1
|
Wang Y, Lai B, Yu Z, Xu Z. One-step fabrication of a self-driven point-of-care chip by femtosecond laser direct writing and its application in cancer cell H 2O 2 detection via semiconductor-based SERS. Talanta 2024; 278:126483. [PMID: 38963977 DOI: 10.1016/j.talanta.2024.126483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Self-driven microfluidic systems have attracted significant attention and demonstrated great potential in the field of point-of-care (POC) testing due to their device simplicity, low power consumption, increased portability, and reduced sample consumption. To develop POC detection chips with diverse characteristics that meet different requirements, there is a strong demand for feasible strategies that enable easy operation and reduce processing time. Here, a one-step processing approach using femtosecond laser direct writing technology was proposed to fabricate a capillary-actuated POC microfluidic chip. The driving force of the chip is highly dependent on its surface wettability, which can be easily adjusted by changing the laser processing parameters. This POC microfluidic chip allowed for the detection of intracellular H2O2 through a catalytic reaction system that incorporated 5-aminosalicylic acid -sensitized colloidal TiO2 nanoparticles and horse radish peroxidase, with integrating semiconductor-based surface-enhanced Raman scattering (SERS) quantitative technique. The concentration of H2O2 was determined by the SERS signal of the catalytic products in the microfluidic chip, resulting in rapid detection with minimal sample consumption. Our method provides a simple, feasible, and alternative strategy for POC testing of H2O2, with a linear range of 10-2∼10-6 M and a limit of detection of 0.55 μM. This approach was successfully applied to rapid detection of intracellular H2O2 in MCF-7 breast cancer cells with high sensitivity and minimal sample consumption. Additionally, this study not only demonstrates the exceptional advantages of femtosecond laser processing technology in fabricating diverse microfluidic chips for various applications, but also presents an efficient POC testing strategy for detecting cell signaling molecules.
Collapse
Affiliation(s)
- Yue Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Bo Lai
- MOE Key Laboratory of Advanced Micro-structured Materials, Institute of Precision Optical Engineering (IPOE), Tongji University, Shanghai, 200092, People's Republic of China
| | - Zhi Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| | - Zhangrun Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China.
| |
Collapse
|
2
|
Huang TK, Huang CH, Chen PA, Chen CH, Lu F, Yang WJ, Huang JYJ, Li BR. Development of a thermotaxis and rheotaxis microfluidic device for motile spermatozoa sorting. Biosens Bioelectron 2024; 258:116353. [PMID: 38696966 DOI: 10.1016/j.bios.2024.116353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Male infertility is a pervasive global reproductive challenge, primarily attributed to a decline in semen quality. Addressing this concern, there has been a growing focus on spermatozoa sorting in assisted reproductive technology. This study introduces a groundbreaking development in the form of a thermotaxis and rheotaxis microfluidic (TRMC) device designed for efficient motile spermatozoa sorting within a short 15-min timeframe. The TRMC device mimics the natural sperm sorting mechanism of the oviduct, selecting spermatozoa with superior motility and DNA integrity. The experimental outcomes demonstrate a remarkable enhancement in the percentage of progressive spermatozoa following sorting, soaring from 3.90% to an impressive 96.11% when subjected to a temperature decrease from 38 °C to 35 °C. Notably, sperm motility exhibited a substantial 69% improvement. The TRMC device exhibited a commendable recovery rate of 60.93%, surpassing current clinical requirements. Furthermore, the sorted spermatozoa displayed a notable reduction in the DNA fragmentation index to 6.94%, signifying a substantial 90% enhancement in DNA integrity. This remarkable advancement positions the TRMC device as highly suitable for applications in in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), offering a promising solution to male infertility challenges.
Collapse
Affiliation(s)
- Teng-Kuan Huang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chung-Hsien Huang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Pei-An Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching Hung Chen
- Taiwan IVF Group, Hsinchu, Taiwan; Ton Yen General Hospital, Hsinchu, Taiwan
| | - Farn Lu
- Taiwan IVF Group, Hsinchu, Taiwan; Ton Yen General Hospital, Hsinchu, Taiwan
| | - Wen-Ju Yang
- Taiwan IVF Group, Hsinchu, Taiwan; Ton Yen General Hospital, Hsinchu, Taiwan
| | - Jack Yu Jen Huang
- Taiwan IVF Group, Hsinchu, Taiwan; Ton Yen General Hospital, Hsinchu, Taiwan; Division of Reproductive Endocrinology & Infertility, The Department of Obstetrics and Gynecology at Stanford University, Stanford, CA, USA
| | - Bor-Ran Li
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Medical Device Innovation and Translation R&D Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Yu X, Park S, Lee S, Joo SW, Choo J. Microfluidics for disease diagnostics based on surface-enhanced raman scattering detection. NANO CONVERGENCE 2024; 11:17. [PMID: 38687445 PMCID: PMC11061072 DOI: 10.1186/s40580-024-00424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
This review reports diverse microfluidic systems utilizing surface-enhanced Raman scattering (SERS) detection for disease diagnosis. Integrating SERS detection technology, providing high-sensitivity detection, and microfluidic technology for manipulating small liquid samples in microdevices has expanded the analytical capabilities previously confined to larger settings. This study explores the principles and uses of various SERS-based microfluidic devices developed over the last two decades. Specifically, we investigate the operational principles of documented SERS-based microfluidic devices, including continuous-flow channels, microarray-embedded microfluidic channels, droplet microfluidic channels, digital droplet channels, and gradient microfluidic channels. We also examine their applications in biomedical diagnostics. In conclusion, we summarize the areas requiring further development to translate these SERS-based microfluidic technologies into practical applications in clinical diagnostics.
Collapse
Affiliation(s)
- Xiangdong Yu
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
4
|
Mohammadi M, Ahmed Qadir S, Mahmood Faraj A, Hamid Shareef O, Mahmoodi H, Mahmoudi F, Moradi S. Navigating the future: Microfluidics charting new routes in drug delivery. Int J Pharm 2024:124142. [PMID: 38648941 DOI: 10.1016/j.ijpharm.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Microfluidics has emerged as a transformative force in the field of drug delivery, offering innovative avenues to produce a diverse range of nano drug delivery systems. Thanks to its precise manipulation of small fluid volumes and its exceptional command over the physicochemical characteristics of nanoparticles, this technology is notably able to enhance the pharmacokinetics of drugs. It has initiated a revolutionary phase in the domain of drug delivery, presenting a multitude of compelling advantages when it comes to developing nanocarriers tailored for the delivery of poorly soluble medications. These advantages represent a substantial departure from conventional drug delivery methodologies, marking a paradigm shift in pharmaceutical research and development. Furthermore, microfluidic platformsmay be strategically devised to facilitate targeted drug delivery with the objective of enhancing the localized bioavailability of pharmaceutical substances. In this paper, we have comprehensively investigated a range of significant microfluidic techniques used in the production of nanoscale drug delivery systems. This comprehensive review can serve as a valuable reference and offer insightful guidance for the development and optimization of numerous microfluidics-fabricated nanocarriers.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Syamand Ahmed Qadir
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Aryan Mahmood Faraj
- Department of Medical Laboratory Sciences, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic University, Halabja, Iraq
| | - Osama Hamid Shareef
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Hassan Mahmoodi
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Lin L, Zhu R, Li W, Dong G, You H. The Shape Effect of Acoustic Micropillar Array Chips in Flexible Label-Free Separation of Cancer Cells. MICROMACHINES 2024; 15:421. [PMID: 38675233 PMCID: PMC11052022 DOI: 10.3390/mi15040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
The precise isolation of circulating tumor cells (CTCs) from blood samples is a potent tool for cancer diagnosis and clinical prognosis. However, CTCs are present in extremely low quantities in the bloodstream, posing a significant challenge to their isolation. In this study, we propose a non-contact acoustic micropillar array (AMPA) chip based on acoustic streaming for the flexible, label-free capture of cancer cells. Three shapes of micropillar array chips (circular, rhombus, and square) were fabricated. The acoustic streaming characteristics generated by the vibration of microstructures of different shapes are studied in depth by combining simulation and experiment. The critical parameters (voltage and flow rate) of the device were systematically investigated using microparticle experiments to optimize capture performance. Subsequently, the capture efficiencies of the three micropillar structures were experimentally evaluated using mouse whole blood samples containing cancer cells. The experimental results revealed that the rhombus microstructure was selected as the optimal shape, demonstrating high capture efficiency (93%) and cell activity (96%). Moreover, the reversibility of the acoustic streaming was harnessed for the flexible release and capture of cancer cells, facilitating optical detection and analysis. This work holds promise for applications in monitoring cancer metastasis, bio-detection, and beyond.
Collapse
Affiliation(s)
- Lin Lin
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Rongxing Zhu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Wang Li
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Guoqiang Dong
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Hui You
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| |
Collapse
|
6
|
Kumari M, Gupta V, Kumar N, Arun RK. Microfluidics-Based Nanobiosensors for Healthcare Monitoring. Mol Biotechnol 2024; 66:378-401. [PMID: 37166577 PMCID: PMC10173227 DOI: 10.1007/s12033-023-00760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
Efficient healthcare management demands prompt decision-making based on fast diagnostics tools, astute data analysis, and informatics analysis. The rapid detection of analytes at the point of care is ensured using microfluidics in synergy with nanotechnology and biotechnology. The nanobiosensors use nanotechnology for testing, rapid disease diagnosis, monitoring, and management. In essence, nanobiosensors detect biomolecules through bioreceptors by modulating the physicochemical signals generating an optical and electrical signal as an outcome of the binding of a biomolecule with the help of a transducer. The nanobiosensors are sensitive and selective and play a significant role in the early identification of diseases. This article reviews the detection method used with the microfluidics platform for nanobiosensors and illustrates the benefits of combining microfluidics and nanobiosensing techniques by various examples. The fundamental aspects, and their application are discussed to illustrate the advancement in the development of microfluidics-based nanobiosensors and the current trends of these nano-sized sensors for point-of-care diagnosis of various diseases and their function in healthcare monitoring.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India
| | - Verruchi Gupta
- School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu & Kashmir, 182320, India
| | - Natish Kumar
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India
| | - Ravi Kumar Arun
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India.
| |
Collapse
|
7
|
Hussaian Basha C, Palati M, Dhanamjayulu C, Muyeen SM, Venkatareddy P. A novel on design and implementation of hybrid MPPT controllers for solar PV systems under various partial shading conditions. Sci Rep 2024; 14:1609. [PMID: 38238374 PMCID: PMC10796370 DOI: 10.1038/s41598-023-49278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
At present, fossil fuel-based power generation systems are reducing drastically because of their less availability in nature. In addition, it produces hazardous gasses and high environmental pollution. So, in this work, the solar natural source is selected for generating the electricity. Due to the nonlinear behavior of PV, achieving maximum voltage from the Photovoltaic (PV) system is a more tough job. In this work, various hybrid optimization controllers are studied for tracing the working power point of the PV under different Partial Shading Conditions. The studied hybrid optimization MPPT methods are equated in terms of oscillations across MPP, output power extraction, settling time of the MPP, dependency on the PV modeling, operating duty value of the converter, error finding accuracy of MPPT, algorithm complexity, tracking speed, periodic tuning required, and the number of sensing parameters utilized. Based on the simulative comparison results, it has been observed that the modified Grey Wolf Optimization based ANFIS hybrid MPPT method provides good results when equated with the other power point tracking techniques. Here, the conventional converter helps increase the PV source voltage from one level to another level. The proposed system is investigated by using the MATLAB/Simulink tool.
Collapse
Affiliation(s)
| | - Madhu Palati
- BMS Institute of Technology and Management, Bengaluru, India
| | - C Dhanamjayulu
- School of Electrical Engineering, Vellore Institute of Technology, Vellore, 632014, India.
| | - S M Muyeen
- Qatar University, University Street, Doha, Qatar.
| | | |
Collapse
|
8
|
Leal F, Zeiringer S, Jeitler R, Costa PF, Roblegg E. A comprehensive overview of advanced dynamic in vitro intestinal and hepatic cell culture models. Tissue Barriers 2024; 12:2163820. [PMID: 36680530 PMCID: PMC10832944 DOI: 10.1080/21688370.2022.2163820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
Orally administered drugs pass through the gastrointestinal tract before being absorbed in the small intestine and metabolised in the liver. To test the efficacy and toxicity of drugs, animal models are often employed; however, they are not suitable for investigating drug-tissue interactions and making reliable predictions, since the human organism differs drastically from animals in terms of absorption, distribution, metabolism and excretion of substances. Likewise, simple static in vitro cell culture systems currently used in preclinical drug screening often do not resemble the native characteristics of biological barriers. Dynamic models, on the other hand, provide in vivo-like cell phenotypes and functionalities that offer great potential for safety and efficacy prediction. Herein, current microfluidic in vitro intestinal and hepatic models are reviewed, namely single- and multi-tissue micro-bioreactors, which are associated with different methods of cell cultivation, i.e., scaffold-based versus scaffold-free.
Collapse
Affiliation(s)
- Filipa Leal
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Scarlett Zeiringer
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| | - Ramona Jeitler
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| | - Pedro F. Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| |
Collapse
|
9
|
Jahangir R, Munir I, Yesiloz G. One-Step Synthesis of Ultrasmall Nanoparticles in Glycerol as a Promising Green Solvent at Room Temperature Using Omega-Shaped Microfluidic Micromixers. Anal Chem 2023; 95:17177-17186. [PMID: 37956303 DOI: 10.1021/acs.analchem.3c01697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Despite innovations in the synthesis protocol of nanoparticles (NPs), the size distribution and uniformity of particles still remain as crucial attributes. Homogeneous and rapid nucleation is a critical phenomenon to obtain monodisperse nanoparticles. Herein, we have carried out the synthesis of metal nanoparticles in a customized microfluidic (MF) chip, with 18 omega-shaped micromixers, by using glycerol as a promising green solvent and reducing agent at various concentrations (10-80%), and simultaneous comparison of the results from batch synthesis. Initially, mixing characterization for 10-80% glycerol was obtained by adjusting the Peclet (Pe) number. Further, the effect of the Pe number, time, and concentrations of polyvinylpyrrolidone, metal source, and glycerol on the NP size was investigated. Interestingly, the experimental findings depicted that by varying different parameters, the spherical nanoparticles with an average ultrasmall particle diameter of <2 nm were obtained at all glycerol concentrations (10-80%), as compared to batch synthesis (giving a yield of ∼10-fold larger particles). The mixing efficiency in this MF chip design was analyzed by using a fluorescent dye in glycerol, while the particle morphology and size were characterized by using dynamic light scattering, transmission electron microscopy, and ultraviolet-visible spectroscopy. Hence, compared to the conventional benchtop-assisted NP synthesis, this study unveils the significant effect of the microfluidic technique on the synthesis of ultrasmall and homogeneous nanoparticles in a single step, using an environmentally friendly solvent.
Collapse
Affiliation(s)
- Robab Jahangir
- National Nanotechnology Research Center (UNAM), Bilkent University, Cankaya, Ankara 06800, Türkiye
- Institute of Materials Science and Nanotechnology, Bilkent University, Cankaya, Ankara 06800, Türkiye
| | - Iqra Munir
- National Nanotechnology Research Center (UNAM), Bilkent University, Cankaya, Ankara 06800, Türkiye
| | - Gurkan Yesiloz
- National Nanotechnology Research Center (UNAM), Bilkent University, Cankaya, Ankara 06800, Türkiye
- Institute of Materials Science and Nanotechnology, Bilkent University, Cankaya, Ankara 06800, Türkiye
| |
Collapse
|
10
|
Goda K, Lu H, Fei P, Guck J. Revolutionizing microfluidics with artificial intelligence: a new dawn for lab-on-a-chip technologies. LAB ON A CHIP 2023; 23:3737-3740. [PMID: 37503818 DOI: 10.1039/d3lc90061d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Keisuke Goda, Hang Lu, Peng Fei, and Jochen Guck introduce the AI in Microfluidics themed collection, on revolutionizing microfluidics with artificial intelligence: a new dawn for lab-on-a-chip technologies.
Collapse
Affiliation(s)
- Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peng Fei
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jochen Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| |
Collapse
|
11
|
Draz MS, Dupouy D, Gijs MAM. Acoustofluidic large-scale mixing for enhanced microfluidic immunostaining for tissue diagnostics. LAB ON A CHIP 2023. [PMID: 37365861 DOI: 10.1039/d3lc00312d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The usage of microfluidics for automated and fast immunoassays has gained a lot of interest in the last decades. This integration comes with certain challenges, like the reconciliation of laminar flow patterns of micro-scale systems with diffusion-limited mass transport. Several methods have been investigated to enhance microfluidic mixing in microsystems, including acoustic-based fluidic streaming. Here, we report both by numerical simulation and experiments on the beneficiary effect of acoustic agitation on the uniformity of immunostaining in large-size and thin microfluidic chambers. Moreover, we investigate by numerical simulation the impact of reducing the incubation times and the concentrations of the biochemical detection reagents on the obtained immunoassay signal. Finally, acoustofluidic mixing was successfully used to reduce by 80% the incubation time of the Her2 (human epidermal growth factor receptor 2) and CK (cytokeratins) biomarkers for the spatial immunostaining of breast cancer cell pellets, or reducing their concentration by 66% and achieving a higher signal-to-background ratio than comparable spatially resolved immunostaining with static incubation.
Collapse
Affiliation(s)
- Muaz S Draz
- Laboratory of Microsystems 2, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- Lunaphore Technologies SA, CH-1131 Tolochenaz, Switzerland
| | - Diego Dupouy
- Lunaphore Technologies SA, CH-1131 Tolochenaz, Switzerland
| | - Martin A M Gijs
- Laboratory of Microsystems 2, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
12
|
Natu R, Herbertson L, Sena G, Strachan K, Guha S. A Systematic Analysis of Recent Technology Trends of Microfluidic Medical Devices in the United States. MICROMACHINES 2023; 14:1293. [PMID: 37512604 PMCID: PMC10384103 DOI: 10.3390/mi14071293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023]
Abstract
In recent years, the U.S. Food and Drug Administration (FDA) has seen an increase in microfluidic medical device submissions, likely stemming from recent advancements in microfluidic technologies. This recent trend has only been enhanced during the COVID-19 pandemic, as microfluidic-based test kits have been used for diagnosis. To better understand the implications of this emerging technology, device submissions to the FDA from 2015 to 2021 containing microfluidic technologies have been systematically reviewed to identify trends in microfluidic medical applications, performance tests, standards used, fabrication techniques, materials, and flow systems. More than 80% of devices with microfluidic platforms were found to be diagnostic in nature, with lateral flow systems accounting for about 35% of all identified microfluidic devices. A targeted analysis of over 40,000 adverse event reports linked to microfluidic technologies revealed that flow, operation, and data output related failures are the most common failure modes for these device types. Lastly, this paper highlights key considerations for developing new protocols for various microfluidic applications that use certain analytes (e.g., blood, urine, nasal-pharyngeal swab), materials, flow, and detection mechanisms. We anticipate that these considerations would help facilitate innovation in microfluidic-based medical devices.
Collapse
Affiliation(s)
- Rucha Natu
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Silver Spring, MD 20993, USA
| | - Luke Herbertson
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Silver Spring, MD 20993, USA
| | - Grazziela Sena
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Silver Spring, MD 20993, USA
| | - Kate Strachan
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Silver Spring, MD 20993, USA
| | - Suvajyoti Guha
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Silver Spring, MD 20993, USA
| |
Collapse
|
13
|
Abstract
Bacteria thrive in environments rich in fluid flow, such as the gastrointestinal tract, bloodstream, aquatic systems, and the urinary tract. Despite the importance of flow, how flow affects bacterial life is underappreciated. In recent years, the combination of approaches from biology, physics, and engineering has led to a deeper understanding of how bacteria interact with flow. Here, we highlight the wide range of bacterial responses to flow, including changes in surface adhesion, motility, surface colonization, quorum sensing, virulence factor production, and gene expression. To emphasize the diversity of flow responses, we focus our review on how flow affects four ecologically distinct bacterial species: Escherichia coli, Staphylococcus aureus, Caulobacter crescentus, and Pseudomonas aeruginosa. Additionally, we present experimental approaches to precisely study bacteria in flow, discuss how only some flow responses are triggered by shear force, and provide perspective on flow-sensitive bacterial signaling.
Collapse
Affiliation(s)
- Gilberto C. Padron
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alexander M. Shuppara
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jessica-Jae S. Palalay
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Anuradha Sharma
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joseph E. Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
14
|
Kobayashi M, Akitsu T, Furuya M, Sekiguchi T, Shoji S, Tanii T, Tanaka D. Efficient Synthesis of a Schiff Base Copper(II) Complex Using a Microfluidic Device. MICROMACHINES 2023; 14:890. [PMID: 37421123 DOI: 10.3390/mi14040890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 07/09/2023]
Abstract
The efficient synthesis of amino acid Schiff base copper(II) complexes using a microfluidic device was successfully achieved. Schiff bases and their complexes are remarkable compounds due to their high biological activity and catalytic function. Conventionally, products are synthesized under reaction conditions of 40 °C for 4 h using a beaker-based method. However, in this paper, we propose using a microfluidic channel to enable quasi-instantaneous synthesis at room temperature (23 °C). The products were characterized using UV-Vis, FT-IR, and MS spectroscopy. The efficient generation of compounds using microfluidic channels has the potential to significantly contribute to the efficiency of drug discovery and material development due to high reactivity.
Collapse
Affiliation(s)
- Masashi Kobayashi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takashiro Akitsu
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masahiro Furuya
- Cooperative Major in Nuclear Energy, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tetsushi Sekiguchi
- Research Organization for Nano & Life Innovation, Waseda University, 513 Tsurumakicho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Shuichi Shoji
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takashi Tanii
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Daiki Tanaka
- Research Organization for Nano & Life Innovation, Waseda University, 513 Tsurumakicho, Shinjuku-ku, Tokyo 162-0041, Japan
| |
Collapse
|
15
|
Altindiş M, Kahraman Kilbaş EP. Managing Viral Emerging Infectious Diseases via Current and Future Molecular Diagnostics. Diagnostics (Basel) 2023; 13:diagnostics13081421. [PMID: 37189522 DOI: 10.3390/diagnostics13081421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Emerging viral infectious diseases have been a constant threat to global public health in recent times. In managing these diseases, molecular diagnostics has played a critical role. Molecular diagnostics involves the use of various technologies to detect the genetic material of various pathogens, including viruses, in clinical samples. One of the most commonly used molecular diagnostics technologies for detecting viruses is polymerase chain reaction (PCR). PCR amplifies specific regions of the viral genetic material in a sample, making it easier to detect and identify viruses. PCR is particularly useful for detecting viruses that are present in low concentrations in clinical samples, such as blood or saliva. Another technology that is becoming increasingly popular for viral diagnostics is next-generation sequencing (NGS). NGS can sequence the entire genome of a virus present in a clinical sample, providing a wealth of information about the virus, including its genetic makeup, virulence factors, and potential to cause an outbreak. NGS can also help identify mutations and discover new pathogens that could affect the efficacy of antiviral drugs and vaccines. In addition to PCR and NGS, there are other molecular diagnostics technologies that are being developed to manage emerging viral infectious diseases. One of these is CRISPR-Cas, a genome editing technology that can be used to detect and cut specific regions of viral genetic material. CRISPR-Cas can be used to develop highly specific and sensitive viral diagnostic tests, as well as to develop new antiviral therapies. In conclusion, molecular diagnostics tools are critical for managing emerging viral infectious diseases. PCR and NGS are currently the most commonly used technologies for viral diagnostics, but new technologies such as CRISPR-Cas are emerging. These technologies can help identify viral outbreaks early, track the spread of viruses, and develop effective antiviral therapies and vaccines.
Collapse
Affiliation(s)
- Mustafa Altindiş
- Medical Microbiology Department, Faculty of Medicine, Sakarya University, Sakarya 54050, Türkiye
| | - Elmas Pınar Kahraman Kilbaş
- Medical Laboratory Techniques, Vocational School of Health Services, Fenerbahce University, Istanbul 34758, Türkiye
| |
Collapse
|
16
|
Cao X, Buryska T, Yang T, Wang J, Fischer P, Streets A, Stavrakis S, deMello A. Towards an active droplet-based microfluidic platform for programmable fluid handling. LAB ON A CHIP 2023; 23:2029-2038. [PMID: 37000567 PMCID: PMC10091362 DOI: 10.1039/d3lc00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Droplet-based microfluidic systems have emerged as powerful alternatives to conventional high throughput screening platforms, due to their operational flexibility, high-throughput nature and ability to efficiently process small fluid volumes. However, the challenges associated with performing bespoke operations on user-defined droplets often limit their utility in screening applications that involve complex workflows. To this end, the marriage of droplet- and valve-based microfluidic technologies offers the prospect of balancing the controllability of droplet manipulations and analytical throughput. In this spirit, we present a microfluidic platform that combines the capabilities of integrated microvalve technology with droplet-based sample compartmentalization to realize a highly adaptable programmable fluid handling functionality. The microfluidic device consists of a programmable formulator linked to an automated droplet generation device and storage array. The formulator leverages multiple inputs coupled to a mixing ring to produce combinatorial solution mixtures, with a peristaltic pump enabling titration of reagents into the ring with picoliter resolution. The platform allows for the execution of user-defined reaction protocols within an array of storage chambers by consecutively merging programmable sequences of pL-volume droplets containing specified reagents. The precision in formulating solutions with small differences in concentration is perfectly suited for the accurate estimation of kinetic parameters. The utility of our platform is showcased through the performance of enzymatic kinetic measurements of beta-galactosidase and horseradish peroxidase with fluorogenic substrates. The presented platform provides for a range of automated manipulations and paves the way for a more diverse range of droplet-based biological experiments.
Collapse
Affiliation(s)
- Xiaobao Cao
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Tomas Buryska
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Tianjin Yang
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, 8093, Zürich, Switzerland
| | - Peter Fischer
- IFNH Food Process Engineering Group, ETH Zürich, 8092, Zürich, Switzerland
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
17
|
Dabiri D, Dehghan Banadaki M, Bazargan V, Schaap A. Numerical investigation of moving gel wall formation in a Y-shaped microchannel. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-023-05331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
AbstractMolecular diffusive membranes play crucial roles in the field of microfluidics for biological applications e.g., 3D cell culture and biosensors. Hydrogels provide a range of benefits such as free diffusion of small molecules, cost-effectiveness, and the ability to be produced in bulk. Among various hydrogels, Pluronic F127 can be used for cell culture purposes due to its biocompatibility and flexible characteristics regarding its environment. Aqueous solutions of Pluronic F127 shows a reversible thermo-thickening property, which can be manipulated by introduction of ions. As a result, controlled diffusion of ions into the solution of Pluronic F127 can result in a controlled gel formation. In this study, the flow of immiscible solutions of Pluronic and sodium phosphate inside a Y-shaped microchannel is simulated using the level set method, and the effects of volume flow rates and temperature on the gel formation are investigated. It is indicated that the gel wall thickness can decrease by either increasing the Pluronic volume flow rate or increasing both volume flow rates while increasing the saline volume flow rate enhances the gel wall thickness. Below a critical temperature value, no gel wall is formed, and above that, a gel wall is constructed, with a thickness that increases with temperature. This setup can be used for drug screening, where gel wall provides an environment for drug-cell interactions.Article Highlights
Parallel flow of Pluronic F127 and saline solutions inside a Y-shaped microchannel results in formation of a gel wall at their interface.
The numerical analysis reveals the impact of each inlet flow rate and temperature on gel wall thickness and movement.
The findings indicate that the gel wall has a low but steady velocity toward the saline solution.
Graphical abstract
Collapse
|
18
|
Zhao N, Yu Z, Huang J, Liu Y, Zhao Y, Fu X, Yang P, Liu K. Non-invasive monitoring of biochemicals in hydrogel-assisted microfluidic chips. NANOSCALE 2023; 15:6179-6186. [PMID: 36912469 DOI: 10.1039/d2nr06042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microfluidic chips are prevailingly utilized in biochemical monitoring and clinical diagnostics due to their capability of manipulating minuscule amounts of liquids in a highly integrated manner. Fabrication of microchannels on chips is commonly based on glass or polydimethylsiloxane, and sensing of the fluids and biochemicals within them relies on invasive embedded sensing accessories in the channels. In this study, we propose a hydrogel-assisted microfluidic chip for non-invasive monitoring of chemicals in microfluidics. A nanoporous hydrogel acts as a perfect sealing film on top of a microchannel to encapsulate liquid, and allows for the delivery of target biochemicals to its surface, leaving an open window for non-invasive analysis. This functionally "open" microchannel can be integrated with various electrical, electrochemical, and optical methods to realize accurate detection of biochemicals, suggesting the potential of hydrogel microfluidic chips for non-invasive clinical diagnostics and smart healthcare.
Collapse
Affiliation(s)
- Na Zhao
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Zehua Yu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Jun Huang
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Yuxi Liu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Yifan Zhao
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Xiangqian Fu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Peihua Yang
- Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Kang Liu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
19
|
Sabaté Del Río J, Ro J, Yoon H, Park TE, Cho YK. Integrated technologies for continuous monitoring of organs-on-chips: Current challenges and potential solutions. Biosens Bioelectron 2023; 224:115057. [PMID: 36640548 DOI: 10.1016/j.bios.2022.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Organs-on-chips (OoCs) are biomimetic in vitro systems based on microfluidic cell cultures that recapitulate the in vivo physicochemical microenvironments and the physiologies and key functional units of specific human organs. These systems are versatile and can be customized to investigate organ-specific physiology, pathology, or pharmacology. They are more physiologically relevant than traditional two-dimensional cultures, can potentially replace the animal models or reduce the use of these models, and represent a unique opportunity for the development of personalized medicine when combined with human induced pluripotent stem cells. Continuous monitoring of important quality parameters of OoCs via a label-free, non-destructive, reliable, high-throughput, and multiplex method is critical for assessing the conditions of these systems and generating relevant analytical data; moreover, elaboration of quality predictive models is required for clinical trials of OoCs. Presently, these analytical data are obtained by manual or automatic sampling and analyzed using single-point, off-chip traditional methods. In this review, we describe recent efforts to integrate biosensing technologies into OoCs for monitoring the physiologies, functions, and physicochemical microenvironments of OoCs. Furthermore, we present potential alternative solutions to current challenges and future directions for the application of artificial intelligence in the development of OoCs and cyber-physical systems. These "smart" OoCs can learn and make autonomous decisions for process optimization, self-regulation, and data analysis.
Collapse
Affiliation(s)
- Jonathan Sabaté Del Río
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jooyoung Ro
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Heejeong Yoon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
20
|
Turiello R, Nouwairi RL, Landers JP. Taking the microfluidic approach to nucleic acid analysis in forensics: Review and perspectives. Forensic Sci Int Genet 2023; 63:102824. [PMID: 36592574 DOI: 10.1016/j.fsigen.2022.102824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Forensic laboratories are universally acknowledged as being overburdened, underfunded, and in need of improved analytical methods to expedite investigations, decrease the costs associated with nucleic acid (NA) analysis, and perform human identification (HID) at the point of need (e.g., crime scene, booking station, etc.). In response, numerous research and development (R&D) efforts have resulted in microfluidic tools that automate portions of the forensic genetic workflow, including DNA extraction, amplification, and short tandem repeat (STR) typing. By the early 2000 s, reports from the National Institute of Justice (NIJ) anticipated that microfluidic 'swab-in-profile-out' systems would be available for use at the crime scene by 2015 and the FBI's 2010 'Rapid DNA' Initiative, approved by Congress in 2017, directed this effort by guiding the development and implementation of maturing systems. At present, few fully-automated microfluidic DNA technologies are commercially available for forensic HID and their adoption by agencies interested in identification has been limited. In practice, the integration of complex laboratory processes to produce one autonomous unit, along with the highly variable nature of forensic input samples, resulted in systems that are more expensive per sample and not comparable to gold-standard identification methods in terms of sensitivity, reproducibility, and multiplex capability. This Review and Perspective provides insight into the contributing factors to this outcome; namely, we focus on the complications associated with the tremendous undertaking that is developing a sample-in-answer-out platform for HID. For context, we also describe the intricate forensic landscape that contributes to a nuanced marketplace, not easily distilled down to cases of simple supply and demand. Moving forward and considering the trade-offs associated with developing methods to compete, sometimes directly, with conventional ones, we recommend a focus shift for microfluidics developers toward the creation of innovative solutions for emerging applications in the field to increase the bandwidth of the forensic investigative toolkit. Likewise, we urge case working personnel to reframe how they conceptualize the currently available Rapid DNA tools; rather than comparing these microfluidic methods to gold-standard procedures, take advantage of their rapid and integrated modes for those situations requiring expedited identifications in an informed manner.
Collapse
|
21
|
Kshirsagar A, Choi G, Santosh V, Harvey T, Bernhards RC, Guan W. Handheld Purification-Free Nucleic Acid Testing Device for Point-of-Need Detection of Malaria from Whole Blood. ACS Sens 2023; 8:673-683. [PMID: 36696460 PMCID: PMC11214673 DOI: 10.1021/acssensors.2c02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
World Health Organization's aim to eliminate malaria from developing/resource-limited economies requires easy access to low-cost, highly sensitive, and specific screening. We present a handheld nucleic acid testing device with on-chip automated sample preparation to detect malaria (Plasmodium falciparum) infection from a whole blood sample as a feasibility study. We used a simple two-reagent-based purification-free protocol to prepare the whole blood sample on a piezo pump pressure-driven microfluidic cartridge. The cartridge includes a unique mixing chamber for sample preparation and metering structures to dispense a predetermined volume of the sample lysate mixture into four chambers containing a reaction mix. The parasite genomic DNA concentration can be estimated by monitoring the fluorescence generated from the loop-mediated isothermal amplification reaction in real time. We achieved a sensitivity of ∼0.42 parasite/μL of whole blood, sufficient for detecting asymptomatic malaria parasite carriers.
Collapse
Affiliation(s)
- Aneesh Kshirsagar
- School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park 16802, USA
| | - Gihoon Choi
- School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park 16802, USA
| | - Vishaka Santosh
- U.S. Army, DEVCOM Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Tara Harvey
- U.S. Army, DEVCOM Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Robert Cory Bernhards
- U.S. Army, DEVCOM Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Weihua Guan
- School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
22
|
Dodero A, Djeghdi K, Bauernfeind V, Airoldi M, Wilts BD, Weder C, Steiner U, Gunkel I. Robust Full-Spectral Color Tuning of Photonic Colloids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205438. [PMID: 36464635 DOI: 10.1002/smll.202205438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Creation of color through photonic morphologies manufactured by molecular self-assembly is a promising approach, but the complexity and lack of robustness of the fabrication processes have limited their technical exploitation. Here, it is shown that photonic spheres with full-color tuning across the entire visible spectrum can be readily and reliably achieved by the emulsification of solutions containing a block copolymer (BCP) and two swelling additives. Solvent diffusion out of the emulsion droplets gives rise to 20-150 µm-sized spheres with an onion-like lamellar morphology. Controlling the lamellar thickness by differential swelling with the two additives enables color tuning of the Bragg interference-based reflection band across the entire visible spectrum. By studying five different systems, a set of important principles for manufacturing photonic colloids is established. Two swelling additives are required, one of which must exhibit strong interactions with one of the BCP blocks. The additives should be chosen to enhance the dielectric contrast, and the formation kinetics of the spheres must be sufficiently slow to enable the emergence of the photonic morphology. The proposed approach is versatile and robust and allows the scalable production of photonic pigments with possible future applications in inks for cosmetics and arts, coatings, and displays.
Collapse
Affiliation(s)
- Andrea Dodero
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Kenza Djeghdi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Viola Bauernfeind
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Martino Airoldi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Bodo D Wilts
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Straße 2A, Salzburg, 5020, Austria
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Ilja Gunkel
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| |
Collapse
|
23
|
Somoza M, Rial R, Liu Z, Llovo IF, Reis RL, Mosqueira J, Ruso JM. Microfluidic Fabrication of Gadolinium-Doped Hydroxyapatite for Theragnostic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:501. [PMID: 36770462 PMCID: PMC9921701 DOI: 10.3390/nano13030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Among the several possible uses of nanoparticulated systems in biomedicine, their potential as theragnostic agents has received significant interest in recent times. In this work, we have taken advantage of the medical applications of Gadolinium as a contrast agent with the versatility and huge array of possibilities that microfluidics can help to create doped Hydroxyapatite nanoparticles with magnetic properties in an efficient and functional way. First, with the help of Computational Fluid Dynamics (CFD), we performed a complete and precise study of all the elements and phases of our device to guarantee that our microfluidic system worked in the laminar regime and was not affected by the presence of nanoparticles through the flow requisite that is essential to guarantee homogeneous diffusion between the elements or phases in play. Then the obtained biomaterials were physiochemically characterized by means of XRD, FE-SEM, EDX, confocal Raman microscopy, and FT-IR, confirming the successful incorporation of the lanthanide element Gadolinium in part of the Ca (II) binding sites. Finally, the magnetic characterization confirmed the paramagnetic behaviour of the nanoparticles, demonstrating that, with a simple and automatized system, it is possible to obtain advanced nanomaterials that can offer a promising and innovative solution in theragnostic applications.
Collapse
Affiliation(s)
- Manuel Somoza
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark—Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
| | - Iago F. Llovo
- QMatterPhotonics, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), Department of Applied Physics, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark—Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Jesús Mosqueira
- QMatterPhotonics, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), Department of Applied Physics, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
24
|
Wang Y, Wang S, Li L, Zou Y, Liu B, Fang X. Microfluidics‐based molecular profiling of tumor‐derived exosomes for liquid biopsy. VIEW 2023. [DOI: 10.1002/viw.20220048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yuqing Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Shurong Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Lanting Li
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Yan Zou
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Baohong Liu
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Xiaoni Fang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| |
Collapse
|
25
|
Abstract
The advancement of four-dimensional (4D) printing has been fueled by the rise in demand for additive manufacturing and the expansion in shape-memory materials. The printing of smart substances that respond to external stimuli is known as 4D printing. 4D printing allows highly controlled shapes to simulate the physiological milieu by adding time dimensions. The 4D printing is suitable with current progress in smart compounds, printers, and its mechanism of action. The 4D printing paradigm, a revolutionary enhancement of 3D printing, was anticipated by various engineering disciplines. Tissue engineering, medicinal, consumer items, aerospace, and organ engineering use 4D printing technology. The current review mainly focuses on the basics of 4D printing and the methods used therein. It also discusses the time-dependent behavior of stimulus-sensitive compounds, which are widely used in 4D printing. In addition, this review highlights material aspects, specifically related to shape-memory polymers, stimuli-responsive materials (classified as physical, chemical, and biological), and modified materials, the backbone of 4D printing technology. Finally, potential applications of 4D printing in the biomedical sector are also discussed with challenges and future perspectives.
Collapse
|
26
|
Pérez-Rodríguez M, Cañizares-Macías MDP. A prototype microfluidic paper-based chromatic device for simultaneous determination of copper(II) and zinc(II) in urine. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
27
|
Rathnayaka C, Amarasekara CA, Akabirov K, Murphy MC, Park S, Witek MA, Soper SA. Nanofluidic devices for the separation of biomolecules. J Chromatogr A 2022; 1683:463539. [PMID: 36223665 PMCID: PMC9795076 DOI: 10.1016/j.chroma.2022.463539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/30/2022]
Abstract
Over the last 30-years, microchip electrophoresis and its applications have expanded due to the benefits it offers. Nanochip electrophoresis, on the other hand, is viewed as an evolving area of electrophoresis because it offers some unique advantages not associated with microchip electrophoresis. These advantages arise from unique phenomena that occur in the nanometer domain not readily apparent in the microscale domain due to scale-dependent effects. Scale-dependent effects associated with nanochip electrophoresis includes high surface area-to-volume ratio, electrical double layer overlap generating parabolic flow even for electrokinetic pumping, concentration polarization, transverse electromigration, surface charge dominating flow, and surface roughness. Nanochip electrophoresis devices consist of channels with dimensions ranging from 1 to 1000 nm including classical (1-100 nm) and extended (100 nm - 1000 nm) nanoscale devices. In this review, we highlight scale-dependent phenomena associated with nanochip electrophoresis and the utilization of those phenomena to provide unique biomolecular separations that are not possible with microchip electrophoresis. We will also review the range of materials used for nanoscale separations and the implication of material choice for the top-down fabrication and operation of these devices. We will also provide application examples of nanochip electrophoresis for biomolecule separations with an emphasis on nano-electrophoresis (nEP) and nano-electrochromatography (nEC).
Collapse
Affiliation(s)
- Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Charuni A Amarasekara
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Khurshed Akabirov
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Michael C Murphy
- Center of BioModular Multiscale Systems for Precision Medicine, USA; Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, USA; Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Malgorzata A Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA; Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA; Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA; KU Cancer Center and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
28
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
29
|
Zhao L, Wang X. 3D printed microfluidics for cell biological applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Kolmar L, Autour A, Ma X, Vergier B, Eduati F, Merten CA. Technological and computational advances driving high-throughput oncology. Trends Cell Biol 2022; 32:947-961. [PMID: 35577671 DOI: 10.1016/j.tcb.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/21/2023]
Abstract
Engineering and computational advances have opened many new avenues in cancer research, particularly when being exploited in interdisciplinary approaches. For example, the combination of microfluidics, novel sequencing technologies, and computational analyses has been crucial to enable single-cell assays, giving a detailed picture of tumor heterogeneity for the very first time. In a similar way, these 'tech' disciplines have been elementary for generating large data sets in multidimensional cancer 'omics' approaches, cell-cell interaction screens, 3D tumor models, and tissue level analyses. In this review we summarize the most important technology and computational developments that have been or will be instrumental for transitioning classical cancer research to a large data-driven, high-throughput, high-content discipline across all biological scales.
Collapse
Affiliation(s)
- Leonie Kolmar
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexis Autour
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Xiaoli Ma
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Blandine Vergier
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.
| | - Christoph A Merten
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
31
|
Zare Harofte S, Soltani M, Siavashy S, Raahemifar K. Recent Advances of Utilizing Artificial Intelligence in Lab on a Chip for Diagnosis and Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203169. [PMID: 36026569 DOI: 10.1002/smll.202203169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/16/2022] [Indexed: 05/14/2023]
Abstract
Nowadays, artificial intelligence (AI) creates numerous promising opportunities in the life sciences. AI methods can be significantly advantageous for analyzing the massive datasets provided by biotechnology systems for biological and biomedical applications. Microfluidics, with the developments in controlled reaction chambers, high-throughput arrays, and positioning systems, generate big data that is not necessarily analyzed successfully. Integrating AI and microfluidics can pave the way for both experimental and analytical throughputs in biotechnology research. Microfluidics enhances the experimental methods and reduces the cost and scale, while AI methods significantly improve the analysis of huge datasets obtained from high-throughput and multiplexed microfluidics. This review briefly presents a survey of the role of AI and microfluidics in biotechnology. Also, the incorporation of AI with microfluidics is comprehensively investigated. Specifically, recent studies that perform flow cytometry cell classification, cell isolation, and a combination of them by gaining from both AI methods and microfluidic techniques are covered. Despite all current challenges, various fields of biotechnology can be remarkably affected by the combination of AI and microfluidic technologies. Some of these fields include point-of-care systems, precision, personalized medicine, regenerative medicine, prognostics, diagnostics, and treatment of oncology and non-oncology-related diseases.
Collapse
Affiliation(s)
- Samaneh Zare Harofte
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran, 14176-14411, Iran
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, 14197-33141, Iran
| | - Saeed Siavashy
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA, 16801, USA
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Ave. W, Waterloo, ON, N2L 3G1, Canada
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
32
|
Ortegón S, Peñaranda PA, Rodríguez CF, Noguera MJ, Florez SL, Cruz JC, Rivas RE, Osma JF. Magnetic Torus Microreactor as a Novel Device for Sample Treatment via Solid-Phase Microextraction Coupled to Graphite Furnace Atomic Absorption Spectroscopy: A Route for Arsenic Pre-Concentration. Molecules 2022; 27:molecules27196198. [PMID: 36234749 PMCID: PMC9572641 DOI: 10.3390/molecules27196198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
This work studied the feasibility of using a novel microreactor based on torus geometry to carry out a sample pretreatment before its analysis by graphite furnace atomic absorption. The miniaturized retention of total arsenic was performed on the surface of a magnetic sorbent material consisting of 6 mg of magnetite (Fe3O4) confined in a very small space inside (20.1 µL) a polyacrylate device filling an internal lumen (inside space). Using this geometric design, a simulation theoretical study demonstrated a notable improvement in the analyte adsorption process on the solid extractant surface. Compared to single-layer geometries, the torus microreactor geometry brought on flow turbulence within the liquid along the curvatures inside the device channels, improving the efficiency of analyte–extractant contact and therefore leading to a high preconcentration factor. According to this design, the magnetic solid phase was held internally as a surface bed with the use of an 8 mm-diameter cylindric neodymium magnet, allowing the pass of a fixed volume of an arsenic aqueous standard solution. A preconcentration factor of up to 60 was found to reduce the typical “characteristic mass” (as sensitivity parameter) determined by direct measurement from 53.66 pg to 0.88 pg, showing an essential improvement in the arsenic signal sensitivity by absorption atomic spectrometry. This methodology emulates a miniaturized micro-solid-phase extraction system for flow-through water pretreatment samples in chemical analysis before coupling to techniques that employ reduced sample volumes, such as graphite furnace atomic absorption spectroscopy.
Collapse
Affiliation(s)
- Sofía Ortegón
- Department of Chemistry, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Paula Andrea Peñaranda
- Department of Electrical and Electronic Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Cristian F. Rodríguez
- Department of Biomedical Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Mabel Juliana Noguera
- Department of Electrical and Electronic Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Sergio Leonardo Florez
- Department of Electrical and Electronic Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Ricardo E. Rivas
- Department of Chemistry, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
- Correspondence: (R.E.R.); (J.F.O.); Tel.: +57-1-339-4949 (J.F.O.)
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
- Correspondence: (R.E.R.); (J.F.O.); Tel.: +57-1-339-4949 (J.F.O.)
| |
Collapse
|
33
|
Seth A, Mittal E, Luan J, Kolla S, Mazer MB, Joshi H, Gupta R, Rathi P, Wang Z, Morrissey JJ, Ernst JD, Portal-Celhay C, Morley SC, Philips JA, Singamaneni S. High-resolution imaging of protein secretion at the single-cell level using plasmon-enhanced FluoroDOT assay. CELL REPORTS METHODS 2022; 2:100267. [PMID: 36046626 PMCID: PMC9421537 DOI: 10.1016/j.crmeth.2022.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/28/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Secreted proteins mediate essential physiological processes. With conventional assays, it is challenging to map the spatial distribution of proteins secreted by single cells, to study cell-to-cell heterogeneity in secretion, or to detect proteins of low abundance or incipient secretion. Here, we introduce the "FluoroDOT assay," which uses an ultrabright nanoparticle plasmonic-fluor that enables high-resolution imaging of protein secretion. We find that plasmonic-fluors are 16,000-fold brighter, with nearly 30-fold higher signal-to-noise compared with conventional fluorescence labels. We demonstrate high-resolution imaging of different secreted cytokines in the single-plexed and spectrally multiplexed FluoroDOT assay that revealed cellular heterogeneity in secretion of multiple proteins simultaneously. Using diverse biochemical stimuli, including Mycobacterium tuberculosis infection, and a variety of immune cells such as macrophages, dendritic cells (DCs), and DC-T cell co-culture, we demonstrate that the assay is versatile, facile, and widely adaptable for enhancing biological understanding of spatial and temporal dynamics of single-cell secretome.
Collapse
Affiliation(s)
- Anushree Seth
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Auragent Bioscience, LLC, St. Louis, MO 63108, USA
| | - Ekansh Mittal
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Jingyi Luan
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Samhitha Kolla
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Monty B. Mazer
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hemant Joshi
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rohit Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Priya Rathi
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jeremiah J. Morrissey
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Joel D. Ernst
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Cynthia Portal-Celhay
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Sharon Celeste Morley
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer A. Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
34
|
McIntyre D, Lashkaripour A, Fordyce P, Densmore D. Machine learning for microfluidic design and control. LAB ON A CHIP 2022; 22:2925-2937. [PMID: 35904162 PMCID: PMC9361804 DOI: 10.1039/d2lc00254j] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/28/2022] [Indexed: 05/24/2023]
Abstract
Microfluidics has developed into a mature field with applications across science and engineering, having particular commercial success in molecular diagnostics, next-generation sequencing, and bench-top analysis. Despite its ubiquity, the complexity of designing and controlling custom microfluidic devices present major barriers to adoption, requiring intuitive knowledge gained from years of experience. If these barriers were overcome, microfluidics could miniaturize biological and chemical research for non-experts through fully-automated platform development and operation. The intuition of microfluidic experts can be captured through machine learning, where complex statistical models are trained for pattern recognition and subsequently used for event prediction. Integration of machine learning with microfluidics could significantly expand its adoption and impact. Here, we present the current state of machine learning for the design and control of microfluidic devices, its possible applications, and current limitations.
Collapse
Affiliation(s)
- David McIntyre
- Biomedical Engineering Department, Boston University, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA.
| | - Ali Lashkaripour
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Polly Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Douglas Densmore
- Biological Design Center, Boston University, Boston, MA, USA.
- Electrical & Computer Engineering Department, Boston University, Boston, MA, USA
| |
Collapse
|
35
|
Moradi Mehr S, Charsooghi MA, Businaro L, Habibi M, Moradi A. Capillary Pumping between Droplets on Superhydrophobic Surfaces. AIChE J 2022. [DOI: 10.1002/aic.17847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shiva Moradi Mehr
- Department of Physics Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Mohammad A. Charsooghi
- Department of Physics Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Luca Businaro
- Italian National Research Council ‐ Institute for Photonics and Nanotechnologies (CNR ‐ IFN), via Cineto Romano 42 Rome Italy
| | - Mehdi Habibi
- Physics and Physical Chemistry of Foods Wageningen University AA Wageningen The Netherlands
| | - Ali‐Reza Moradi
- Department of Physics Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM) Tehran Iran
| |
Collapse
|
36
|
Sarabi MR, Yigci D, Alseed MM, Mathyk BA, Ata B, Halicigil C, Tasoglu S. Disposable Paper-Based Microfluidics for Fertility Testing. iScience 2022; 25:104986. [PMID: 36105592 PMCID: PMC9465368 DOI: 10.1016/j.isci.2022.104986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fifteen percent of couples of reproductive age suffer from infertility globally and the burden of infertility disproportionately impacts residents of developing countries. Assisted reproductive technologies (ARTs), including in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), have been successful in overcoming various reasons for infertility including borderline and severe male factor infertility which consists of 20%–30% of all infertile cases. Approximately half of male infertility cases stem from suboptimal sperm parameters. Therefore, healthy/normal sperm enrichment and sorting remains crucial in advancing reproductive medicine. Microfluidic technologies have emerged as promising tools to develop in-home rapid fertility tests and point-of-care (POC) diagnostic tools. Here, we review advancements in fabrication methods for paper-based microfluidic devices and their emerging fertility testing applications assessing sperm concentration, sperm motility, sperm DNA analysis, and other sperm functionalities, and provide a glimpse into future directions for paper-based fertility microfluidic systems. Paper-based technologies are emerging to develop in-home rapid fertility tests Fabrication methods for paper-based microfluidic devices are presented Emerging disposable paper-based fertility testing applications are reviewed
Collapse
Affiliation(s)
| | - Defne Yigci
- School of Medicine, Koç University, Istanbul, Türkiye 34450
| | - M. Munzer Alseed
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Türkiye 34684
| | - Begum Aydogan Mathyk
- Department of Obstetrics and Gynecology, HCA Healthcare, University of South Florida Morsani College of Medicine GME, Brandon Regional Hospital, Florida 33511, USA
| | - Baris Ata
- School of Medicine, Koç University, Istanbul, Türkiye 34450
- ART Fertility Clinics, Dubai, United Arab Emirates 337-1500
| | - Cihan Halicigil
- Yale School of Medicine, Yale University, Connecticut 06520, USA
| | - Savas Tasoglu
- School of Mechanical Engineering, Koç University, Istanbul, Türkiye 34450
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Türkiye 34684
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul, Türkiye 34450
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul, Türkiye 34450
- Koç University Is Bank Artificial Intelligence Lab (KUIS AI Lab), Koç University, Istanbul, Türkiye 34450
- Corresponding author
| |
Collapse
|
37
|
Sateesh J, Guha K, Dutta A, Sengupta P, Yalamanchili D, Donepudi NS, Surya Manoj M, Sohail SS. A comprehensive review on advancements in tissue engineering and microfluidics toward kidney-on-chip. BIOMICROFLUIDICS 2022; 16:041501. [PMID: 35992641 PMCID: PMC9385224 DOI: 10.1063/5.0087852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This review provides a detailed literature survey on microfluidics and its road map toward kidney-on-chip technology. The whole review has been tailored with a clear description of crucial milestones in regenerative medicine, such as bioengineering, tissue engineering, microfluidics, microfluidic applications in biomedical engineering, capabilities of microfluidics in biomimetics, organ-on-chip, kidney-on-chip for disease modeling, drug toxicity, and implantable devices. This paper also presents future scope for research in the bio-microfluidics domain and biomimetics domain.
Collapse
Affiliation(s)
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Arindam Dutta
- Urologist, RG Stone Urology and Laparoscopic Hospital, Kolkata, West Bengal, India
| | | | | | - Nanda Sai Donepudi
- Medical Interns, Government Siddhartha Medical College, Vijayawada, India
| | - M. Surya Manoj
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Sk. Shahrukh Sohail
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| |
Collapse
|
38
|
Ebrahimi G, Samadi Pakchin P, Shamloo A, Mota A, de la Guardia M, Omidian H, Omidi Y. Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases. Mikrochim Acta 2022; 189:252. [PMID: 35687204 DOI: 10.1007/s00604-022-05316-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
The integration of microfluidics with electrochemical analysis has resulted in the development of single miniaturized detection systems, which allows the precise control of sample volume with multianalyte detection capability in a cost- and time-effective manner. Microfluidic electrochemical sensing devices (MESDs) can potentially serve as precise sensing and monitoring systems for the detection of molecular markers in various detrimental diseases. MESDs offer several advantages, including (i) automated sample preparation and detection, (ii) low sample and reagent requirement, (iii) detection of multianalyte in a single run, (iv) multiplex analysis in a single integrated device, and (v) portability with simplicity in application and disposability. Label-free MESDs can serve an affordable real-time detection with a simple analysis in a short processing time, providing point-of-care diagnosis/detection possibilities in precision medicine, and environmental analysis. In the current review, we elaborate on label-free microfluidic biosensors, provide comprehensive insights into electrochemical detection techniques, and discuss the principles of label-free microfluidic-based sensing approaches.
Collapse
Affiliation(s)
- Ghasem Ebrahimi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ali Mota
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
39
|
Chakraborty S, Luchena C, Elton JJ, Schilling MP, Reischl M, Roux M, Levkin PA, Popova AA. "Cells-to-cDNA on Chip": Phenotypic Assessment and Gene Expression Analysis from Live Cells in Nanoliter Volumes Using Droplet Microarrays. Adv Healthc Mater 2022; 11:e2102493. [PMID: 35285171 PMCID: PMC11469226 DOI: 10.1002/adhm.202102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/08/2022] [Indexed: 11/11/2022]
Abstract
In vitro cell-based experiments are particularly important in fundamental biological research. Microscopy-based readouts to identify cellular changes in response to various stimuli are a popular choice, but gene expression analysis is essential to delineate the underlying molecular dynamics in cells. However, cell-based experiments often suffer from interexperimental variation, especially while using different readout methods. Therefore, establishment of platforms that allow for cell screening, along with parallel investigations of morphological features, as well as gene expression levels, is crucial. The droplet microarray (DMA) platform enables cell screening in hundreds of nanoliter droplets. In this study, a "Cells-to-cDNA on Chip" method is developed enabling on-chip mRNA isolation from live cells and conversion to cDNA in individual droplets of 200 nL. This novel method works efficiently to obtain cDNA from different cell numbers, down to single cell per droplet. This is the first established miniaturized on-chip strategy that enables the entire course of cell screening, phenotypic microscopy-based assessments along with mRNA isolation and its conversion to cDNA for gene expression analysis by real-time PCR on an open DMA platform. The principle demonstrated in this study sets a beginning for myriad of possible applications to obtain detailed information about the molecular dynamics in cultured cells.
Collapse
Affiliation(s)
- Shraddha Chakraborty
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Charlotte Luchena
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Jonathan J. Elton
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Marcel P. Schilling
- Institute for Automation and Applied InformaticsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Markus Reischl
- Institute for Automation and Applied InformaticsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Margaux Roux
- Cellenion SASUBioserra 2, 60 avenue RockefellerLyon69008France
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz‐Haber Weg 6Karlsruhe76131Germany
| | - Anna A. Popova
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| |
Collapse
|
40
|
3D Printing Manufacturing of Polydimethyl-Siloxane/Zinc Oxide Micro-Optofluidic Device for Two-Phase Flows Control. Polymers (Basel) 2022; 14:polym14102113. [PMID: 35631994 PMCID: PMC9146388 DOI: 10.3390/polym14102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Tailored ZnO surface functionalization was performed inside a polydimethyl-siloxane (PDMS) microchannel of a micro-optofluidic device (mofd) to modulate its surface hydrophobicity to develop a method for fine tuning the fluid dynamics inside a microchannel. The wetting behavior of the surface is of particular importance if two different phases are used for system operations. Therefore, the fluid dynamic behavior of two immiscible fluids, (i) air–water and (ii) air–glycerol/water in PDMS mofds and ZnO-PDMS mofds was investigated by using different experimental conditions. The results showed that air–glycerol/water fluid was always faster than air–water flow, despite the microchannel treatment: however, in the presence of ZnO microstructures, the velocity of the air–glycerol/water fluid decreased compared with that observed for the air–water fluid. This behavior was associated with the strong ability of glycerol to create an H-bond network with the exposed surface of the zinc oxide microparticles. The results presented in this paper allow an understanding of the role of ZnO functionalization, which allows control of the microfluidic two-phase flow using different liquids that undergo different chemical interactions with the surface chemical terminations of the microchannel. This chemical approach is proposed as a control strategy that is easily adaptable for any embedded micro-device.
Collapse
|
41
|
Taheri H, Khayatian G. Smartphone-based microfluidic chip modified using pyrrolidine-1-dithiocarboxylic acid for simultaneous colorimetric determination of Cr 3+ and Al 3+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121000. [PMID: 35151170 DOI: 10.1016/j.saa.2022.121000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/13/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
A portable µ-chip-based colorimetric device was developed for the determination of Cr3+ and Al3+ ions. The silver nanoparticles were modified with pyrrolidine-1-dithiocarboxylic acid ammonium salt as a novel ligand for the first time. The color of modified AgNPs in the test zone immediately changes after the addition of Cr3+ and Al3+ ions. The resulting color changes were detected by the naked eye or were taken by a smartphone camera. The obtained images were analyzed by RGB software to assay the Cr3+ and Al3+ ions concentration. Under optimized experimental conditions, the linear ranges are 0.1-220 and 0.01-250 µM for Cr3+ and Al3+ ions, respectively. The probe has a limit of detections of 10.66 and 3.55 nM for Cr3+ and Al3+ in an aqueous solution. In the case of µ-chip, the concentration ranges are 0.1-200 μM and 0.01-220 μM for Cr3+ and Al3+ ions, with detection limits of 9.18 and 2.30 nM, respectively. The µ-chip showed great potential as a fast detection tool for the monitoring of Cr3+ and Al3+ ions in real samples such as river water samples.
Collapse
Affiliation(s)
- Hoda Taheri
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj P.O. Box 416, 66177-15175, Iran
| | - Gholamreza Khayatian
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj P.O. Box 416, 66177-15175, Iran.
| |
Collapse
|
42
|
Mattio E, Caleyron A, Miguirditchian M, Lines AM, Bryan SA, Lackey HE, Rodriguez-Ruiz I, Lamadie F. Microfluidic In-Situ Spectrophotometric Approaches to Tackle Actinides Analysis in Multiple Oxidation States. APPLIED SPECTROSCOPY 2022; 76:580-589. [PMID: 35108115 DOI: 10.1177/00037028211063916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The study and development of present and future processes for the treatment/recycling of spent nuclear fuels require many steps, from design in the laboratory to setting up on an industrial scale. In all of these steps, analysis and instrumentation are key points. For scientific reasons (small-scale studies, control of phenomena, etc.) but also with regard to minimizing costs, risks, and waste, such developments are increasingly carried out on milli- or microfluidic devices. The logic is the same for the chemical analyses associated with their follow-up and interpretation. Due to this, over the last few years, opto-microfluidic analysis devices adapted to the monitoring of different processes (dissolution, liquid-liquid extraction, precipitation, etc.) have been increasingly designed and developed. In this work, we prove that photonic lab-on-a-chip (PhLoC) technology is fully suitable for all actinides concentration monitoring along the plutonium uranium refining extraction (plutonium, uranium, reduction, extraction, or Purex) process. Several PhLoC microfluidic platforms were specifically designed and used in different nuclear research and development (R&D) laboratories, to tackle actinides analysis in multiple oxidation states even in mixtures. The detection limits reached (tens of µmol·L-1) are fully compliant with on-line process monitoring, whereas a range of analyzable concentrations of three orders of magnitude can be covered with less than 150 µL of analyte. Finally, this work confirms the possibility and the potential of coupling Raman and ultraviolet-visible (UV-Vis) spectroscopies at the microfluidic scale, opening the perspective of measuring very complex mixtures.
Collapse
Affiliation(s)
- Elodie Mattio
- CEA, DES, ISEC, DMRC, 27053Univ Montpellier, Marcoule, France
| | - Audrey Caleyron
- CEA, DES, ISEC, DMRC, 27053Univ Montpellier, Marcoule, France
| | | | - Amanda M Lines
- 6865Pacific Northwest National Laboratory, Richland, WA, USA
| | - Samuel A Bryan
- 6865Pacific Northwest National Laboratory, Richland, WA, USA
| | - Hope E Lackey
- 6865Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Fabrice Lamadie
- CEA, DES, ISEC, DMRC, 27053Univ Montpellier, Marcoule, France
| |
Collapse
|
43
|
Recent advances for cancer detection and treatment by microfluidic technology, review and update. Biol Proced Online 2022; 24:5. [PMID: 35484481 PMCID: PMC9052508 DOI: 10.1186/s12575-022-00166-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022] Open
Abstract
Numerous cancer-associated deaths are owing to a lack of effective diagnostic and therapeutic approaches. Microfluidic systems for analyzing a low volume of samples offer a precise, quick, and user-friendly technique for cancer diagnosis and treatment. Microfluidic devices can detect many cancer-diagnostic factors from biological fluids and also generate appropriate nanoparticles for drug delivery. Thus, microfluidics may be valuable in the cancer field due to its high sensitivity, high throughput, and low cost. In the present article, we aim to review recent achievements in the application of microfluidic systems for the diagnosis and treatment of various cancers. Although microfluidic platforms are not yet used in the clinic, they are expected to become the main technology for cancer diagnosis and treatment. Microfluidic systems are proving to be more sensitive and accurate for the detection of cancer biomarkers and therapeutic strategies than common assays. Microfluidic lab-on-a-chip platforms have shown remarkable potential in the designing of novel procedures for cancer detection, therapy, and disease follow-up as well as the development of new drug delivery systems for cancer treatment.
Collapse
|
44
|
Hybrid 3D printed integrated microdevice for the determination of copper ions in human body fluids. Anal Bioanal Chem 2022; 414:4047-4057. [PMID: 35396610 PMCID: PMC8993678 DOI: 10.1007/s00216-022-04049-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/29/2022]
Abstract
On-site screening of copper ions in body fluid plays a critical role in monitoring human health, especially in heavy pollution areas. In this study, we have developed a hybrid 3D printed integrated microdevice for the determination of copper ions in human body fluids. A fixed and low volume of sample was detected by using the integrated microdevice without any preprocessing. The hybrid channel enables sample uniform mixing and quantitative dilution with buffer solution by inducing the “horseshoe vortex” phenomenon. The electrolytic microcell based on the flow detection system shows a more effective copper ion reaction ratio and, as a result, a better sensitivity. The simulation of the finite element method (FEM) determined the relevant optimum parameters of the hybrid channel and the microcell. The design, fabrication, and detection procedure of the integrated microdevice are here illustrated. The microdevice presented superior detection properties towards copper ions. The calibration curves covered two linear ranges varying from 20 to 100 ppb and 100 to 400 ppb, respectively. The limit of detection was estimated to be 15 ppb (S/N = 3). The relative standard deviation of the peak current measurements was 2.26%. The designed microdevice was further applied to detect copper ions in practical samples (calf serum sample and synthetic human urine sample) using a standard addition method, and the average recovery was found to be 95–104%. The performance of copper ion detection with the integrated microdevice was consistent with that of the inductively coupled plasma mass spectrometry (ICP-MS) in the same practical samples, demonstrating significant practicality in the test of body fluidics. The portable integrated microdevice is an excellent choice for on-site detection and has a promising prospect in the point-of-care testing (POCT) applications.
Collapse
|
45
|
Head T, Cady NC. Monitoring and modulation of the tumor microenvironment for enhanced cancer modeling. Exp Biol Med (Maywood) 2022; 247:598-613. [PMID: 35088603 PMCID: PMC9014523 DOI: 10.1177/15353702221074293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer treatments utilizing biologic or cytotoxic drugs compose the frontline of therapy, and though gains in treatment efficacy have been persistent in recent decades, much work remains in understanding cancer progression and treatment. Compounding this situation is the low rate of success when translating preclinical drug candidates to the clinic, which raises costs and development timelines. This underperformance is due in part to the poor recapitulation of the tumor microenvironment, a critical component of cancer biology, in cancer model systems. New technologies capable of both accurately observing and manipulating the tumor microenvironment are needed to effectively model cancer response to treatment. In this review, conventional cancer models are summarized, and a primer on emerging techniques for monitoring and modulating the tumor microenvironment is presented and discussed.
Collapse
Affiliation(s)
- Tristen Head
- College of Nanoscale Science & Engineering,
State University of New York Polytechnic Institute, Albany, NY 12203, USA
| | - Nathaniel C Cady
- College of Nanoscale Science & Engineering,
State University of New York Polytechnic Institute, Albany, NY 12203, USA
| |
Collapse
|
46
|
Ling FWM, Abdulbari HA, Chin SY. Heterogeneous Microfluidic Reactors: A Review and an Insight of Enzymatic Reactions. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fiona W. M. Ling
- Universiti Malaysia Pahang Centre for Research in Advanced Fluid & Processes (FLUID CENTRE) Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| | - Hayder A. Abdulbari
- Universiti Malaysia Pahang Centre for Research in Advanced Fluid & Processes (FLUID CENTRE) Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| | - Sim Yee Chin
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| |
Collapse
|
47
|
Panneerselvam R, Sadat H, Höhn EM, Das A, Noothalapati H, Belder D. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination? LAB ON A CHIP 2022; 22:665-682. [PMID: 35107464 DOI: 10.1039/d1lc01097b] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the continuous development in nanoscience and nanotechnology, analytical techniques like surface-enhanced Raman spectroscopy (SERS) render structural and chemical information of a variety of analyte molecules in ultra-low concentration. Although this technique is making significant progress in various fields, the reproducibility of SERS measurements and sensitivity towards small molecules are still daunting challenges. In this regard, microfluidic surface-enhanced Raman spectroscopy (MF-SERS) is well on its way to join the toolbox of analytical chemists. This review article explains how MF-SERS is becoming a powerful tool in analytical chemistry. We critically present the developments in SERS substrates for microfluidic devices and how these substrates in microfluidic channels can improve the SERS sensitivity, reproducibility, and detection limit. We then introduce the building materials for microfluidic platforms and their types such as droplet, centrifugal, and digital microfluidics. Finally, we enumerate some challenges and future directions in microfluidic SERS. Overall, this article showcases the potential and versatility of microfluidic SERS in overcoming the inherent issues in the SERS technique and also discusses the advantage of adding SERS to the arsenal of microfluidics.
Collapse
Affiliation(s)
- Rajapandiyan Panneerselvam
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
- Department of Chemistry, SRM University AP, Amaravati, Andhra Pradesh 522502, India.
| | - Hasan Sadat
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Eva-Maria Höhn
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Anish Das
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Hemanth Noothalapati
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
- Raman Project Center for Medical and Biological Applications, Shimane University, Matsue, Japan
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
48
|
Battat S, Weitz DA, Whitesides GM. An outlook on microfluidics: the promise and the challenge. LAB ON A CHIP 2022; 22:530-536. [PMID: 35048918 DOI: 10.1039/d1lc00731a] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This perspective considers ways in which the field of microfluidics can increase its impact by improving existing technologies and enabling new functionalities. We highlight applications where microfluidics has made or can make important contributions, including diagnostics, food safety, and the production of materials. The success of microfluidics assumes several forms, including fundamental innovations in fluid mechanics that enable the precise manipulation of fluids at small scales and the development of portable microfluidic chips for commercial purposes. We identify outstanding technical challenges whose resolution could increase the accessibility of microfluidics to users with both scientific and non-technical backgrounds. They include the simplification of procedures for sample preparation, the identification of materials for the production of microfluidic devices in both laboratory and commercial settings, and the replacement of auxiliary equipment with automated components for the operation of microfluidic devices.
Collapse
Affiliation(s)
- Sarah Battat
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
49
|
Roth S, Ideses D, Juven-Gershon T, Danielli A. Rapid Biosensing Method for Detecting Protein-DNA Interactions. ACS Sens 2022; 7:60-70. [PMID: 34979074 DOI: 10.1021/acssensors.1c01579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identifying and investigating protein-DNA interactions, which play significant roles in many biological processes, is essential for basic and clinical research. Current techniques for identification of protein-DNA interactions are laborious, time-consuming, and suffer from nonspecific binding and limited sensitivity. To overcome these challenges and assess protein-DNA interactions, we use a magnetic modulation biosensing (MMB) system. In MMB, one of the interacting elements (protein or DNA) is immobilized to magnetic beads, and the other is coupled to a fluorescent molecule. Thus, the link between the magnetic bead and the fluorescent molecule is established only when binding occurs, enabling detection of the protein-DNA interaction. Using magnetic forces, the beads are concentrated and manipulated in a periodic motion in and out of a laser beam, producing a detectable oscillating signal. Using MMB, we detected protein-DNA interactions between short GC-rich DNA sequences and both a purified specificity protein 1 (Sp1) and an overexpressed Buttonhead (BTD) protein in a cell lysate. The specificity of the interactions was assessed using mutated DNA sequences and competition experiments. The assays were experimentally compared with commonly used electrophoretic mobility shift assay, which takes approximately 4-72 h. In comparison, the MMB-based assay's turnaround time is ∼2 h, and it provides unambiguous results and quantitative measures of performance. The MMB system uses simple and cheap components, making it an attractive alternative method over current costly and time-consuming techniques for analyzing protein-DNA interactions. Therefore, we anticipate that the MMB-based technique will significantly advance the detection of protein-DNA interactions in biomedical research.
Collapse
Affiliation(s)
- Shira Roth
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan 5290002, Israel
| | - Amos Danielli
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan 5290002, Israel
| |
Collapse
|
50
|
Zhang Y, Jiang F, Chen Y, Ju LA. Platelet Mechanobiology Inspired Microdevices: From Hematological Function Tests to Disease and Drug Screening. Front Pharmacol 2022; 12:779753. [PMID: 35126120 PMCID: PMC8811026 DOI: 10.3389/fphar.2021.779753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Platelet function tests are essential to profile platelet dysfunction and dysregulation in hemostasis and thrombosis. Clinically they provide critical guidance to the patient management and therapeutic evaluation. Recently, the biomechanical effects induced by hemodynamic and contractile forces on platelet functions attracted increasing attention. Unfortunately, the existing platelet function tests on the market do not sufficiently incorporate the topical platelet mechanobiology at play. Besides, they are often expensive and bulky systems that require large sample volumes and long processing time. To this end, numerous novel microfluidic technologies emerge to mimic vascular anatomies, incorporate hemodynamic parameters and recapitulate platelet mechanobiology. These miniaturized and cost-efficient microfluidic devices shed light on high-throughput, rapid and scalable platelet function testing, hematological disorder profiling and antiplatelet drug screening. Moreover, the existing antiplatelet drugs often have suboptimal efficacy while incurring several adverse bleeding side effects on certain individuals. Encouraged by a few microfluidic systems that are successfully commercialized and applied to clinical practices, the microfluidics that incorporate platelet mechanobiology hold great potential as handy, efficient, and inexpensive point-of-care tools for patient monitoring and therapeutic evaluation. Hereby, we first summarize the conventional and commercially available platelet function tests. Then we highlight the recent advances of platelet mechanobiology inspired microfluidic technologies. Last but not least, we discuss their future potential of microfluidics as point-of-care tools for platelet function test and antiplatelet drug screening.
Collapse
Affiliation(s)
- Yingqi Zhang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Heart Research Institute, Newtown, NSW, Australia
| | - Fengtao Jiang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Yunfeng Chen
- The Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
- The Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Heart Research Institute, Newtown, NSW, Australia
- *Correspondence: Lining Arnold Ju,
| |
Collapse
|