1
|
Sánchez-Fortún A, D'ors A, Fajardo C, Costa G, Sánchez-Fortún S. Influence of polyethylene-type microplastics on long-term exposure to heavy metals in freshwater phytoplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176151. [PMID: 39260488 DOI: 10.1016/j.scitotenv.2024.176151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The use of plastic materials has brought about significant social benefits but has also led to negative consequences, particularly their accumulation in aquatic environments. Studies have shown that small plastic particles, known as microplastics (MPs), can carry various harmful pollutants, such as heavy metals (HMs). Therefore, the aim of this research is to investigate the impact of polyethylene-type MPs on the long-term exposure of different HMs on freshwater microalgae Scenedesmus armatus and cyanobacteria Microcystis aeruginosa, in both isolated cultures and phytoplanktonic community conditions. Over a period of 28 days, the strains were subjected to concentrations of Ag+, Cu+2, and Cr+6 corresponding to their respective 72 h-EC10, with or without the presence of MPs. Throughout this period, the growth cell ratio, photosynthetic activity, and reactive oxygen species (ROS) were monitored. The findings indicated a substantial inhibitory impact on cell growth during the initial 7-14 days of exposure, followed by a reduction until reaching values like the controls after 28 days of exposure. There was a disturbance in photosynthetic activity during the first 72 h of exposure, which gradually returned to control levels, mainly significantly affected the respiration phase. Reactive oxygen species (ROS) activity was also affected during the initial 14 days of exposure. The presence or absence of MPs in the culture medium did not significantly alter the observed effects. However, interspecies competition created a more favorable environment for M. aeruginosa over the freshwater microalgae S. armatus. These findings suggest that the formation of MP-HMs complexes may have a limited impact on reducing the adverse effects of HMs in long-term exposures. However, because the impact depends on the specific HM involved, further studies are needed to gain a better understanding of the interaction between these pollutants.
Collapse
Affiliation(s)
- A Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - A D'ors
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - C Fajardo
- Dpt. of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28805 Alcalá de Henares, Spain
| | - G Costa
- Dpt. of Animal Physiology, Faculty of Veterinary Sciences, Complutense University, w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - S Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain.
| |
Collapse
|
2
|
Chen PW, Hsiao MN, Xiao LW, Liu ZS. Adsorption behavior of heavy metals onto microplastics derived from conventional and biodegradable commercial plastic products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175537. [PMID: 39151633 DOI: 10.1016/j.scitotenv.2024.175537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
This study extensively explored the adsorption behavior of heavy metals (Pb+2, Ni+2, Cu+2, Zn+2, and Cd+2) onto microplastics (MPs). The particle sizes of MPs ranged from 0.149 to 0.25 mm. The microplastics were generated from commercial products manufactured from both conventional (polyethylene (PE) bottle, polystyrene (PS) spoon, and polyethylene terephthalate (PET) egg carton) and biodegradable (polylactic acid (PLA) spoon, and polylactic acid (PLA) egg carton) plastics. The study also considered the influence of solution pH on the adsorption capacity of heavy metals. Regarding the adsorption potential for Cu+2, the ranking was as follows: PLA-egg (1408 μg·g-1) > PLA-spoon (735 μg·g-1) > PE-bottle (315 μg·g-1) > PET-egg (283 μg·g-1) > PS-spoon (237 μg·g-1). PLA MPs showed the highest adsorption capacity due to the lower thermal stability and higher presence of surface oxygen functional groups. Moreover, the adsorption capacities of the five metals onto PLA-spoon and PLA-egg decreased in the following order: Pb (1785 μg·g-1) > Zn (1267 μg·g-1) > Cd (748 μg·g-1) > Cu (735 μg·g-1) > Ni (722 μg·g-1), and Pb (1520 μg·g-1) > Ni (1412 μg·g-1) > Cu (1408 μg·g-1) > Zn (1118 μg·g-1) > Cd (423 μg·g-1), respectively. The SEM-EDS, FTIR and XPS results demonstrated that surface oxygen-containing functional groups play an important role during the adsorption process. This study extended its analysis to quantify the metal content of the post-adsorption MPs, revealing uneven adsorption of heavy metals onto the MPs. This implies that the diversity of commercial plastic products may result in significant variations in their ability to adsorb heavy metals, underscoring the importance of effectively managing discarded commercial plastic products.
Collapse
Affiliation(s)
- Po-Wen Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan
| | - Man-Ni Hsiao
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Li-Wei Xiao
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33302, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan; Biochemical Technology R&D center, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
3
|
Li Y, Zheng X, Zhao Z, Li W, Huang Y, He H, Han Z, Tao J, Lin T. Perfluorobutanoic acid weakens the heterogeneous aggregation of microplastics and microalgae: Perspective from physicochemical properties, extracellular polymeric substances secretion and DLVO theory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177127. [PMID: 39461534 DOI: 10.1016/j.scitotenv.2024.177127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Microplastics (MPs) and per- and poly-fluoroalkyl substances extensively coexist in aquatic environments and potentially endanger organisms. Microalgae may decrease the effective concentration of pollutants via hetero-aggregation with MPs and adsorption of emerging contaminants. However, the potential influence of coexistent pollutants on hetero-aggregation of MPs and microalgae remains unknown. This study investigated the hetero-aggregation process involving different sizes of polystyrene (PS, 3.0 and 50.0 μm) with Chlorella sorokiniana (C. sorokiniana) in the presence or absence of perfluorobutanoic acid (PFBA) along settling experiments, scanning electron microscope, and Derjaguin-Landau-Verwey-Overbeek (DLVO) model. We found that the hetero-aggregation between C. sorokiniana and 3 μm PS was more pronounced than with 50 μm PS, while PFBA inhibited this process. ΔOD1 values (reflected hetero-aggregation level) for 3PS-cells and 50PS-cells were 0.189 and 0.087, respectively, and PFBA decreased these values to 0.134 and 0.033. Furthermore, extracellular polymeric substances, known as inducer of hetero-aggregation, increased by 14.33% when exposed to 3 μm PS alone, whereas the co-exposure group showed a decrease of 4.52% compared to 3PS-cells group. PFBA also significantly decreased the protein/polysaccharide ratios in both MPs sizes, reducing hetero-aggregation. DLVO theory revealed that microalgae lowered the energy barrier significantly, while PFBA elevated it, indicating that hetero-aggregation was inhibited by PFBA. This study provides new perspectives for pollutant removal and toxicity variation in aquatic environments.
Collapse
Affiliation(s)
- Yue Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiaoying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Zhilin Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenfei Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yu Huang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Haidong He
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zongshuo Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiaqing Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
4
|
Hu M, Ma H, Xing B. Identification of the degree of aging and adsorption behaviors of the naturally aged microplastics. CHEMOSPHERE 2024; 367:143585. [PMID: 39433096 DOI: 10.1016/j.chemosphere.2024.143585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Microplastics (MPs) inevitably experienced various aging processes in nature may exhibit varied and complex interfacial interactions with adjacent species. Therefore, clarifying the possible interfacial interactions between naturally aged MPs and organic pollutants is of great significance to assess the actual behaviors of MPs in the environment. Here several plastic packaging materials after use were employed as the raw materials and representatives of naturally aged MPs, the alteration of surface characteristics, especially the degree of aging and the adsorption properties of MPs for anionic and cationic dyes were investigated. The types and the degree of aging of MPs were identified, and the variation of oxygen-containing functional groups (carbonyl, hydroxyl, and ester groups), the hydrophilicity and surface charge character were characterized. The fitting results of kinetics and isotherm models indicated that the adsorption was mainly multi-layer on heterogeneous surfaces, with hydrogen bonding, electrostatic attraction, polar interaction, and hydrophobic partitioning possibly involving. The hydrogen bond interaction was further confirmed by FTIR spectra. The increased temperature promoted the adsorption of cationic dyes on MPs, and the increased salinity of the solution enhanced the uptake of most of the tested dyes by MPs. This research deepened the understanding on the aging degree of MPs and their interfacial interactions with hydrophilic pollutants, and provided vital information for MPs as pollutant carriers.
Collapse
Affiliation(s)
- Miao Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi, 710119, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi, 710119, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
5
|
Du H, Chen P, Lin X, Zheng J, Liu H, Wang X. Adsorption of metals on aged microplastics in intensive mariculture areas: Aggravating the potential ecological risks to marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173964. [PMID: 38876355 DOI: 10.1016/j.scitotenv.2024.173964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Field determination of the metal adsorption capacity of microplastics (MPs) by using a passive sampler had been done in typical subtropical mariculture area in China. The adsorption of eight metals (Fe, Mn, Cu, Zn, As, Pb, Cr and Cd) by five types of MPs (low-density polyethylene, polypropylene, polystyrene, poly(ethylene terephthalate) and poly(vinyl chloride) (PVC) was compared, including metal types, mariculture types (cage and longline culture), metal residue content in ambient environment, polymer types and particle sizes of MPs. The results showed that Cu, Zn, As, Cd, Pb and Cr in the mariculture environment were contaminated compared with the quality criteria. The concentrations of these six metals adsorbed on five MPs increased linearly with those in seawater. More enriched Cu and As in MPs in marine cage culture than in longline culture, due to the obvious endogenous pollution emissions for the artificial diets, fish medicine and disinfectants. Aged PVC with more cracks and pores showed higher metal adsorption capacity than any other polymers. MPs with a smaller size range of 50-74 μm tended to accumulate higher amounts of metals than those with a larger size range of 74-178 μm, consisting with the surface characteristics of MPs. The significant positive relationship between the concentrations of nutrients in seawater and the adsorption amounts of Cu, Zn and As on MPs implies that the eutrophication would promote their pollution. Based on the ecological risk assessment, the occurrence of MPs could aggravate the potential risk of metals to marine organisms in intensive mariculture areas. This is the first time to reveal the impacts of the adsorption of metals on aged MPs on the potential ecological risks of metals to organisms under the realistic environmental condition.
Collapse
Affiliation(s)
- Huihong Du
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Pengyu Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Xiaoping Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jingyi Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Huatai Liu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Cui L, Liang R, Zhang C, Zhang R, Wang H, Wang XX. Coupling polyethylene microplastics with other pollutants: Exploring their combined effects on plant health and technologies for mitigating toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176657. [PMID: 39362539 DOI: 10.1016/j.scitotenv.2024.176657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The presence of microplastics in agricultural soils has raised concerns regarding their potential impacts on ecosystem health and plant growth. The introduction of microplastics into soil can alter its physicochemical properties, leading to adverse effects on plant development. Furthermore, the adsorption capabilities of microplastics may enhance the toxicity of soil pollutants, potentially resulting in detrimental effects on plant life. Large-sized microplastics may become adhered to root surfaces, impeding stomatal function and restricting nutrient uptake. Conversely, smaller microplastics and nano-plastics may be internalized by plants, causing cellular damage and genotoxicity. In addition, the presence of microplastics in soil can indirectly affect plant growth and development by altering the soil environment. Therefore, it is essential to investigate the potential impacts of microplastics on agricultural ecosystems and develop strategies to mitigate their effects. This review describes the adsorption power between polyethylene microplastics and pollutants (heavy metals, polycyclic aromatic hydrocarbons and antibiotics) commonly found in agricultural fields and the factors affecting the adsorption process. Additionally, the direct and indirect effects of microplastics on plants are summarized. Most of the single or combined microplastic contaminants showed negative effects on plant growth, with a few beneficial effects related to the characteristics of the microplastics and environmental factors. Currently microbial action and the application of soil conditioners or plant growth promoters can alleviate the effects of microplastics on plants to a certain extent. In light of the complex nature of soil environments, future research should concentrate on mitigate and control these interactions and the impact of compound pollution on ecosystems.
Collapse
Affiliation(s)
- Linmei Cui
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Rong Liang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Chi Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Ruifang Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Hong Wang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Xin-Xin Wang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
7
|
Hao L, Ma H, Xing B. Surface characteristics and adsorption properties of polypropylene microplastics by ultraviolet irradiation and natural aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173962. [PMID: 38876352 DOI: 10.1016/j.scitotenv.2024.173962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The vast application and deep integration of plastic commodity with our human lives raise a great concern about the ubiquitous microplastics (MPs) in nature, yet the environmental behavior of MPs remain unclear. As a main type and candidate of MPs, pristine polypropylene MPs (PP-MP-Pris), as well as the influence of ultraviolet (UV) irradiation on the degree of aging and surface characteristics, were characterized quantitatively by Fourier infrared spectroscopy, scanning electron microscopy, contact angle meter, automatic specific surface area and pore analyzer and laser particle analyzer, with natural aged PP-MPs (PP-MP-Age) as comparison. The carbonyl index (CI) of UV aged PP-MPs (PP-MP-U) was increased with extension of exposure time, while biofilm with abundant functional groups and the maximum CI value were the characteristics of PP-MP-Age. Moreover, the adsorption capacity of PP-MP-U for crystal violet (CV) was increased and reached the maximum after 30 days, while that of PP-MP-Age was weakened, probably due to the enhanced hydrophilicity and the shedding of calcium carbonate (CaCO3) during the natural aging process, which was demonstrated by hydrochloric acid treatment, indicating the vital involvement of CaCO3. Moreover, the better fitting to PSO kinetics and Freundlich isotherm models indicated that the multilayered and non-homogeneous surface adsorption was acted as the rate-controlling step. Furthermore, the positive values of ΔGθ, ΔHθ and ΔSθ indicated that the adsorption was a non-spontaneous, endothermic process with increased degree of the freedom on the interface of PP-MPs and CV solution. The presence of divalent salts inhibited CV adsorption, demonstrating that electrostatic attraction played a major role in CV capture. The hydrophobic interaction, micropore filling, hydrogen bonding, and π - π conjugation were possible involved. This study is of great significance for better understanding the complex pollution of MPs and its potential environmental risks in the future.
Collapse
Affiliation(s)
- Lin Hao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Gong K, Liu T, Peng C, Zhao Z, Xu X, Shao X, Zhao X, Qiu L, Xie W, Sui Q, Zhang W. Water-dependent effects of biodegradable microplastics on arsenic fractionation in soil: Insights from enzyme degradation and synchrotron-based X-ray analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135275. [PMID: 39053062 DOI: 10.1016/j.jhazmat.2024.135275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The abundance of biodegradable microplastics (BMPs) is increasing in soil due to the widespread use of biodegradable plastics. However, the influence of BMPs on soil metal biogeochemistry, especially arsenic (As), under different water regimes is still unclear. In this study, we investigated the effects of two types of BMPs (PLA-MPs and PBAT-MPs) on As fractionation in two types of soils (black soil and fluvo-aquic soil) under three water regimes including drying (Dry), flooding (FL), and alternate wetting and drying (AWD). The results show that BMPs had limited indirect effects on As fractionation by altering soil properties, but had direct effects by adsorbing and releasing As during their degradation. Enzyme degradation experiments show that the degradation of PLA-MPs led to an increased desorption of 4.76 % for As(III) and 15.74 % for As(V). Synchrotron-based X-ray fluorescence (μ-XRF) combined with micro-X-ray absorption near edge structure (μ-XANES) analysis show that under Dry and AWD conditions, As on the BMPs primarily bind with Fe hydrated oxides in the form of As(V). Conversely, 71.57 % of As on PBAT-MP under FL conditions is in the form of As(III) and is primarily directly adsorbed onto its surface. This study highlights the role of BMPs in soil metal biogeochemistry.
Collapse
Affiliation(s)
- Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianzi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Ziyi Zhao
- International Elite Engineering School, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linlin Qiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Chen J, Huo L, Yuan Y, Jiang Y, Wang H, Hui K, Li Y, Huang Z, Xi B. Interactions between microplastics and heavy metals in leachate: Implications for landfill stabilization process. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135830. [PMID: 39276746 DOI: 10.1016/j.jhazmat.2024.135830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The emission of microplastics and heavy metals in landfills has attracted widespread attention for its stabilization process. Microplastics have become carriers of heavy metals due to their adsorption properties, affecting their environmental behavior. However, the effects of landfill stabilization on the interaction between microplastics and heavy metals in leachate are ambiguous. This work explored the abundance characteristics of microplastics and heavy metals in leachate from 10 landfills in Beijing. Overall, the average abundance of microplastics was 196.3 items/L, dominated by small particle size (20-50 µm) and film microplastics. The levels of Cr and As were much higher than other heavy metals. The average abundance of microplastics and polymer types tended to decrease as the landfill stabilization proceeded, and the surface composition of microplastics became more complex. Statistical analysis revealed that the correlations between microplastics and heavy metals in the leachate of landfill stabilization presented significant parabolic characteristics, and Cr and As were more susceptible to landfill stabilization with significant positive correlation with a wide range of microplastics such as 20-30 µm. These results were intended to provide a scientific basis for the treatment and disposal of waste leachate and the synergistic prevention and control of new and traditional pollutants.
Collapse
Affiliation(s)
- Jiabao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Lin Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zekai Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
10
|
Ma L, Liu T, Li J, Yang Q. Interaction characteristics and mechanism of Cr(VI)/Cr(III) with microplastics: Influence factor experiment and DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134957. [PMID: 38925049 DOI: 10.1016/j.jhazmat.2024.134957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
The coexistence of highly toxic heavy metal chromium and new pollutants microplastics has been widely present, and the interaction behavior and mechanism of the two are crucial for their environmental effects in coexisting environments, which urgently need to be further explored. Firstly, the interaction characteristics of polyamide (PA) and polyethylene (PE) with Cr(VI)/Cr(III) were investigated, where PA exhibited higher adsorption capacity of both Cr(VI) and Cr(III) than PE among various environmental conditions. The higher adsorption energy of PA on Cr(VI)/Cr(III) was also achieved by DFT calculation, and the bending configuration of PA during the adsorption process may be beneficial for its interaction with Cr. Then, the combination of characterization analysis and DFT calculation showed that significant chemical bonding occurred in the interaction between CO bond of PA and Cr(III), weak chemical interactions occurred in the adsorption of PE with Cr(III) and PA with Cr(VI), while the adsorption of PE with Cr(VI) was mainly physical effects. This study provides theoretical support for pollution control of microplastics and chromium in co-existing environment.
Collapse
Affiliation(s)
- Linlin Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Tong Liu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, PR China
| | - Jiaxin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
11
|
Chen L, Tu M, Mao C, Wang J, Shao H, Wang H, Gu J, Xu G. Electron beam synergetic removal of microplastics and hexavalent chromium: Synergetic removal process and mechanism. CHEMOSPHERE 2024; 364:143093. [PMID: 39173834 DOI: 10.1016/j.chemosphere.2024.143093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Microplastics are ubiquitous in the environment and aged microplastics are highly susceptible to absorbing pollutants from the environment. In this study, electron beam was innovatively used to treat PVC composite Cr(VI) pollutants (Composite contaminant formed by polyvinyl chloride microplastics with the heavy metal hexavalent chromium). Experiments showed that electron beam was able to achieve synergistic removal of PVC composite Cr(VI) pollutants compared to degrading the pollutants alone. During the electron beam removal of PVC composite Cr(VI) pollutants, the reduction efficiency of Cr(VI) increased from 57% to 92%, Cl- concentration increased from 3.52 to 12.41 mg L-1, and TOC concentration increased from 16.72 to 26.60 mg L-1. The research confirmed that electron beam can effectively promote the aging degradation of PVC, alter the physicochemical properties of microplastics, and generate oxygen-containing functional groups on the surface of microplastics. Aged microplastics enhanced the adsorption capacity for Cr(VI) through electrostatic and chelation interactions, and the adsorption process followed second-order kinetics and the Freundlich model. Theoretical calculations and experiments demonstrated that PVC consumed oxidizing free radical through dechlorination and decarboxylation processes, generating inorganic ions and small organic molecules. These inorganic ions and small organic molecules further reacted with oxidizing free radical to produce reducing free radicals, facilitating the reduction of Cr(VI). Cr(VI) continuously consumed the educing free radicals to transform into Cr (Ⅲ), enhancing the system oxidative atmosphere and promoting the oxidation degradation of PVC. This study investigated the formation and synergistic removal processes of PVC composite pollutants, offering new insights for controlling microplastics composite pollution.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Mengxin Tu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jun Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Haiyang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, PR China.
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jianzhong Gu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
12
|
Chen L, Xie N, Yuan S, Shao H. Adsorption mechanism of hexavalent chromium on electron beam-irradiated aged microplastics: Novel aging processes and environmental factors. CHEMOSPHERE 2024; 363:142741. [PMID: 38977247 DOI: 10.1016/j.chemosphere.2024.142741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Microplastics are widely present in the natural environment and exhibit a strong affinity for heavy metals in water, resulting in the formation of microplastics composite heavy metal pollutants. This study investigated the adsorption of heavy metals by electron beam-aged microplastics. For the first time, electron beam irradiation was employed to degrade polypropylene, demonstrating its ability to rapidly age microplastics and generate a substantial number of oxygen-containing functional groups on aged microplastics surface. Adsorption experiments revealed that the maximum adsorption equilibrium capacity of hexavalent chromium by aged microplastics reached 9.3 mg g-1. The adsorption process followed second-order kinetic model and Freundlich model, indicating that the main processes of heavy metal adsorption by aged microplastics are chemical adsorption and multilayer adsorption. The adsorption of heavy metals on aged microplastics primarily relies on the electrostatic and chelation effects of oxygen-containing functional groups. The study results demonstrate that environmental factors, such as pH, salinity, coexisting metal ions, humic acid, and water matrix, exert inhibitory effects on the adsorption of heavy metals by microplastics. Theoretical calculations confirm that the aging process of microplastics primarily relies on hydroxyl radicals breaking carbon chains and forming oxygen-containing functional groups on the surface. The results indicate that electron beam irradiation can simultaneously oxidize and degrade microplastics while reducing hexavalent chromium levels by approximately 90%, proposing a novel method for treating microplastics composite pollutants. Gas chromatography-mass spectrometry analysis reveals that electron beam irradiation can oxidatively degrade microplastics into esters, alcohols, and other small molecules. This study proposes an innovative and efficient approach to treat both microplastics composite heavy metal pollutants while elucidating the impact of environmental factors on the adsorption of heavy metals by electron beam-aged microplastics. The aim is to provide a theoretical basis and guidance for controlling microplastics composite pollution.
Collapse
Affiliation(s)
- Lei Chen
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China
| | - Nan Xie
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Shanning Yuan
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Haiyang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
13
|
Ioannidis I, Kokonopoulou V, Pashalidis I. Polyethylene terephthalate (PET) microplastics as radionuclide (U-232) carriers: Surface alteration matters the most. CHEMOSPHERE 2024; 363:142970. [PMID: 39084298 DOI: 10.1016/j.chemosphere.2024.142970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/31/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Polyethylene terephthalate (PET) plastics find widespread use in various aspects of our daily lives but often end up in the environment as (micro)plastic waste. In this study, the adsorption efficiency of PET microplastics for U-232 has been investigated prior and after surface alteration (e.g. oxidation (PET-ox), MnO2-coating (PET/MnO2) and biofilm-formation (PET/Biofilm)) in the laboratory (at pH 4, 7 and 9) and seawater samples under ambient conditions and as a function of temperature. The results revealed a significant increase in the adsorption efficiency upon surface alteration, particularly after biofilm development on the MP's surface. Specifically, the Kd values evaluated for the adsorption of U-232 by PET, PET-ox, PET/MnO2 and PET/Biofilm are 12, 27, 73 and 363, respectively, at pH 7 and under ambient conditions. The significantly higher adsorption efficiency of the altered and particularly biofilm-coated PET, emphasizes the significance of surface alteration, which may occur under environmental conditions. In addition, according to the thermodynamic investigations the adsorption of U-232 by PET-MPs (both non-treated and modified), the adsorption is an endothermic and entropy-driven reaction. A similar behavior has been also observed using seawater solutions and assumes that surface alteration is expected to enhance the radionuclide, stability, mobility and bioavailability in environmental water systems.
Collapse
Affiliation(s)
- Ioannis Ioannidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Vaia Kokonopoulou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus.
| |
Collapse
|
14
|
Wang H, Gao Z, Zhu Q, Wang C, Cao Y, Chen L, Liu J, Zhu J. Overview of the environmental risks of microplastics and their controlled degradation from the perspective of free radicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124227. [PMID: 38797348 DOI: 10.1016/j.envpol.2024.124227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Owing to the significant environmental threat posed by microplastics (MPs) of varying properties, MPs research has garnered considerable attention in current academic discourse. Addressing MPs in river-lake water systems, existing studies have seldom systematically revealed the role of free radicals in the aging/degradation process of MPs. Hence, this review aims to first analyze the pollution distribution and environmental risks of MPs in river-lake water systems and to elaborate the crucial role of free radicals in them. After that, the study delves into the advancements in free radical-mediated degradation techniques for MPs, emphasizing the significance of both the generation and elimination of free radicals. Furthermore, a novel approach is proposed to precisely govern the controlled generation of free radicals for MPs' degradation by interfacial modification of the material structure. Hopefully, it will shed valuable insights for the effective control and reduction of MPs in river-lake water systems.
Collapse
Affiliation(s)
- Hailong Wang
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhimin Gao
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qiuzi Zhu
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Cunshi Wang
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yanyan Cao
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Liang Chen
- Jiangsu Qinhuai River Water Conservancy Project Management Office, Nanjing, 210029, China
| | - Jianlong Liu
- Jiangsu Qinhuai River Water Conservancy Project Management Office, Nanjing, 210029, China
| | - Jianzhong Zhu
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
15
|
Jin J, Wang X, Sha Y, Wang F, Huang X, Zong H, Liu J, Song N. Changes in soil properties and microbial activity unveil the distinct impact of polyethylene and biodegradable microplastics on chromium uptake by peanuts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53369-53380. [PMID: 39187679 DOI: 10.1007/s11356-024-34743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Microplastics (MPs) are emerging persistent pollutants, and heavy metals are typical environmental pollutants, with their coexistence potentially compounding pollution and ecological risks. However, the interactive impacts and the relevant mechanisms of heavy metal and different types of MPs in plant-soil systems are still unclear. This study investigated the differential impacts of polyethylene MPs (PE MPs) and biodegradable polybutylene adipate MPs (PBAT MPs) on chromium (Cr) uptake in peanuts, focusing on plant performance and rhizosphere soil microenvironment. Compared with nondegradable PE-MPs, biodegradable PBAT MPs produced less significant influences on plant phytotoxicity, soil Cr bioavailability, and soil properties such as pH, CEC, DOC, and MBC, with the exception of MBN in Cr-contaminated soils. Compared to the control, soil pH and cation exchange capacity (CEC) decreased by MPs, while soil-soluble carbon (DOC), microbial biomass carbon, and nitrogen (MBC and MBN) increased by MPs. Compared to the control, soil-bioavailable Cr increased by 11.8-177.8% under PE MPs treatments, while increased by 5.1-156.9% under PBAT MPs treatments. The highest Cr content in shoots and roots was observed at 500.0 mg·kg-1 Cr level, which increased by 53.1% and 79.2% under 5% PE MPs treatments, respectively, as well as increased by 38.3% and 60.4% under 5% PBAT MPs treatments, respectively, compared with the control. The regression path analysis indicated that pH, MBC, MBN, and soil-bioavailable Cr played a vital role in the changes of soil properties and Cr uptake by peanuts induced by MPs. Soil bacterial community analysis revealed that Nocardioides, Proteobacteria, and Sphingomonas were reduced by the inhibition of MPs, which affected Cr uptake by peanuts. These results indicated that the peanut soil microenvironment was affected by PBAT and PE MPs, altering the Cr bioavailability and plant Cr uptake in Cr-contaminated soil.
Collapse
Affiliation(s)
- Jianpeng Jin
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuexia Wang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ying Sha
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fangli Wang
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoli Huang
- Central Laboratory, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Haiying Zong
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun Liu
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ningning Song
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
16
|
Yu F, Wu J, Wang H, Bao Y, Xing H, Ye W, Li X, Huang M. Interaction of microplastics with perfluoroalkyl and polyfluoroalkyl substances in water: A review of the fate, mechanisms and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:175000. [PMID: 39053539 DOI: 10.1016/j.scitotenv.2024.175000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
It is well known that microplastics can act as vectors of pollutants in the environment and are widely spread in freshwater and marine environments. PFAS (perfluoroalkyl and polyfluoroalkyl substances) can remain in the aqueous environment for long periods due to their wide application and good stability. The coexistence of microplastics and PFAS in the aqueous environment creates conditions for their interaction and combined toxicity. Studies on adsorption experiments between them and combined toxicity have been documented in the literature but have not been critically summarized and reviewed. Therefore, in this review, we focused on the interaction mechanisms, influencing factors, and combined toxicity between microplastics and PFAS. It was found that surface complexation may be a new interaction mechanism between microplastics and PFAS. In addition, aged microplastics reduce the adsorption of PFAS due to the presence of oxygenated groups on the surface compared to virgin microplastics. Attached biofilms can increase the adsorption capacity and create conditions for biodegradation. And, the interaction of microplastics and PFAS affects their spatial and temporal distribution in the environment. This review can provide insights into the fate of microplastics and PFAS in the global aquatic environment, fill knowledge gaps on the interactions between microplastics and PFAS, and provide a basic reference for assessing their combined toxicity.
Collapse
Affiliation(s)
- Fan Yu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiaping Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huangyingzi Wang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yinzhou Bao
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Xing
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenpei Ye
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuhua Li
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
17
|
Sucharitakul P, Wu WM, Zhang Y, Peng BY, Gao J, Wang L, Hou D. Exposure Pathways and Toxicity of Microplastics in Terrestrial Insects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11887-11900. [PMID: 38885123 DOI: 10.1021/acs.est.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The detrimental effects of plastics on aquatic organisms, including those of macroplastics, microplastics, and nanoplastics, have been well established. However, knowledge on the interaction between plastics and terrestrial insects is limited. To develop effective strategies for mitigating the impact of plastic pollution on terrestrial ecosystems, it is necessary to understand the toxicity effects and influencing factors of plastic ingestion by insects. An overview of current knowledge regarding plastic ingestion by terrestrial insects is provided in this Review, and the factors influencing this interaction are identified. The pathways through which insects interact with plastics, which can lead to plastic accumulation and microplastic transfer to higher trophic levels, are also discussed using an overview and a conceptual model. The diverse impacts of plastic exposure on insects are discussed, and the challenges in existing studies, such as a limited focus on certain plastic types, are identified. Further research on standardized methods for sampling and analysis is crucial for reliable research, and long-term monitoring is essential to assess plastic trends and ecological impacts in terrestrial ecosystems. The mechanisms underlying these effects need to be uncovered, and their potential long-term consequences for insect populations and ecosystems require evaluation.
Collapse
Affiliation(s)
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Cheng X, Hou Y, Lin X, Wang C, Shen B, Zhuo S, Li Z, Peng L, Su Z. UV aging may enhance adsorption capacity of Poly (butylene adipate-co-terephthalate) (PBAT) to heavy metals and toxicity to zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106938. [PMID: 38788459 DOI: 10.1016/j.aquatox.2024.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Compared with the fossil-based plastics, biodegradable plastics are more easily decomposed into small-sized particles (e.g., microplastics). However, the role of aged biodegradable plastics in being vector of co-existed pollutants and potential toxicological effects remain to be elucidated. The present study selected micro-sized biodegradable polymer Poly (butylene adipate-co-terephthalate) (PBAT) as the object, aiming to explore its aging process, environmental behavior with heavy metals (Cu and Pb), and the toxic effects on zebrafish. The results showed that distinct changes such as cracks and severe deformation can be observed on the surface of PBAT after 60 days of UV aging, and the functional groups changed consequently. The maximum adsorption capacity of aged PBAT for Cu and Pb reached 0.967 and 0.939 mg·g-1, which increased by 1.32 and 1.46 times, respectively. The results of 7-day acute toxicology experiments suggested that the adsorption behavior of aged PBAT may alleviate the toxic effects of heavy metals Cu and Pb on zebrafish in short-term exposure, however it could simultaneously cause a serious imbalance of intestinal microorganisms in zebrafish. As demonstrated, the coexistence of aged PBAT and heavy metals (Cu, Pb) can seriously reduce the intestinal microbial diversity and richness of zebrafish, which may induce more serious toxicity and disease in long-term exposure to pollutants. This study could provide fundamental data for better understanding on the adsorption behavior and ecological risk of aged biodegradable plastics with coexisted pollutants.
Collapse
Affiliation(s)
- Xing Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province./Center for Eco-Environment Restoration Engineering of Hainan Province/School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China
| | - Yipeng Hou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province./Center for Eco-Environment Restoration Engineering of Hainan Province/School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China
| | - Xubing Lin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province./Center for Eco-Environment Restoration Engineering of Hainan Province/School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China
| | - Chudan Wang
- Hainan Provincial Key Laboratory of Marine Geological Resources and Environment, Haikou 570203, China
| | - Baozhen Shen
- Hainan Provincial Key Laboratory of Marine Geological Resources and Environment, Haikou 570203, China
| | - Shengchi Zhuo
- Eternal Materials Co., Ltd. Suzhou, Jiangsu 215000, PR China
| | - Zhen Li
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province./Center for Eco-Environment Restoration Engineering of Hainan Province/School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China.
| | - Zengjian Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province./Center for Eco-Environment Restoration Engineering of Hainan Province/School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
19
|
Yu J, Chen J, Li Q, Ren P, Tang Y, Huang R, Lu Y, Chen K. Toxicity and fate of cadmium in hydroponically cultivated lettuce (Lactuca sativa L.) influenced by microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116422. [PMID: 38705040 DOI: 10.1016/j.ecoenv.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Although more attention has been paid to microplastics (MPs) pollution in environment, research on the synthetic influence of microplastic and heavy metals remains limited. To help fill this information gap, we investigated the adsorption behavior of virgin polyvinyl chloride microplastics (PVCMPs) (≤450 µm white spherical powder) on cadmium (II). The effects on seed germination, seedling growth, photosynthetic system, oxidative stress indicators of lettuce, and changes in Cd bioavailability were evaluated under Cd2+ (25 μmol/L), PVCMPs (200 mg/L), and PVCMP-Cd combined (200 mg/L + 25 μmol/L) exposures in hydroponic system. The results demonstrated that the PVCMPs effectively adsorbed Cd ions, which validated by the pseudo-second-order kinetic and the Langmuir isotherm models, indicating the sorption of Cd2+ on the PVCMPs was primary chemisorption and approximates monomolecular layer sorption. Compared to MPs, Cd significantly inhibits plant seed germination and seedling growth and development. However, Surprising improvement in seed germination under PVCMPs-Cd exposure was observed. Moreover, Cd2+ and MPs alone or combined stress caused oxidative stress with reactive oxygen species (ROS) including H2O2, O2- and Malondialdehyde (MDA) accumulation in plants, and substantially damaged to photosynthesis. With the addition of PVCMPs, the content of Cd in the leaves significantly (P<0.01) decreased by 1.76-fold, and the translocation factor and Cd2+removal rate in the water substantially (P<0.01) decreased by 6.73-fold and 1.67-fold, respectively in contrast to Cd2+ stress alone. Therefore, it is concluded the PVCMP was capable of reducing Cd contents in leaves, alleviating Cd toxicity in lettuce. Notably, this study provides a scientific foundation and reference for comprehending the toxicological interactions between microplastics and heavy metals in the environment.
Collapse
Affiliation(s)
- Jiadie Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Juelin Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Qiong Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Yunlai Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Renhua Huang
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei 448000, PR China
| | - Yunmei Lu
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei 448000, PR China.
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
20
|
Chand R, Putna-Nīmane I, Vecmane E, Lykkemark J, Dencker J, Haaning Nielsen A, Vollertsen J, Liu F. Snow dumping station - A considerable source of tyre wear, microplastics, and heavy metal pollution. ENVIRONMENT INTERNATIONAL 2024; 188:108782. [PMID: 38821018 DOI: 10.1016/j.envint.2024.108782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Snow dumping stations can be a hotspots for pollutants to water resources. However, little is known about the amount of microplastics including tyre wear particles transported this way. This study investigated microplastics and metals in snow from four snow dumping stations in Riga, Latvia, a remote site (Gauja National Park), and a roof top in Riga. Microplastics other than tyre wear particles were identified with Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) (>500 µm) and focal plane array based micro-Fourier Transform Infrared (FPA-µFTIR) imaging (10-500 µm), tyre wear particles by Pyrolysis Gas Chromatography-Mass Spectroscopy (Py-GC-MS), and total metals by Inductively Coupled Plasma with Optical Emission Spectroscopy (ICP-OES). Microplastics detected by FTIR were quantified by particle counts and their mass estimated, while tyre wear particles were quantified by mass. The concentrations varied substantially, with the highest levels in the urban areas. Microplastic concentrations measured by FTIR ranged between 26 and 2549 counts L-1 of melted snow with a corresponding estimated mass of 19-573 µg/L. Tyre wear particles were not detected at the two reference sites, while other sites held 44-3026 µg/L. Metal concentrations varied several orders of magnitude with for example sodium in the range 0.45-819.54 mg/L and cadmium in the range 0.05-0.94 µg/L. Correlating microplastic measured by FTIR to metal content showed a weak to moderate correlation. Tyre wear particles, however, correlated strongly to many of the metals. The study showed that snow can hold considerable amounts of these pollutants, which upon melting and release of the meltwater to the aquatic environment could impact receiving waters.
Collapse
Affiliation(s)
- Rupa Chand
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9200 Aalborg, Denmark
| | - Ieva Putna-Nīmane
- Latvian Institute of Aquatic Ecology, Voleru str. 4, LV-1007 Riga, Latvia
| | - Elina Vecmane
- Latvian Institute of Aquatic Ecology, Voleru str. 4, LV-1007 Riga, Latvia
| | - Jeanette Lykkemark
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9200 Aalborg, Denmark
| | - Jytte Dencker
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9200 Aalborg, Denmark
| | - Asbjørn Haaning Nielsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9200 Aalborg, Denmark
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9200 Aalborg, Denmark
| | - Fan Liu
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9200 Aalborg, Denmark.
| |
Collapse
|
21
|
Miller C, Neidhart A, Hess K, Ali AMS, Benavidez A, Spilde M, Peterson E, Brearley A, Wang X, Dhanapala BD, Cerrato JM, Gonzalez-Estrella J, El Hayek E. Uranium accumulation in environmentally relevant microplastics and agricultural soil at acidic and circumneutral pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171834. [PMID: 38521258 PMCID: PMC11141427 DOI: 10.1016/j.scitotenv.2024.171834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
The co-occurrence of microplastics (MPs) with potentially toxic metals in the environment stresses the need to address their physicochemical interactions and the potential ecological and human health implications. Here, we investigated the reaction of aqueous U with agricultural soil and high-density polyethylene (HDPE) through the integration of batch experiments, microscopy, and spectroscopy. The aqueous initial concentration of U (100 μM) decreased between 98.6 and 99.2 % at pH 5 and between 86.2 and 98.9 % at pH 7.5 following the first half hour of reaction with 10 g of soil. In similar experimental conditions but with added HDPE, aqueous U decreased between 98.6 and 99.7 % at pH 5 and between 76.1 and 95.2 % at pH 7.5, suggesting that HDPE modified the accumulation of U in soil as a function of pH. Uranium-bearing precipitates on the cracked surface of HDPE were identified by SEM/EDS after two weeks of agitation in water at both pH 5 and 7.5. Accumulation of U on the near-surface region of reacted HDPE was confirmed by XPS. Our findings suggest that the precipitation of U was facilitated by the weathering of the surface of HDPE. These results provide insights about surface-mediated reactions of aqueous metals with MPs, contributing relevant information about the mobility of metals and MPs at co-contaminated agricultural sites.
Collapse
Affiliation(s)
- Casey Miller
- Gerald May Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, NM 87131, USA; Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA
| | - Andrew Neidhart
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, MSC03 2060, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kendra Hess
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Michael Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Eric Peterson
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xuewen Wang
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - B Dulani Dhanapala
- College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 740784, USA
| | - José M Cerrato
- Gerald May Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA.
| |
Collapse
|
22
|
Wang R, Zhang W, Liang W, Wang X, Li L, Wang Z, Li M, Li J, Ma C. Molecularly Imprinted Heterostructure-Assisted Laser Desorption Ionization Mass Spectrometry Analysis and Imaging of Quinolones. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17377-17392. [PMID: 38551391 DOI: 10.1021/acsami.3c16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Quinolone residues resulting from body metabolism and waste discharge pose a significant threat to the ecological environment and to human health. Therefore, it is essential to monitor quinolone residues in the environment. Herein, an efficient and sensitive matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) method was devised by using a novel molecularly imprinted heterojunction (MIP-TNs@GCNs) as the matrix. Molecularly imprinted titanium dioxide nanosheets (MIP-TNs) and graphene-like carbon nitrides (GCNs) were associated at the heterojunction interface, allowing for the specific, rapid, and high-throughput ionization of quinolones. The mechanism of MIP-TNs@GCNs was clarified using their adsorption properties and laser desorption/ionization capability. The prepared oxygen-vacancy-rich MIP-TNs@GCNs heterojunction exhibited higher light absorption and ionization efficiencies than TNs and GCNs. The good linearity (in the quinolone concentration range of 0.5-50 pg/μL, R2 > 0.99), low limit of detection (0.1 pg/μL), good reproducibility (n = 8, relative standard deviation [RSD] < 15%), and high salt and protein resistance for quinolones in groundwater samples were achieved using the established MIP-TNs@GCNs-MALDI/MS method. Moreover, the spatial distributions of endogenous compounds (e.g., amino acids, organic acids, and flavonoids) and xenobiotic quinolones from Rhizoma Phragmitis and Rhizoma Nelumbinis were visualized using the MIP-TNs@GCNs film as the MALDI/MS imaging matrix. Because of its superior advantages, the MIP-TNs@GCNs-MALDI/MS method is promising for the analysis and imaging of quinolones and small molecules.
Collapse
Affiliation(s)
- Ruya Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Weidong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Weiqiang Liang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province 250014, P. R. China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Lili Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Zhenhua Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Miaomiao Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Jun Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 1007002, China
| |
Collapse
|
23
|
Hu C, Xiao Y, Jiang Q, Wang M, Xue T. Adsorption properties and mechanism of Cu(II) on virgin and aged microplastics in the aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29434-29448. [PMID: 38575820 DOI: 10.1007/s11356-024-33131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Microplastics (MPs) migrate by adsorbing heavy metals in aquatic environments and act as their carriers. However, the aging mechanisms of MPs in the environment and the interactions between MPs and heavy metals in aquatic environments require further study. In this study, two kinds of materials, polyamide (PA) and polylactic acid (PLA) were used as target MPs, and the effects of UV irradiation on the physical and chemical properties of the MPs and the adsorption behavior of Cu(II) were investigated. The results showed that after UV irradiation, pits, folds and pores appeared on the surface of aged MPs, the specific surface area (SSA) increased, the content of oxygen-containing functional groups increased, and the crystallinity decreased. These changes enhanced the adsorption capacity of aged MPs for Cu(II) pollutants. The adsorption behavior of the PA and PLA MPs for Cu(II) conformed to the pseudo-second-order model and Langmuir isotherm model, indicating that the monolayer chemical adsorption was dominant. The maximum amounts of aged PA and PLA reached 1.415 and 1.398 mg/g, respectively, which were 1.59 and 1.76 times of virgin MPs, respectively. The effects of pH and salinity on the adsorption of Cu(II) by the MPs were significant. Moreover, factors such as pH, salinity and dosage had significant effects on the adsorption of Cu(II) by MPs. Oxidative complexation between the oxygen-containing groups of the MPs and Cu(II) is an important adsorption mechanism. These findings reveal that the UV irradiation aging of MPs can enhance the adsorption of Cu(II) and increase their role as pollutant carriers, which is crucial for assessing the ecological risk of MPs and heavy metals coexisting in aquatic environments.
Collapse
Affiliation(s)
- Chun Hu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
| | - Yaodong Xiao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Qingrong Jiang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Mengyao Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Tingdan Xue
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| |
Collapse
|
24
|
Yu Y, Liu J, Zhu J, Lei M, Huang C, Xu H, Liu Z, Wang P. The interfacial interaction between typical microplastics and Pb 2+ and their combined toxicity to Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170591. [PMID: 38309345 DOI: 10.1016/j.scitotenv.2024.170591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Microplastics (MPs), a new type of pollutant, have attracted much attention worldwide. MPs are often complexed with other pollutants such as heavy metals, resulting in combined toxicity to organisms in the environment. Studies on the combined toxicity of MPs and heavy metals have usually focused on the marine, while on the freshwater are lacking. In order to understand the combined toxic effects of MPs and heavy metals in the freshwater, five typical MPs (PVC, PE, PP, PS, PET) were selected to investigate the adsorption characteristics of MPs to Pb2+ before and after the MPs aging by ultraviolet (UV) irradiation through static adsorption tests. The results showed that UV aging enhanced adsorption of Pb2+ by MPs. It is noteworthy that MPs-PET had the highest adsorption capacity for Pb2+, and the interaction between MPs-PET and Pb2+ was the strongest. We specifically selected MPs-PET to study its combined toxicity with Pb2+ to Chlorella pyrenoidosa. In the combined toxicity test, MPs-PET and Pb2+ had significant toxic effects on Chlorella pyrenoidosa in the individual exposure, and the toxicity of individual Pb2+ exposure was greater than that of individual MPs-PET exposure. In the combined exposure, when MPs-PET and Pb2+ without adsorption (MPs-PET/Pb2+), MPs-PET and Pb2+ had a synergistic effect, which would produce strong physical and chemical stress on Chlorella pyrenoidosa simultaneously, and the toxic effect was the most significant. After the adsorption of MPs-PET and Pb2+ (MPs-PET@Pb2+), the concentration and activity of Pb2+ decreased due to the adsorption and fixation of MPs-PET, and the chemical stress on Chlorella pyrenoidosa was reduced, but the physical stress of MPs-PET still existed and posed a serious threat to the survival of Chlorella pyrenoidosa. This study has provided a theoretical basis for further assessment of the potential environmental risks of MPs in combination with other pollutants such as heavy metals.
Collapse
Affiliation(s)
- Yi Yu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiahao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Mingjing Lei
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Department of Biology, Eastern New Mexico University, NM 88130, USA
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
25
|
Chang B, Huang Z, Yang X, Yang T, Fang X, Zhong X, Ding W, Cao G, Yang Y, Hu F, Xu C, Qiu L, Lv J, Du W. Adsorption of Pb(II) by UV-aged microplastics and cotransport in homogeneous and heterogeneous porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133413. [PMID: 38228006 DOI: 10.1016/j.jhazmat.2023.133413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
To investigate the adsorption effects of aged microplastics (MPs) on Pb(II) and their co-transport properties in homogeneous (quartz sand) and heterogeneous (quartz sand with apple branches biochar) porous media, we explored the co-transport of UV-irradiated aged MPs and coexisting Pb(II) along with their interaction mechanisms. The UV aging process increased the binding sites and electronegativity of the aged MPs' surface, enhancing its adsorption capacity for Pb(II). Aged MPs significantly improved Pb(II) transport through homogeneous media, while Pb(II) hindered the transport of aged MPs by reducing electrostatic repulsion between these particles and the quartz sand. When biochar, with its loose and porous structure, was used as a porous medium, it effectively inhibited the transport capacity of both contaminants. In addition, since the aged MPs cannot penetrate the column, a portion of Pb(II) adsorbed by the aged MPs will be co-deposited with the aged MPs, hindering Pb(II) transport to a greater extent. The transport experiments were simulated and interpreted using two-point kinetic modeling and the DLVO theory. The study results elucidate disparities in the capacity of MPs and aged MPs to transport Pb(II), underscoring the potential of biochar application as an effective strategy to impede the dispersion of composite environmental pollutants.
Collapse
Affiliation(s)
- Bokun Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zixuan Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiaodong Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianhuan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianhui Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianbao Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Gang Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Feinan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ling Qiu
- College of Mechanical and Electronic Engineering & Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
26
|
Chen Q, Liu Y, Bi L, Jin L, Peng R. Understanding the mechanistic roles of microplastics combined with heavy metals in regulating ferroptosis: Adding new paradigms regarding the links with diseases. ENVIRONMENTAL RESEARCH 2024; 242:117732. [PMID: 37996004 DOI: 10.1016/j.envres.2023.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
As a new type of pollutant, microplastics (MPs) commonly exist in today's ecosystems, causing damage to the ecological environment and the health of biological organisms, including human beings. MPs can function as carriers of heavy metals (HMs) to aggravate the enrichment of HMs in important organs of organisms, posing a great threat to health. Ferroptosis, a novel process for the regulation of nonapoptotic cell death, has been shown to be closely related to the occurrence and processes of MPs and HMs in diseases. In recent years, some HMs, such as cadmium (Cd), iron (Fe), arsenic (As) and copper (Cu), have been proven to induce ferroptosis. MPs can function as carriers of HMs to aggravate damage to the body. This damage involves oxidative stress, mitochondrial dysfunction, lipid peroxidation (LPO), inflammation, endoplasmic reticulum stress (ERS) and so on. Therefore, ferroptosis has great potential as a therapeutic target for diseases induced by MPs combined with HMs. This paper systematically reviews the potential effects and regulatory mechanisms of MPs and HMs in the process of ferroptosis, focusing on the mitochondrial damage, Fe accumulation, LPO, ERS and inflammation caused by MPs and HMs that affect the regulatory mechanism of ferroptosis, providing new insights for research on regulating drugs and for the development of ferroptosis-targeting therapy for Alzheimer's disease, Parkinson's disease, cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
27
|
Zhang Z, Zou S, Li P. Aging of plastics in aquatic environments: Pathways, environmental behavior, ecological impacts, analyses and quantifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122926. [PMID: 37963513 DOI: 10.1016/j.envpol.2023.122926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
The ubiquity of plastics in our environment has brought about pressing concerns, with their aging processes, photo-oxidation, mechanical abrasion, and biodegradation, being at the forefront. Microplastics (MPs), whether originating from plastic degradation or direct anthropogenic sources, further complicate this landscape. This review delves into the intricate aging dynamics of plastics in aquatic environments under various influential factors. We discuss the physicochemical changes that occur in aged plastics and the release of oxidation products during their degradation. Particular attention is given to their evolving environmental interactions and the resulting ecotoxicological implications. A rigorous evaluation is also conducted for methodologies in the analysis and quantification of plastics aging, identifying their merits and limitations and suggesting potential avenues for future research. This comprehensive review is able to illuminate the complexities of plastics aging, charting a path for future research and aiding in the formulation of informed policy decisions.
Collapse
Affiliation(s)
- Zekun Zhang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Pu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China.
| |
Collapse
|
28
|
Xiong X, Wang J, Liu J, Xiao T. Microplastics and potentially toxic elements: A review of interactions, fate and bioavailability in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122754. [PMID: 37844862 DOI: 10.1016/j.envpol.2023.122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
In recent years, microplastics (MPs) have obtained growing public concern due to widespread distribution and harmful impacts. Their distinctive features including porous structure, small size, as well as large specific surface area render MPs to be carriers for transporting other pollutants in the environment, especially potentially toxic elements (PTEs). Considering the hot topic of MPs, it is of great significance to comb the reported literature on environmental behaviors of co-occurrence of MPs and PTEs, and systematically discuss their co-mobility, transportation and biotoxicity to different living organisms in diverse environmental media. Therefore, the aim of this work is to systematically review and summarize recent advances on interactions and co-toxicity of MPs and PTEs, in order to provide in-depth understanding on the transport behaviors as well as environmental impacts. Electrostatic attraction and surface complexation mainly govern the interactions between MPs and PTEs, which are subordinated by other physical sorption processes. Besides, the adsorption behaviors are mainly determined by physicochemical properties regarding to different MPs types and various condition factors (e.g., ageing and PTEs concentrations, presence of substances). Generally speaking, recently published papers make a great progress in elucidating the mechanisms, impact factors, as well as thermodynamic and kinetic studies. Bioavailability and bioaccumulation by plant, microbes, and other organisms in both aquatic and terrestrial environment have also been under investigation. This review will shed novel perspectives on future research to meet the sustainable development goals, and obtain critical insights on revealing comprehensive mechanisms. It is crucial to promote efficient approaches on environmental quality improvement as well as management strategies towards the challenge of MPs-PTEs.
Collapse
Affiliation(s)
- Xinni Xiong
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
29
|
You H, Cao C, Sun X, Huang B, Qian Q, Chen Q. Microplastics as an emerging vector of Cr(VI) in water: Correlation of aging properties and adsorption behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166480. [PMID: 37611697 DOI: 10.1016/j.scitotenv.2023.166480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Microplastics (MPs) are emerging contaminants with growing concerns due to their potential adverse effects on the environment. However, understanding the aging properties and adsorption behavior of MPs is still limited. In this study, we investigated the correlation between the adsorption capacity, aging stages, and aging properties of polyethylene MPs using a correlation equation. Our results revealed that the trends of O/C ratio and contact angle of polyethylene MPs with aging time were fitted to be linear under xenon lamp accelerated aging conditions. Conversely, the trends of other properties such as particle size, crystallinity, and molecular weight with time were fitted to conform to the Boltzmann equation. Moreover, the aging curve data for carbonyl index and molecular weight (Mw) perfectly matched, confirming Mw play a crucial role in verifying the aging process. Additionally, the adsorption amount of polyethylene MPs increased sharply with the increase of aging ages, reaching up to 1.850 mg/g. The adsorption data fit well to the pseudo-second-order kinetics and Langmuir model, suggesting that the adsorption process is dominated by chemisorption. The low pH and low salt concentration is beneficial to the adsorption capacity of MPs onto Cr(VI). Further, a relationship equation was established to predict adsorption risk at different aging stages. These findings provide new insights into the impact of aging on pollutants transport and the fate of MPs, enabling the prediction of adsorption risk of MPs at different aging stages in water environments.
Collapse
Affiliation(s)
- Huimin You
- College of Environmental and Ecology, College of Coastal and Ocean Management Institute, Xiamen University, Xiamen 361000, China; College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Changlin Cao
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Xiaoli Sun
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Baoquan Huang
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Qingrong Qian
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Qinghua Chen
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
30
|
Liu X, Fang L, Yan X, Gardea-Torresdey JL, Gao Y, Zhou X, Yan B. Surface functional groups and biofilm formation on microplastics: Environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166585. [PMID: 37643702 DOI: 10.1016/j.scitotenv.2023.166585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) contamination is becoming a significant environmental issue, as the widespread omnipresence of MPs can cause many adverse consequences for both ecological systems and humans. Contrary to what is commonly thought, the toxicity-inducing MPs are not the original pristine plastics; rather, they are completely transformed through various surface functional groups and aggressive biofilm formation on MPs via aging or weathering processes. Therefore, understanding the impacts of MPs' surface functional groups and biofilm formation on biogeochemical processes, such as environmental fate, transport, and toxicity, is crucial. In this review, we present a comprehensive summary of the distinctive impact that surface functional groups and biofilm formation of MPs have on their significant biogeochemical behavior in various environmental media, as well as their toxicity and biological effects. We place emphasis on the role of surface functional groups and biofilm formation as a means of influencing the biogeochemical processes of MPs. This includes their effects on pollutant fate and element cycling, which in turn impacts the aggregation, transport, and toxicity of MPs. Ultimately, future research studies and tactics are needed to improve our understanding of the biogeochemical processes that are influenced by the surface functional groups and biofilm formation of MPs.
Collapse
Affiliation(s)
- Xigui Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jorge L Gardea-Torresdey
- University of Texas at El Paso, Department of Chemistry and Biochemistry, El Paso, TX 79968, United States
| | - Yan Gao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
31
|
Zhang Y, Li Y, Wang Y, Su F, Qian J, Liu S. Adsorption of levofloxacin by ultraviolet aging microplastics. CHEMOSPHERE 2023; 343:140196. [PMID: 37717913 DOI: 10.1016/j.chemosphere.2023.140196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Microplastics can combine with pollutants such as antibiotics and pose a threat to the environment and organisms. At the same time, the inevitable aging behavior of microplastics in the actual environment leads to changes in their physical and chemical properties, and thus changes the reaction mechanism between microplastics and other pollutants. In this study, we used three common microplastics PE/PS/PA to study the adsorption behavior of levofloxacin hydrochloride. Ultraviolet aging method was used to simulate the aging process of levofloxacin hydrochloride under sunlight, and compared with that of before aging. The results showed that the order of adsorption capacity was PS-UV > PA-UV > PE-UV > PA > PS > PE. Aging behavior can significantly enhance the adsorption capacity of microplastics to pollutants. Both Langmuir and Freundlich models can be used to fit the isothermal adsorption process well, indicating that the adsorption process was not a simple monolayer adsorption, but also a multi-molecular layer adsorption. The experiments showed that the adsorption process was affected by various mechanisms, including π-π conjugation, hydrogen bond, ion exchange and electrostatic interaction. This study elucidated the interaction mechanism between microplastics and levofloxacin hydrochloride, which has important significance for future control of microplastics and antibiotic pollution.
Collapse
Affiliation(s)
- Yue Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Yiyan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Fei Su
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Jie Qian
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Sinan Liu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
32
|
Luo H, Tu C, He D, Zhang A, Sun J, Li J, Xu J, Pan X. Interactions between microplastics and contaminants: A review focusing on the effect of aging process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165615. [PMID: 37481081 DOI: 10.1016/j.scitotenv.2023.165615] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Microplastics (MPs) in the environment are a major global concern due to their persistent nature and wide distribution. The aging of MPs is influenced by several processes including photodegradation, thermal degradation, biodegradation and mechanical fragmentation, which affect their interaction with contaminants. This comprehensive review aims to summarize the aging process of MPs and the factors that impact their aging, and to discuss the effects of aging on the interaction of MPs with contaminants. A range of characterization methods that can effectively elucidate the mechanistic processes of these interactions are outlined. The rate and extent of MPs aging are influenced by their physicochemical properties and other environmental factors, which ultimately affect the adsorption and aggregation of aged MPs with environmental contaminants. Pollutants such as heavy metals, organic matter and microorganisms have a tendency to accumulate on MPs through adsorption and the interactions between them impact their environmental behavior. Aging enhances the specific surface area and oxygen-containing functional groups of MPs, thereby affecting the mechanism of interaction between MPs and contaminants. To obtain a more comprehensive understanding of how aging affects the interactions, this review also provides an overview of the mechanisms by which MPs interact with contaminants. In the future, there should be further in-depth studies of the potential hazards of aged MPs in different environments e.g., soil, sediment, aquatic environment, and effects of their interaction with environmental pollutants on human health and ecology.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Chaolin Tu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
33
|
Vrinda PK, Amal R, Abhirami N, Mini DA, Kumar VJR, Devipriya SP. Co-exposure of microplastics and heavy metals in the marine environment and remediation techniques: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114822-114843. [PMID: 37922080 DOI: 10.1007/s11356-023-30679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2023]
Abstract
Microplastics (MPs) and heavy metals are significant pollutants in the marine environment, necessitating effective remediation strategies to prevent their release into the sea through sewage and industrial effluent. This comprehensive review explores the current understanding of the co-exposure of MPs and heavy metal-enriched MPs, highlighting the need for effective remediation methods. Various mechanisms, including surface ion complexation, hydrogen bonding, and electrostatic forces, contribute to the adsorption of heavy metals onto MPs, with factors like surface area and environmental exposure duration playing crucial roles. Additionally, biofilm formation on MPs alters their chemical properties, influencing metal adsorption behaviors. Different thermodynamic models are used to explain the adsorption mechanisms of heavy metals on MPs. The adsorption process is influenced by various factors, including the morphological characteristics of MPs, their adsorption capacity, and environmental conditions. Additionally, the desorption of heavy metals from MPs has implications for their bioavailability and poses risks to marine organisms, emphasizing the importance of source reduction and remedial measures. Hybrid approaches that combine both conventional and modern technologies show promise for the efficient removal of MPs and heavy metals from marine environments. This review identifies critical gaps in existing research that should be addressed in future studies including standardized sampling methods to ensure accurate data, further investigation into the specific interactions between MPs and metals, and the development of hybrid technologies at an industrial scale. Overall, this review sheds light on the adsorption and desorption mechanisms of heavy metal-enriched MPs, underscoring the necessity of implementing effective remediation strategies.
Collapse
Affiliation(s)
- Punmoth Kalyadan Vrinda
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair, 744112, Andaman and Nicobar Islands, India
| | - Radhakrishnan Amal
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, India, 682022
| | - Nandakumar Abhirami
- Department of Aquatic Environment Management, Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, 400061, India
| | - Divya Alex Mini
- Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682508, Kerala, India
| | | | | |
Collapse
|
34
|
Yan S, Biswal BK, Balasubramanian R. Insights into interactions of biodegradable and non-biodegradable microplastics with heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107419-107434. [PMID: 37335512 DOI: 10.1007/s11356-023-27906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
Biodegradable microplastics (BMPs) are considered to be environmentally friendly compared to non-biodegradable plastics (NMPs). However, BMPs are likely to become toxic during their transport because of the adsorption of pollutants (e.g., heavy metals) onto them. This study investigated the uptake of six heavy metals (Cd2+, Cu2+, Cr3+, Ni2+, Pb2+, and Zn2+) by a common BMPs (polylactic acid (PLA)) and compared their adsorption characteristics to those of three types of NMPs (polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC)) for the first time. The order of heavy metal adsorption capacity among the four MPs was PE > PLA > PVC > PP. The findings suggest that BMPs contained more toxic heavy metals than some NMPs. Among the six heavy metals, Cr3+ showed considerably stronger adsorption than other heavy metals in both BMPS and NMPs. The adsorption of heavy metals on MPs can be well explained using the Langmuir isotherm model, while the adsorption kinetic curves showed the best fit to the pseudo-second-order kinetic equation. Desorption experiments revealed that BMPs released a higher percentage of heavy metals (54.6-62.6%) in the acidic environment in a shorter time (~ 6 h) compared to NMPs. Overall, this study provides insights into interactions of BMPs and NMPs with heavy metals and their removal mechanisms in aquatic environment.
Collapse
Affiliation(s)
- Shuyue Yan
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
35
|
Sun X, Anoopkumar AN, Madhavan A, Binod P, Pandey A, Sindhu R, Awasthi MK. Degradation mechanism of microplastics and potential risks during sewage sludge co-composting: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122113. [PMID: 37379875 DOI: 10.1016/j.envpol.2023.122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/07/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Microplastics (MPs) as a kind of emerging contaminants, widely exists in various kinds of medium, sewage sludge (SS) is no exception. In the sewage treatment process, a large number of microplastics will be deposited in SS. More seriously, microplastics in sewage sludge can migrate to other environmental media and threaten human health. Therefore, it is necessary to remove MPs from SS. Among the various restorations, aerobic composting is emerging as a green microplastic removal method. There are more and more reports of using aerobic compost to degrade microplastics. However, there are few reports on the degradation mechanism of MPs in aerobic composting, hindering the innovation of aerobic composting methods. Therefore, in this paper, the degradation mechanism of MPs in SS is discussed based on the environmental factors such as physical, chemical and biological factors in the composting process. In addition, this paper expounds the MPs in potential hazards, and combined with the problems in the present study were studied the outlook.
Collapse
Affiliation(s)
- Xinwei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China
| | - A N Anoopkumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, 691505, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China.
| |
Collapse
|
36
|
Li K, Wang F. Global hotspots and trends in interactions of microplastics and heavy metals: a bibliometric analysis and literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93309-93322. [PMID: 37542698 DOI: 10.1007/s11356-023-29091-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Microplastics (MPs) are identified as emerging contaminants; however, their interactions with heavy metals in the environment have not been well elucidated. Here, the research progress, hotspots, and trends in the interactions of MPs and heavy metals were analyzed at a global scale using a bibliometric analysis combined with a literature review. We comprehensively searched the Web of Science Core Collection database from 2008 to July 5, 2022. A total of 552 articles published in 124 journals were selected, which came from 70 countries and 841 institutions. The most contributing journals, countries, institutions, and authors were identified. Visualization methods were used to identify high co-citation references and hot keywords in the 552 articles. Evolutionary and cluster analyses of hot keywords suggested several research hotspots in the co-contamination of MPs and heavy metals, including their toxicity and bioaccumulation, the adsorption and desorption behaviors, the environmental pollution and risk assessment, and their detection and characterization. Based on the current research status, several directions of priority are recommended to understand the interactions between MPs and heavy metals and their potential risks. This article can help recognize the current research status and future directions in this field.
Collapse
Affiliation(s)
- Kehan Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, China.
| |
Collapse
|
37
|
Liang W, Wei S, Lan L, Chen J, Zhou Y, Zhao J, Wang H, Gao R, Zeng F. Effect of microplastics on the binding properties of Pb(ii) onto dissolved organic matter: insights from fluorescence spectra and FTIR combined with two-dimensional correlation spectroscopy. RSC Adv 2023; 13:24201-24210. [PMID: 37583675 PMCID: PMC10423972 DOI: 10.1039/d3ra04189a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Heavy metal cations are a typical type of inorganic pollutant that has persistent distribution characteristics in aquatic environments and are easily adsorbed on carriers, posing serious threats to ecological safety and human health. Some studies have shown that the coexistence of dissolved organic matter (DOM) and microplastics (MPs) promotes the adsorption of heavy metal cations, but the mechanism of promoting the adsorption process has not been thoroughly studied. In this study, the effect of polystyrene microplastics (PSMPs) on the binding properties of Pb2+ onto humic acid (HA) in aquatic environments was investigated by spectral analysis and two-dimensional correlation (2D-COS) analysis. When PSMPs co-existed with HA, the adsorption capacity of Pb2+ increased. On the one hand, Pb2+ is directly adsorbed on HA through the mechanism of complexation reaction, ion exchange and electrostatic interaction. On the other hand, Pb2+ is first adsorbed on PSMPs by electrostatic action and indirectly adsorbed on HA in the form of PSMPs-Pb2+ owing to the interaction between HA and PSMPs, which increases the adsorption amount of Pb2+ on HA. This study is significant for studying the migration and regression of heavy metal cation contaminants when PSMPs co-exist with DOM in an aqueous environment.
Collapse
Affiliation(s)
- Weiqian Liang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Shuyin Wei
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Longxia Lan
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Jinfeng Chen
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Jiawei Zhao
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Hao Wang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| |
Collapse
|
38
|
Qiu Y, Zhang T, Zhang P. Fate and environmental behaviors of microplastics through the lens of free radical. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131401. [PMID: 37086675 DOI: 10.1016/j.jhazmat.2023.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), as plastics with a size of less than 5 mm, are ubiquitously present in the environment and become an increasing environmental concern. The fate and environmental behavior of MPs are significantly influenced by the presence of free radicals. Free radicals can cause surface breakage, chemical release, change in crystallinity and hydrophilicity, and aggregation of MPs. On the other hand, the generation of free radicals with a high concentration and oxidation potential can effectively degrade MPs. There is a limited review article to bridge the fate and environmental behaviors of MP with free radicals and their reactions. This paper reviews the sources, types, detection methods, generation mechanisms, and influencing factors of free radicals affecting the environmental processes of MPs, the environmental effects of MPs controlled by free radicals, and the degradation strategies of MPs based on free radical-associated technologies. Moreover, this review elaborates on the limitations of the current research and provides ideas for future research on the interactions between MPs and free radicals to better explain their environmental impacts and control their risks. This article aims to keep the reader abreast of the latest development in the fate and environmental behaviors of MP with free radicals and their reactions and to bridge free radical chemistry with MP control methodology.
Collapse
Affiliation(s)
- Ye Qiu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China.
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
39
|
Yuan H, Wen S, Zhao Y, Hu L, Xu H. Polystyrene nanoplastics exacerbated Pb-induced liver toxicity in mice. Toxicol Res (Camb) 2023; 12:446-456. [PMID: 37397918 PMCID: PMC10311139 DOI: 10.1093/toxres/tfad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 07/04/2023] Open
Abstract
Nanoplastics are widely distributed in the environment and can adsorb heavy metals, which poses a potential threat to human health through food chain. It is necessary to assess the combined toxicity of nanoplastics and heavy metals. The adverse effect of Pb and nanoplastics on liver, single or in combination, was evaluated in this study. The results showed that the Pb content in co-exposure group of nanoplastics and Pb (PN group) was higher than the group exposed to Pb alone (Pb group). And more severe inflammatory infiltration was observed in liver sections of PN group. The level of inflammatory cytokines and malondialdehyde were increased, while the superoxide dismutase activity was decreased in liver tissues of PN group. Moreover, the gene expression level of nuclear factor-erythroid 2-related factor 2, nicotinamide adenine dinucleotide phosphate:quinine oxidoreductase 1 and catalase, which is related to antioxidation, was downregulated. And the expression level of cleaved-Caspase9 and cleaved-Caspase3 were increased. However, with the supplementation of oxidative stress inhibitor N-Acetyl-L-cysteine, liver damage shown in PN group was evidently alleviated. In summary, nanoplastics evidently exacerbated the deposition of Pb in liver and potentially aggravated the Pb-induced liver toxicity by activating oxidative stress.
Collapse
Affiliation(s)
- Hongbin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Siyue Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
40
|
Al Marshoudi M, Al Reasi HA, Al Habsi A, Barry MJ. Additive effects of microplastics on accumulation and toxicity of cadmium in male zebrafish. CHEMOSPHERE 2023; 334:138969. [PMID: 37244557 DOI: 10.1016/j.chemosphere.2023.138969] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Microplastics (MPs) have emerged as contaminants of concern because of their ubiquitous presence in almost all aquatic environments. The ecological effects of MPs are complex and depend on multiple factors including their age, size and the ecological matrix. There is an urgent need for multifactorial studies to elucidate their impacts. We measured the effects of virgin and naturally aged MPs, alone, pretreated with cadmium (Cd), or in combination with ionic Cd, on the bioaccumulation of Cd, metallothionein expression, behavior, and histopathology of adult zebrafish (Danio rerio). Zebrafish were exposed to virgin or aged polyethylene MPs (0.1% MPs enriched diets, w/w) or waterborne Cd (50 μg/L) or a combination of the two for 21 days. There was an additive interaction between water-borne Cd and MPs on bioaccumulation in males but not in females, Cd accumulation increased by twofold when water-borne Cd and MPs were combined. Water-borne Cd significantly induced higher levels of metallothionein compared to MPs pre-exposed to Cd. However, Cd-treated MPs caused greater damage to the intestine and liver compared to untreated MPs suggesting that bound Cd could be released or modulate MPs toxicity. We also showed that co-exposure to water-borne Cd and MPs increased anxiety in the zebrafish, compared with water-borne Cd alone, suggesting using microplastics as a vector may increase toxicity. This study demonstrates that MPs can enhance the toxicity of Cd, but further study is needed to elucidate the mechanism.
Collapse
Affiliation(s)
- Maklas Al Marshoudi
- Biology Department, Sultan Qaboos University, PO Box 36, Muscat, 123, Sultanate of Oman; Current Address: College of Applied Sciences and Pharmacy, University of Technology and Applied Sciences (UTA), Muscat, PO Box 74, Al-Khuwair, Sultanate of Oman
| | - Hassan A Al Reasi
- Biology Department, Sultan Qaboos University, PO Box 36, Muscat, 123, Sultanate of Oman; Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khod, Muscat, PO Box: 17, Postal Code: 123 SQU, Oman
| | - Aziz Al Habsi
- Biology Department, Sultan Qaboos University, PO Box 36, Muscat, 123, Sultanate of Oman
| | - Michael J Barry
- Biology Department, Sultan Qaboos University, PO Box 36, Muscat, 123, Sultanate of Oman.
| |
Collapse
|
41
|
Feng Y, Xu N, Peng L, Shen J, Yang X. Nano-size plastics inhibited Cr(VI) species transformation during facilitated transport of green synthesized nano-iron in the presence of oxyanions. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131716. [PMID: 37245368 DOI: 10.1016/j.jhazmat.2023.131716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/07/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Remediating hexavalent chromium (Cr(VI))-contaminated soils using green synthesized nano-iron (g-nZVI), which merits high reactivity, low cost, and environmental friendliness, has attracted significant attention. However, the broad existence of nano plastics (NPs) could adsorb Cr(VI) and subsequently influence in situ remediation of Cr(VI)-contaminated soil by g-nZVI. To clarify this issue and improve the remediation efficiency, we investigated the co-transport between Cr(VI) and g-nZVI coexisting with sulfonyl-amino-modified nano plastics (SANPs) in water-saturated sand media in the presence of oxyanions (i.e., phosphate and sulfate) at environmentally relevant conditions. This study found that SANPs inhibited the Cr(VI) reduction to Cr(III) (i.e., Cr2O3) by g-nZVI, attributed to nZVI-SANPs hetero-aggregates and Cr(VI) adsorption on SANPs. Notably, "nZVI-[SANPs•••Cr(III)]" agglomerate happened via complexation of [-NH3•••Cr(III)] between Cr(III) from Cr(VI) reduced by g-nZVI and amino group on SANPs. Further, the co-presence of phosphate (stronger adsorption on SANPs than g-nZVI) remarkably suppressed Cr(VI) reduction. Then, it promoted the co-transport of Cr(VI) with nZVI-SANPs hetero-aggregates, which could potentially threaten underground water. Fundamentally, sulfate would instead concentrate on SANPs, hardly impacting the reactions between Cr(VI) and g-nZVI. Overall, our findings provide crucial insights into understanding the Cr(VI) species transformation during co-transport with g-nZVI in ubiquitous complexed soil environments (i.e., containing oxyanions) contaminated by SANPs.
Collapse
Affiliation(s)
- Yifei Feng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Lei Peng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiayu Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiangrong Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
42
|
Fei J, Cui J, Wang B, Xie H, Wang C, Zhao Y, Sun H, Yin X. Co-transport of degradable microplastics with Cd(Ⅱ) in saturated porous media: Synergistic effects of strong adsorption affinity and high mobility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121804. [PMID: 37172771 DOI: 10.1016/j.envpol.2023.121804] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
With the utilization of degradable plastics in the agricultural film and packaging industries, degradable microplastics (MPs) with strong mobility distributed in the underground environment may serve as carriers for heavy metals. It is essential to explore the interaction of (aged) degradable MPs with Cd(Ⅱ). The adsorption and co-transport behavior of different types of (aged) MPs (polylactic acid (PLA), polyvinyl chloride (PVC)) with Cd(Ⅱ) were investigated through batch adsorption experiments and column experiments under different conditions, respectively. The adsorption results showed that the adsorptive capacity of (aged) PLA with O-functional groups, polarity, and more negative charges was stronger than that of PVC and aged PVC, which was attributed to the binding of (aged) PLA to Cd(Ⅱ) through complexation and electrostatic attraction. The co-transport results indicated that the promotion of Cd(Ⅱ) transport by MPs followed the order of aged PLA > PLA > aged PVC > PVC. This facilitation was more pronounced under conditions of stronger transport of MPs and favorable attachment of Cd(Ⅱ) to MPs. Overall, the combination of strong adsorption affinity and high mobility helped (aged) PLA act as effective carriers for Cd(Ⅱ). The DLVO theory well explains the transport behavior of Cd(Ⅱ)-MPs. These findings provide new insights into the co-transport of degradable MPs and heavy metals in the subsurface environment.
Collapse
Affiliation(s)
- Jiao Fei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Jiahao Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Binying Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoyuan Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | | | - Yifan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China.
| |
Collapse
|
43
|
Bao ZZ, Lu SQ, Wang G, Cai Z, Chen ZF. Adsorption of 2-hydroxynaphthalene, naphthalene, phenanthrene, and pyrene by polyvinyl chloride microplastics in water and their bioaccessibility under in vitro human gastrointestinal system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162157. [PMID: 36775174 DOI: 10.1016/j.scitotenv.2023.162157] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The interaction of microplastics (MPs) and organic pollutants has recently become a focus of investigation. To understand how microplastic residues affect the migration of organic pollutants, it is necessary to examine the adsorption and desorption behavior of organic pollutants on MPs. In this study, integrated adsorption/desorption experiments and theoretical calculations were used to clarify the adsorption mechanism of 2-hydroxynaphthalene (2-OHN), naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by polyvinyl chloride microplastics (PVC-MPs). Based on the phenomenological mathematical models, the rate-limiting step for analyte adsorption onto PVC-MPs was adsorption onto active sites (R2 = 0.865-0.995). Except for PHE, analyte adsorption isotherms were well described by the Freundlich model (R2 = 0.992-0.998), and adsorption thermodynamics showed that analyte adsorption on PVC-MPs was a spontaneous exothermic process (ΔH0 < 0; ΔG0 < 0). Based on the order of adsorption efficiency of 2-OHN < NAP < PHE < PYR, which is identical to the competitive adsorption experiment, polycyclic aromatic hydrocarbon (PAH) adsorption on PVC-MPs increased as the aromatic ring number increased and the hydroxyl content decreased. The release of 2-OHN (49 %-52 %) from PVC-MPs into the simulated gastrointestinal environment was greater than that of NAP (5.5 %-5.7 %). Theoretical calculations and adsorption tests indicated that hydrophobic interaction was the primary influence on the adsorption of PAHs and their hydroxylated derivatives by PVC-MPs. These findings improve our understanding of MPs' behavior and dangers as pollutant carriers in the aquatic environment and help us develop recommendations for the pollution control of MPs.
Collapse
Affiliation(s)
- Zhen-Zong Bao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Si-Qi Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangzhao Wang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
44
|
Liu L, Xu S, Wang Z, Chen X, Cao M, Zhang S, Liu Y, Cui J. Building of soft-hard compound brush in porous PVA/NH 2@TAtZnO plural gel and the high-efficiency anti-interference removal on Pb(II). CHEMOSPHERE 2023; 319:137990. [PMID: 36736838 DOI: 10.1016/j.chemosphere.2023.137990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
In order to promote the heavy metal ions removal of porous gel adsorbent and protect the adsorbent from other pollutants in wastewater, the tetrapod ZnO whiskers (tZnO) modified by amino-chain brush was introduced into the polyvinyl alcohol (PVA) matrix to prepare the PVA/NH2@TAtZnO composites with brush structure for toxic Pb(II) removal. The adsorption property, adsorption process and adsorption mechanism were studied by adsorption isotherms, adsorption kinetics, adsorption thermodynamics, SEM-EDS analysis and XPS analysis. And the anti-interference ability and anti-interference mechanism were researched by SEM-EDS analysis and XPS analysis. It was found that the PVA/NH2@TAtZnO composites displayed a soft-hard compound pore-brush structure and showed a good selective adsorption on Pb(II). The research of isotherms and kinetics indicated that the adsorption process was fitted well to Langmuir model and pseudo-second-order model, respectively, and the research of thermodynamics revealed the endothermic nature. The adsorption mechanism was inferred as the combination of predominant chemisorption and subsidiary physisorption. Comparing with the neat PVA matrix, the PVA/NH2@TAtZnO composites displayed a good anti-interference property on Pb(II) adsorption and showed an alleviative clogging pore-canal structure in the wastewater with SiO2 NPs or PAC flocculants. The anti-interference intensity ΔQ and anti-interference factor χ were proposed to reflect the anti-interference ability of this adsorbent which was promoted with the increasing amino brush length or density. By the analysis of SEM-EDS and XPS, the anti-interference mechanism was explored as the steric-hinerance effect of tZnO hard brush to suspended SiO2 NPs pollutant and the coordination effect of functional amino soft brush to soluble PAC pollutant. Besides, the prepared PVA/NH2@TAtZnO adsorbent possessed a good reusability under multiple adsorption-desorption processes and also presented a well applicability in real water matrix. The research indicated the huge potential of prepared PVA/NH2@TAtZnO adsorbent in heavy metal ions removal.
Collapse
Affiliation(s)
- Lingli Liu
- College of Sciences, Nanchang Institute of Technology, 289 Tianxiang Avenue, Gaoxin District, Nanchang, 330099, China
| | - Sheng Xu
- College of Sciences, Nanchang Institute of Technology, 289 Tianxiang Avenue, Gaoxin District, Nanchang, 330099, China.
| | - Zhenxi Wang
- College of Sciences, Nanchang Institute of Technology, 289 Tianxiang Avenue, Gaoxin District, Nanchang, 330099, China.
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Meng Cao
- College of Sciences, Nanchang Institute of Technology, 289 Tianxiang Avenue, Gaoxin District, Nanchang, 330099, China
| | - Shangxi Zhang
- College of Sciences, Nanchang Institute of Technology, 289 Tianxiang Avenue, Gaoxin District, Nanchang, 330099, China
| | - Yang Liu
- College of Sciences, Nanchang Institute of Technology, 289 Tianxiang Avenue, Gaoxin District, Nanchang, 330099, China
| | - Jinlong Cui
- College of Sciences, Nanchang Institute of Technology, 289 Tianxiang Avenue, Gaoxin District, Nanchang, 330099, China
| |
Collapse
|
45
|
Fan X, Li W, Alam E, Cao B, Qian S, Shi S, Yang Y. Investigation of the adsorption-desorption behavior of antibiotics by polybutylene succinate and polypropylene aged in different water conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36619-36630. [PMID: 36562965 DOI: 10.1007/s11356-022-24693-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are widely present in aqueous environments and aged by natural components of complex water environments, such as salinity (SI) and dissolved organic matter (DOM). However, the effects of multicondition aging on the physicochemical properties and environmental behavior of MPs have not been completely investigated. In this study, the degradable MP polybutylene succinate (PBS) was used to investigate the environmental behavior of sulfamethoxazole (SMZ) and was compared with polypropylene (PP). The results showed that the single-factor conditions of DOM and SI, particularly DOM, promoted the aging process of MPs more significantly, especially for PBS. The degrees of MP aging under multiple conditions were lower than those under single-factor conditions. Compared with PP, PBS had greater specific surface area, crystallinity, and hydrophilicity and thus a stronger SMZ adsorption capacity. The adsorption behavior of MPs fitted well with the pseudo-second-order kinetic and Freundlich isotherm models, indicating multilayer adsorption. Compared with PP, PBS showed relatively a higher adsorption capacity, for example, for MPs aged under DOM conditions, the adsorption of SMZ by PBS was up to 5.74 mg/g, whereas that for PP was only 3.41 mg/g. The desorption experiments showed that the desorption amount of SMZ on MPs in the simulated intestinal fluid was greater than that in Milli-Q water. In addition, both the original PBS and the aged PBS had stronger desorption capacities than that of PP. The desorption quantity of PBS was 1.23-1.84 times greater than PP, whereas the desorption rates were not significantly different. This experiment provides a theoretical basis for assessing the ecological risks of degradable MPs in complex water conditions.
Collapse
Affiliation(s)
- Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
- College of Environment, Hohai University, Nanjing, 210098, China.
- Suzhou Litree Ultra-Filtration Membrane Technology Co., Ltd., Suzhou, 215000, China.
| | - Weiyi Li
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Easar Alam
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Binwen Cao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Shenwen Qian
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Shang Shi
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yangyang Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| |
Collapse
|
46
|
Li Q, Liao L, Xu R, Wu Z, Yin Z, Han Y, Zhang Y, Yang Y, Jiang T. In situ preparation of a multifunctional adsorbent by optimizing the Fe 2+/Fe 3+/Mn 2+/HA ratio for simultaneous and efficient removal of Cd(II), Pb(II), Cu(II), Zn(II), As(III), Sb(III), As(V) and Sb(V) from aqueous environment: Behaviors and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130389. [PMID: 36402108 DOI: 10.1016/j.jhazmat.2022.130389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Multiple potentially toxic elements (PTEs) often coexist in practical wastewater environment, which poses serious risks to the ecological environment and human health. However, few of the reported adsorbents are capable of simultaneously and effectively removing multiple PTEs from wastewater due to the unique properties of each element. In this work, a multifunctional adsorbent FMHs was developed by optimizing Fe2+/Fe3+/Mn2+/HA ratio, and applied to remove Cd(II), Pb(II), Cu(II), Zn(II), As(III), Sb(III), As(V) and Sb(V) from aqueous solution. Results revealed that the adsorption data obeyed the Elovich, Sips and Redlich-Peterson models in the mono-component system, and the maximum adsorption capacity of FMHs was superior to most adsorbents reported in the literatures. In addition, FMHs retained considerable removal capacity after four cycles, and maintained excellent adsorption performance under the interference of different environmental factors (including pH, ionic strength, co-existing ions and humic acid). In the multi-component system, FMHs also presented high adsorption capacity for all the selected PTEs, especially for Sb(III/V) and Pb(II). Characterization results confirmed that various removal mechanisms, such as precipitation, surface complexation, ion exchange, electrostatic attraction and redox, were responsible for the capture of PTEs by FMHs.
Collapse
Affiliation(s)
- Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Lang Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Rui Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China.
| | - Zhenguo Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Zhe Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yuqi Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yan Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yongbin Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Tao Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
47
|
Wang L, Guo C, Qian Q, Lang D, Wu R, Abliz S, Wang W, Wang J. Adsorption behavior of UV aged microplastics on the heavy metals Pb(II) and Cu(II) in aqueous solutions. CHEMOSPHERE 2023; 313:137439. [PMID: 36460154 DOI: 10.1016/j.chemosphere.2022.137439] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
As the "vector" of heavy metals in the aquatic environment, microplastics (MPs) have a great influence on the migration and transformation of heavy metals. In this study, the adsorption of polypropylene (PP), polyethylene (PE) and polystyrene (PS) on two models of heavy metals after UV aging and environmental variables (ionic coexistence, pH, salinity, and fulvic acid) were comprehensively explored on adsorption. The results show that new oxidation functional groups are formed and their hydrophilicity is enhanced after MPs aging. As a result, the adsorption experiments showed that the adsorption of contaminants by UV aged MPs exceeds that of pristine MPs. The adsorption amounts of Pb(II) and Cu(II) by PP, PE and PS increased by 1.45, 1.46, 1.25 and 1.63, 1.39, 1.22 times, respectively. Adsorption kinetic data were more consistent with the pseudo-second-order kinetic model, proving chemisorption to be the mechanism governing the interaction between metal ions and MPs. The Freundlich model could accurately predict the heavy metal adsorption isotherms on MPs, showing that non-homogeneous multilayer adsorption dominates the process. In Pb(II)-Cu(II) binary composite system, metal ion adsorption capacity on MPs is less than that of the single system adsorption capacity, which proves that there is a specific inhibitory effect between coexisting ions. Additionally, external factors like pH, salinity, and fulvic acid content have a big impact on adsorption behavior. According to mechanism analysis, the adsorption process mainly relies on electrostatic interaction, surface complexation, and van der Waals force.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Chengxin Guo
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Qianqian Qian
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Daning Lang
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Ronglan Wu
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Shawket Abliz
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Wei Wang
- Institute of Chemistry and Center for Pharmacy,University of Bergen, 5020, Bergen, Norway.
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
48
|
Guo C, Wang L, Lang D, Qian Q, Wang W, Wu R, Wang J. UV and chemical aging alter the adsorption behavior of microplastics for tetracycline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120859. [PMID: 36521717 DOI: 10.1016/j.envpol.2022.120859] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
This study evaluates the "vector" effects of different microplastics (MPs) on coexisting pollutants. The adsorption of tetracycline was studied on biodegradable plastics poly(butylene adipate-co-terephthalate) (PBAT) and non-biodegradable plastics polystyrene (PS), polypropylene (PP), and polyethylene (PE) after UV aging and chemical aging. The physicochemical properties of PBAT changed more obviously after UV radiation and chemical aging comparing to PS, PP and PE. Pores and cracks appear on the surface of aged PBAT. The crystallinity increased from 29.2% to 52.62%. In adsorption experiments, pristine and aged PBAT had strong vector effects on the adsorption of tetracycline than PS, PP and PE. The adsorption capacity of tetracycline on PBAT was increased from 0.7980 mg g-1 to 1.2669 mg g-1 after chemical aging. The adsorption mechanism indicated that electrostatic interactions and hydrogen bonds contribute to the adsorption process. In addition, for the adsorption of tetracycline on PS, π-π interaction was the main cause, and the adsorption mechanism was not considerably changed by aging. In conclusion, this study demonstrates that biodegradable plastics have substantial vector effect on coexisting pollutants at the end of their life cycle, this contributes to assessment of the risk from microplastic pollution.
Collapse
Affiliation(s)
- Chengxin Guo
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Lingling Wang
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Daning Lang
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Qianqian Qian
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Wei Wang
- Institute of Chemistry & Center for Pharmacy, University of Bergen, Bergen, 5020, Norway
| | - Ronglan Wu
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China.
| | - Jide Wang
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
49
|
Enhanced Adsorption of Bromoform onto Microplastic Polyethylene Terephthalate Exposed to Ozonation and Chlorination. Molecules 2022; 28:molecules28010259. [PMID: 36615452 PMCID: PMC9821972 DOI: 10.3390/molecules28010259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
This paper selected microplastic polyethylene terephthalate (PET), commonly found in water/wastewater plant effluent, to investigate the changes of PET oxidized under ozonation (designated as ozonized PET), followed by sodium hypochlorite oxidation (designated as ozonized-chlorinated PET) and studied their influence on the adsorption of the disinfection by-product bromoform (TBM). Fragmentation and cracks appeared on the oxidized PET surface. As the oxidation degree increased, the contact angle decreased from 137° to 128.90° and 128.50°, suggesting hydrophilicity was enhanced. FTIR and XPS analyses suggested that carbonyl groups increased on the surface of ozonized PET and ozonized-chlorinated PET, while the formation of intermolecular halogen bonds was possible when PET experienced dual oxidation. These physiochemical changes enhanced the adsorption of TBM. The adsorption capacity of TBM followed the order of ozonized-chlorinated PET (2.64 × 10−6 μg/μg) > ozonized PET (2.58 × 10−6 μg/μg) > pristine PET (2.43 × 10−6 μg/μg). The impact of raw water characteristics on the adsorption of TBM onto PETs, such as the pH, and the coexistence of inorganic ions and macromolecules (humic acid, surfactant, and bovine serum albumin) were studied. A different predominant adsorption mechanism between TBM and pristine PET or oxidized PETs was proposed.
Collapse
|
50
|
Wang X, Diao Y, Dan Y, Liu F, Wang H, Sang W, Zhang Y. Effects of solution chemistry and humic acid on transport and deposition of aged microplastics in unsaturated porous media. CHEMOSPHERE 2022; 309:136658. [PMID: 36183879 DOI: 10.1016/j.chemosphere.2022.136658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are susceptible to aging in the environment, and aged MPs are highly migratory in soil due to their smaller particle size and more negative surface charge, but the effects of soil environmental factors on the fate and transport of aged MPs are still unclear. In this study, the transport behavior of pristine/aged MPs in unsaturated sandy porous media was examined under different ionic strength (IS), cationic type (Na+, Ca2+) and humic acid (HA) conditions. The results indicated that the surface charge, surface oxygen-containing functional groups and surface morphology of MPs changed significantly after aging, and that the mobility of aged MPs was significantly enhanced than the pristine MPs under all test conditions. The retention amounts of pristine/aged MPs in unsaturated porous media increased with IS, and IS had a less inhibitory effect on the transport of aged MPs than pristine MPs. The mobility of pristine/aged MPs in Ca2+ solutions was significantly weaker than that in Na+ solutions due to enhanced straining and electrostatic adsorption. HA promoted the mobility of pristine/aged MPs in unsaturated porous media under all IS Na+ (1, 10, and 25 mM) solutions and lower IS (1 mM) Ca2+ solutions, and the ability of HA to promote the transport of aged MPs was significantly stronger than that of pristine MPs due to the higher adsorption of HA on the surface of aged MPs. However, at higher IS (10 mM) Ca2+ solution conditions, the bridging effect of Ca2+ led to the formation of HA-MPs complexes, which altered the hydrophobicity of the pristine/aged MPs surface and the pristine/aged MPs were mainly retained on the air-water interface (AWI). CFT theory and two-site kinetic retention models indicated that the retention of pristine/aged MPs in unsaturated media was dominated by monolayer adsorption, straining and clogging effects. The current research findings may provide insights into the fate and transport of aged MPs in soil and their potential risk of groundwater contamination.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yinzhu Diao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yitong Dan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|