1
|
Gorgini Shabankareh H, Asgharipour MR, Salehi Sardoei A, Kamaliun AR, Mohammadi H, Ghorbanpour M. Evaluation of the rainfed and irrigated conditions on biomass and essential oil yield of German chamomile (Matricaria chamomilla) in response to melatonin foliar application. BMC PLANT BIOLOGY 2025; 25:131. [PMID: 39891079 PMCID: PMC11783769 DOI: 10.1186/s12870-025-06160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
German chamomile (Matricaria chamomilla L.) is a valuable medicinal plant known for its rich content of bioactive compounds, including chamazulene, α-bisabolol, and α-bisabololoxide A. Drought stress poses a significant challenge to agricultural productivity and negatively affects the growth and yield of chamomile. This study aimed to investigate the effects of foliar-applied melatonin on the antioxidant capacity and secondary metabolite production of M. chamomilla under both rainfed and irrigated conditions. The research was conducted using a randomized complete block design with three replications during the 2022-2023 period. To impose drought stress, we compared rainfed and irrigated treatments, while melatonin was applied at three concentrations (0, 100, and 200 mM). The composition of essential oils was analyzed using gas chromatography-mass spectrometry (GC/MS). Results indicated that the application of melatonin significantly improved essential oil content and plant performance under drought conditions. In rainfed situations, applying 100 mM of melatonin increased the essential oil rate by 45%, reaching 1.45% compared to the control group. Under irrigated conditions, the highest essential oil yield of 0.33 g per plant was also achieved with 100 mM melatonin. The maximum proline content of 4.05 mg/g of fresh weight was found in rainfed cultivation with 200 mM melatonin. Plants receiving irrigation with 200 mM melatonin demonstrated the highest values for relative water content (83.2 mg/g fresh weight), total chlorophyll (3.99 mg/g fresh weight), and dry matter (16.61 g). GC and GC-MS analyses revealed that secondary metabolites ranged from 39.85 to 56.97%, with α-bisabolol, chamazulene, and α-bisabololoxide B being the major components. Path analysis showed strong direct effects of essential oil rate (0.921), proline (1.397), and relative water content (1.115) on dry mass, with R² values reaching 95.4% in the final model. The analysis indicated that all measured traits influenced dry mass, with relative water content directly affecting dry mass and essential oil rate positively influencing both proline and dry mass. Based on these findings, combining rainfed cultivation with melatonin application is a promising and environmentally friendly strategy to enhance drought tolerance, growth, and biochemical content in German chamomile.
Collapse
Affiliation(s)
- Hossein Gorgini Shabankareh
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University (TMU), P.O. Box: 14115-336, Tehran, Iran
| | | | - Ali Salehi Sardoei
- Crop and Horticultural Science Research Department, South Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran.
| | | | - Hamid Mohammadi
- Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
2
|
Liu R, Xie H. The seed germination and seedling phytotoxicity of decabromodiphenyl ethane to tall fescue under citric acid amendment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:473. [PMID: 39400738 DOI: 10.1007/s10653-024-02255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has biological toxicity, persistence, long-range migration and bioaccumulation ability. However, there is currently little research on the phytotoxicity of DBDPE in plants. The perennial herbaceous plant tall fescue (Festuca elata Keng ex E. B. Alexeev) was selected as the model organism for use in seed germination experiments, and the phytotoxicity of DBDPE in the soil of tall fescue was studied. The results indicated that DBDPE had a significant effect on the germination and growth of tall fescue seedlings. Citric acid reduced the stress caused by DBDPE in plants, effectively alleviating the phytotoxicity of DBDPE in tall fescue. The root vitality and protein content significantly increased after the application of citric acid, increasing by 74.93-183.90%, 146.44-147.67%, respectively. The contents of proline and soluble sugars significantly decreased after the application of citric acid, decreasing by 45.18-59.69% and 23.03%, respectively (P < 0.05). There was no significant difference in superoxide dismutase (SOD) or peroxidase (POD) activity in tall fescue seedlings, and the catalase (CAT) activity and malondialdehyde (MDA) content were significantly lower after the application of citric acid, decreasing by 64.62-67.91% and 29.10-49.80%, respectively (P < 0.05). Tall fescue seedlings bioaccumulated DBDPE, with biological concentration factors (BCFs) ranging from 4.28 to 18.38 and transfer factors (TFs) ranging from 0.43 to 0.54. This study provides theoretical support for the study of the toxicity of DBDPE to plants and offers a research foundation for exploring the phytoremediation of DBDPE-contaminated soil by tall fescue.
Collapse
Affiliation(s)
- Ruiyuan Liu
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Hui Xie
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
3
|
Gong H, Dai L, Hu X, Luo J, Feng S. Combined effects of heatwaves and atmospheric CO₂ levels on Brassica juncea phytoremediation. CHEMOSPHERE 2024; 363:142901. [PMID: 39029714 DOI: 10.1016/j.chemosphere.2024.142901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Heatwaves, expected to become more frequent, pose a significant threat to plant biomass production. This experiment was designed to estimate heatwave influence on Brassica juncea phytoremediation when superimposed on different CO2 levels. A 7-day heatwave was generated during the species flowering stage. Heatwaves decreased all B. juncea dry weights. The lowest species dry weight was recorded when the heatwave was accompanied by 250 ppm CO2, in which the biomass significantly decreased by 40.0% relative to that of no heatwave under the same atmospheric CO2 conditions. Heatwave superposition with 250 ppm CO2 reduced the Cd content in B. juncea aerial parts by 28.1% relative to that of identical environmental conditions without heatwave, whereas the opposite result was observed under 550 ppm CO2 conditions. The heatwave caused oxidative damage to B. juncea under all CO2 conditions, as manifested by increased malondialdehyde levels in the plant shoots. With heatwave superposition, antioxidant enzyme activity was enhanced by exposure to 400 and 550 ppm CO2. Considering biomass yield generation and Cd uptake capacity, heatwave superposition decreased the B. juncea phytoremediation effects, and high atmospheric CO2 conditions could alleviate detrimental effects to a certain extent. This study uniquely examines the combined effects of heatwaves and varying CO2 levels on phytoremediation, providing microscopic insights into oxidative damage and enzyme activity, highlighting the potential for CO2 enrichment to mitigate heatwave impacts, and offering comprehensive analysis for future agricultural practices and environmental management.
Collapse
Affiliation(s)
- Hao Gong
- Changsha General Survey of Natural Resources Center, Changsha, China
| | - Liangliang Dai
- Changsha General Survey of Natural Resources Center, Changsha, China
| | - Xiangrong Hu
- Changsha General Survey of Natural Resources Center, Changsha, China
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
4
|
Zhao HM, Zheng DF, Feng NJ, Zhou GS, Khan A, Lu XT, Deng P, Zhou H, Du YW. Regulatory effects of Hemin on prevention and rescue of salt stress in rapeseed (Brassica napus L.) seedlings. BMC PLANT BIOLOGY 2023; 23:558. [PMID: 37957575 PMCID: PMC10644511 DOI: 10.1186/s12870-023-04595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Salt stress severely restricts rapeseed growth and productivity. Hemin can effectively alleviate salt stress in plants. However, the regulatory effect of Hemin on rapeseed in salt stress is unclear. Here, we analyzed the response and remediation mechanism of Hemin application to rapeseed before and after 0.6% (m salt: m soil) NaCl stress. Experiment using two Brassica napus (AACC, 2n = 38) rapeseed varieties Huayouza 158R (moderately salt-tolerant) and Huayouza 62 (strongly salt-tolerant). To explore the best optional ways to improve salt stress resistance in rapeseed. RESULTS Our findings revealed that exogenous application of Hemin enhanced morph-physiological traits of rapeseed and significantly attenuate the inhibition of NaCl stress. Compared to Hemin (SH) treatment, Hemin (HS) significantly improved seedlings root length, seedlings height, stem diameter and accumulated more dry matter biomass under NaCl stress. Moreover, Hemin (HS) significantly improved photosynthetic efficiency, activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and decreased electrolyte leakage (EL) and malondialdehyde (MDA) content, thus resulting in the alleviation of oxidative membrane damage. Hemin (HS) showed better performance than Hemin (SH) under NaCl stress. CONCLUSION Hemin could effectively mitigate the adverse impacts of salt stress by regulating the morph-physiological, photosynthetic and antioxidants traits of rapeseed. This study may provide a basis for Hemin to regulate cultivated rapeseed salt tolerance and explore a better way to alleviate salt stress.
Collapse
Affiliation(s)
- Hui-Min Zhao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Dian-Feng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Nai-Jie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Guang-Sheng Zhou
- College of Plant Science & Technology of Hua Zhong Agricultural University, Wuhan, 430070, China.
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xu-Tong Lu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Peng Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - You-Wei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| |
Collapse
|
5
|
Xiao Y, Guo W, Qi X, Hashem MS, Wang D, Sun C. Differences in Cadmium Uptake and Accumulation in Seedlings of Wheat Varieties with Low- and High-Grain Cadmium Accumulation under Different Drought Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3499. [PMID: 37836239 PMCID: PMC10574867 DOI: 10.3390/plants12193499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Cadmium (Cd) and drought, as abiotic stresses, have long been significant challenges for crop growth and agricultural production. However, there have been relatively few studies conducted on the effects of drought stress on Cd uptake, especially regarding the differences in Cd uptake characterization in varieties with varying Cd accumulation under different drought stress. To investigate the effects of drought conditions on Cd uptake by wheat in different genotypes under specific background levels of Cd pollution, we validated the differences in root absorption characteristics of low- (YM) and high-grain Cd accumulating wheat genotypes (XM) using non-invasive micro-test technology, and we conducted a hydroponic experiment on the Cd addition and different drought levels in a climate-controlled chamber. The biomass, root morphology, Cd uptake, and accumulation were determined under Cd (100 µmol L-1) and different drought levels of 0% (0 MPa), 5% (-0.100 Mpa), 10% (-0.200 Mpa), and 15% (-0.388 Mpa) simulated by polyethylene glycol (PEG-6000). We found that the simultaneous exposure to Cd and drought had a suppressive effect on the total root lengths, root surface areas, and root volumes of XM and YM, albeit with distinct patterns of variation. As the concentration of PEG-6000 increased, the Cd concentrations and the amount of Cd accumulated in the roots and shoots of XM and YM decreased. Specifically, the Cd concentration in the roots exhibited a reduction ranging from 12.51% to 66.90%, while the Cd concentration in the shoots experienced an even greater decrease of 50.46% to 80.57%. The PEG-6000 concentration was significantly negatively correlated (p < 0.001) with Cd concentration of roots and shoots and Cd accumulation in roots, shoots, and the whole plants and significantly negatively correlated (p < 0.05) with the total length, surface area, and volume of roots. This study confirms that drought stress (5% PEG-6000) can decrease the uptake and accumulation of Cd in wheat seedlings without significant inhibition of biomass, and the change of root morphology (root length) and the decrease of Cd concentration in roots may be the main direct pathways for achieving these effects under drought stress. This research provides a new perspective and idea for water management in Cd-contaminated farmland.
Collapse
Affiliation(s)
- Yatao Xiao
- Institute of Farmland Irrigation of CAAS/Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453003, China;
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; (D.W.)
| | - Wei Guo
- Institute of Farmland Irrigation of CAAS/Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453003, China;
| | - Xuebin Qi
- Institute of Farmland Irrigation of CAAS/Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453003, China;
| | - Mahmoud S. Hashem
- Agricultural Research Center, Agricultural Engineering Research Institute (AEnRI), Giza 256, Egypt
| | - Dezhe Wang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; (D.W.)
| | - Chaoxiang Sun
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; (D.W.)
| |
Collapse
|
6
|
Fallah Imani A, Gomarian M, Ghorbanpour M, Ramak P, Chavoshi S. Foliar-applied nano-cerium dioxide differentially affect morpho-physiological traits and essential oil profile of Salvia mirzayanii Rech. f. & Esfand under drought stress and post-stress recovery conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108046. [PMID: 37757721 DOI: 10.1016/j.plaphy.2023.108046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Drought stress is known to diminish the growth and yield of plants by altering the physiological, biochemical and molecular processes, thus threatening food security worldwide. Nanoparticles (NPs) have emerged as an effective strategy to raise plant productivity under current rapid environmental challenges. However, there is little literature on mechanisms underlying the beneficial role of re-watering in drought-stressed plants treated with NPs. In this study, the effects of cerium dioxide nanoparticles [(CeO2 NPs), 0 (control), 125, 250, 500, and 1000 mL L-1] were investigated on morpho-physiological and phytochemical traits of Salvia mirzayanii plants under different drought stress intensities [(25%, 50%, 75%, and 100% (control) of field capacity (FC) moisture] and post-stress re-watering (recovery) in a three-way factorial arrangement based on randomized complete block design. Uptake and accumulation of CeO2 NPs in the leaf tissue of plant samples were confirmed using SEM and EDX techniques. The results of ANOVA demonstrated that growth and physio-phytochemical traits were significantly (p < 0.05) affected by individual treatment and/or their double and triple interactions. Exposure to various levels of CeO2 NPs during drought stress mitigated the adverse effects of stress on growth parameters (e.g., plant height, shoot and root dry weights, and root length) and photosynthetic pigments (chlorophyll a and b) content compared to the respective controls in varying degrees. However, proline and essential oil content were increased in drought-stressed plants, and tended to decrease during the period of recovery. Before re-watering, the antioxidant enzymes, CAT, POD, and SOD, activity in leaf tissues was increased with the increase of drought stress intensity upon both treated and non-treated CeO2 NPs conditions. However, the three-way interaction results demonstrated that recovery after drought stress following CeO2 NPs application particularly 1000 mL L-1 decreased the activity of antioxidant enzymes compared to the controls. Based on GC and GC-MS analysis, all essential oil samples predominantly composed of oxygenated monoterpenes and sesquiterpenes including Decane, Spathulenol, Octane, α-Terpinyl acetate, Hexyl isovalerate, Dodecane, Butanoic acid, Linalool, δ-Cadinene, Muurolol, α-Cadinol, Eudesm-7(11)-en-4-ol, which significantly (p < 0.05) changed under different experimental treatments. The recovery after stress, however, increased only the content of δ-Cadinene in plants from severe drought stress upon foliar application of 1000 mL L-1 CeO2 NPs compared to the non-recovery period. Conclusively, integrative use of CeO2 NPs and re-watering after drought stress could be an encouraging and eco-friendly strategy to improve both drought tolerance, growth and pyhtochemical contents in S. mirzayanii plants.
Collapse
Affiliation(s)
- Afshar Fallah Imani
- Department of Horticulture Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Masoud Gomarian
- Department of Agronomy and Plant Breeding, Arak Branch, Islamic Azad University, Arak, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran; Institute of Nanosciences and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| | - Parvin Ramak
- Research Division of Natural Resources, Lorestan Agricultural and Natural Resources Research and Education Centre, AREEO, Khorramabad, Iran
| | - Saeid Chavoshi
- Department of Agronomy and Plant Breeding, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
7
|
Tarnawa Á, Kende Z, Sghaier AH, Kovács GP, Gyuricza C, Khaeim H. Effect of Abiotic Stresses from Drought, Temperature, and Density on Germination and Seedling Growth of Barley ( Hordeum vulgare L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091792. [PMID: 37176849 PMCID: PMC10181215 DOI: 10.3390/plants12091792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Seed germination and seedling growth are highly sensitive to deficit moisture and temperature stress. This study was designed to investigate barley (Hordeum vulgare L.) seeds' germination and seedling growth under conditions of abiotic stresses. Constant temperature levels of 5, 10, 15, 20, 25, 30, and 35 °C were used for the germination test. Drought and waterlogging stresses using 30 different water levels were examined using two methods: either based at 1 milliliter intervals or, on the other hand, as percentages of thousand kernel weight (TKW). Seedling density in a petri dish and antifungal application techniques were also investigated. Temperature significantly impacted germination time and seedling development with an ideal range of 15-20 °C, with a more comprehensive range to 10 °C. Higher temperatures reversely affected germination percentage, and the lower ones affected the germination and seedling growth rate. Germination commenced at 130% water of the TKW, and the ideal water range for seedling development was greater and more extensive than the range for germination, which means there is a difference between the starting point for germination and the seedling development. Seed size define germination water requirements and provides an objective and more precise basis suggesting an optimal range supply of 720% and 1080% of TKW for barley seedling development. A total of 10 seeds per 9 cm petri dish may be preferable over greater densities. The techniques of priming seeds with an antifungal solution (Bordóilé or Hypo) or antifungal application at even 5 ppm in the media significantly prevented fungal growth. This study is novel regarding the levels and types of abiotic stresses, the crop, the experimental and measurement techniques, and in comparison to the previous studies.
Collapse
Affiliation(s)
- Ákos Tarnawa
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Budapest, Hungary
| | - Zoltán Kende
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Budapest, Hungary
| | - Asma Haj Sghaier
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Budapest, Hungary
| | - Gergő Péter Kovács
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Budapest, Hungary
| | - Csaba Gyuricza
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Budapest, Hungary
| | - Hussein Khaeim
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Budapest, Hungary
- Field Crop Department, College of Agriculture, University of Al-Qadisiyah, Al Diwaniyah 58002, Iraq
| |
Collapse
|
8
|
Yang X, Niu X, Li L, Wang L, Liu C, Liu J, Yuan Q, Pei X. Understanding the molecular mechanism of drought resistance in Shanlan upland rice by transcriptome and phenotype analyses. Int J Biol Macromol 2023; 231:123387. [PMID: 36693603 DOI: 10.1016/j.ijbiomac.2023.123387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Rice (Oryza sativa L.) is an important grain crop worldwide, and drought has become an important factor restricting rice yield. As a unique rice germplasm in Hainan (China), Shanlan upland rice has rich genetic diversity and certain advantage for breeding water-saving and drought-resistance rice. 48 varieties, including 41 Shanlan upland rice, 3 upland rice, and 4 irrigated rice varieties was cultivated in soil pots. The drought resistance was assessed at the seedling stage using the stress coefficients of seven indicators, as the D value calculating from five principal components to rank the varieties. Five cultivars with strong, medium, and low resistance, were selected for transcriptome sequencing. The results of the GSEA analysis showed that free amino acid content increased through the redistribution of energy in Shanlan upland rice to cope with drought stress. In addition, we found that Os03g0623100 was significantly up-regulated under drought stress conditions in varieties with high drought resistance, as compared with low resistance cultivars. The Os03g0623100 was predicted to interact with LEA protein in the STRING database, which may contribute to maintaining the energy metabolisms to under stress conditions. This study provides a view of Shanlan upland rice as a drought-resistant germplasm resource, and a deeper understanding of the molecular mechanism of crop drought resistance.
Collapse
Affiliation(s)
- Xinsen Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xiaoling Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Laiyi Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Liu Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Caiyue Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianing Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qianhua Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Xia L, Yao Y, Zeng Y, Guo Z, Zhang S. Acetic acid enhances drought tolerance more in female than in male willows. PHYSIOLOGIA PLANTARUM 2023; 175:e13890. [PMID: 36917073 DOI: 10.1111/ppl.13890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Drought is an important stress factor that limits plant growth and development. Female willows generally display stronger drought tolerance than males. The application of exogenous acetic acid (AA) has emerged as an efficient and eco-friendly approach to facilitate drought tolerance in willows. However, whether AA exerts sexually different effects on willows remains undefined. In this study, we comprehensively performed morphological and physiological analyses on three willow species, Salix rehderiana, Salix babylonica, and Salix matsudana, to investigate the sexually different responses to drought and AA. The results indicated that willow females were more drought-tolerant than males. AA application effectively enhanced willows' drought tolerance, and females applied with AA displayed greater root distribution and activity, stronger osmotic and antioxidant capacity and photosynthetic rate but less reactive oxygen species, or abscisic acid-mediated stomatal closure than males. In addition, AA application enhanced the jasmonic acid signaling pathway in females but inhibited it in males, conferring stronger drought defense capacity in female willows than in males. Overall, AA application improves drought tolerance more in female than in male willows, further enlarging the sexual differences in willows under drought-stressed conditions.
Collapse
Affiliation(s)
- Linchao Xia
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yuan Yao
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Zeng
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zian Guo
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sheng Zhang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
10
|
Xie B, Xiao X, Li H, Wei S, Li J, Gao Y, Yu J. Moderate Salinity of Nutrient Solution Improved the Nutritional Quality and Flavor of Hydroponic Chinese Chives ( Allium tuberosum Rottler). Foods 2023; 12:204. [PMID: 36613420 PMCID: PMC9818334 DOI: 10.3390/foods12010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Sodium chloride (NaCl), as a eustressor, can trigger relevant pathways to cause plants to produce a series of metabolites, thus improving the quality of crops to a certain extent. However, there are few reports on the improvement of nutrient quality and flavor of hydroponic Chinese chives (Allium tuberosum Rottler) by sodium chloride. In this study, five NaCl concentrations were used to investigate the dose-dependent effects on growth, nutritional quality and flavor in Chinese chives. The results show that 10 mM NaCl had no significant effect on the growth of Chinese chives, but significantly decreased the nitrate content by 40% compared with 0 mM NaCl treatment, and the content of soluble protein and vitamin C was increased by 3.6% and 2.1%, respectively. In addition, a total of 75 volatile compounds were identified among five treatments using headspace solid-phase microextraction gas chromatography/mass spectrometry (HS-SPME/GC-MS). Compared with the 0 mM NaCl treatment, 10 mM NaCl had the greatest effect on the quantity and content of volatile compounds, with the total content increased by 27.8%. Furthermore, according to the odor activity values (OAVs) and odor description, there were 14 major aroma-active compounds (OAVs > 1) in Chinese chives. The “garlic and onion” odor was the strongest among the eight categories of aromas, and its highest value was observed in the 10 mM NaCl treatment (OAVs = 794).Taken together, adding 10 mM NaCl to the nutrient solution could improve the nutritional quality and flavor of Chinese chives without affecting their normal growth.
Collapse
Affiliation(s)
- Bojie Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Haiyan Li
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Ju Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| |
Collapse
|
11
|
Yang Z, Dong H, Zhang S, Jiang J, Zhu H, Yang H, Li L. Isolation and identification of mycorrhizal helper bacteria of Vaccinium uliginosum and their interaction with mycorrhizal fungi. Front Microbiol 2023; 14:1180319. [PMID: 37143547 PMCID: PMC10151510 DOI: 10.3389/fmicb.2023.1180319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Mycorrhizal helper bacteria (MHB) can promote mycorrhizal fungal colonization and form mycorrhizal symbiosis structures. To investigate the effect of interactions between mycorrhizal beneficial microorganisms on the growth of blueberry, 45 strains of bacteria isolated from the rhizosphere soil of Vaccinium uliginosum were screened for potential MHB strains using the dry-plate confrontation assay and the bacterial extracellular metabolite promotion method. The results showed that the growth rate of mycelium of Oidiodendron maius 143, an ericoid mycorrhizal fungal strain, was increased by 33.33 and 77.77% for bacterial strains L6 and LM3, respectively, compared with the control in the dry-plate confrontation assay. In addition, the extracellular metabolites of L6 and LM3 significantly promoted the growth of O. maius 143 mycelium with an average growth rate of 40.9 and 57.1%, respectively, the cell wall-degrading enzyme activities and genes of O. maius 143 was significantly increased. Therefore, L6 and LM3 were preliminarily identified as potential MHB strains. In addition, the co-inoculated treatments significantly increased blueberry growth; increased the nitrate reductase, glutamate dehydrogenase, glutamine synthetase, and glutamate synthase activities in the leaves; and promoted nutrient uptake in blueberry. Based on the physiological, and 16S rDNA gene molecular analyses, we initially identified strain L6 as Paenarthrobacter nicotinovorans and LM3 as Bacillus circulans. Metabolomic analysis revealed that mycelial exudates contain large amounts of sugars, organic acids and amino acids, which can be used as substrates to stimulate the growth of MHB. In conclusion, L6 and LM3 and O. maius 143 promote each other's growth, while co-inoculation of L6 and LM3 with O. maius 143 can promote the growth of blueberry seedlings, providing a theoretical basis for further studies on the mechanism of ericoid mycorrhizal fungi-MHB-blueberry interactions. It laid the technical foundation for the exploitation of biocontrol strain resources and the development of biological fertilizer.
Collapse
Affiliation(s)
- Zhiyu Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hui Dong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Sai Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jing Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Haifeng Zhu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongyi Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- *Correspondence: Hongyi Yang,
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, China
- Lili Li,
| |
Collapse
|
12
|
Yang Z, Yuan L, Zhu H, Jiang J, Yang H, Li L. Small RNA profiling reveals the involvement of microRNA-mediated gene regulation in response to symbiosis in raspberry. Front Microbiol 2022; 13:1082494. [PMID: 36620006 PMCID: PMC9810812 DOI: 10.3389/fmicb.2022.1082494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Dark septate endophytes (DSEs) can form reciprocal symbioses with most terrestrial plants, providing them with mineral nutrients in exchange for photosynthetic products. Although the mechanism of plant-DSEs is well understood at the transcriptional level, little is known about their post-transcriptional regulation, and microRNAs (miRNAs) for the symbiotic process of DSE infestation of raspberry have not been identified. In this study, we comprehensively identified the miRNAs of DSE-infested raspberry symbiosis using Illumina sequencing. A total of 361 known miRNAs and 95 novel miRNAs were identified in the roots. Similar to other dicotyledons, most of the identified raspberry miRNAs were 21 nt in length. Thirty-seven miRNAs were differentially expressed during colonization after inoculation with Phialocephala fortinii F5, suggesting a possible role for these miRNAs in the symbiotic process. Notably, two miRNAs (miR171h and miR396) previously reported to be responsive to symbiotic processes in alfalfa also had altered expression during raspberry symbiosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggests that miRNAs are mainly involved in regulatory mechanisms, such as biological processes, cellular metabolic processes, biosynthesis of secondary metabolites, plant-pathogen interactions, and phytohormone signaling pathways. This study revealed the potential conservation of miRNA-mediated post-transcriptional regulation in symbiotic processes among plants and provides some novel miRNAs for understanding the regulatory mechanisms of DSE-raspberry symbiosis.
Collapse
Affiliation(s)
- Zhiyu Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Lianmei Yuan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Haifeng Zhu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Jing Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongyi Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China,*Correspondence: Hongyi Yang,
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, China,Lili Li,
| |
Collapse
|
13
|
Wang J, Zhao H, Chen T, Lin W, Lin S. Effect of Burkholderia ambifaria LK-P4 inoculation on the plant growth characteristics, metabolism, and pharmacological activity of Anoectochilus roxburghii. FRONTIERS IN PLANT SCIENCE 2022; 13:1043042. [PMID: 36531397 PMCID: PMC9755642 DOI: 10.3389/fpls.2022.1043042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Plant growth-promoting bacteria (PGPB) represents a common biological fertilizer with remarkable effect in improving crop production and environmental friendliness. METHODS In the present work, we presented a detailed characterization of plant morphology and physiology, metabolism, and pharmacological activity of A. roxburghii between Burkholderia ambifaria LK-P4 inoculation and un-inoculation (CK) treatment by routine analytical techniques (include microscopy and enzymatic activity assays and so on) coupled with metabolomics approaches. RESULTS Morphological and physiological results showedthat the P4 bacteria could significantly increase plant stomatal density, freshweight, survival rate,and the content of total flavonoids in leaves but reducethe amount of free amino acid. Furthermore, metabolite data showed that fatty acids (linoleic acid, linolenic acid, stearic acid) and active substance (kyotorphin and piceatannol) were specifically up-regulated in P4 inoculation. It was also demonstrated that the differential metabolites were involved in citrate cycle, glyoxylate and dicarboxylate metabolism, and biosynthesis of unsaturated fatty acids pathway. In addition, pharmacological efficacy found that A. roxburghii under P4 inoculation can significantly decrease (p < 0.05) blood glucose levels and protect the organs of mice with similar effect of Glibenclamide tablets. CONLUSION Overall, it can be seen that the exogenous P4 bacteria can promote the growth and increase content of special metabolites in A. roxburghii. This study provided theoretical basis and supported for the high-yield and high-quality bionic cultivation of A. roxburghii.
Collapse
Affiliation(s)
- Juanying Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Lab of Agro-bioengineering, Institute of Agro-bioengineering/College of Life Science, Guizhou University, Guiyang, China
| | - Hanyu Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Evaluating Effects of Regulated Deficit Irrigation under Mulched on Yield and Quality of Pumpkin in a Cold and Arid Climate. WATER 2022. [DOI: 10.3390/w14101563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As the most effective irrigation method in arid and semi-arid regions, drip irrigation under mulch could general comprehension of the production efficiency of agricultural irrigation water, and reduce agriculture consumption of water resources. The paper has carried out an investigation over a two year period (2020–2021) in a semi-arid climate in the Hexi Oasis region of China, aiming at determining the influence of regulated deficit irrigation (RDI) under mulch on the growth, yield, water use efficiency (WUE), irrigation water use efficiency (IWUE) and quality of pumpkin at different growth stages. A total of nine treatments with three irrigation levels (75–85% field capacity, 65–75% field capacity, and 55–65% field capacity) have been used in four growing periods of pumpkin (seedling, vine extension, fruit expansion, and maturation stages). The results have shown that light water deficit treatment at the seedling stage had the highest water use efficiency (12.47 kg/m3) without significantly affecting yield (45,966.90 kg/ha), and improved pumpkin fruit quality. It was concluded that light water deficit at the seedling stage and adequate irrigation at other development stages was the optimal irrigation strategy for pumpkin growth. The results of this research provide theoretical and technical support for efficient water-saving plantation and industrialization of pumpkin in the Hexi Oasis.
Collapse
|
15
|
The Effect of Temperature and Water Stresses on Seed Germination and Seedling Growth of Wheat (Triticum aestivum L.). SUSTAINABILITY 2022. [DOI: 10.3390/su14073887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Temperature and moisture are essential factors in germination and seedling growth. The purpose of this research was to assess the germination and growth of wheat (Triticum aestivum L.) seeds under various abiotic stressors. It was conducted in the Agronomy Institute of the Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary. Six distinct temperature levels were used: 5, 10, 15, 20, 25, and 30 °C. Stresses of drought and waterlogging were quantified using 25 water levels based on single-milliliter intervals and as a percentage based on thousand kernel weight (TKW). Seedling density was also tested. Temperature significantly influenced germination duration and seedling development. 20 °C was ideal with optimal range of 15 °C to less than 25 °C. Germination occurred at water amount of 75% of the TKW, and its ideal range was lower and narrower than the range for seedling development. Seed size provided an objective basis for defining germination water requirements. The current study established an optimal water supply range for wheat seedling growth of 525–825 percent of the TKW. Fifteen seeds within a 9 cm Petri dish may be preferred to denser populations.
Collapse
|