1
|
Zhang X, Miao S, Song W, Liu X, Wu C, Gan T. Preparation of W-N-C single atom catalyst and Cu 3(HHTP) 2 metal-organic framework dual-decorated graphene nanoplatelet flexible electrode arrays for the rapid detection of carbendazim in vegetables. Food Chem 2024; 459:140338. [PMID: 38996633 DOI: 10.1016/j.foodchem.2024.140338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
It is highly desirable to develop a low-cost and rapid detection method for trace levels of carbendazim fungicide residues, which would be beneficial for improving human health and mitigating environmental issues. Herein, isolated single tungsten atoms were implanted onto well-organized metal-organic framework (MOF)-derived N-doped carbons to form W-N-C single-site heterojunctions with ultrahigh electrocatalytic activity. The coupling of W-N-C with Cu3(HHTP)2, an electronically conductive MOF with a large surface area and porous structure, exhibited enhanced electrocatalytic performance for the oxidation of carbendazim (CBZ) when they were used for decorating graphene nanoplatelet flexible electrode arrays fabricated via template-assisted scalable filtration. A wide linear range (3.0 nM-50 μM) with an ultra-low detection limit of 0.97 nM and fast response was achieved for CBZ analysis. Moreover, the sensing platform has been utilised to monitor CBZ levels in vegetable samples with satisfactory recovery rates of 97.2-102% and a low relative standard deviation of 1.9%.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Shuyan Miao
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Wenjie Song
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Xian Liu
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Can Wu
- Hubei Jiangxia Laboratory, Wuhan 430299, China
| | - Tian Gan
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
2
|
Talha N, El-Sherbeeny AM, Zoubi WA, Abukhadra MR. Synergetic studies on the thermochemical activation and polyaniline integration on the adsorption properties of natural coal for chlorpyrifos pesticide: steric and energetic studies. Sci Rep 2024; 14:21116. [PMID: 39256397 PMCID: PMC11387739 DOI: 10.1038/s41598-024-70676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Three types of synthetic coal-derived adsorbents were characterized as potential enhanced structurers during the removal of chlorpyrifos pesticide. The raw coal (CA) was activated into porous graphitic carbon (AC), and both CA and AC were blended with polyaniline polymers (PANI/CA and PANI/AC) forming two advanced composites. The adsorption performances of the modified structures in comparison with CA were evaluated based on both the steric and energetic parameters of the applied advanced isotherm model (the monolayer model of one energy). The uptake performances reflected higher capacities for the PANI hybridized form (235.8 mg/g (PANI/CA) and 309.75 mg/g (PANI/AC) as compared to AC (156.9 mg/g) and raw coal (135.8 mg/g). This signifies the impact of activation step and PANI blending on the surface and textural properties of coal. The steric investigation determined the saturation of the coal surface with extra active sites after the activation step (Nm(AC) = 62.05 mg/g) and the PANI integration (Nm(PANI/CA) = 113.5 mg/g and Nm(PANI/AC) = 169.7 mg/g) as compared to raw coal (Nm(CA) = 39.6 mg/g). This illustrated the reported uptake efficiencies of the modified samples, which can be attributed to the enhancement in the surface area and the incorporation of additional chemical groups. The results also reflect that each site can be loaded with 3-4 molecules of chlorpyrifos, which are arranged vertically and adsorbed by multi-molecular mechanisms. The energetic studies (< 40 kJ/mol) suggested the physical uptake of pesticide molecules by dipole bonding and hydrogen bonding processes. The thermodynamic functions donate the exothermic properties of 47reactions that occur spontaneously.
Collapse
Affiliation(s)
- Norhan Talha
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Mostafa R Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt.
- Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt.
| |
Collapse
|
3
|
Patil Y, Megalamani MB, Nandi S, Nandibewoor ST, Adimule V, Rajendrachari S. Electrochemical Determination of Cyclobenzaprine Hydrochloride Muscle Relaxant Using Novel S-GCN/TiO 2-Based Carbon Electrode. ACS OMEGA 2024; 9:31657-31668. [PMID: 39072069 PMCID: PMC11270554 DOI: 10.1021/acsomega.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
We have successfully prepared the titanium dioxide (TiO2) nanoparticles (NPs) and sulfur-incorporated graphitic carbon nitride (S-GCN)-modified carbon paste electrode (CPE). The CPEs modified with TiO2 NPs and S-GCN were employed for detecting and quantifying the skeletal muscle relaxant cyclobenzaprine hydrochloride (CBP) using cyclic voltammetry and square wave voltammetry (SWV) techniques. Optimal electrochemical conditions were indicated by the pH study results, with the highest peak current observed at a physiological pH of 7.4. The electrochemical process was determined to involve an equivalent number of protons (H+) and electrons (e-). The concentration variation of CBP (ranging from 0.06 to 10 × 10-7 mol L-1) was explored using SWV. The limits of detection and quantification were determined as 6.4 × 10-9 and 2.1 × 10-8 M, respectively. The proposed electrode configuration was applied to analyze real samples, including water, biomedical, and pharmaceutical specimens.
Collapse
Affiliation(s)
- Yuvarajgouda
N. Patil
- Department
of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Manjunath B. Megalamani
- Department
of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Santosh Nandi
- Department
of Chemistry, KLE Technological University
Dr. M. S. Sheshgiri Campus, Udyambag, Belagavi, Karnataka 590008, India
| | - Sharanappa T. Nandibewoor
- Department
of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Vinayak Adimule
- Department
of Chemistry, Angadi Institute of Technology
and Management (AITM), Savagaon Road, Belagavi, Karnataka 590009, India
| | - Shashanka Rajendrachari
- Department
of Metallurgical and Materials Engineering, Bartin University, Bartin 74100, Turkey
| |
Collapse
|
4
|
Sun X, Talha N, Ahmed AM, Rafea MA, Alenazi NA, Abukhadra MR. Steric and energetic studies on the influence of cellulose on the adsorption effectiveness of Mg trapped hydroxyapatite for enhanced remediation of chlorpyrifos and omethoate pesticides. Int J Biol Macromol 2024; 265:130711. [PMID: 38490378 DOI: 10.1016/j.ijbiomac.2024.130711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Magnesium-trapped hydroxyapatite (Mg.HP) was hybridized with cellulose fiber to produce a bio-composite (CLF/HP) with enhanced adsorption affinities for two types of toxic pesticides (chlorpyrifos (CF) and omethoate (OM)). The enhancement influence of the hybridized cellulose on the adsorption performances of Mg.HP was illustrated based on the determined steric and energetic factors. The computed CF and OM adsorption performances of CLF/HP during the saturation phases are 279.8 mg/g and 317.9 mg/g, respectively, which are significantly higher than the determined values using Mg/HP (143.4 mg/g (CF) and 145.3 mg/g (OM)). The steric analysis demonstrates a strong impact of the hybridization process on the reactivity of the surface of the composite. While CLF/HP reflects effective uptake site densities (Nm) of 93.3 mg/g (CF) and 135.3 mg/g (OM), the estimated values for Mg.HP are 51.2 mg/g (CF) and 46.11 mg/g (OM), which explain the reported enhancement in the adsorption performances of the composite. The capacity of each uptake site to be occupied with more than one molecule (n (CF) = 3-3.74 and n (OM) = 2.35-3.54) suggests multimolecular uptake. The energetic factors suggested physical mechanistic processes of spontaneous and exothermic behaviors either during the uptake of CF or OM.
Collapse
Affiliation(s)
- Xiaohui Sun
- College of Civil and Transportation Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China.
| | - Norhan Talha
- Materials Technologies and their applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt
| | - Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - M Abdel Rafea
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mostafa R Abukhadra
- Materials Technologies and their applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt.
| |
Collapse
|
5
|
Nasser N, Rady A, Al Zoubi W, Allam AA, Abukhadra MR. Advanced Equilibrium Modeling for the Synergetic Effect of β-Cyclodextrin Integration on the Adsorption Efficiency of Methyl Parathion by β-Cyclodextrin/Exfoliated Kaolinite Nanocomposite. ACS OMEGA 2023; 8:48166-48180. [PMID: 38144066 PMCID: PMC10733953 DOI: 10.1021/acsomega.3c07088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Exfoliated kaolinite nanosheets (EXK) and their hybridization with β-cyclodextrin (β-CD/EXK) were evaluated as potential-enhanced adsorbents of methyl parathion (MP) in synergetic investigations to determine the effects of the different modification procedures. The adsorption behaviors were described on the basis of the energetic steric and energetic factors of the specific advanced equilibrium models (monolayer model of one energy). The functionalization process with β-CD enhanced the adsorption behaviors of MP considerably to 350.6 mg/g in comparison to EXK (291.7 mg/g) and natural kaolinite (K) (244.7 mg/g). The steric studies revealed a remarkable improvement in the quantities of the existing receptors after exfoliation (Nm = 134.4 mg/g) followed by β-CD hybridization (Nm = 162.3 mg/g) as compared to K (75.7 mg/g), which was reflected in the determined adsorption capacities of MP. Additionally, each active free site of β-CD/EXK can adsorb about 3 molecules of MP, which occur in a vertical orientation by types of multimolecular mechanisms. The energetic investigations of Gaussian energy (<8.6 kJ/mol) and adsorption energy (<40 kJ/mol) validate the physical adsorption of MP, which might involve the cooperation of dipole bonding forces, van der Waals, and hydrogen bonding. The properties and entropy values, free enthalpy, and intern energy as the investigated thermodynamic functions declared the exothermic and spontaneous behaviors of the MP adsorption.
Collapse
Affiliation(s)
- Nourhan Nasser
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef
City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City 62511, Egypt
| | - Ahmed Rady
- Department
of Zology, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Wail Al Zoubi
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ahmed A. Allam
- Zoology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| | - Mostafa R. Abukhadra
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef
City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City 62511, Egypt
| |
Collapse
|
6
|
Molavi H, Mirzaei K, Jafarpour E, Mohammadi A, Salimi MS, Rezakazemi M, Nadagouda MM, Aminabhavi TM. Wastewater treatment using nanodiamond and related materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119349. [PMID: 39491939 DOI: 10.1016/j.jenvman.2023.119349] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/19/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Nanodiamonds (NDs) are zero-dimensional (0D) carbon-based nanoparticles with SP3/SP2-hybridized carbon atoms that have shown great potential in wastewater treatment areas due to their high surface area, chemical stability, and unique adsorption properties. They can efficiently remove a wide range of pollutants from water, including heavy metals, organic compounds, and dyes via various mechanisms such as electrostatic interactions, π-π stacking, and ion exchange. NDs can be functionalized following different surface chemistries, enabling tailored surface properties and enhanced pollutant adsorption capabilities. This review covers recent research on the application of nanodiamonds in wastewater treatment domain with a major emphasis on adsorption, photocatalytic degradation, and membrane separation, highlighting their promising performances, challenges, and future directions.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran.
| | - Kamyar Mirzaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Erfan Jafarpour
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Ali Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sepehr Salimi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Megha M Nadagouda
- William Mason High School, 6100 Mason Montgomery Rd, Mason, OH 45040, USA
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India.
| |
Collapse
|
7
|
Crapnell RD, Adarakatti PS, Banks CE. Electroanalytical overview: the sensing of carbendazim. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4811-4826. [PMID: 37721714 DOI: 10.1039/d3ay01053h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Carbendazim is a broad-spectrum systemic fungicide that is used to control various fungal diseases in agriculture, horticulture, and forestry. Carbendazim is also used in post-harvest applications to prevent fungal growth on fruits and vegetables during storage and transportation. Carbendazim is regulated in many countries and banned in others, thus, there is a need for the sensing of carbendazim to ensure that high levels are avoided which can result in potential health risks. One approach is the use of electroanalytical sensors which present a rapid, but highly selective and sensitive output, whilst being economical and providing portable sensing platforms to support on-site analysis. In this minireview, we report on the electroanalytical sensing of carbendazim overviewing recent advances, helping to elucidate the electrochemical mechanism and provide conclusions and future perspectives of this field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Prashanth S Adarakatti
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
8
|
Venegas CJ, Bollo S, Sierra-Rosales P. Carbon-Based Electrochemical (Bio)sensors for the Detection of Carbendazim: A Review. MICROMACHINES 2023; 14:1752. [PMID: 37763915 PMCID: PMC10536525 DOI: 10.3390/mi14091752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Carbendazim, a fungicide widely used in agriculture, has been classified as a hazardous chemical by the World Health Organization due to its environmental persistence. It is prohibited in several countries; therefore, detecting it in food and environmental samples is highly necessary. A reliable, rapid, and low-cost method uses electrochemical sensors and biosensors, especially those modified with carbon-based materials with good analytical performance. In this review, we summarize the use of carbon-based electrochemical (bio)sensors for detecting carbendazim in environmental and food matrixes, with a particular interest in the role of carbon materials. Focus on publications between 2018 and 2023 that have been describing the use of carbon nanotubes, carbon nitride, graphene, and its derivatives, and carbon-based materials as modifiers, emphasizing the analytical performance obtained, such as linear range, detection limit, selectivity, and the matrix where the detection was applied.
Collapse
Affiliation(s)
- Constanza J. Venegas
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox (CiPRex), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago 8380492, Chile
| | - Paulina Sierra-Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| |
Collapse
|
9
|
Ma Z, Li Y, Lu C, Li M. On-site screening method for bioavailability assessment of the organophosphorus pesticide, methyl parathion, and its primary metabolite in soils by paper strip biosensor. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131725. [PMID: 37295330 DOI: 10.1016/j.jhazmat.2023.131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
An important public concern worldwide is soil pollution caused by organophosphorus pesticides and their primary metabolites. To protect the public's health, screening these pollutants on-site and determining their soil bioavailability is important, but doing so is still challenging. This work improved the already-existing organophosphorus pesticide hydrolase (mpd) and transcriptional activator (pobR), and it first designed and constructed a novel biosensor (Escherichia coli BL21/pNP-LacZ) that can precisely detect methyl parathion (MP) and its primary metabolite p-nitrophenol with low background value. To create a paper strip biosensor, E. coli BL21/pNP-LacZ was fixed to filter paper using bio-gel alginate and sensitizer polymyxin B. According to the calibrations of the paper strip biosensor for soil extracts and standard curve, the color intensity of the paper strip biosensor collected by the mobile app may be used to compute the concentration of MP and p-nitrophenol. This method's detection limits were 5.41 µg/kg for p-nitrophenol and 9.57 µg/kg for MP. The detection of p-nitrophenol and MP in laboratory and field soil samples confirmed this procedure. Paper strip biosensor on-site allows for the semi-quantitative measurement of p-nitrophenol and MP levels in soils in a simple, inexpensive, and portable method.
Collapse
Affiliation(s)
- Zhao Ma
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Chao Lu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
10
|
Li R, Shang M, Zhe T, Li M, Bai F, Xu Z, Bu T, Li F, Wang L. Sn/MoC@NC hollow nanospheres as Schottky catalyst for highly sensitive electrochemical detection of methyl parathion. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130777. [PMID: 36689901 DOI: 10.1016/j.jhazmat.2023.130777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Developing electrode materials with excellent electrocatalytic properties for detecting pesticide residues plays a vital role in the safety of agricultural products and environmental applications. Herein, we designed a new electrochemical sensor on the basis of N-doped carbon hollow nanospheres modified with Sn/MoC Schottky junction (Sn/MoC@NC) for methyl parathion (MP) detection. The Sn/MoC@NC was prepared by self-assembled polymerization-anchoring strategy and high-temperature carbonization design. Sn/MoC Schottky junction and hollow nanosphere structure endow Sn/MoC@NC with a larger surface area, more active sites, and faster electron transfer, which is beneficial to enhancing its electrocatalytic performance. The structural characterizations and physicochemical properties of Sn/MoC@NC were explored through various microscopy, spectroscopic and electrochemical techniques. The experimental results confirmed that the calibration curve for current and MP concentration (0.05-10 μg/mL) was available under optimized conditions, and the sensitivity and detection limit were respectively determined to be 9.02 μA μM1 cm2 and 8.9 ng/mL. Furthermore, the constructed sensor displayed excellent selectivity, repeatability, and stability, which qualified it for use in detecting MP in grapes and tap water with satisfactory recovery. This work may provide some interesting prospects for constructing high-performance electrocatalysts for MP detection.
Collapse
Affiliation(s)
- Ruixia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Minghui Shang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Taotao Zhe
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingyan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhihao Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Zhang C, Qiu M, Wang J, Liu Y. Recent Advances in Nanoparticle-Based Optical Sensors for Detection of Pesticide Residues in Soil. BIOSENSORS 2023; 13:bios13040415. [PMID: 37185490 PMCID: PMC10136432 DOI: 10.3390/bios13040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
The excessive and unreasonable use of pesticides has adversely affected the environment and human health. The soil, one of the most critical natural resources supporting human survival and development, accumulates large amounts of pesticide residues. Compared to traditional spectrophotometry analytical methods, nanoparticle-based sensors stand out for their simplicity of operation as well as their high sensitivity and low detection limits. In this review, we focus primarily on the functions that various nanoparticles have and how they can be used to detect various pesticide residues in soil. A detailed discussion was conducted on the properties of nanoparticles, including their color changeability, Raman enhancement, fluorescence enhancement and quenching, and catalysis. We have also systematically reviewed the methodology for detecting insecticides, herbicides, and fungicides in soil by using nanoparticles.
Collapse
Affiliation(s)
- Chunhong Zhang
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Mingle Qiu
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Jinglin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
12
|
Electroanalytical application of Ag@POM@rGO nanocomposite and ionic liquid modified carbon paste electrode for the quantification of ciprofloxacin antibiotic. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
13
|
Palanisamy S, Alagumalai K, Chiesa M, Kim SC. Rational design of Nd 2O 3 decorated functionalized carbon nanofiber composite for selective electrochemical detection of carbendazim fungicides in vegetables, water, and soil samples. ENVIRONMENTAL RESEARCH 2023; 219:115140. [PMID: 36565846 DOI: 10.1016/j.envres.2022.115140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 05/26/2023]
Abstract
Abuse of carbendazim (CBZ) leaves excessive pesticide residues on agricultural products, which endangers human health because of the residues' high concentrations. Hence, a composite consisting of functionalized carbon nanofibers (f-CNF) with neodymium oxide (Nd2O3) was fabricated to monitor CBZ at trace levels. The Nd2O3/f-CNF composite-modified electrode displays higher electro-oxidation ability towards CBZ than Nd2O3 and f-CNF-modified electrodes. The combined unique properties of Nd2O3 and f-CNF result in a substantial specific surface area, superior structural stability, and excellent electrocatalytic activity of the composite yielding enhanced sensitivity to detecting CBZ with a detection limit of 4.3 nM. Also, the fabricated sensor electrode can detect CBZ in the linear concentration range of up to 243.0 μM with high selectivity, appropriate reproducibility, and stability. A demonstration of the sensing capability of CBZ in vegetables, water, and soil samples was reported paving the way for its use in practical applications.
Collapse
Affiliation(s)
- Selvakumar Palanisamy
- Laboratory for Energy and NanoScience (LENS), Khalifa University of Science and Technology, Masdar Campus, PO Box, 54224, Abu Dhabi, United Arab Emirates.
| | | | - Matteo Chiesa
- Laboratory for Energy and NanoScience (LENS), Khalifa University of Science and Technology, Masdar Campus, PO Box, 54224, Abu Dhabi, United Arab Emirates; Department of Physics and Technology, UiT The Artic University of Norway, 9010, Tromso, Norway.
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
14
|
Shen M, Zhang X, Zhao S, Cai Y, Wang S. A novel photocatalytic system coupling metal-free Carbon/g-C 3N 4 catalyst with persulfate for highly efficient degradation of organic pollutants. CHEMOSPHERE 2023; 314:137728. [PMID: 36603679 DOI: 10.1016/j.chemosphere.2022.137728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
A variety of photocatalytic systems have emerged as the effective methods for the degradation of organic pollutants. In this research, a novel photocatalytic system, named CNC-PDS has been proposed, which couples a metal-free carbon/g-C3N4 (CNC) photocatalyst with persulfate (PDS), and applied for efficient degradation of paracetamol (PCM) under simulated sunlight. The CNC-PDS system exhibited excellent photocatalytic capability, where the PCM was completely degraded in 40 min under simulated sunlight. The degradation rate of CNC-PDS system was 9.5 times compared with the g-C3N4 and PDS coupled systems. The CNC-PDS system can efficiently degrade other representative pollutants in neutral solutions, such as pharmaceuticals, endocrine disrupting compounds (EDCs), azo dyes. The excellent catalytic activity of CNC-PDS system should be ascribed to the two aspects: a) the increased light absorption range led to more photo-induced electron-hole pairs generation compared with the original g-C3N4. Meanwhile, the charge separation efficiency of the CNC photocatalyst was drastically enhanced which was proved by the results of PL and EIS analysis. These results represented the carbon/g-C3N4 might offer more e- to promote PDS activation. b) The introduction of CO and the improved specific surface area provided more active sites for PDS activation. In addition, the EPR analysis and quenching experiments indicated that O2.-, h+ and 1O2 were the main active species for PCM in the CNC-PDS system under simulated sunlight, and the contribution order was O2.->1O2>h+. The degradation pathways of PCM in the CNC-PDS system are proposed based on the results of HPLC-MS. The novel CNC-PDS photocatalytic system has provided a viable option for treatment of contaminated water by organic pollutants.
Collapse
Affiliation(s)
- Mengdi Shen
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Shan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
15
|
Li K, Zhou W, Li X, Li Q, Carabineiro SAC, Zhang S, Fan J, Lv K. Synergistic effect of cyano defects and CaCO 3 in graphitic carbon nitride nanosheets for efficient visible-light-driven photocatalytic NO removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130040. [PMID: 36182883 DOI: 10.1016/j.jhazmat.2022.130040] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Photo-oxidation with semiconductor photocatalysts provides a sustainable and green solution for NOx elimination. Nevertheless, the utilization of traditional photocatalysts in efficient and safe photocatalytic NOx removal is still a challenge due to the slow charge kinetic process and insufficient optical absorption. In this paper, we report a novel porous g-C3N4 nanosheet photocatalyst modified with cyano defects and CaCO3 (xCa-CN). The best performing sample (0.5Ca-CN) exhibits an enhanced photo-oxidation NO removal rate (51.18 %) under visible light irradiation, largely surpassing the value of pristine g-C3N4 nanosheets (34.05 %). Such an enhancement is mainly derived from an extended visible-light response, improved electron excitation and transfer, which are associated with the synergy of cyano defects and CaCO3, as evidenced by a series of spectroscopic analyses. More importantly, in-situ DRIFTS and density functional theory (DFT) results suggest that the introduction of cyano defects and CaCO3 enables control over NO adsorption and activation processes, making it possible to implement a preference pathway (NO → NO+ → NO3¯) and reduce the emission of toxic intermediate NO2. This work demonstrates the potential of integrating defect engineering and insulator modification to design highly efficient g-C3N4-based photocatalysts for air purification.
Collapse
Affiliation(s)
- Kaining Li
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, PR China
| | - Weichuang Zhou
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, PR China
| | - Xiaofang Li
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Qin Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, PR China
| | - Sónia A C Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Sushu Zhang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, PR China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Kangle Lv
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
16
|
Kokulnathan T, Wang TJ, Murugesan T, Anthuvan AJ, Kumar RR, Ahmed F, Arshi N. Structural growth of zinc oxide nanograins on carbon cloth as flexible electrochemical platform for hydroxychloroquine detection. CHEMOSPHERE 2023; 312:137186. [PMID: 36368534 DOI: 10.1016/j.chemosphere.2022.137186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical pollution that imposes a health threat worldwide is making accurate and rapid detection crucial to prevent adverse effects. Herein, binder-free zinc oxide nanograins on carbon cloth (ZnO NGs@CC) have been synthesized hydrothermally and employed to fabricate a flexible electrochemical sensor for the quantification of hydroxychloroquine (HCQ) that is typical pharmaceutical pollution. The characteristics of ZnO NGs@CC were investigated by various in-depth electron microscopic, spectroscopic and electroanalytical approaches. Compared with the pristine CC platform, the ZnO NGs@CC platform exhibits superior electrochemical performance in detecting HCQ with a large oxidation current at a low over-potential of +0.92 V with respect to the Ag/AgCl (Sat. KCl) reference electrode. With the support of desirable characteristics, the fabricated ZnO NGs@CC-based electrochemical sensor for HCQ detection displays good performances in terms of wide sensing range (0.5-116 μM), low detection limit (0.09 μM), high sensitivity (0.279 μA μM-1 cm-2), and strong selectivity. By the resulting 3D hierarchical nanoarchitecture, ZnO NGs@CC has progressive structural advantages that led to its excellent electrochemical performance in sensing applications. Furthermore, the electrochemical sensor is employed to detect HCQ in biological and environmental samples and also achieves good recovery rates. Thus, the designed ZnO NGs@CC demonstrates admirable electrochemical activity toward HCQ real-time monitoring and would be an excellent electrochemical platform for HCQ sensing.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Thangapandian Murugesan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Allen Joseph Anthuvan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; Nanotech Division, Accubits Invent Pvt. Ltd, Trivandrum 695 592, Kerala, India
| | - Rishi Ranjan Kumar
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Nishat Arshi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box-400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
17
|
Alsulami A, Kumarswamy YK, Prashanth MK, Hamzada S, Lakshminarayana P, Pradeep Kumar CB, Jeon BH, Raghu MS. Fabrication of FeVO 4/RGO Nanocomposite: An Amperometric Probe for Sensitive Detection of Methyl Parathion in Green Beans and Solar Light-Induced Degradation. ACS OMEGA 2022; 7:45239-45252. [PMID: 36530306 PMCID: PMC9753511 DOI: 10.1021/acsomega.2c05729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/22/2022] [Indexed: 05/28/2023]
Abstract
Pesticide usage is one of the significant issues in modern agricultural practices; hence, monitoring pesticide content and its degradation is of utmost importance. A novel and simple one-pot deep eutectic solvent-based solvothermal method has been developed for the synthesis of FeVO4/reduced graphene oxide (FeV/RGO) nanocomposite. The band gap of FeV decreased upon anchoring with RGO. Enhanced activity in the detection and photocatalytic degradation has been achieved in the FeV/RGO nanocomposite compared to pure FeV and RGO. FeV/RGO was used to modify glassy carbon electrode (GCE), and the fabricated electrode was evaluated for its electrochemical detection of methyl parathion (MP). The amperometric technique was found to be more sensitive with a 0.001-260 μM (two linear ranges; 0.001-20 and 25-260 μM) wide linear range and low limit of detection value (0.70 nM). The practical applicability of modified GCE is more selective and sensitive to real samples like river water and green beans. Photocatalytic degradation of MP has been examined using FeV, RGO, and FeV/RGO nanocomposite. FeV/RGO managed to degrade 95% of MP under solar light in 80 min. Degradation parameters were optimized carefully to attain maximum efficiency. Degradation intermediates were identified using liquid chromatography-mass spectrometry analysis. The degradation mechanism has been studied in detail. FeV/RGO could serve as a material of choice in the field of electrochemical sensors as well as heterogeneous catalysis toward environmental remediation.
Collapse
Affiliation(s)
- Abdullah Alsulami
- Department
of Physics, College of Sciences and Arts at ArRass, Qassim University, ArRass51921, Saudi Arabia
| | - Yogesh K. Kumarswamy
- Department
of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore562112, India
| | | | - Shanavaz Hamzada
- Department
of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore562112, India
| | | | | | - Byong-Hun Jeon
- Department
of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Madihalli S. Raghu
- Department
of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore560103, India
| |
Collapse
|
18
|
Chen X, Li W, Lu C, Chu J, Lin R, Wang P, Xie G, Gu Q, Wu D, Chu B. Highly sensitive electrochemical detection of carbendazim residues in water by synergistic enhancement of nitrogen-doped carbon nanohorns and polyethyleneimine modified carbon nanotubes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158324. [PMID: 36037905 DOI: 10.1016/j.scitotenv.2022.158324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Carbendazim (CBZ) can protect crops from pathogens, but it is also easy to cause pesticide residues, threatening human health. In our work, an electrochemical sensor based on nitrogen-doped carbon nanohorns (N-CNHs) and polyethyleneimine-modified carbon nanotubes (PEI-CNTs) was developed for the detection of CBZ content in water. The results showed that N-doping provided the CN bonds for CNHs and improved the electrochemical reaction performance of N-CNHs surface. With the participation of PEI, the surface of CNTs was positively charged and contained a large number of NH bonds, which not only promoted the electrostatic assembly of N-CNHs and PEI-CNTs but also was beneficial to further enriching CBZ. After further ultrasound-assisted assembly of N-CNHs and PEI-CNTs, the electron transfer capacity, electrochemical active surface area, and catalytic activity of N-CNHs/PEI-CNTs were significantly improved. The sensor performed a wider linear range (15 nmol/L ~ 70 μmol/L), low detection limit (4 nmol/L) and satisfactory recovery (87.33 % ~ 117.67 %) under the optimal conditions. In addition, the sensor had good anti-interference, reproducibility, and stability. Our work provided a new strategy for quantification of CBZ in environment.
Collapse
Affiliation(s)
- Xingguang Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Wenzhe Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Shaoxing 310015, China
| | | | - Jiyang Chu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Rui Lin
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Peixuan Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Shaoxing 310015, China
| | - Qianhui Gu
- Three Squirrels Inc, Wuhu 241000, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Shaoxing 310015, China.
| | - Beibei Chu
- Charoen Pokphan Food Research and Development Co., Ltd, Ningbo 315300, China.
| |
Collapse
|
19
|
Hao Z, Huang Y, Wang Y, Meng X, Wang X, Liu X. Enhanced degradation and mineralization of estriol over ZrO 2/OMS-2 nanocomposite: Kinetics, pathway and mechanism. CHEMOSPHERE 2022; 308:136521. [PMID: 36169050 DOI: 10.1016/j.chemosphere.2022.136521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Although remarkable progresses have been achieved in the exploration of new and efficient catalytic systems for efficient degradation of estriol, there are only very few available reports providing high mineralization of estriol. Hence, it is still a serious challenge to develop the novel and efficient methods for enhanced degradation and mineralization of estriol due to its serious threat to environment and human health. Herein, this study proposes a series of ZrO2 modified manganese oxide octahedral molecular sieve (ZrO2/OMS-2) nanocomposites as efficient catalysts for enhanced degradation and mineralization of estriol via PMS activation at 30 °C. Among them, ZrO2/OMS-2-27% provided the highest degradation efficiency (95%) and mineralization degrees (70.1%), which exceeded most reported catalytic systems, in the catalytic degradation of estriol. These quenching tests and EPR analysis had confirmed that O2•- and 1O2 were primary reactive oxygen species (ROS) in the ZrO2/OMS-2-27%/PMS system, contrary to the OMS-2/PMS system for which SO4•- and OH• are primary ROS. This might be due to the abundant O-containing surface functional groups of ZrO2/OMS-2-27%. This work not only provides a facile and high-efficiency methodology for the construction of Mn-based nanomaterial, but also proposes a new and efficient nano-catalyst for estriol removal.
Collapse
Affiliation(s)
- Zixuan Hao
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, China; College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China.
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University, 252059, Liaocheng, China
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xiaopei Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, China.
| |
Collapse
|
20
|
Xia Y, Xiao Z, Yi Y, Liu T, Zhang C, Zhu G. Nitrogen-doped hollow bowl-like carbon as highly effective sensing material for electroanalysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Sawkar RR, Shanbhag MM, Tuwar SM, Mondal K, Shetti NP. Sodium Dodecyl Sulfate-Mediated Graphene Sensor for Electrochemical Detection of the Antibiotic Drug: Ciprofloxacin. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7872. [PMID: 36431357 PMCID: PMC9696905 DOI: 10.3390/ma15227872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The present study involves detecting and determining CIP by a new electrochemical sensor based on graphene (Gr) in the presence of sodium dodecyl sulfate (SDS) employing voltammetric techniques. Surface morphology studies of the sensing material were analyzed using a scanning electron microscope (SEM) and atomic force microscope (AFM). In the electroanalysis of CIP at the developed electrode, an enhanced anodic peak response was recorded, suggesting the electro-oxidation of CIP at the electrode surface. Furthermore, we evaluated the impact of the electrolytic solution, scan rate, accumulation time, and concentration variation on the electrochemical behavior of CIP. The possible electrode mechanism was proposed based on the acquired experimental information. A concentration variation study was performed using differential pulse voltammetry (DPV) in the lower concentration range, and the fabricated electrode achieved a detection limit of 2.9 × 10-8 M. The proposed sensor detected CIP in pharmaceutical and biological samples. The findings displayed good recovery, with 93.8% for tablet analysis and 93.3% to 98.7% for urine analysis. The stability of a developed electrode was tested by inter- and intraday analysis.
Collapse
Affiliation(s)
- Rakesh R. Sawkar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India
| | - Mahesh M. Shanbhag
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580027, Karnataka, India
| | - Suresh M. Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India
| | - Kunal Mondal
- Idaho National Laboratory, Idaho Falls, ID 83415, USA
- Department of Civil & Environmental Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Nagaraj P. Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| |
Collapse
|
22
|
Rationally designed urchin-like structured cobalt diselenide (o-CoSe2) for the sensitive voltammetric detection of carbendazim fungicide in vegetables and water samples. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Su X, Wang H, Wang C, Zhou X, Zou X, Zhang W. Programmable dual-electric-field immunosensor using MXene-Au-based competitive signal probe for natural parathion-methyl detection. Biosens Bioelectron 2022; 214:114546. [PMID: 35820253 DOI: 10.1016/j.bios.2022.114546] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/18/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
Immunosensor is a promising tool for natural parathion-methyl (PTM) detection, and its analytical advantages can be magnified by introducing flexibly-fabricating technique. Herein, we present a dual-electric-field PTM immunosensor on highly-compatible screen-printed electrode (SPE). MXene-Au, the product of in-situ gold nanoparticle growth on MXene, provides considerable binding sites for PTM antigen (ATG) and methylene blue (MB). During sensing, the MXene-Au-MB-ATG probe competitively binds antibody against PTM, composing a ratiometric immune-system. With DC-biased sine excitations from complementary waveforms, on-chip electric field couple improves immunoreactions among PTM, probe, and antibody. Electric field distribution is programmed by trimming bypass resistors to pursue optimal performance. Probe synthesis is solidly proven with morphological examinations, and competition mechanism between the probe and target PTM is clarified in electrochemical analyses. Remarkably, this method brings less consumption of immune time than electric-field-free or solo-electric-field setup (50 s vs. 900 or 70 s), and simultaneously provides more powerful ratiometric signal than the rivals. Log-linear relationship, between PTM level and sensor readout, is established in 0.02-38 ng/mL, and limit of detection is found as 0.01 ng/mL. This method is applied in laboratorial and natural PTM analyses, and the readouts are consistent with high performance liquid chromatography and recovery test.
Collapse
Affiliation(s)
- Xiaoyu Su
- Food & Biological Engineering, Jiangsu University, China
| | - Huan Wang
- Food & Biological Engineering, Jiangsu University, China
| | - Chengquan Wang
- Food & Biological Engineering, Jiangsu University, China
| | - Xuan Zhou
- Food & Biological Engineering, Jiangsu University, China
| | - Xiaobo Zou
- Food & Biological Engineering, Jiangsu University, China
| | - Wen Zhang
- Food & Biological Engineering, Jiangsu University, China.
| |
Collapse
|
24
|
Boosting photocatalytic H2 evolution by ingenious construction of isotype heptazine/triazine based porous carbon nitride heterojunction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Ilager D, Malode SJ, Shetti NP. Development of 2D graphene oxide sheets-based voltammetric sensor for electrochemical sensing of fungicide, carbendazim. CHEMOSPHERE 2022; 303:134919. [PMID: 35568220 DOI: 10.1016/j.chemosphere.2022.134919] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Incorporating new pollutants and environmental pollution has become a formidable issue as new pollutants are introduced into it and have become a significant concern in recent years. Detection of such pollutants needs a susceptible, selective, and cost-effective sensor that can sense their presence and quantify them at a trace level. In the present study, we have designed a 2D graphene oxide (GO)-based glassy carbon electrode (GCE) electrochemical sensor (GO/GCE) and utilized it as a sensing material for the detection and determination of CRZ. The voltammetric behavior of CRZ was studied using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. The SWV was applied to quantify and analyze CRZ in actual samples. A better response of CRZ was noticed at GO/GCE when phosphate buffer solution of pH 4.2 was used as a supporting electrolyte for to experiment. The SWV technique achieved trace-level detection of CRZ. A linearity plot was obtained for the concentration range of 1.0 × 10-7 M to 2.5 × 10-4 M with a limit of detection of 1.38 × 10-8 M. The selectivity of the modified sensor was verified by the interference study of metal ions and other pesticides with CRZ. The agricultural and environmental significance of the developed method was successfully tested by estimating CRZ in water and soil samples.
Collapse
Affiliation(s)
- Davalasab Ilager
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi, 580030, Karnataka, India
| | - Shweta J Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India.
| |
Collapse
|
26
|
|