by the distribution of heterogeneous organic matter that related to sediment particle-scale. Results of this work could help us better understand the impact of increased BC and HA content in sediments on the sorption of hydrophobic organic pollutants (HOCs) and predict the fate of HOCs in offshore sediments due to tidal action.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Pingzhou Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jia He
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
26
|
Al-Nasir F, Hijazin TJ, Al-Alawi MM, Jiries A, Al-Madanat OY, Mayyas A, A. Al-Dalain S, Al-Dmour R, Alahmad A, Batarseh MI. Accumulation, Source Identification, and Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Different Jordanian Vegetables. TOXICS 2022; 10:643. [PMID: 36355935 PMCID: PMC9692249 DOI: 10.3390/toxics10110643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The accumulation of polyaromatic hydrocarbons in plants is considered one of the most serious threats faced by mankind because of their persistence in the environment and their carcinogenic and teratogenic effect on human health. The concentrations of sixteen priority polycyclic aromatic hydrocarbons (16 PAHs) were determined in four types of edible vegetables (tomatoes, zucchini, eggplants, and cucumbers), irrigation water, and agriculture soil, where samples were collected from the Jordan Valley, Jordan. The mean total concentration of 16 PAHs (∑16PAHs) ranged from 10.649 to 21.774 µg kg−1 in vegetables, 28.72 µg kg−1 in soil, and 0.218 µg L−1 in the water samples. The tomato samples posed the highest ∑16PAH concentration level in the vegetables, whereas the zucchini samples had the lowest. Generally, the PAHs with a high molecular weight and four or more benzene rings prevailed among the studied samples. The diagnostic ratios and the principal component analysis (PCA) revealed that the PAH contamination sources in soil and vegetables mainly originated from a pyrogenic origin, traffic emission sources, and biomass combustion. The bioconcentration factors (BCF) for ∑16PAHs have been observed in the order of tomatoes > cucumbers and eggplants > zucchini. A potential cancer risk related to lifetime consumption was revealed based on calculating the incremental lifetime cancer risk of PAHs (ILCR). Therefore, sustainable agricultural practices and avoiding biomass combusting would greatly help in minimizing the potential health risk from dietary exposure to PAHs.
Collapse
Affiliation(s)
- Farh Al-Nasir
- Faculty of Agriculture, Mutah University, Karak 61710, Jordan
| | - Tahani J. Hijazin
- Biology Department, Faculty of Science, Mutah University, Karak 61710, Jordan
| | | | - Anwar Jiries
- Chemistry Department, Faculty of Science, Mutah University, Karak 61710, Jordan
| | - Osama Y. Al-Madanat
- Chemistry Department, Faculty of Science, Mutah University, Karak 61710, Jordan
- Prince Faisal Center for the Dead Sea, Environmental and Energy Research, Mutah 61710, Jordan
| | - Amal Mayyas
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, Amman 11821, Jordan
| | - Saddam A. Al-Dalain
- Al-Shoubak University College, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Rasha Al-Dmour
- Chemistry Department, Faculty of Science, Mutah University, Karak 61710, Jordan
| | - Abdalrahim Alahmad
- Institut für Technische Chemie, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Mufeed I. Batarseh
- Chemistry Department, Faculty of Science, Mutah University, Karak 61710, Jordan
- Academic Support Department, Abu Dhabi Polytechnic, Abu Dhabi P.O. Box 111499, United Arab Emirates
| |
Collapse
|
27
|
Zhang X, Lu W, Xu L, Wu W, Sun B, Fan W, Zheng H, Huang J. Environmental Risk Assessment of Polycyclic Aromatic Hydrocarbons in Farmland Soils near Highways: A Case Study of Guangzhou, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610265. [PMID: 36011899 PMCID: PMC9408701 DOI: 10.3390/ijerph191610265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 05/14/2023]
Abstract
Recently, the rapid growth in vehicle activity in rapidly urbanized areas has led to the discharge of large amounts of polycyclic aromatic hydrocarbons (PAHs) into roadside soils and these compounds have gradually accumulated in the soil, which poses a serious threat to national food security and public health. However, previous studies did not clearly investigate the seasonal differences in PAH pollution of roadside soil by different highways. Therefore, based on field investigations, this study collected 84 soil surface samples to compare the pollution characteristics of 16 PAHs in farmland soils located near different roads in different seasons in Guangzhou, China. The results showed that the concentration of Σ16PAHs in farmland soils in spring (with a mean value of 258.604 μg/kg) was much higher than that in autumn (with a mean value of 157.531 μg/kg). There are differences in the PAH compositions in spring (4 ring > 3 ring > 5 ring > 6 ring) and autumn (4 ring > 5 ring > 6 ring > 3 ring). The proportion of 4−6 ring PAHs was much higher than 2−3 ring PAHs in both seasons. The spatial differences were significant. The sampling areas with higher concentrations of 16 PAHs were Tanbu Town, Huadu District (TB), Shitan Town, Zengcheng District (ST), and Huashan Town, Huadu District (HS), while the lowest concentration was in Lanhe Town, Nansha District (LH). The results of the diagnostic ratios showed that the main source of soil PAHs consists of a mixed source from petroleum and biomass combustion. The results from the total pollution assessment method and Nemerow index method indicated that the pollution levels of PAHs in the farmland soils indicated weak contamination. Our study provides a scientific basis for the prevention and control of soil pollution in farmlands near highways.
Collapse
Affiliation(s)
| | | | - Linyu Xu
- Correspondence: ; Tel.: +86-10-5880-0618
| | | | | | | | | | | |
Collapse
|
28
|
Duan P, Jiao L, He J, Yang Y. Effect of dissolved organic matter and heavy metals ions on sorption of phenanthrene at sedimentary particle scale. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129175. [PMID: 35643001 DOI: 10.1016/j.jhazmat.2022.129175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Human activities significantly increase the input of offshore heavy metals and organic pollutants. Although particle-scale and heterogeneous organic matters are fundamentally important to the fate of hydrophobic organic compounds (HOCs), deep understanding of the adsorption mechanism of HOCs on soil/sediment particles under the influence of heavy metal and organic pollution input is needed. This study investigates the effects of exotic DOM and heavy metals ions on the phenanthrene adsorption on sediment fractions. The adsorption experiments demonstrated that exotic DOM increased phenanthrene adsorption amount of sediment, with the greatest enhancement on clay particles (<2 µm). Nevertheless, the mechanism was differentiated accordingly to particle dimensions in terms of increased binding coefficients and mobility of phenanthrene. Furthermore, the introduction of heavy metals considerably enhanced the nonlinear sorption of phenanthrene. The Freundlich exponent N reduced by 0.01-0.24 when adding Cu2+, Zn2+ and Pb2+, especially for coarse particles (31-63 µm) fraction. In comparison, the enhancement of nonlinearity adsorption by Cu2+ and Zn2+ is significantly lower than Pb2+ ions. To our knowledge, the particle-scale study broadens the horizon of environmental fate and ecological risk of HOCs in intertidal regions, which is significantly affected by tidal action.
Collapse
Affiliation(s)
- Pingzhou Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China.
| | - Jia He
- Kunming Institute of Eco-Environmental Sciences, Kunming, Yunnan 650032, People's Republic of China
| | - Yan Yang
- Kunming Institute of Eco-Environmental Sciences, Kunming, Yunnan 650032, People's Republic of China
| |
Collapse
|