1
|
Desmedt E, Casademont-Reig I, Monreal-Corona R, De Vleeschouwer F, Alonso M. Aromaticity in the Spectroscopic Spotlight of Hexaphyrins. Chemistry 2024; 30:e202401933. [PMID: 38889264 DOI: 10.1002/chem.202401933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Spectroscopic properties are commonly used in the experimental evaluation of ground- and excited-state aromaticity in expanded porphyrins. Herein, we investigate if the defining photophysical properties still hold for a diverse set of hexaphyrins with varying redox states, topologies, peripheral substitutions, and core-modifications. By combining TD-DFT calculations with several aromaticity descriptors and chemical compound space maps, the intricate interplay between structural planarity, aromaticity, and absorption spectra is elucidated. Our results emphasize that the general assumption that antiaromatic porphyrinoids exhibit significantly attenuated absorption bands as compared to aromatic counterparts does not hold even for the unsubstituted hexaphyrin macrocycles. To connect the spectroscopic properties to the hexaphyrins' aromaticity behaviour, we analyzed chemical compound space maps defined by the various aromaticity indices. The intensity of the Q-band is not well described by the macrocyclic aromaticity. Instead, the degeneracy of the frontier molecular orbitals, the HOMO-LUMO gap, and the |ΔHOMO-ΔLUMO|2 values appear to be better indicators to identify hexaphyrins with enhanced light-absorbing abilities in the near-infrared region. Regions with highly planar hexaphyrin structures, both aromatic and antiaromatic, are characterized by an intense B-band. Hence, we advise using a combination of global and local aromaticity descriptors rooted in different criteria to assess the aromaticity of expanded porphyrins instead of solely relying on the absorption spectra.
Collapse
Affiliation(s)
- Eline Desmedt
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Irene Casademont-Reig
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Roger Monreal-Corona
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Freija De Vleeschouwer
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Mercedes Alonso
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| |
Collapse
|
2
|
La Force H, Freindorf M, Kraka E. Ligand Characterization and DNA Intercalation of Ru(II) Polypyridyl Complexes: A Local Vibrational Mode Study. J Phys Chem A 2024; 128:5925-5940. [PMID: 38990174 DOI: 10.1021/acs.jpca.4c02954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We investigated in this work ruthenium-ligand bonding across the RuN framework in 12 Ru(II) polypyridyl complexes in the gas phase and solution for both singlet and triplet states, in addition to their affinity for DNA binding through π-π stacking interactions with DNA nucleobases. As a tool to assess the intrinsic strength of the ruthenium-ligand bonds, we determined local vibrational force constants via our local vibrational mode analysis software. We introduced a novel local force constant that directly accounts for the intrinsic strength of the π-π stacking interaction between DNA and the intercalated Ru(II) complex. According to our findings, [Ru(phen)2(dppz)]2+ and [Ru(phen)2(11-CN-dppz)]2+ provide an intriguing trade-off between photoinduced complex excitation and the strength of the subsequent π-π stacking interaction with DNA. [Ru(phen)2(dppz)]2+ displays a small singlet-triplet splitting and a strong π-π stacking interaction in its singlet state, suggesting a favorable photoexcitation but potentially weaker interaction with DNA in the excited state. Conversely, [Ru(phen)2(11-CN-dppz)]2+ exhibits a larger singlet-triplet splitting and a stronger π-π stacking interaction with DNA in its triplet state, indicating a less favorable photoinduced transition but a stronger interaction with DNA postexcitation. We hope our study will inspire future experimental and computational work aimed at the design of novel Ru-polypyridyl drug candidates and that our new quantitative measure of π-π stacking interactions in DNA will find a general application in the field.
Collapse
Affiliation(s)
- Hunter La Force
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
3
|
Chkoundali S, Garoui I, Trigui W, Oueslati A. Crystal structure, Hirshfeld surface analysis, conduction mechanism and electrical modulus study of the new organic-inorganic compound [C 8H 10NO] 2HgBr 4. RSC Adv 2024; 14:8971-8980. [PMID: 38495990 PMCID: PMC10941732 DOI: 10.1039/d4ra00689e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
There has been a lot of interest in the development of a novel hybrid material based on mercury that has fascinating structural properties. In this paper, single crystals of [C8H10NO]2HgBr4 was successfully synthesized by the slow evaporation method at room temperature. In fact, the latter crystallizes in the orthorhombic system (Cmca space group) with cell parameters a = 20.824(2) Å, b = 15.352(1) Å and c = 13.700(1) Å and Z = 8. Its structure is constituted by one [C8H10NO]+ cation and one type of isolated anion [HgBr4]2- tetrabromomercurate(ii). The atomic arrangement presents an alternation of organic and inorganic layers along the a-axis. To maintain the cohesiveness of the structure, these components are joined via π⋯π interactions and hydrogen bonds (N-H⋯Br and N-H⋯O). A general network of hydrogen bonds ensures the interconnection of several entities. Greater knowledge of these interactions has been obtained based on the Hirshfeld surface analysis and 2D fingerprint plots. The analysis of complex impedance spectra shows that the electrical properties of the material are heavily dependent on frequency and temperature. The obtained results were analyzed by fitting the experimental data to an equivalent circuit model. The temperature dependence of conductivity and the relaxation frequency ωmax fulfill the Arrhenius relation and activation energies are estimated. The material follows Jonscher's universal dynamic law or here there is a decrease in the exponent 's' as the temperature increases. This result indicates that the Correlated Barrier Hopping (CBH) model represents the conduction mechanism. Besides, the non-Debye type conductivity relaxation is revealed by the electrical modulus analysis.
Collapse
Affiliation(s)
- Souad Chkoundali
- Laboratory of Multifunctional Materials and Applications (LaMMA), LR16ES18, Faculty of Sciences, University of Sfax B. P. 1171 3000 Sfax Tunisia
| | - Iheb Garoui
- Laboratory of Spectroscopic Characterizations and Optics Materials, University of Sfax, Faculty of Sciences of Sfax B. P. 1171 3000 Sfax Tunisia
| | - Wala Trigui
- Laboratory of Spectroscopic Characterizations and Optics Materials, University of Sfax, Faculty of Sciences of Sfax B. P. 1171 3000 Sfax Tunisia
| | - Abderrazek Oueslati
- Laboratory of Spectroscopic Characterizations and Optics Materials, University of Sfax, Faculty of Sciences of Sfax B. P. 1171 3000 Sfax Tunisia
| |
Collapse
|
4
|
Shostak S, Park W, Oh J, Kim J, Lee S, Nam H, Filatov M, Kim D, Choi CH. Ultrafast Excited State Aromatization in Dihydroazulene. J Am Chem Soc 2023; 145:1638-1648. [PMID: 36633597 DOI: 10.1021/jacs.2c09800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Excited-state aromatization dynamics in the photochemical ring opening of dihydroazulene (DHA) is investigated by nonadiabatic molecular dynamics simulations in connection with the mixed-reference spin-flip (MRSF)-TDDFT method. It is found that, in the main reaction channel, the ring opening occurs in the excited state in a sequence of steps with increasing aromaticity. The first stage lasting ca. 200 fs produces an 8π semiaromatic S1 minimum (S1, min) through an ultrafast damped bond length alternation (BLA) movement synchronized with a partial planarization of the cycloheptatriene ring. An additional ca. 200 fs are required to gain the vibrational energy needed to overcome a ring-opening transition state characterized by an enhanced Baird aromaticity. Unlike other BLA motions of ππ* state, it was shown that their damping is a characteristic feature of aromatic bond-equalization process. In addition, some minor channels of the reaction have also been discovered, where noticeably higher barriers of the S1 non/antiaromatic transition structures must be surmounted. These anti-Baird channels led to reformation of DHA or other closed-ring products. The observed competition between the Baird and anti-Baird channels suggests that the quantum yield of photochemical products can be controllable by tipping their balance. Hence, here we suggest including the concept of anti-Baird, which would expand the applicability of Baird rule to much broader situations.
Collapse
Affiliation(s)
- Svetlana Shostak
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Woojin Park
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Juwon Oh
- Department of ICT Environmental Health System (Graduate school) and Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Jinseok Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Hyeongwoo Nam
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
5
|
Wu S, Ni Y, Han Y, Xin S, Hou X, Zhu J, Li Z, Wu J. Aromaticity in Fully π-Conjugated Open-Cage Molecules. J Am Chem Soc 2022; 144:23158-23167. [DOI: 10.1021/jacs.2c10859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yong Ni
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shan Xin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Xudong Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jun Zhu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhengtao Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
6
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 231] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
7
|
Kim J, Kim H, Oh J, Kim D. Ligand‐to‐metal charge transfer driven by excited‐state antiaromaticity in metallohexaphyrins. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinseok Kim
- Department of Chemistry Yonsei University Seoul Korea
| | - Hyeonwoo Kim
- Department of Chemistry Soonchunhyang University Asan Korea
| | - Juwon Oh
- Department of Chemistry Soonchunhyang University Asan Korea
| | - Dongho Kim
- Department of Chemistry Yonsei University Seoul Korea
| |
Collapse
|
8
|
Kim J, Oh J, Park S, Yoneda T, Osuka A, Lim M, Kim D. Modulations of a Metal-Ligand Interaction and Photophysical Behaviors by Hückel-Möbius Aromatic Switching. J Am Chem Soc 2021; 144:582-589. [PMID: 34967619 DOI: 10.1021/jacs.1c11705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In organometallic complexes containing π-conjugated macrocyclic chelate ligands, conformational change significantly affects metal-ligand electronic interactions, hence tuning properties of the complexes. In this regard, we investigated the metal-ligand interactions in hexaphyrin mono-Pd(II) complexes Pd[28]M and Pd[26]H, which exhibit a redox-induced switching of Hückel-Möbius aromaticity and subsequent molecular conformation, and their effect on the electronic structure and photophysical behaviors. In Möbius aromatic Pd[28]M, the weak metal-ligand interaction leads to the π electronic structure of the hexaphyrin ligand remaining almost intact, which undergoes efficient intersystem crossing (ISC) assisted by the heavy-atom effect of the Pd metal. In Hückel aromatic Pd[26]H, the significant metal-ligand interaction results in ligand-to-metal charge-transfer (LMCT) in the excited-state dynamics. These contrasting metal-ligand electronic interactions have been revealed by time-resolved electronic and vibrational spectroscopies and time-dependent DFT calculations. This work indicates that the conspicuous modulation of metal-ligand interaction by Hückel-Möbius aromaticity switching is an appealing approach to manipulate molecular properties of metal complexes, further enabling the fine-tuning of metal-ligand interactions and the novel design of functional organometallic materials.
Collapse
Affiliation(s)
- Jinseok Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Juwon Oh
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea.,Department of Chemistry, Soonchunhyang University, Asan-si, Chungnam 31538, Korea
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Tomoki Yoneda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
9
|
Kim J, Oh J, Osuka A, Kim D. Porphyrinoids, a unique platform for exploring excited-state aromaticity. Chem Soc Rev 2021; 51:268-292. [PMID: 34879124 DOI: 10.1039/d1cs00742d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, Baird (anti)aromaticity has been referred to as a description of excited-state (anti)aromaticity. With the term of Baird's rule, recent studies have intensively verified that the Hückel aromatic [4n + 2]π (or antiaromatic [4n]π) molecules in the ground state are reversed to give Baird aromatic [4n]π (or Baird antiaromatic [4n + 2]π) molecules in the excited states. Since the Hückel (anti)aromaticity has great influence on the molecular properties and reaction mechanisms, the Baird (anti)aromaticity has been expected to act as a dominant factor in governing excited-state properties and processes, which has attracted intensive scientific investigations for the verification of the concept of reversed aromaticity in the excited states. In this scientific endeavor, porphyrinoids have recently played leading roles in the demonstration of the aromaticity reversal in the excited states and its conceptual development. The distinct structural and electronic nature of porphyhrinoids depending on their (anti)aromaticity allow the direct observation of excited-state aromaticity reversal, Baird's rule. The explicit experimental demonstration with porphyrinoids has contributed greatly to its conceptual development and application in novel functional organic materials. Based on the significant role of porphyrinoids in the field of excited-state aromaticity, this review provides an overview of the experimental verification of the reversal concept of excited-state aromaticity by porphyrinoids and the recent progress on its conceptual application in novel functional molecules.
Collapse
Affiliation(s)
- Jinseok Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan-si 31538, Korea.
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
10
|
Medina Rivero S, Urieta‐Mora J, Molina‐Ontoria A, Martín‐Fuentes C, Urgel JI, Zubiria‐Ulacia M, Lloveras V, Casanova D, Martínez JI, Veciana J, Écija D, Martín N, Casado J. A Trapezoidal Octacyanoquinoid Acceptor Forms Solution and Surface Products by Antiparallel Shape Fitting with Conformational Dipole Momentum Switch. Angew Chem Int Ed Engl 2021; 60:17887-17892. [PMID: 34086392 PMCID: PMC8456967 DOI: 10.1002/anie.202104294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Indexed: 11/13/2022]
Abstract
A new compound (1) formed by two antiparallelly disposed tetracyano thienoquinoidal units has been synthesized and studied by electrochemistry, UV/Vis-NIR, IR, EPR, and transient spectroscopy. Self-assembly of 1 on a Au(111) surface has been investigated by scanning tunneling microscopy. Experiments have been rationalized by quantum chemical calculations. 1 exhibits a unique charge distribution in its anionic form, with a gradient of charge yielding a neat molecular in-plane electric dipole momentum, which transforms out-of-plane after surface deposition due to twisted→folded conformational change and to partial charge transfer from Au(111). Intermolecular van der Waals interactions and antiparallel trapezoidal shape fitting lead to the formation of an optimal dense on Au(111) two-dimensional assembly of 1.
Collapse
Affiliation(s)
- Samara Medina Rivero
- Department of Physical ChemistryUniversity of MálagaAndalucia-Tech Campus de Teatinos s/n29071MálagaSpain
| | - Javier Urieta‐Mora
- IMDEA-Nanociencia, C/Faraday 9Ciudad Universitaria de Cantoblanco28049MadridSpain
- Department of Organic ChemistryFaculty of ChemistryComplutense University of Madrid28040MadridSpain
| | | | | | - José I. Urgel
- IMDEA-Nanociencia, C/Faraday 9Ciudad Universitaria de Cantoblanco28049MadridSpain
| | - Maria Zubiria‐Ulacia
- DonostiaInternational Physics Center (DIPC) & IKERBASQUE—Basque Foundation for SciencePaseo Manuel de Lardizabal, 420018Donostia-San SebastiánEuskadiSpain
| | - Vega Lloveras
- Department of Molecular Nanoscience and Organic MaterialsInstitut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on BioengineeringBiomaterials and Nanomedicine (CIBER-BBN)Campus de la UAB08193BellaterraSpain
| | - David Casanova
- DonostiaInternational Physics Center (DIPC) & IKERBASQUE—Basque Foundation for SciencePaseo Manuel de Lardizabal, 420018Donostia-San SebastiánEuskadiSpain
| | - José I. Martínez
- Department of Nanostructures and Low-dimensional MaterialsInstitute of Materials Science of Madrid (ICMM-CSIC)Ciudad Universitaria de CantoblancoC/Sor Juana Inés de la Cruz 328049MadridSpain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic MaterialsInstitut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on BioengineeringBiomaterials and Nanomedicine (CIBER-BBN)Campus de la UAB08193BellaterraSpain
| | - David Écija
- IMDEA-Nanociencia, C/Faraday 9Ciudad Universitaria de Cantoblanco28049MadridSpain
| | - Nazario Martín
- IMDEA-Nanociencia, C/Faraday 9Ciudad Universitaria de Cantoblanco28049MadridSpain
- Department of Organic ChemistryFaculty of ChemistryComplutense University of Madrid28040MadridSpain
| | - Juan Casado
- Department of Physical ChemistryUniversity of MálagaAndalucia-Tech Campus de Teatinos s/n29071MálagaSpain
| |
Collapse
|
11
|
Medina Rivero S, Urieta‐Mora J, Molina‐Ontoria A, Martín‐Fuentes C, Urgel JI, Zubiria‐Ulacia M, Lloveras V, Casanova D, Martínez JI, Veciana J, Écija D, Martín N, Casado J. A Trapezoidal Octacyanoquinoid Acceptor Forms Solution and Surface Products by Antiparallel Shape Fitting with Conformational Dipole Momentum Switch. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Samara Medina Rivero
- Department of Physical Chemistry University of Málaga Andalucia-Tech Campus de Teatinos s/n 29071 Málaga Spain
| | - Javier Urieta‐Mora
- IMDEA-Nanociencia, C/Faraday 9 Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
- Department of Organic Chemistry Faculty of Chemistry Complutense University of Madrid 28040 Madrid Spain
| | | | | | - José I. Urgel
- IMDEA-Nanociencia, C/Faraday 9 Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
| | - Maria Zubiria‐Ulacia
- Donostia International Physics Center (DIPC) & IKERBASQUE—Basque Foundation for Science Paseo Manuel de Lardizabal, 4 20018 Donostia-San Sebastián Euskadi Spain
| | - Vega Lloveras
- Department of Molecular Nanoscience and Organic Materials Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) Campus de la UAB 08193 Bellaterra Spain
| | - David Casanova
- Donostia International Physics Center (DIPC) & IKERBASQUE—Basque Foundation for Science Paseo Manuel de Lardizabal, 4 20018 Donostia-San Sebastián Euskadi Spain
| | - José I. Martínez
- Department of Nanostructures and Low-dimensional Materials Institute of Materials Science of Madrid (ICMM-CSIC) Ciudad Universitaria de Cantoblanco C/Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) Campus de la UAB 08193 Bellaterra Spain
| | - David Écija
- IMDEA-Nanociencia, C/Faraday 9 Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
| | - Nazario Martín
- IMDEA-Nanociencia, C/Faraday 9 Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
- Department of Organic Chemistry Faculty of Chemistry Complutense University of Madrid 28040 Madrid Spain
| | - Juan Casado
- Department of Physical Chemistry University of Málaga Andalucia-Tech Campus de Teatinos s/n 29071 Málaga Spain
| |
Collapse
|
12
|
Romero AH, Romero IE, Piro OE, Echeverría GA, Gotopo LA, Moller MN, Rodríguez GA, Cabrera GJ, Castro ER, López SE, Cerecetto HE. Photo-Induced Partially Aromatized Intramolecular Charge Transfer. J Phys Chem B 2021; 125:9268-9285. [PMID: 34357778 DOI: 10.1021/acs.jpcb.1c03747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diverse models of intramolecular charge transfer (ICT) have been proposed for interpreting the origin of the charge-transfer (CT) state in donor-acceptor (D-A) dyes. However, a large variety of fused-heterocyclic dyes containing a pseudo-aromatic ring in the rigid structure have shown to be incompatible with them. To approximate a solution within the ICT concept, we reported a novel ICT model called partially aromatized intramolecular charge transfer (PAICT). PAICT involves the generation of a CT state from an ICT that occurred within a pre-excited D-A fused-heterocyclic structure possessing a pseudo-aromatic or unstable aromatic ring as the acceptor moiety. The model was proposed from the multiple-emissive mesomeric D-A N1-aryl-2-(trifluoromethyl)benzo[b][1,8]naphthyridin-4(1H)-one, whose excited mesomeric states, which are defined by the aromatic and pseudo-aromatic forms of the pyrindin-4(1H)-one ring, led to a common partial aromatized CT state upon excitation via PAICT. The latter was supported through theoretical calculations on the excited mesomeric states, one-dimensional (1D) and two-dimensional (2D) excitation-emission measurements in different solvents, and the detection of three excited states by lifetime measurements upon 370 nm excitation. The existence of mesomerism was supposed from: (i) two overlapping bands at 370-390 (or 400-420 nm) in UV-vis spectra, (ii) the direct interaction between the pyridinic nitrogen of one molecule and the carbonylic oxygen of the other found in the solid state and, (iii) the detection of three excited states by lifetime measurements. The PAICT opens new perspectives for interpreting the charge-transfer phenomenon in fused-heterocyclic dyes, in particular, those containing a pseudo-aromatic or unstable aromatic ring as an acceptor moiety.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Ivan E Romero
- Laboratorio de Síntesis Orgánica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1040, Venezuela
| | - Oscar E Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata 1900, Argentina
| | - Gustavo A Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata 1900, Argentina
| | - Lourdes A Gotopo
- Laboratorio de Síntesis Orgánica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1040, Venezuela
| | - Matías N Moller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Gonzalo A Rodríguez
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Gustavo J Cabrera
- Laboratorio de Síntesis Orgánica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1040, Venezuela
| | - Erick R Castro
- Instituto de Física da UFRGS, Av. Bento Gonçalves, Porto Alegre 9500, RS, Brazil
| | - Simón E López
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Hugo E Cerecetto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.,Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay
| |
Collapse
|
13
|
Ueta K, Kim J, Ooi S, Oh J, Shin J, Nakai A, Lim M, Tanaka T, Kim D, Osuka A. meso-Oxoisocorroles: Tunable Antiaromaticity by Metalation and Coordination of Lewis Acids as Well as Aromaticity Reversal in the Triplet Excited State. J Am Chem Soc 2021; 143:7958-7967. [DOI: 10.1021/jacs.1c00476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kento Ueta
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jinseok Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Shota Ooi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan-si 31538, Korea
| | - Juhyang Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Akito Nakai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Zhuang B, Tojo S, Fujitsuka M. Electronic and Structural Properties of 2,3‐Naphthalimide in Open‐Shell Configurations Investigated by Pulse Radiolytic and Theoretical Approaches. ChemistrySelect 2021. [DOI: 10.1002/slct.202100417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bo Zhuang
- The Institute of Scientific and Industrial Research Osaka University Mihogaoka 8–1, Ibaraki Osaka 567-0047 Japan
- LOB, CNRS, INSERM École Polytechnique, Institut Polytechnique de Paris 91128 Palaiseau France
| | - Sachiko Tojo
- The Institute of Scientific and Industrial Research Osaka University Mihogaoka 8–1, Ibaraki Osaka 567-0047 Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research Osaka University Mihogaoka 8–1, Ibaraki Osaka 567-0047 Japan
| |
Collapse
|
15
|
Ayub R, El Bakouri O, Smith JR, Jorner K, Ottosson H. Triplet State Baird Aromaticity in Macrocycles: Scope, Limitations, and Complications. J Phys Chem A 2021; 125:570-584. [PMID: 33427474 PMCID: PMC7884009 DOI: 10.1021/acs.jpca.0c08926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Indexed: 02/06/2023]
Abstract
The aromaticity of cyclic 4nπ-electron molecules in their first ππ* triplet state (T1), labeled Baird aromaticity, has gained growing attention in the past decade. Here we explore computationally the limitations of T1 state Baird aromaticity in macrocyclic compounds, [n]CM's, which are cyclic oligomers of four different monocycles (M = p-phenylene (PP), 2,5-linked furan (FU), 1,4-linked cyclohexa-1,3-diene (CHD), and 1,4-linked cyclopentadiene (CPD)). We strive for conclusions that are general for various DFT functionals, although for macrocycles with up to 20 π-electrons in their main conjugation paths we find that for their T1 states single-point energies at both canonical UCCSD(T) and approximative DLPNO-UCCSD(T) levels are lowest when based on UB3LYP over UM06-2X and UCAM-B3LYP geometries. This finding is in contrast to what has earlier been observed for the electronic ground state of expanded porphyrins. Yet, irrespective of functional, macrocycles with 2,5-linked furans ([n]CFU's) retain Baird aromaticity until larger n than those composed of the other three monocycles. Also, when based on geometric, electronic and energetic aspects of aromaticity, a 3[n]CFU with a specific n is more strongly Baird-aromatic than the analogous 3[n]CPP while the magnetic indices tell the opposite. To construct large T1 state Baird-aromatic [n]CM's, the design should be such that the T1 state Baird aromaticity of the macrocyclic perimeter dominates over a situation with local closed-shell Hückel aromaticity of one or a few monocycles and semilocalized triplet diradical character. Monomers with lower Hückel aromaticity in S0 than benzene (e.g., furan) that do not impose steric congestion are preferred. Structural confinement imposed by, e.g., methylene bridges is also an approach to larger Baird-aromatic macrocycles. Finally, by using the Zilberg-Haas description of T1 state aromaticity, we reveal the analogy to the Hückel aromaticity of the corresponding closed-shell dications yet observe stronger Hückel aromaticity in the macrocyclic dications than Baird aromaticity in the T1 states of the neutral macrocycles.
Collapse
Affiliation(s)
- Rabia Ayub
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Ouissam El Bakouri
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Joshua R. Smith
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
- Department
of Chemistry, Humboldt State University, One Harpst Street, Arcata, California 95521, United States
| | - Kjell Jorner
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Henrik Ottosson
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| |
Collapse
|
16
|
Baranac-Stojanović M, Stojanović M, Aleksić J. Triplet state (anti)aromaticity of some monoheterocyclic analogues of benzene, naphthalene and anthracene. NEW J CHEM 2021. [DOI: 10.1039/d1nj00207d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By employing DFT calculations, we show the influence of heteroatom substitution on the triplet state (anti)aromaticity of benzene, naphthalene and anthracene.
Collapse
Affiliation(s)
| | - Milovan Stojanović
- University of Belgrade – Institute of Chemistry
- Technology and Metallurgy – Center for Chemistry
- Belgrade
- Serbia
| | - Jovana Aleksić
- University of Belgrade – Institute of Chemistry
- Technology and Metallurgy – Center for Chemistry
- Belgrade
- Serbia
| |
Collapse
|
17
|
Kotani R, Liu L, Kumar P, Kuramochi H, Tahara T, Liu P, Osuka A, Karadakov PB, Saito S. Controlling the S1 Energy Profile by Tuning Excited-State Aromaticity. J Am Chem Soc 2020; 142:14985-14992. [DOI: 10.1021/jacs.0c05611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ryota Kotani
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Li Liu
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Pardeep Kumar
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1, Hirosawa, Wako 351-0198, Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1, Hirosawa, Wako 351-0198, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1, Hirosawa, Wako 351-0198, Japan
| | - Pengpeng Liu
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Atsuhiro Osuka
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Peter B. Karadakov
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
18
|
Kim J, Oh J, Soya T, Yoneda T, Park S, Lim M, Osuka A, Kim D. Excited‐State Aromaticity of Gold(III) Hexaphyrins and Metalation Effect Investigated by Time‐Resolved Electronic and Vibrational Spectroscopy. Angew Chem Int Ed Engl 2020; 59:5129-5134. [DOI: 10.1002/anie.201913058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Jinseok Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of ChemistryYonsei University Seoul 120-749 Korea
| | - Juwon Oh
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of ChemistryYonsei University Seoul 120-749 Korea
| | - Takanori Soya
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Tomoki Yoneda
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional MaterialsPusan National University Busan 46241 Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional MaterialsPusan National University Busan 46241 Korea
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of ChemistryYonsei University Seoul 120-749 Korea
| |
Collapse
|
19
|
Kim J, Oh J, Soya T, Yoneda T, Park S, Lim M, Osuka A, Kim D. Excited‐State Aromaticity of Gold(III) Hexaphyrins and Metalation Effect Investigated by Time‐Resolved Electronic and Vibrational Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jinseok Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of ChemistryYonsei University Seoul 120-749 Korea
| | - Juwon Oh
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of ChemistryYonsei University Seoul 120-749 Korea
| | - Takanori Soya
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Tomoki Yoneda
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional MaterialsPusan National University Busan 46241 Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional MaterialsPusan National University Busan 46241 Korea
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of ChemistryYonsei University Seoul 120-749 Korea
| |
Collapse
|
20
|
Abstract
Density functional theory calculations have been performed to explore the substituent effect on benzene's structure and aromaticity upon excitation to the first triplet excited state (T1). Discussion is based on spin density analysis, HOMA (harmonic oscillator model of aromaticity), NICS (nucleus-independent chemical shift), ACID (anisotropy of the induced current density), and monohydrogenation free energies and shows that a large span of aromatic properties, from highly antiaromatic to strongly aromatic, could be achieved by varying the substituent. This opens up a possibility of controlling benzene's physicochemical behavior in its excited state, while molecular motion, predicted for several derivatives, could be of interest for the development of photomechanical materials.
Collapse
Affiliation(s)
- Marija Baranac-Stojanović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 158, Belgrade 11000, Serbia
| |
Collapse
|
21
|
Ni Y, Gopalakrishna TY, Phan H, Kim T, Herng TS, Han Y, Tao T, Ding J, Kim D, Wu J. 3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states. Nat Chem 2020; 12:242-248. [PMID: 31959959 DOI: 10.1038/s41557-019-0399-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Aromaticity is a vital concept that governs the electronic properties of π-conjugated organic molecules and has long been restricted to 2D systems. The aromaticity in 3D π-conjugated molecules has been rarely studied. Here we report a fully conjugated diradicaloid molecular cage and its global aromaticity at different oxidation states. The neutral compound has an open-shell singlet ground state with a dominant 38π monocyclic conjugation pathway and follows the [4n + 2] Hückel aromaticity rule; the dication has a triplet ground state with a dominant 36π monocyclic conjugation pathway and satisfies [4n] Baird aromaticity; the tetracation is an open-shell singlet with 52 π-electrons that are delocalized along the 3D rigid framework, showing 3D global antiaromaticity; and the hexacation possesses D3 symmetry with 50 globally delocalized π-electrons, showing [6n + 2] 3D global aromaticity. Different types of aromaticity were therefore accessed in one molecular cage platform, depending on the symmetry, number of π-electrons and spin state.
Collapse
Affiliation(s)
- Yong Ni
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | | | - Hoa Phan
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Taeyeon Kim
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Tun Seng Herng
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Tao Tao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
Baranac-Stojanović M. Triplet-State Structures, Energies, and Antiaromaticity of BN Analogues of Benzene and Their Benzo-Fused Derivatives. J Org Chem 2019; 84:13582-13594. [PMID: 31538474 DOI: 10.1021/acs.joc.9b01858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well known that benzene is aromatic in the ground state (the Hückel's rule) and antiaromatic in the first triplet (T1) excited state (the Baird's rule). Whereas its BN analogues, the three isomeric dihydro-azaborines, have been shown to have various degrees of aromaticity in their ground state, almost no data are available for their T1 states. Thus, the purpose of this work is to theoretically [B3LYP/6-311+G(d,p)] predict structures, energies, and antiaromaticity of T1 dihydro-azaborines and some benzo-fused derivatives. Conclusions are based on spin density analysis, isogyric and hydrogenation reactions, HOMA, NICS, and ACID calculations. The results suggest that singlet-triplet energy gaps, antiaromaticity, and related excited-state properties of benzene, naphthalene, and anthracene could be tuned and controlled by the BN substitution pattern. While all studied compounds remain (nearly) planar upon excitation, the spin density distribution in T1 1,4-dihydro-azaborine induces a conformational change by which the two co-planar C-H bonds in the ground state become perpendicular to each other in the excited state. This predicted change in geometry could be of interest for the design of new photomechanical materials. Excitation of B-CN/N-NH2 1,4-azaborine would have a few effects: intramolecular charge transfer, aromaticity reversal, rotation, and stereoelectronic Umpolung of the amino group.
Collapse
Affiliation(s)
- Marija Baranac-Stojanović
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , P.O.Box 158, 11000 Belgrade , Serbia
| |
Collapse
|
23
|
Fallon KJ, Budden P, Salvadori E, Ganose AM, Savory CN, Eyre L, Dowland S, Ai Q, Goodlett S, Risko C, Scanlon DO, Kay CWM, Rao A, Friend RH, Musser AJ, Bronstein H. Exploiting Excited-State Aromaticity To Design Highly Stable Singlet Fission Materials. J Am Chem Soc 2019; 141:13867-13876. [PMID: 31381323 DOI: 10.1021/jacs.9b06346] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Singlet fission, the process of forming two triplet excitons from one singlet exciton, is a characteristic reserved for only a handful of organic molecules due to the atypical energetic requirement for low energy excited triplet states. The predominant strategy for achieving such a trait is by increasing ground state diradical character; however, this greatly reduces ambient stability. Herein, we exploit Baird's rule of excited state aromaticity to manipulate the singlet-triplet energy gap and create novel singlet fission candidates. We achieve this through the inclusion of a [4n] 5-membered heterocycle, whose electronic resonance promotes aromaticity in the triplet state, stabilizing its energy relative to the singlet excited state. Using this theory, we design a family of derivatives of indolonaphthyridine thiophene (INDT) with highly tunable excited state energies. Not only do we access novel singlet fission materials, they also exhibit excellent ambient stability, imparted due to the delocalized nature of the triplet excited state. Spin-coated films retained up to 85% activity after several weeks of exposure to oxygen and light, while analogous films of TIPS-pentacene showed full degradation after 4 days, showcasing the excellent stability of this class of singlet fission scaffold. Extension of our theoretical analysis to almost ten thousand candidates reveals an unprecedented degree of tunability and several thousand potential fission-capable candidates, while clearly demonstrating the relationship between triplet aromaticity and singlet-triplet energy gap, confirming this novel strategy for manipulating the exchange energy in organic materials.
Collapse
Affiliation(s)
- Kealan J Fallon
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , U.K
| | - Peter Budden
- Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , U.K
| | - Enrico Salvadori
- Department of Chemistry , University of Turin , Via Pietro Giuria 7 , 10125 Torino , Italy.,London Centre for Nanotechnology , University College London , 17-19 Gordon Street , London WC1H 0AH , U.K
| | - Alex M Ganose
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K.,Thomas Young Centre , University College London , Gower Street , London WC1E 6BT , U.K.,Diamond Light Source Ltd., Diamond House , Harwell Science and Innovation Campus , Oxfordshire OX11 0DE , U.K
| | - Christopher N Savory
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K.,Thomas Young Centre , University College London , Gower Street , London WC1E 6BT , U.K
| | - Lissa Eyre
- Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , U.K
| | - Simon Dowland
- Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , U.K
| | - Qianxiang Ai
- Department of Chemistry and Center for Applied Energy Research , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Stephen Goodlett
- Department of Chemistry and Center for Applied Energy Research , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Chad Risko
- Department of Chemistry and Center for Applied Energy Research , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - David O Scanlon
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K.,Thomas Young Centre , University College London , Gower Street , London WC1E 6BT , U.K.,Diamond Light Source Ltd., Diamond House , Harwell Science and Innovation Campus , Oxfordshire OX11 0DE , U.K
| | - Christopher W M Kay
- London Centre for Nanotechnology , University College London , 17-19 Gordon Street , London WC1H 0AH , U.K.,Department of Chemistry , University of Saarland , 66123 Saarbrücken , Germany
| | - Akshay Rao
- Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , U.K
| | - Richard H Friend
- Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , U.K
| | - Andrew J Musser
- Department of Physics and Astronomy , University of Sheffield , Hicks Building, Hounsfield Road , Sheffield S3 7RH , U.K
| | - Hugo Bronstein
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , U.K.,Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , U.K
| |
Collapse
|
24
|
Three-dimensional aromaticity in an antiaromatic cyclophane. Nat Commun 2019; 10:3576. [PMID: 31395873 PMCID: PMC6687811 DOI: 10.1038/s41467-019-11467-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Understanding of interactions among molecules is essential to elucidate the binding of pharmaceuticals on receptors, the mechanism of protein folding and self-assembling of organic molecules. While interactions between two aromatic molecules have been examined extensively, little is known about the interactions between two antiaromatic molecules. Theoretical investigations have predicted that antiaromatic molecules should be stabilized when they stack with each other by attractive intermolecular interactions. Here, we report the synthesis of a cyclophane, in which two antiaromatic porphyrin moieties adopt a stacked face-to-face geometry with a distance shorter than the sum of the van der Waals radii of the atoms involved. The aromaticity in this cyclophane has been examined experimentally and theoretically. This cyclophane exhibits three-dimensional spatial current channels between the two subunits, which corroborates the existence of attractive interactions between two antiaromatic π-systems. Little is known about interactions between two antiaromatic molecules. Here, the authors synthesised a cyclophane, in which two antiaromatic porphyrin moieties adopt a stacked face-to-face geometry with a distance shorter than the sum of the van der Waals radii of the atoms involved.
Collapse
|
25
|
Bekki Y, Kang S, Kim D, Osuka A. Acetylene and trans-Ethylene Bridged B III -Subporphyrin Dimers. Chem Asian J 2019; 14:2230-2234. [PMID: 31090194 DOI: 10.1002/asia.201900547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 11/09/2022]
Abstract
Acetylene and trans-ethylene bridged BIII -subporphyrin dimers were synthesized by cross-coupling reactions of meso-bromo BIII subporphyrin. These dimers display perturbed and red-shifted absorption spectra reaching around 750 nm and fluorescence reaching at around 850 nm with high quantum yields of 0.39 and 0.47, respectively. DFT calculations have revealed that the HOMOs and the LUMOs of both dimers are spread over the two subporphyrin units as an indication of effective conjugation between the two subporphyrin units. The large Stokes shifts and characteristic pico-second time-resolved transient absorption spectra indicated that the S1 -states of the dimers relax with structural changes, which are larger for the trans-ethylene bridged dimer.
Collapse
Affiliation(s)
- Yosuke Bekki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Seongsoo Kang
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 120-749, Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 120-749, Korea
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
26
|
Lampkin BJ, Nguyen YH, Karadakov PB, VanVeller B. Demonstration of Baird's rule complementarity in the singlet state with implications for excited-state intramolecular proton transfer. Phys Chem Chem Phys 2019; 21:11608-11614. [DOI: 10.1039/c9cp02050k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Greater aromaticity in the ground state leads to greater antiaromaticity in the excited state (and vice versa) which helps rationalize previously unexplained behavior of ESIPT fluorophores.
Collapse
|
27
|
Sarma T, Kim G, Sen S, Cha WY, Duan Z, Moore MD, Lynch VM, Zhang Z, Kim D, Sessler JL. Proton-Coupled Redox Switching in an Annulated π-Extended Core-Modified Octaphyrin. J Am Chem Soc 2018; 140:12111-12119. [PMID: 30180553 DOI: 10.1021/jacs.8b06938] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proton-coupled electron transfer (PCET) is an important chemical and biological phenomenon. It is attractive as an on-off switching mechanism for redox-active synthetic systems but has not been extensively exploited for this purpose. Here we report a core-modified planar weakly antiaromatic/nonaromatic octaphyrin, namely, a [32]octaphyrin(1.0.1.0.1.0.1.0) (1) derived from rigid naphthobipyrrole and dithienothiophene (DTT) precursors, that undergoes proton-coupled two-electron reduction to produce its aromatic congener in the presence of HCl and other hydrogen halides. Evidence for the production of a [4 n + 1] π-electron intermediate radical state is seen in the presence of trifluoroacetic acid. Electrochemical analyses provide support for the notion that protonation causes a dramatic anodic shift in the reduction potentials of octaphyrin 1, thereby facilitating electron transfer from halide anions (viz. I-, Br-, and, Cl-). Electron-rich molecules, such as tetrathiafulvene (TTF), phenothiazine (PTZ), and catechol, were also found to induce PCET in the case of 1. Both the oxidized and two-electron reduced forms of 1 were characterized by X-ray diffraction analyses in the solid state and in solution via spectroscopic means.
Collapse
Affiliation(s)
- Tridib Sarma
- Center for Supramolecular Chemistry & Catalysis , Shanghai University , Shanghai 200444 , China.,Department of Chemistry , The University of Texas at Austin , 105 East 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Gakhyun Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| | - Sajal Sen
- Department of Chemistry , The University of Texas at Austin , 105 East 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Won-Young Cha
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| | - Zhiming Duan
- Center for Supramolecular Chemistry & Catalysis , Shanghai University , Shanghai 200444 , China
| | - Matthew D Moore
- Department of Chemistry , The University of Texas at Austin , 105 East 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Vincent M Lynch
- Department of Chemistry , The University of Texas at Austin , 105 East 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Zhan Zhang
- Center for Supramolecular Chemistry & Catalysis , Shanghai University , Shanghai 200444 , China
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| | - Jonathan L Sessler
- Center for Supramolecular Chemistry & Catalysis , Shanghai University , Shanghai 200444 , China.,Department of Chemistry , The University of Texas at Austin , 105 East 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| |
Collapse
|
28
|
Valiev RR, Fliegl H, Sundholm D. Bicycloaromaticity and Baird-type bicycloaromaticity of dithienothiophene-bridged [34]octaphyrins. Phys Chem Chem Phys 2018; 20:17705-17713. [PMID: 29942971 DOI: 10.1039/c8cp03112f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aromatic properties of two recently synthesized dithienothiophene-bridged (DTT) [34]octaphyrins have been investigated by calculating magnetically induced current densities and vertical excitation energies. These intriguing molecules have been proposed to be the first synthesized neutral bicycloaromatic compounds. The triplet state of their dications was even suggested to be Baird-type bicycloaromatic rendering them very interesting as a new prototype of molecules possessing simultaneously the two rare types of aromaticity. Here, we investigate computationally the aromatic properties of the neutral as well as the singly and doubly charged DTT-bridged [34]octaphyrins. Our study provides unambiguous information about changes in the aromatic properties of the DTT-bridged [34]octaphyrins upon oxidation. The calculations identify two independent diatropic ring currents in the neutral DTT-bridged [34]octaphyrins, showing that they are indeed bicycloaromatic. The current-density flow of the two independent ring currents of the bicycloaromatic compounds are visualized and individual aromatic pathways are quantified by performing numerical integration. The calculations show that two independent diatropic ring currents can indeed be sustained by molecules consisting of two aromatic rings that share a common set of π electrons. The current density calculations on the singly charged DTT-bridged [34]octaphyrins show that they are weakly antiaromatic, which does not agree with the suggested aromatic character deduced from spectroscopical studies. The triplet state of the two DTT-bridged [34]octaphyrin cations with very similar molecular structures have unexpectedly different aromatic character. One of them is Baird-type bicycloaromatic, whereas the triplet state of the other dication has one aromatic and one nonaromatic ring, which could not be resolved from available spectroscopical data. Calculations of excitation energies reveal that a simple model cannot be employed for interpreting the electronic excitation spectra of the present molecules, because more than 20 excited states contribute to the spectra above 2.5 eV (500 nm) showing the importance of computations. The present work illustrates how detailed information about molecular aromaticity can nowadays be obtained by scrutinizing calculated current densities.
Collapse
Affiliation(s)
- Rashid R Valiev
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland.
| | | | | |
Collapse
|
29
|
Oh J, Sung YM, Hong Y, Kim D. Spectroscopic Diagnosis of Excited-State Aromaticity: Capturing Electronic Structures and Conformations upon Aromaticity Reversal. Acc Chem Res 2018; 51:1349-1358. [PMID: 29508985 DOI: 10.1021/acs.accounts.7b00629] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aromaticity, the special energetic stability derived from cyclic [4 n + 2]π-conjugated electronic structures, has been the topic of intense interest in chemistry because it plays a critical role in rationalizing molecular stability, reactivity, and physical/chemical properties. Recently, the pioneering work by Colin Baird on aromaticity reversal, postulating that aromatic (antiaromatic) character in the ground state reverses to antiaromatic (aromatic) character in the lowest excited triplet state, has attracted much scientific attention. The completely reversed aromaticity in the excited state provides direct insight into understanding the photophysical/chemical properties of photoactive materials. In turn, the application of aromatic molecules to photoactive materials has led to numerous studies revealing this aromaticity reversal. However, most studies of excited-state aromaticity have been based on the theoretical point of view. The experimental evaluation of aromaticity in the excited state is still challenging and strenuous because the assessment of (anti)aromaticity with conventional magnetic, energetic, and geometric indices is difficult in the excited state, which practically restricts the extension and application of the concept of excited-state aromaticity. Time-resolved optical spectroscopies can provide a new and alternative avenue to evaluate excited-state aromaticity experimentally while observing changes in the molecular features in the excited states. Time-resolved optical spectroscopies take advantage of ultrafast laser pulses to achieve high time resolution, making them suitable for monitoring ultrafast changes in the excited states of molecular systems. This can provide valuable information for understanding the aromaticity reversal. This Account presents recent breakthroughs in the experimental assessment of excited-state aromaticity and the verification of aromaticity reversal with time-resolved optical spectroscopic measurements. To scrutinize this intriguing and challenging scientific issue, expanded porphyrins have been utilized as the ideal testing platform for investigating aromaticity because they show distinct aromatic and antiaromatic characters with aromaticity-specific spectroscopic features. Expanded porphyrins exhibit perfect aromatic and antiaromatic congener pairs having the same molecular framework but different numbers of π electrons, which facilitates the study of the pure effect of aromaticity by comparative analyses. On the basis of the characteristics of expanded porphyrins, time-resolved electronic and vibrational absorption spectroscopies capture the changes in electronic structure and molecular conformations driven by the change in aromaticity and provide clear evidence for aromaticity reversal in the excited states. The approaches described in this Account pave the way for the development of new and alternative experimental indices for the evaluation of excited-state aromaticity, which will enable overarching and fundamental comprehension of the role of (anti)aromaticity in the stability, dynamics, and reactivity in the excited states with possible implications for practical applications.
Collapse
Affiliation(s)
- Juwon Oh
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Young Mo Sung
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Yongseok Hong
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
30
|
Yamakado T, Takahashi S, Watanabe K, Matsumoto Y, Osuka A, Saito S. Conformational Planarization versus Singlet Fission: Distinct Excited‐State Dynamics of Cyclooctatetraene‐Fused Acene Dimers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takuya Yamakado
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Shota Takahashi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Kazuya Watanabe
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Yoshiyasu Matsumoto
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Shohei Saito
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
- JST-PRESTO FRONTIER Japan
| |
Collapse
|
31
|
Yamakado T, Takahashi S, Watanabe K, Matsumoto Y, Osuka A, Saito S. Conformational Planarization versus Singlet Fission: Distinct Excited-State Dynamics of Cyclooctatetraene-Fused Acene Dimers. Angew Chem Int Ed Engl 2018. [PMID: 29516597 DOI: 10.1002/anie.201802185] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A set of flapping acene dimers fused with an 8π cyclooctatetraene (COT) ring showed distinct excited-state dynamics in solution. While the anthracene dimer showed a fast V-shaped-to-planar conformational change within 10 ps in the lowest excited singlet state, reminding us of extended Baird aromaticity, the tetracene dimer and the pentacene dimer underwent intramolecular singlet fission (SF) in different manners: A fast and reversible SF with a characteristic delayed fluorescence (FL), and a fast and quantitative SF, respectively. Conformational flexibility of the fused COT linkage plays an important role in these ultrafast dynamics, demonstrating the utility of the flapping molecular series as a versatile platform for designing photofunctional systems.
Collapse
Affiliation(s)
- Takuya Yamakado
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shota Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kazuya Watanabe
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshiyasu Matsumoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shohei Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,JST-PRESTO, FRONTIER, Japan
| |
Collapse
|
32
|
Jorner K, Jahn BO, Bultinck P, Ottosson H. Triplet state homoaromaticity: concept, computational validation and experimental relevance. Chem Sci 2018; 9:3165-3176. [PMID: 29732099 PMCID: PMC5916107 DOI: 10.1039/c7sc05009g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/16/2018] [Indexed: 01/15/2023] Open
Abstract
Conjugation through space can give rise to aromaticity in the lowest excited triplet state, with impact for photochemistry.
Cyclic conjugation that occurs through-space and leads to aromatic properties is called homoaromaticity. Here we formulate the homoaromaticity concept for the triplet excited state (T1) based on Baird's 4n rule and validate it through extensive quantum-chemical calculations on a range of different species (neutral, cationic and anionic). By comparison to well-known ground state homoaromatic molecules we reveal that five of the investigated compounds show strong T1 homoaromaticity, four show weak homoaromaticity and two are non-aromatic. Two of the compounds have previously been identified as excited state intermediates in photochemical reactions and our calculations indicate that they are also homoaromatic in the first singlet excited state. Homoaromaticity should therefore have broad implications in photochemistry. We further demonstrate this by computational design of a photomechanical “lever” that is powered by relief of homoantiaromatic destabilization in the first singlet excited state.
Collapse
Affiliation(s)
- Kjell Jorner
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , 751 20 Uppsala , Sweden .
| | - Burkhard O Jahn
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , 751 20 Uppsala , Sweden . .,SciClus GmbH & Co. KG , Moritz-von-Rohr-Str. 1a , 07745 Jena , Germany
| | - Patrick Bultinck
- Department of Chemistry , Ghent University , Krijgslaan 281 (S3) , 9000 Gent , Belgium .
| | - Henrik Ottosson
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , 751 20 Uppsala , Sweden .
| |
Collapse
|