1
|
Łozowicka B, Kaczyński P, Iwaniuk P, Rutkowska E, Socha K, Orywal K, Farhan JA, Perkowski M. Nutritional compounds and risk assessment of mycotoxins in ecological and conventional nuts. Food Chem 2024; 458:140222. [PMID: 39002506 DOI: 10.1016/j.foodchem.2024.140222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
This comprehensive study aimed to determine the level of nutritional compounds (20 amino acids, 11 phenolic acids, and 8 vitamins) and hazard compounds (14 mycotoxins) in ten types of conventional and ecological nuts from 25 countries. Moreover, chronic and acute toxicological risk assessment of mycotoxins was performed. Examined constituents were determined using LC-MS/MS. Ecological pine nuts showed the highest level of amino acids (233.87 g kg-1) compared to conventional (207 g kg-1), pecans-phenolic acids (816.6 mg kg-1 in ecological and 761 mg kg-1 in conventional), while pistachios-vitamins (3471.4 mg kg-1 in ecological and 3098.4 mg kg-1 in conventional). Increased concentration of mycotoxins was determined in conventional peanuts (54 μg kg-1) and walnuts (49.9 μg kg-1). Children were the most exposed population to acute intoxication with HT-2 toxin in conventional pistachios (20.66% ARfD). The results confirmed the nutritional importance of ecological nuts and emphasized the need for continuous screening of mycotoxins.
Collapse
Affiliation(s)
- Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland.
| | - Piotr Iwaniuk
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland.
| | - Ewa Rutkowska
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland
| | - Katarzyna Socha
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Bromatology, Mickiewicza 2D St., 15-222 Białystok, Poland
| | - Karolina Orywal
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Biochemical Diagnostics, Waszyngtona 15A St., 15-269 Białystok, Poland
| | - Jakub Ali Farhan
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213 Białystok, Poland
| | - Maciej Perkowski
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213 Białystok, Poland
| |
Collapse
|
2
|
Kaczyński P, Iwaniuk P, Jankowska M, Orywal K, Socha K, Perkowski M, Farhan JA, Łozowicka B. Pesticide residues in common and herbal teas combined with risk assessment and transfer to the infusion. CHEMOSPHERE 2024; 367:143550. [PMID: 39426745 DOI: 10.1016/j.chemosphere.2024.143550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The use of pesticides is permitted in tea cultivation, but many of them are withdrawn in Europe. The aim of this study was a comprehensive assessment of pesticide occurrence in common teas (black, green, red, white, and black flavored) and herbal teas (lemon balm and mint) and their transfer to the infusion. Among 603 pesticides, 24 were detected, of which 9 were withdrawn in Europe. Of the 64 tea samples, 47% had pesticide residues and 2% exceeded the European Maximum Residue Level (EU MRL; 572% for linuron/mint). The highest mean concentrations of the most common pesticides were 336 ng g-1 (quizalofop-P-ethyl/mint), 108.4 ng g-1 (MCPA/lemon balm), and 92.4 ng g-1 (glyphosate/red tea). A short time of brewing (5 min) had a higher transfer factor (TF) of most pesticides to the infusion (TF = 0.85/thiacloprid), compared to 30 min brewing (TF = 0.75/thiacloprid). Moreover, the physicochemical properties of detected pesticides, mainly density and melting temperature had a crucial impact on their transfer to the infusion. Acute risk was the highest for linuron/mint/children (17% of Acute Reference Dose; ARfD). Despite the withdrawal of some pesticides in the EU, they are still detected in tea samples. The results are pivotal for human health and highlight the need for further legislative action for tea.
Collapse
Affiliation(s)
- Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland
| | - Piotr Iwaniuk
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland.
| | - Magdalena Jankowska
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland
| | - Karolina Orywal
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Biochemical Diagnostics, Waszyngtona 15A St., 15-269, Białystok, Poland
| | - Katarzyna Socha
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Bromatology, Mickiewicza 2D St., 15-222, Białystok, Poland
| | - Maciej Perkowski
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213, Białystok, Poland
| | - Jakub Ali Farhan
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213, Białystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland
| |
Collapse
|
3
|
Pu K, Li N, Gao Y, Zhang M, Wang T, Xie J, Li J. Alleviating Effects of Methyl Jasmonate on Pepper ( Capsicum annuum L.) Seedlings under Low-Temperature Combined with Low-Light Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2694. [PMID: 39409564 PMCID: PMC11478966 DOI: 10.3390/plants13192694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Low temperature combined with low light (LL) is an important factor limiting pepper quality and yield. 'Hang Jiao No. 2' were used as experimental materials, and different concentrations of MeJA (T1 (0 μM), T2 (100 μM), T3 (150 μM), T4 (200 μM), T5 (250 μM) and T6 (300 μM)) were sprayed under LL stress to explore the positive effect of exogenous methyl jasmonate (MeJA) on peppers under LL stress. The photosynthetic properties, osmoregulatory substance, reactive oxygen species, antioxidant enzyme activities, and related gene expressions of the peppers were measured. Our results demonstrated that 200 μM MeJA treatment significantly increased chlorophyll content, light quantum flux per active RC electron transfer (Eto/RC), maximum captured photonic flux per active RC (TRo/RC), energy flux for electron transfer in the excitation cross section (Eto/CSm), energy flux captured by absorption in the excitation cross section (TRo/CSm), soluble protein, and soluble sugar content. Moreover, it significantly improved the maximum photochemical efficiency of PSII (Fv/Fm) and performance index based on absorbed light energy (PI (abs)) by 56.77% and 67.00%, respectively, and significantly decreased malondialdehyde (MDA) content and relative conductivity by 30.55% and 28.17%, respectively. Additionally, antioxidant enzyme activities were elevated, and the expression of the related genes was activated in pepper seedlings under stress, leading to a significant reduction in reactive oxygen species content. In conclusion, our findings confirmed that 200 μM MeJA could reduce the injury of LL to pepper leaves to the photosynthetic organs of pepper leaves, protect the integrity of the cell membrane, and further improve the tolerance of pepper seedlings to LL.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China; (K.P.); (N.L.); (Y.G.); (M.Z.); (T.W.)
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China; (K.P.); (N.L.); (Y.G.); (M.Z.); (T.W.)
| |
Collapse
|
4
|
Ait Elallem K, Ben Bakrim W, Yasri A, Boularbah A. Growth, Biochemical Traits, Antioxidant Enzymes, and Essential Oils of Four Aromatic and Medicinal Plants Cultivated in Phosphate-Mine Residues. PLANTS (BASEL, SWITZERLAND) 2024; 13:2656. [PMID: 39339631 PMCID: PMC11435175 DOI: 10.3390/plants13182656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Revegetation emerges as a promising approach to alleviate the adverse impacts of mining residues. However, it is essential to evaluate the characteristics of these materials and select suitable plant species to ensure successful ecosystem restoration. This study aimed to investigate the effects of phosphate-mine residues (MR) on the growth, biochemical properties, and essential oil concentration of Rosmarinus officinalis L., Salvia Officinalis L., Lavandula dentata L., and Origanum majorana L. The results showed that R. officinalis L. appeared to be particularly well-suited to thriving in MR soil. Our finding also revealed that L. dentata L., O. majorana L., and S. officinalis L. grown in MR exhibited significantly lower growth performance (lower shoot length, smaller leaves, and altered root structure) and higher antioxidant activities, with an alterations of photosynthetic pigment composition. They showed a decrease in total chlorophylls when grown on MR (0.295, 0.453, and 0.562 mg g-1 FW, respectively) compared to the control (0.465, 0.807, and 0.808 mg g-1 FW, respectively); however, they produced higher essential oil content (1.8%, 3.06%, and 2.88%, respectively). The outcomes of this study could offer valuable insights for the advancement of revegetation technologies and the utilization of plant products derived from phosphate-mine residues.
Collapse
Affiliation(s)
- Khadija Ait Elallem
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco
- Biomass Valorization and Biorefinery Laboratory, Biodiversity & Plant Sciences Division, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Widad Ben Bakrim
- Biomass Valorization and Biorefinery Laboratory, Biodiversity & Plant Sciences Division, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laâyoune 70000, Morocco
| | - Abdelaziz Yasri
- Biomass Valorization and Biorefinery Laboratory, Biodiversity & Plant Sciences Division, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
- Institut National de la Recherche Agronomique (INRA), Rabat 10090, Morocco
| | - Ali Boularbah
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco
- Center of Excellence for Soil and Fertilizer Research in Africa, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| |
Collapse
|
5
|
Liu R, Wang T, Wang J, Yan D, Lian Y, Lu Z, Hong Y, Yuan X, Wang Y, Li R. The Physiological Mechanism of Exogenous Melatonin on Improving Seed Germination and the Seedling Growth of Red Clover ( Trifolium pretense L.) under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2527. [PMID: 39274011 PMCID: PMC11397702 DOI: 10.3390/plants13172527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Salt stress can affect various physiological processes in plants, ultimately hindering their growth and development. Melatonin (MT) can effectively resist multiple abiotic stresses, improving plant stress resistance. To analyze the mechanism of exogenous MT to enhance salt tolerance in red clover, we conducted a comprehensive study to examine the influence of exogenous MT on various parameters, including seed germination indices, seedling morphological traits, and physiological and photosynthetic indicators, using four distinct red clover varieties (H1, H2, H3, and H4). This investigation was performed under various salt stress conditions with differing pH values, specifically utilizing NaCl, Na2SO4, NaHCO3, and Na2CO3 as the salt stressors. The results showed that MT solution immersion significantly improved the germination indicators of red clover seeds under salt stress. The foliar spraying of 50 μM and 25 μM MT solution significantly increased SOD activity (21-127%), POD activity, soluble sugar content, proline content (22-117%), chlorophyll content (2-66%), and the net photosynthetic rate. It reduced the MDA content (14-55%) and intercellular CO2 concentration of red clover seedlings under salt stress. Gray correlation analysis and the Mantel test further verified that MT is a key factor in enhancing seed germination and seedling growth of red clover under salt stress; the most significant improvement was observed for NaHCO3 stress. MT is demonstrated to improve the salt tolerance of red clover through a variety of mechanisms, including an increase in antioxidant enzyme activity, osmoregulation ability, and cell membrane stability. Additionally, it improves photosynthetic efficiency and plant architecture, promoting energy production, growth, and optimal resource allocation. These mechanisms function synergistically, enabling red clover to sustain normal growth and development under salt stress.
Collapse
Affiliation(s)
- Rui Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ting Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jiajie Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Di Yan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yijia Lian
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhengzong Lu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yue Hong
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xue Yuan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ye Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Runzhi Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| |
Collapse
|
6
|
Khokhar AA, Hui L, Khan D, You Z, Zaman QU, Usman B, Wang HF. Transcriptome Profiles Reveal Key Regulatory Networks during Single and Multifactorial Stresses Coupled with Melatonin Treatment in Pitaya ( Selenicereus undatus L.). Int J Mol Sci 2024; 25:8901. [PMID: 39201587 PMCID: PMC11354645 DOI: 10.3390/ijms25168901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
In response to evolving climatic conditions, plants frequently confront multiple abiotic stresses, necessitating robust adaptive mechanisms. This study focuses on the responses of Selenicereus undatus L. to both individual stresses (cadmium; Cd, salt; S, and drought; D) and their combined applications, with an emphasis on evaluating the mitigating effects of (M) melatonin. Through transcriptome analysis, this study identifies significant gene expression changes and regulatory network activations. The results show that stress decreases pitaya growth rates by 30%, reduces stem and cladode development by 40%, and increases Cd uptake under single and combined stresses by 50% and 70%, respectively. Under stress conditions, enhanced activities of H2O2, POD, CAT, APX, and SOD and elevated proline content indicate strong antioxidant defenses. We identified 141 common DEGs related to stress tolerance, most of which were related to AtCBP, ALA, and CBP pathways. Interestingly, the production of genes related to signal transduction and hormones, including abscisic acid and auxin, was also significantly induced. Several calcium-dependent protein kinase genes were regulated during M and stress treatments. Functional enrichment analysis showed that most of the DEGs were enriched during metabolism, MAPK signaling, and photosynthesis. In addition, weighted gene co-expression network analysis (WGCNA) identified critical transcription factors (WRKYs, MYBs, bZIPs, bHLHs, and NACs) associated with antioxidant activities, particularly within the salmon module. This study provides morpho-physiological and transcriptome insights into pitaya's stress responses and suggests molecular breeding techniques with which to enhance plant resistance.
Collapse
Affiliation(s)
- Aamir Ali Khokhar
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Liu Hui
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Darya Khan
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Zhang You
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Qamar U Zaman
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Babar Usman
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Hua-Feng Wang
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Wang J, Yan D, Liu R, Wang T, Lian Y, Lu Z, Hong Y, Wang Y, Li R. The Physiological and Molecular Mechanisms of Exogenous Melatonin Promote the Seed Germination of Maize ( Zea mays L.) under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2142. [PMID: 39124260 PMCID: PMC11313997 DOI: 10.3390/plants13152142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Salt stress caused by high concentrations of Na+ and Cl- in soil is one of the most important abiotic stresses in agricultural production, which seriously affects grain yield. The alleviation of salt stress through the application of exogenous substances is important for grain production. Melatonin (MT, N-acetyl-5-methoxytryptamine) is an indole-like small molecule that can effectively alleviate the damage caused by adversity stress on crops. Current studies have mainly focused on the effects of MT on the physiology and biochemistry of crops at the seedling stage, with fewer studies on the gene regulatory mechanisms of crops at the germination stage. The aim of this study was to explain the mechanism of MT-induced salt tolerance at physiological, biochemical, and molecular levels and to provide a theoretical basis for the resolution of MT-mediated regulatory mechanisms of plant adaptation to salt stress. In this study, we investigated the germination, physiology, and transcript levels of maize seeds, analyzed the relevant differentially expressed genes (DEGs), and examined salt tolerance-related pathways. The results showed that MT could increase the seed germination rate by 14.28-19.04%, improve seed antioxidant enzyme activities (average increase of 11.61%), and reduce reactive oxygen species accumulation and membrane oxidative damage. In addition, MT was involved in regulating the changes of endogenous hormones during the germination of maize seeds under salt stress. Transcriptome results showed that MT affected the activity of antioxidant enzymes, response to stress, and seed germination-related genes in maize seeds under salt stress and regulated the expression of genes related to starch and sucrose metabolism and phytohormone signal transduction pathways. Taken together, the results indicate that exogenous MT can affect the expression of stress response-related genes in salt-stressed maize seeds, enhance the antioxidant capacity of the seeds, reduce the damage induced by salt stress, and thus promote the germination of maize seeds under salt stress. The results provide a theoretical basis for the MT-mediated regulatory mechanism of plant adaptation to salt stress and screen potential candidate genes for molecular breeding of salt-tolerant maize.
Collapse
Affiliation(s)
- Jiajie Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Di Yan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Rui Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Ting Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Yijia Lian
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Zhenzong Lu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Yue Hong
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Ye Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Runzhi Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| |
Collapse
|
8
|
Kang L, Jia Y, Wu Y, Liu H, Zhao D, Ju Y, Pan C, Mao J. Selenium Nanoparticle and Melatonin Treatments Improve Melon Seedling Growth by Regulating Carbohydrate and Polyamine. Int J Mol Sci 2024; 25:7830. [PMID: 39063071 PMCID: PMC11276989 DOI: 10.3390/ijms25147830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Bio-stimulants, such as selenium nanoparticles and melatonin, regulate melon growth. However, the effects of individual and combined applications of selenium nanoparticles and melatonin on the growth of melon seedlings have not been reported. Here, two melon cultivars were sprayed with selenium nanoparticles, melatonin, and a combined treatment, and physiological and biochemical properties were analyzed. The independent applications of selenium nanoparticles, melatonin, and their combination had no significant effects on the plant heights and stem diameters of Jiashi and Huangmengcui melons. Compared with the controls, both selenium nanoparticle and melatonin treatments increased soluble sugars (6-63%) and sucrose (11-88%) levels, as well as the activity of sucrose phosphate synthase (171-237%) in melon leaves. The phenylalanine ammonia lyase (29-95%), trans cinnamate 4-hydroxylase (32-100%), and 4-coumaric acid CoA ligase (26-113%), as well as mRNA levels, also increased in the phenylpropanoid metabolism pathway. Combining the selenium nanoparticles and melatonin was more effective than either of the single treatments. In addition, the levels of superoxide dismutase (43-130%), catalase (14-43%), ascorbate peroxidase (44-79%), peroxidase (25-149%), and mRNA in melon leaves treated with combined selenium nanoparticles and melatonin were higher than in controls. The results contribute to our understanding of selenium nanoparticles and melatonin as bio-stimulants that improve the melon seedlings' growth by regulating carbohydrate, polyamine, and antioxidant capacities.
Collapse
Affiliation(s)
- Lu Kang
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control and Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, China; (L.K.)
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yujiao Jia
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control and Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, China; (L.K.)
| | - Yangliu Wu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hejiang Liu
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Duoyong Zhao
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yanjun Ju
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Canping Pan
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control and Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, China; (L.K.)
| | - Jiefei Mao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
9
|
Xu J, Wang T, Wang X, Yan H, Liu P, Hou X, Gao Y, Yang L, Zhang L. Exogenous Eugenol Alleviates Salt Stress in Tobacco Seedlings by Regulating the Antioxidant System and Hormone Signaling. Int J Mol Sci 2024; 25:6771. [PMID: 38928476 PMCID: PMC11203479 DOI: 10.3390/ijms25126771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Salt stress seriously affects crop growth, leading to a decline in crop quality and yield. Application of exogenous substances to improve the salt tolerance of crops and promote their growth under salt stress has become a widespread and effective means. Eugenol is a small molecule of plant origin with medicinal properties such as antibacterial, antiviral, and antioxidant properties. In this study, tobacco seedlings were placed in Hoagland's solution containing NaCl in the presence or absence of eugenol, and physiological indices related to stress tolerance were measured along with transcriptome sequencing. The results showed that eugenol improved the growth of tobacco seedlings under salt stress. It promoted carbon and nitrogen metabolism, increased the activities of nitrate reductase (NR), sucrose synthase (SS), and glutamine synthetase (GS) by 31.03, 5.80, and 51.06%. It also activated the enzymatic and non-enzymatic antioxidant systems, reduced the accumulation of reactive oxygen species in the tobacco seedlings, and increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) by 24.38%, 18.22%, 21.60%, and 28.8%, respectively. The content of glutathione (GSH) was increased by 29.49%, and the content of superoxide anion (O2-) and malondialdehyde (MDA) were reduced by 29.83 and 33.86%, respectively. Promoted osmoregulation, the content of Na+ decreased by 34.34, K+ increased by 41.25%, and starch and soluble sugar increased by 7.72% and 25.42%, respectively. It coordinated hormone signaling in seedlings; the content of abscisic acid (ABA) and gibberellic acid 3 (GA3) increased by 51.93% and 266.28%, respectively. The transcriptome data indicated that the differentially expressed genes were mainly enriched in phenylpropanoid biosynthesis, the MAPK signaling pathway, and phytohormone signal transduction pathways. The results of this study revealed the novel role of eugenol in regulating plant resistance and provided a reference for the use of exogenous substances to alleviate salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China; (J.X.); (T.W.); (X.W.); (H.Y.); (P.L.); (X.H.); (Y.G.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China; (J.X.); (T.W.); (X.W.); (H.Y.); (P.L.); (X.H.); (Y.G.)
| |
Collapse
|
10
|
Du H, Tan L, Li S, Wang Q, Xu Z, Ryan PR, Wu D, Wang A. Effects of Cadmium Stress on Tartary Buckwheat Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:1650. [PMID: 38931082 PMCID: PMC11207290 DOI: 10.3390/plants13121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Cadmium (Cd) is a naturally occurring toxic heavy metal that adversely affects plant germination, growth, and development. While the effects of Cd have been described on many crop species including rice, maize, wheat and barley, few studies are available on cadmium's effect on Tartary buckwheat which is a traditional grain in China. We examined nine genotypes and found that 30 µM of Cd reduced the root length in seedlings by between 4 and 44% and decreased the total biomass by 7 to 31%, compared with Cd-free controls. We identified a significant genotypic variation in sensitivity to Cd stress. Cd treatment decreased the total root length and the emergence and growth of lateral roots, and these changes were significantly greater in the Cd-sensitive genotypes than in tolerant genotypes. Cd resulted in greater wilting and discoloration in sensitive genotypes than in tolerant genotypes and caused more damage to the structure of root and leaf cells. Cd accumulated in the roots and shoots, but the concentrations in the sensitive genotypes were significantly greater than in the more tolerant genotypes. Cd treatment affected nutrient uptake, and the changes in the sensitive genotypes were greater than those in the tolerant genotypes, which could maintain their concentrations closer to the control levels. The induction of SOD, POD, and CAT activities in the roots and shoots was significantly greater in the tolerant genotypes than in the sensitive genotypes. We demonstrated that Cd stress reduced root and shoot growth, decreased plant biomass, disrupted nutrient uptake, altered cell structure, and managed Cd-induced oxidative stress differently in the sensitive and tolerant genotypes of Tartary buckwheat.
Collapse
Affiliation(s)
- Hanmei Du
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (S.L.); (Q.W.); (Z.X.)
| | - Lu Tan
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (S.L.); (Q.W.); (Z.X.)
| | - Shengchun Li
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (S.L.); (Q.W.); (Z.X.)
| | - Qinghai Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (S.L.); (Q.W.); (Z.X.)
| | - Zhou Xu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (S.L.); (Q.W.); (Z.X.)
| | - Peter R. Ryan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| | - Dandan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - An’hu Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (S.L.); (Q.W.); (Z.X.)
| |
Collapse
|
11
|
Pérez-Moncada UA, Santander C, Ruiz A, Vidal C, Santos C, Cornejo P. Design of Microbial Consortia Based on Arbuscular Mycorrhizal Fungi, Yeasts, and Bacteria to Improve the Biochemical, Nutritional, and Physiological Status of Strawberry Plants Growing under Water Deficits. PLANTS (BASEL, SWITZERLAND) 2024; 13:1556. [PMID: 38891364 PMCID: PMC11175115 DOI: 10.3390/plants13111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Drought affects several plant physiological characteristics such as photosynthesis, carbon metabolism, and chlorophyll content, causing hormonal and nutritional imbalances and reducing nutrient uptake and transport, which inhibit growth and development. The use of bioinoculants based on plant growth-promoting microorganisms such as plant growth-promoting rhizobacteria (PGPR), yeasts, and arbuscular mycorrhizal fungi (AMF) has been proposed as an alternative to help plants tolerate drought. However, most studies have been based on the use of a single type of microorganism, while consortia studies have been scarcely performed. Therefore, the aim of this study was to evaluate different combinations of three PGPR, three AMF, and three yeasts with plant growth-promoting attributes to improve the biochemical, nutritional, and physiological behavior of strawberry plants growing under severe drought. The results showed that the growth and physiological attributes of the non-inoculated plants were significantly reduced by drought. In contrast, plants inoculated with the association of the fungus Claroideoglomus claroideum, the yeast Naganishia albida, and the rhizobacterium Burkholderia caledonica showed a stronger improvement in tolerance to drought. High biomass, relative water content, fruit number, photosynthetic rate, transpiration, stomatal conductance, quantum yield of photosystem II, N concentration, P concentration, K concentration, antioxidant activities, and chlorophyll contents were significantly improved in inoculated plants by up to 16.6%, 12.4%, 81.2%, 80%, 79.4%, 71.0%, 17.8%, 8.3%, 6.6%, 57.3%, 41%, and 22.5%, respectively, compared to stressed non-inoculated plants. Moreover, decreased malondialdehyde levels by up to 32% were registered. Our results demonstrate the feasibility of maximizing the effects of inoculation with beneficial rhizosphere microorganisms based on the prospect of more efficient combinations among different microbial groups, which is of interest to develop bioinoculants oriented to increase the growth of specific plant species in a global scenario of increasing drought stress.
Collapse
Affiliation(s)
- Urley A. Pérez-Moncada
- Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile;
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (C.S.); (A.R.); (C.V.)
| | - Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (C.S.); (A.R.); (C.V.)
- Grupo de Ingeniería Ambiental y Biotecnología, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070411, Chile
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (C.S.); (A.R.); (C.V.)
| | - Catalina Vidal
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (C.S.); (A.R.); (C.V.)
| | - Cledir Santos
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (C.S.); (A.R.); (C.V.)
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, La Palma, Quillota 2260000, Chile
| | - Pablo Cornejo
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, La Palma, Quillota 2260000, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| |
Collapse
|
12
|
Gao X, Tan J, Yi K, Lin B, Hao P, Jin T, Hua S. Elevated ROS Levels Caused by Reductions in GSH and AsA Contents Lead to Grain Yield Reduction in Qingke under Continuous Cropping. PLANTS (BASEL, SWITZERLAND) 2024; 13:1003. [PMID: 38611531 PMCID: PMC11013709 DOI: 10.3390/plants13071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Continuous spring cropping of Qingke (Hordeum viilgare L. var. nudum Hook. f.) results in a reduction in grain yield in the Xizang autonomous region. However, knowledge on the influence of continuous cropping on grain yield caused by reactive oxygen species (ROS)-induced stress remains scarce. A systematic comparison of the antioxidant defensive profile at seedling, tillering, jointing, flowering, and filling stages (T1 to T5) of Qingke was conducted based on a field experiment including 23-year continuous cropping (23y-CC) and control (the first year planted) treatments. The results reveal that the grain yield and superoxide anion (SOA) level under 23y-CC were significantly decreased (by 38.67% and 36.47%), when compared to the control. The hydrogen peroxide content under 23y-CC was 8.69% higher on average than under the control in the early growth stages. The higher ROS level under 23y-CC resulted in membrane lipid peroxidation (LPO) and accumulation of malondialdehyde (MDA) at later stages, with an average increment of 29.67% and 3.77 times higher than that in control plants. Qingke plants accumulated more hydrogen peroxide at early developmental stages due to the partial conversion of SOA by glutathione (GSH) and superoxide dismutase (SOD) and other production pathways, such as the glucose oxidase (GOD) and polyamine oxidase (PAO) pathways. The reduced regeneration ability due to the high oxidized glutathione (GSSG) to GSH ratio resulted in GSH deficiency while the reduction in L-galactono-1,4-lactone dehydrogenase (GalLDH) activity in the AsA biosynthesis pathway, higher enzymatic activities (including ascorbate peroxidase, APX; and ascorbate oxidase, AAO), and lower activities of monodehydroascorbate reductase (MDHAR) all led to a lower AsA content under continuous cropping. The lower antioxidant capacity due to lower contents of antioxidants such as flavonoids and tannins, detected through both physiological measurement and metabolomics analysis, further deteriorated the growth of Qingke through ROS stress under continuous cropping. Our results provide new insights into the manner in which ROS stress regulates grain yield in the context of continuous Qingke cropping.
Collapse
Affiliation(s)
- Xue Gao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; (X.G.); (J.T.); (P.H.)
| | - Jianxin Tan
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; (X.G.); (J.T.); (P.H.)
| | - Kaige Yi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.)
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.)
| | - Pengfei Hao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; (X.G.); (J.T.); (P.H.)
| | - Tao Jin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; (X.G.); (J.T.); (P.H.)
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.)
| |
Collapse
|
13
|
Jacomassi LM, Pacola M, Momesso L, Viveiros J, Júnior OA, de Siqueira GF, de Campos M, Crusciol CAC. Foliar Application of Amino Acids and Nutrients as a Tool to Mitigate Water Stress and Stabilize Sugarcane Yield and Bioenergy Generation. PLANTS (BASEL, SWITZERLAND) 2024; 13:461. [PMID: 38337992 PMCID: PMC10857448 DOI: 10.3390/plants13030461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Extended periods of water stress negatively affect sugarcane crop production. The foliar application of supplements containing specific nutrients and/or organic molecules such as amino acids can improve sugarcane metabolism, stalk and sugar yields, and the quality of the extracted juice. The present study assessed the effectiveness of the foliar application of an abiotic stress protection complement (ASPC) composed of 18 amino acids and 5 macronutrients. The experiments were carried out in the field with two treatments and twelve replicates. The two treatments were no application of ASPC (control) and foliar application of ASPC. The foliar application of ASPC increased the activity of antioxidant enzymes. The Trolox-equivalent antioxidant capacity (DPPH) was higher in ASPC-treated plants than in control plants, reflecting higher antioxidant enzyme activity and lower malondialdehyde (MDA) levels. The level of H2O2 was 11.27 nM g-1 protein in plants treated with ASPC but 23.71 nM g-1 protein in control plants. Moreover, the application of ASPC increased stalk yield and sucrose accumulation, thus increasing the quality of the raw material. By positively stabilizing the cellular redox balance in sugarcane plants, ASPC application also increased energy generation. Therefore, applying ASPC is an effective strategy for relieving water stress while improving crop productivity.
Collapse
Affiliation(s)
- Lucas Moraes Jacomassi
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| | - Marcela Pacola
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| | - Letusa Momesso
- Department of Agriculutre, School of Agriculture, Federal University of Goiás (UFG), Goiânia 74690-900, GO, Brazil;
| | - Josiane Viveiros
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| | - Osvaldo Araújo Júnior
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| | - Gabriela Ferraz de Siqueira
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| | - Murilo de Campos
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| | - Carlos Alexandre Costa Crusciol
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| |
Collapse
|
14
|
Desta KT, Choi YM, Yoon H, Lee S, Yi J, Jeon YA, Wang X, Park JC, Kim KM, Shin MJ. Comprehensive Characterization of Global Barley ( Hordeum vulgare L.) Collection Using Agronomic Traits, β-Glucan Level, Phenolic Content, and Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:169. [PMID: 38256723 PMCID: PMC10818635 DOI: 10.3390/plants13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
This study characterized the diversity of 367 barley collections from 27 different countries, including 5 control cultivars, using several phenotypic traits. Morphological traits, including spike type, grain morphology, cold damage, and lodging rate, exhibited wide variations. Eighteen accessions matured early, while four accessions had longer culm and spike lengths than the controls. The ranges of total phenolic content (TPC), β-glucan content, ABTS•+ scavenging activity, DPPH• scavenging activity, and reducing power (RP) were 1.79-6.79 mg GAE/g, 0.14-8.41 g/100 g, 3.07-13.54 mg AAE/100 g, 1.56-6.24 mg AAE/g, and 1.31-7.86 mg AAE/g, respectively. Betaone, one of the controls, had the highest β-glucan content. Two accessions had β-glucan levels close to Betaone. Furthermore, 20 accessions exhibited increased TPC compared to the controls, while 5 accessions displayed elevated ABTS•+ scavenging activity. Among these, one accession also exhibited higher DPPH• scavenging activity and RP simultaneously. Based on the statistical analysis of variance, all the quantitative traits were significantly affected by the difference in origin (p < 0.05). On the other hand, grain morphology significantly affected biochemical traits. Multivariate analysis classified barley accessions into eight groups, demonstrating variations in quantitative traits. There were noteworthy correlations between biochemical and agronomical traits. Overall, this study characterized several barley varieties of different origins, anticipating future genomic research. The barley accessions with superior performances could be valuable alternatives in breeding.
Collapse
Affiliation(s)
- Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sukyeung Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju 54875, Republic of Korea
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Young-ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Xiaohan Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jin-Cheon Park
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Kyeong-Min Kim
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
15
|
Zhang Y, Ni C, Dong Y, Jiang X, Liu C, Wang W, Zhao C, Li G, Xu K, Huo Z. The Role of the Ascorbic Acid-Glutathione Cycle in Young Wheat Ears' Response to Spring Freezing Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:4170. [PMID: 38140497 PMCID: PMC10748077 DOI: 10.3390/plants12244170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Freezing stress in spring often causes the death and abnormal development of young ears of wheat, leading to a significant reduction in grain production. However, the mechanisms of young wheat ears responding to freezing are largely unclear. In this study, the role of the ascorbic acid-glutathione cycle (AsA-GSH cycle) in alleviating freezing-caused oxidative damage in young wheat ears at the anther connective tissue formation phase (ACFP) was investigated. The results showed that the release rate of reactive oxygen species (ROS) and the relative electrolyte conductivity in young ears of Jimai22 (JM22, freezing-tolerant) were significantly lower than those in young ears of Xumai33 (XM33, freezing-sensitive) under freezing. The level of the GSH pool (231.8~392.3 μg/g FW) was strikingly higher than that of the AsA pool (98.86~123.4 μg/g FW) in young wheat ears at the ACFP. Freezing significantly increased the level of the AsA pool and the activities of ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) in the young ears of both varieties. The level of the GSH pool increased in the young ears of XM33 under freezing but decreased in the young ears of JM22. The young ears of JM22 showed higher activities of glutathione reductase (GR), glutathione-S-transferase (GST) and glutathione peroxidase (GPX) than the young ears of XM33 under freezing. Collectively, these results suggest that the AsA-GSH cycle plays a positive role in alleviating freezing-induced oxidative damage in young wheat ears. Furthermore, the ability of utilizing GSH as a substrate to scavenge ROS is an important factor affecting the freezing tolerance of young wheat ears. In addition, abscisic acid (ABA), salicylic acid (SA), 3-indolebutyric acid (IBA) and cis-zeatin (cZ) may be involved in regulating the AsA-GSH cycle metabolism in young wheat ears under freezing.
Collapse
Affiliation(s)
| | | | | | | | | | - Weiling Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (C.N.); (Y.D.); (X.J.); (C.L.); (C.Z.); (G.L.); (K.X.)
| | | | | | | | - Zhongyang Huo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (C.N.); (Y.D.); (X.J.); (C.L.); (C.Z.); (G.L.); (K.X.)
| |
Collapse
|
16
|
Contreras E, Martín-Fernández L, Manaa A, Vicente-Carbajosa J, Iglesias-Fernández R. Identification of Reference Genes for Precise Expression Analysis during Germination in Chenopodium quinoa Seeds under Salt Stress. Int J Mol Sci 2023; 24:15878. [PMID: 37958860 PMCID: PMC10650251 DOI: 10.3390/ijms242115878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chenopodium quinoa Willd. (quinoa), a member of the Amaranthaceae family, is an allotetraploid annual plant, endemic to South America. The plant of C. quinoa presents significant ecological plasticity with exceptional adaptability to several environmental stresses, including salinity. The resilience of quinoa to several abiotic stresses, as well as its nutritional attributes, have led to significant shifts in quinoa cultivation worldwide over the past century. This work first defines germination sensu stricto in quinoa where the breakage of the pericarp and the testa is followed by endosperm rupture (ER). Transcriptomic changes in early seed germination stages lead to unstable expression levels in commonly used reference genes that are typically stable in vegetative tissues. Noteworthy, no suitable reference genes have been previously identified specifically for quinoa seed germination under salt stress conditions. This work aims to identify these genes as a prerequisite step for normalizing qPCR data. To this end, germinating seeds from UDEC2 and UDEC4 accessions, with different tolerance to salt, have been analyzed under conditions of absence (0 mM NaCl) and in the presence (250 mM NaCl) of sodium chloride. Based on the relevant literature, six candidate reference genes, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Monensin sensitivity1 (MON1), Polypyrimidine tract-binding protein (PTB), Actin-7 (ACT7), Ubiquitin-conjugating enzyme (UBC), and 18S ribosomal RNA (18S), were selected and assessed for stability using the RefFinder Tool encompassing the statistical algorithms geNorm, NormFinder, BestKeeper, and ΔCt in the evaluation. The data presented support the suitability of CqACT7 and CqUBC as reference genes for normalizing gene expression during seed germination under salinity stress. These recommended reference genes can be valuable tools for consistent qPCR studies on quinoa seeds.
Collapse
Affiliation(s)
- Estefanía Contreras
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (E.C.); (J.V.-C.)
| | - Lucía Martín-Fernández
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (E.C.); (J.V.-C.)
| | - Arafet Manaa
- Laboratory of Extremophile Plants, Centre of Biotechnology de Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia;
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (E.C.); (J.V.-C.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (UPM), 28040 Madrid, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (E.C.); (J.V.-C.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (UPM), 28040 Madrid, Spain
| |
Collapse
|
17
|
Chen S, Zhang Q, Rao Q, Wang X, Du P, Song W. Dissipation, Bioconcentration and Dietary Risk Assessment of Thiamethoxam and Its Metabolites in Agaricus bisporus and Substrates under Different Application Methods. TOXICS 2023; 11:500. [PMID: 37368600 DOI: 10.3390/toxics11060500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
In order to acquire scientific evidence for the application of thiamethoxam (TMX) in Agaricus bisporus cultivation, residue and dissipation experiments for field trials were performed with the application of TMX in compost and casing soil, respectively. An effective QuEChERS method was established to analyze TMX and its two metabolites, clothianidin (CLO) and thiamethoxam-urea (TMX-urea), in compost, casing soil, and fruiting bodies. The results indicated that the TMX dissipation half-lives (t1/2) at dosages of 10 and 50 mg kg-1 were 19.74 d (day) and 28.87 d in compost and 33.54 d and 42.59 d in casing soil, individually. TMX, CLO, and TMX-urea were observed after TMX application in compost and casing soil. For TMX applied to the casing soil, only TMX residues were detected in fruiting bodies with bioconcentration factors (BCFs) of 0.0003~0.0009. In addition, both the chronic risk quotient (RQ) and acute risk quotient (HQ) values of TMX in fruiting bodies were far less than 1, which means the dietary health risks to humans were acceptable. However, in the TMX application to the compost, these analytes were not detected in the fruiting bodies. This suggested that the application of TMX in compost was safer than in casing soil during A. bisporus cultivation.
Collapse
Affiliation(s)
- Shanshan Chen
- Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qicai Zhang
- Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qinxiong Rao
- Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xianli Wang
- Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Penghui Du
- College of Food Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Weiguo Song
- Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|