1
|
Tanios M, Wu TT, Nguyen H(M, Smith L, Mahidhara R, Devlin JW. Comparing the impact of targeting limited driving pressure to low tidal volume ventilation on mortality in mechanically ventilated adults with COVID-19 ARDS: an exploratory target trial emulation. BMJ Open Respir Res 2024; 11:e002439. [PMID: 39353713 PMCID: PMC11448172 DOI: 10.1136/bmjresp-2024-002439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND An association between driving pressure (∆P) and the outcomes of invasive mechanical ventilation (IMV) may exist. However, the effect of a sustained limitation of ∆P on mortality in patients with acute respiratory distress syndrome (ARDS), including patients with COVID-19 (COVID-19-related acute respiratory distress syndrome (C-ARDS)) undergoing IMV, has not been rigorously evaluated. The use of emulations of a target trial in intensive care unit research remains in its infancy. To inform future, large ARDS target trials, we explored using a target trial emulation approach to analyse data from a cohort of IMV adults with C-ARDS to determine whether maintaining daily ∆p<15 cm H2O (in addition to traditional low tidal volume ventilation (LTVV) (tidal volume 5-7 cc/PBW+plateau pressure (Pplat) ≤30 cm H2O), compared with LTVV alone, affects the 28-day mortality. METHODS To emulate a target trial, adults with C-ARDS requiring >24 hours of IMV were considered to be assigned to limited ∆P or LTVV. Lung mechanics were measured twice daily after ventilator setting adjustments were made. To evaluate the effect of each lung-protective ventilation (LPV) strategy on the 28-day mortality, we fit a stabilised inverse probability weighted marginal structural model that adjusted for baseline and time-varying confounders known to affect protection strategy use/adherence or survival. RESULTS Among the 92 patients included, 27 (29.3%) followed limited ∆P ventilation, 23 (25.0%) the LTVV strategy and 42 (45.7%) received no LPV strategy. The adjusted estimated 28-day survival was 47.0% (95% CI 23%, 76%) in the limited ∆P group, 70.3% in the LTVV group (95% CI 37.6%, 100%) and 37.6% (95% CI 20.8%, 58.0%) in the no LPV strategy group. INTERPRETATION Limiting ∆P may not provide additional survival benefits for patients with C-ARDS over LTVV. Our results help inform the development of future target trial emulations focused on evaluating LPV strategies, including reduced ∆P, in adults with ARDS.
Collapse
Affiliation(s)
- Maged Tanios
- Long Beach Memorial Medical Center, Long Beach, California, USA
- Division of Pulmonary and Critical Care Medicine, University of California Irvine, Irvine, California, USA
| | - Ting Ting Wu
- Northeastern University - Boston Campus, Boston, Massachusetts, USA
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Louisa Smith
- Pharmacy and Health Systems Sciences, Northeastern University - Boston Campus, Boston, Massachusetts, USA
| | - Raja Mahidhara
- Long Beach Memorial Medical Center, Long Beach, California, USA
- Sound Physicians, Tacoma, Washington, USA
| | - John W Devlin
- Pharmacy and Health Systems Sciences, Northeastern University - Boston Campus, Boston, Massachusetts, USA
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Protti A, Madotto F, Florio G, Bove T, Carlesso E, Casella G, Dalla Corte F, Foti G, Giudici R, Langer T, Montalto C, Rezoagli E, Santini A, Terragni P, Zanella A, Grasselli G, Cecconi M. A tidal volume of 7 mL/kg PBW or higher may be safe for COVID-19 patients. J Crit Care 2024; 85:154921. [PMID: 39326356 DOI: 10.1016/j.jcrc.2024.154921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE The novel coronavirus disease (COVID-19) has revived the debate on the optimal tidal volume during acute respiratory distress syndrome (ARDS). Some experts recommend 6 mL/kg of predicted body weight (PBW) for all patients, while others suggest 7-9 mL/kg PBW for those with compliance >50 mL/cmH2O. We investigated whether a tidal volume ≥ 7 ml/kg PBW may be safe in COVID-19 patients, particularly those with compliance >50 mL/cmH2O. MATERIALS AND METHODS This secondary analysis of a multicenter study compares the Intensive Care Unit (ICU) mortality among 600 patients ventilated with <7 or ≥ 7 mL/kg PBW. Compliance was categorized as <40, 40-50, or > 50 mL/cmH2O. RESULTS 346 patients were ventilated with <7 (6.2 ± 0.5) mL/kg PBW and 254 with ≥7 (7.9 ± 0.9) mL/kg PBW. ICU mortality was 33 % and 29 % in the two groups (p = 0.272). At multivariable regression analysis, tidal volume ≥ 7 mL/kg PBW was associated with lower ICU mortality in the overall population (odds ratio: 0.62 [95 %-confidence interval: 0.40-0.95]) and in each compliance category. CONCLUSIONS A tidal volume ≥ 7 (up to 9) mL/kg PBW was associated with lower ICU mortality in these COVID-19 patients, including those with compliance <40 mL/cmH2O. This finding should be interpreted cautiously due to the retrospective study design. TRIAL REGISTRATION ClinicalTrails.govNCT04388670.
Collapse
Affiliation(s)
- Alessandro Protti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Anesthesia and Intensive Care Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabiana Madotto
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaetano Florio
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Bove
- Department of Anesthesia and Intensive Care Medicine, ASUFC University-Hospital of Central Friuli, Udine, Italy; Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Eleonora Carlesso
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giampaolo Casella
- Dipartimento di Anestesia e Rianimazione, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Francesca Dalla Corte
- Department of Anesthesia and Intensive Care Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giuseppe Foti
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milan-Bicocca, Monza, MB, Italy
| | - Riccardo Giudici
- Dipartimento di Anestesia e Rianimazione, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Thomas Langer
- Dipartimento di Anestesia e Rianimazione, Grande Ospedale Metropolitano Niguarda, Milan, Italy; School of Medicine and Surgery, University of Milan-Bicocca, Monza, MB, Italy
| | - Carlo Montalto
- Department of Anesthesiology and Intensive Care, Carlo Poma Hospital, Azienda Socio-Sanitaria Territoriale of Mantova, Mantova, Italy
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milan-Bicocca, Monza, MB, Italy
| | - Alessandro Santini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Anesthesia and Intensive Care Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Pierpaolo Terragni
- Division of Anesthesia and General Intensive Care, Department of Medical, Surgical and Experimental Sciences, University Hospital of Sassari, University of Sassari, Sassari, Italy
| | - Alberto Zanella
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Giacomo Grasselli
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Maurizio Cecconi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Anesthesia and Intensive Care Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
3
|
Murgolo F, Grieco DL, Spadaro S, Bartolomeo N, di Mussi R, Pisani L, Fiorentino M, Crovace AM, Lacitignola L, Staffieri F, Grasso S. Recruitment-to-inflation ratio reflects the impact of peep on dynamic lung strain in a highly recruitable model of ARDS. Ann Intensive Care 2024; 14:106. [PMID: 38963617 PMCID: PMC11224186 DOI: 10.1186/s13613-024-01343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The recruitment-to-inflation ratio (R/I) has been recently proposed to bedside assess response to PEEP. The impact of PEEP on ventilator-induced lung injury depends on the extent of dynamic strain reduction. We hypothesized that R/I may reflect the potential for lung recruitment (i.e. recruitability) and, consequently, estimate the impact of PEEP on dynamic lung strain, both assessed through computed tomography scan. METHODS Fourteen lung-damaged pigs (lipopolysaccharide infusion) underwent ventilation at low (5 cmH2O) and high PEEP (i.e., PEEP generating a plateau pressure of 28-30 cmH2O). R/I was measured through a one-breath derecruitment maneuver from high to low PEEP. PEEP-induced changes in dynamic lung strain, difference in nonaerated lung tissue weight (tissue recruitment) and amount of gas entering previously nonaerated lung units (gas recruitment) were assessed through computed tomography scan. Tissue and gas recruitment were normalized to the weight and gas volume of previously ventilated lung areas at low PEEP (normalized-tissue recruitment and normalized-gas recruitment, respectively). RESULTS Between high (median [interquartile range] 20 cmH2O [18-21]) and low PEEP, median R/I was 1.08 [0.88-1.82], indicating high lung recruitability. Compared to low PEEP, tissue and gas recruitment at high PEEP were 246 g [182-288] and 385 ml [318-668], respectively. R/I was linearly related to normalized-gas recruitment (r = 0.90; [95% CI 0.71 to 0.97) and normalized-tissue recruitment (r = 0.69; [95% CI 0.25 to 0.89]). Dynamic lung strain was 0.37 [0.29-0.44] at high PEEP and 0.59 [0.46-0.80] at low PEEP (p < 0.001). R/I was significantly related to PEEP-induced reduction in dynamic (r = - 0.93; [95% CI - 0.78 to - 0.98]) and global lung strain (r = - 0.57; [95% CI - 0.05 to - 0.84]). No correlation was found between R/I and and PEEP-induced changes in static lung strain (r = 0.34; [95% CI - 0.23 to 0.74]). CONCLUSIONS In a highly recruitable ARDS model, R/I reflects the potential for lung recruitment and well estimates the extent of PEEP-induced reduction in dynamic lung strain.
Collapse
Affiliation(s)
- Francesco Murgolo
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy.
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (DiMePRe-J), Sezione di Anestesiologia e Rianimazione, Ospedale Policlinico, Università Degli Studi "Aldo Moro", Piazza Giulio Cesare 11, Bari, Italy.
| | - Domenico L Grieco
- Department of Anesthesia, Intensive Care and Emergency, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Savino Spadaro
- Department of Translational Medicine, Section of Anesthesiology and Intensive Care Medicine, University of Ferrara, Ferrara, Italy
| | - Nicola Bartolomeo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Rossella di Mussi
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Luigi Pisani
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | | | - Luca Lacitignola
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Staffieri
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Salvatore Grasso
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
4
|
Rosà T, Bongiovanni F, Michi T, Mastropietro C, Menga LS, DE Pascale G, Antonelli M, Grieco DL. Recruitment-to-inflation ratio for bedside PEEP selection in acute respiratory distress syndrome. Minerva Anestesiol 2024; 90:694-706. [PMID: 39021144 DOI: 10.23736/s0375-9393.24.17982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In acute respiratory distress syndrome, the role of positive end-expiratory pressure (PEEP) to prevent ventilator-induced lung injury is controversial. Randomized trials comparing higher versus lower PEEP strategies failed to demonstrate a clinical benefit. This may depend on the inter-individually variable potential for lung recruitment (i.e. recruitability), which would warrant PEEP individualization to balance alveolar recruitment and the unavoidable baby lung overinflation produced by high pressure. Many techniques have been used to assess recruitability, including lung imaging, multiple pressure-volume curves and lung volume measurement. The Recruitment-to-Inflation ratio (R/I) has been recently proposed to bedside assess recruitability without additional equipment. R/I assessment is a simplified technique based on the multiple pressure-volume curve concept: it is measured by monitoring respiratory mechanics and exhaled tidal volume during a 10-cmH2O one-breath derecruitment maneuver after a short high-PEEP test. R/I scales recruited volume to respiratory system compliance, and normalizes recruitment to a proxy of actual lung size. With modest R/I (<0.3-0.4), setting low PEEP (5-8 cmH2O) may be advisable; with R/I>0.6-0.7, high PEEP (≥15 cmH2O) can be considered, provided that airway and/or transpulmonary plateau pressure do not exceed safety limits. In case of intermediate R/I (≈0.5), a more granular assessment of recruitability may be needed. This could be accomplished with advanced monitoring tools, like sequential lung volume measurement with granular R/I assessment or electrical impedance tomography monitoring during a decremental PEEP trial. In this review, we discuss R/I rationale, applications and limits, providing insights on its clinical use for PEEP selection in moderate-to-severe acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Claudia Mastropietro
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Luca S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Gennaro DE Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Domenico L Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy -
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
5
|
Santini A, Protti A, Pennati F, Dalla Corte F, Martinetti N, Pugliese L, Picardo G, Chiurazzi C, Ferrari M, Costantini E, Aliverti A, Cecconi M. Effect of decreasing PEEP on hyperinflation and collapse in COVID-19: A computed tomography study. Acta Anaesthesiol Scand 2024; 68:626-634. [PMID: 38425207 DOI: 10.1111/aas.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND High positive end-expiratory pressure (PEEP>10 cmH2O) is commonly used in mechanically ventilated hypoxemic patients with COVID-19. However, some epidemiological and physiological studies indirectly suggest that using a lower PEEP may primarily and beneficially decrease lung hyperinflation in this population. Herein we directly quantified the effect of decreasing PEEP from 15 to 10 cmH2O on lung hyperinflation and collapse in mechanically ventilated patients with COVID-19. METHODS Twenty mechanically ventilated patients with COVID-19 underwent a lung computed tomography (CT) at PEEP of 15 and 10 cmH2O. The effect of decreasing PEEP on lung hyperinflation and collapse was directly quantified as the change in the over-aerated (density below -900 HU) and non-aerated (density above -100 HU) lung volumes. The net response to decreasing PEEP was computed as the sum of the change in those two compartments and expressed as the change in the "pathologic" lung volume. If the pathologic lung volume decreased (i.e., hyperinflation decreased more than collapse increased) when PEEP was decreased, the net response was considered positive; otherwise, it was considered negative. RESULTS On average, the ratio of arterial tension to inspiratory fraction of oxygen (PaO2:FiO2) in the overall study population was 137 (119-162) mmHg. In 11 (55%) patients, the net response to decreasing PEEP was positive. Their over-aerated lung volume decreased by 159 (98-186) mL, while the non-aerated lung volume increased by only 58 (31-91) mL. In nine (45%) patients, the net response was negative. Their over-aerated lung volume decreased by 46 (18-72) mL, but their non-aerated lung volume increased by 107 (44-121) mL. CONCLUSION In 20 patients with COVID-19 the net response to decreasing PEEP, as assessed with lung CT, was variable. In approximately half of them it was positive (and possibly beneficial), with a decrease in hyperinflation larger than the increase in collapse.
Collapse
Affiliation(s)
- Alessandro Santini
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Protti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Francesca Dalla Corte
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Nicolò Martinetti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Pugliese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giorgio Picardo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Chiara Chiurazzi
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michele Ferrari
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Elena Costantini
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Maurizio Cecconi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
6
|
Menga LS, Subirà C, Wong A, Sousa M, Brochard LJ. Setting positive end-expiratory pressure: does the 'best compliance' concept really work? Curr Opin Crit Care 2024; 30:20-27. [PMID: 38085857 DOI: 10.1097/mcc.0000000000001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Determining the optimal positive end-expiratory pressure (PEEP) setting remains a central yet debated issue in the management of acute respiratory distress syndrome (ARDS).The 'best compliance' strategy set the PEEP to coincide with the peak respiratory system compliance (or 2 cmH 2 O higher) during a decremental PEEP trial, but evidence is conflicting. RECENT FINDINGS The physiological rationale that best compliance is always representative of functional residual capacity and recruitment has raised serious concerns about its efficacy and safety, due to its association with increased 28-day all-cause mortality in a randomized clinical trial in ARDS patients.Moreover, compliance measurement was shown to underestimate the effects of overdistension, and neglect intra-tidal recruitment, airway closure, and the interaction between lung and chest wall mechanics, especially in obese patients. In response to these concerns, alternative approaches such as recruitment-to-inflation ratio, the nitrogen wash-in/wash-out technique, and electrical impedance tomography (EIT) are gaining attention to assess recruitment and overdistention more reliably and precisely. SUMMARY The traditional 'best compliance' strategy for determining optimal PEEP settings in ARDS carries risks and overlooks some key physiological aspects. The advent of new technologies and methods presents more reliable strategies to assess recruitment and overdistention, facilitating personalized approaches to PEEP optimization.
Collapse
Affiliation(s)
- Luca S Menga
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
- Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, Anesthesiology and Intensive Care Medicine
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Anesthesia, Emergency and Intensive Care Medicine, Roma, Italy
| | - Carles Subirà
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid
- Critical Care Department, Althaia Xarxa Assistencial Universitària de Manresa, IRIS Research Institute, Manresa, Spain
- Grup de Recerca de Malalt Crític (GMC). Institut de Recerca Biomèdica Catalunya Central IRIS-CC
| | - Alfred Wong
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
| | - Mayson Sousa
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
| | - Laurent J Brochard
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Grieco DL, Pintaudi G, Bongiovanni F, Anzellotti GM, Menga LS, Cesarano M, Dell’Anna AM, Rosá T, Delle Cese L, Bello G, Giammatteo V, Gennenzi V, Tanzarella ES, Cutuli SL, De Pascale G, De Gaetano A, Maggiore SM, Antonelli M. Recruitment-to-inflation Ratio Assessed through Sequential End-expiratory Lung Volume Measurement in Acute Respiratory Distress Syndrome. Anesthesiology 2023; 139:801-814. [PMID: 37523486 PMCID: PMC10723770 DOI: 10.1097/aln.0000000000004716] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/15/2022] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Positive end-expiratory pressure (PEEP) benefits in acute respiratory distress syndrome are driven by lung dynamic strain reduction. This depends on the variable extent of alveolar recruitment. The recruitment-to-inflation ratio estimates recruitability across a 10-cm H2O PEEP range through a simplified maneuver. Whether recruitability is uniform or not across this range is unknown. The hypotheses of this study are that the recruitment-to-inflation ratio represents an accurate estimate of PEEP-induced changes in dynamic strain, but may show nonuniform behavior across the conventionally tested PEEP range (15 to 5 cm H2O). METHODS Twenty patients with moderate-to-severe COVID-19 acute respiratory distress syndrome underwent a decremental PEEP trial (PEEP 15 to 13 to 10 to 8 to 5 cm H2O). Respiratory mechanics and end-expiratory lung volume by nitrogen dilution were measured the end of each step. Gas exchange, recruited volume, recruitment-to-inflation ratio, and changes in dynamic, static, and total strain were computed between 15 and 5 cm H2O (global recruitment-to-inflation ratio) and within narrower PEEP ranges (granular recruitment-to-inflation ratio). RESULTS Between 15 and 5 cm H2O, median [interquartile range] global recruitment-to-inflation ratio was 1.27 [0.40 to 1.69] and displayed a linear correlation with PEEP-induced dynamic strain reduction (r = -0.94; P < 0.001). Intraindividual recruitment-to-inflation ratio variability within the narrower ranges was high (85% [70 to 109]). The relationship between granular recruitment-to-inflation ratio and PEEP was mathematically described by a nonlinear, quadratic equation (R2 = 0.96). Granular recruitment-to-inflation ratio across the narrower PEEP ranges itself had a linear correlation with PEEP-induced reduction in dynamic strain (r = -0.89; P < 0.001). CONCLUSIONS Both global and granular recruitment-to-inflation ratio accurately estimate PEEP-induced changes in lung dynamic strain. However, the effect of 10 cm H2O of PEEP on lung strain may be nonuniform. Granular recruitment-to-inflation ratio assessment within narrower PEEP ranges guided by end-expiratory lung volume measurement may aid more precise PEEP selection, especially when the recruitment-to-inflation ratio obtained with the simplified maneuver between PEEP 15 and 5 cm H2O yields intermediate values that are difficult to interpret for a proper choice between a high and low PEEP strategy. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Domenico Luca Grieco
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriele Pintaudi
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Filippo Bongiovanni
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gian Marco Anzellotti
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS, Annunziata Hospital, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Luca Salvatore Menga
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Melania Cesarano
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio M. Dell’Anna
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Tommaso Rosá
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Delle Cese
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Bello
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Giammatteo
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Veronica Gennenzi
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Eloisa S. Tanzarella
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore L. Cutuli
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gennaro De Pascale
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea De Gaetano
- Consiglio Nazionale delle Ricerche, IRIB Istituto per la Ricerca e l’Innovazione Biomedica, Palermo, Italy; IASI Istituto per l’Analisi dei Sistemi ed Informatica, Rome, Italy; Department of Biomatics, Óbuda University, Budapest, Hungary
| | - Salvatore M. Maggiore
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS, Annunziata Hospital, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
8
|
Zakynthinos GE, Tsolaki V, Oikonomou E, Vavouranakis M, Siasos G, Zakynthinos E. New-Onset Atrial Fibrillation in the Critically Ill COVID-19 Patients Hospitalized in the Intensive Care Unit. J Clin Med 2023; 12:6989. [PMID: 38002603 PMCID: PMC10672690 DOI: 10.3390/jcm12226989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
New-onset atrial fibrillation (NOAF) is the most frequently encountered cardiac arrhythmia observed in patients with COVID-19 infection, particularly in Intensive Care Unit (ICU) patients. The purpose of the present review is to delve into the occurrence of NOAF in COVID-19 and thoroughly review recent, pertinent data. However, the causality behind this connection has yet to be thoroughly explored. The proposed mechanisms that could contribute to the development of AF in these patients include myocardial damage resulting from direct virus-induced cardiac injury, potentially leading to perimyocarditis; a cytokine crisis and heightened inflammatory response; hypoxemia due to acute respiratory distress; disturbances in acid-base and electrolyte levels; as well as the frequent use of adrenergic drugs in critically ill patients. Additionally, secondary bacterial sepsis and septic shock have been suggested as primary causes of NOAF in ICU patients. This notion gains strength from the observation of a similar prevalence of NOAF in septic non-COVID ICU patients with ARDS. It is plausible that both myocardial involvement from SARS-CoV-2 and secondary sepsis play pivotal roles in the onset of arrhythmia in ICU patients. Nonetheless, there exists a significant variation in the prevalence of NOAF among studies focused on severe COVID-19 cases with ARDS. This discrepancy could be attributed to the inclusion of mixed populations with varying degrees of illness severity, encompassing not only patients in general wards but also those admitted to the ICU, whether intubated or not. Furthermore, the occurrence of NOAF is linked to increased morbidity and mortality. However, it remains to be determined whether NOAF independently influences outcomes in critically ill COVID-19 ICU patients or if it merely reflects the disease's severity. Lastly, the management of NOAF in these patients has not been extensively studied. Nevertheless, the current guidelines for NOAF in non-COVID ICU patients appear to be effective, while accounting for the specific drugs used in COVID-19 treatment that may prolong the QT interval (although drugs like lopinavir/ritonavir, hydrochlorothiazide, and azithromycin have been discontinued) or induce bradycardia (e.g., remdesivir).
Collapse
Affiliation(s)
- George E. Zakynthinos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
| | - Vasiliki Tsolaki
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
| | - Manolis Vavouranakis
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Epaminondas Zakynthinos
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| |
Collapse
|
9
|
Iotti GA. High flow nasal oxygen vs. continuous positive airway pressure in acute hypoxemic respiratory failure: the missing direct comparison. Minerva Anestesiol 2023; 89:960-963. [PMID: 37705433 DOI: 10.23736/s0375-9393.23.17617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Affiliation(s)
- Giorgio A Iotti
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy -
| |
Collapse
|
10
|
Wu Y, He L, Guo Y, Wang N. Risk Factors and Drug Efficacy for Severe Illness in Hemodialysis Patients Infected with the Omicron Variant of COVID-19. Kidney Blood Press Res 2023; 48:642-651. [PMID: 37751729 PMCID: PMC10614566 DOI: 10.1159/000534192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
INTRODUCTION The Omicron variant of the novel coronavirus (COVID-19) has been spreading more rapidly and is more infectious, posing a higher risk of death and treatment difficulty for patients undergoing hemodialysis. This study aims to explore the severity rate and risk factors for hemodialysis patients infected with the Omicron variant and to conduct a preliminary analysis of the clinical efficacy of drugs. METHODS Clinical and biochemical indicators of 219 hemodialysis patients infected with the Omicron variant were statistically analyzed. The patients were divided into two groups based on whether they were severely ill or not, and multiple regression analysis was conducted to determine the risk factors for severe illness. The severely ill patients were then grouped based on discharge or death, and the treatment drugs were included as influencing factors for multiple regression analysis to determine the risk factors and protective factors for death of severely ill patients, and drug efficacy analysis was conducted. RESULTS Analysis showed that diabetes, low oxygen saturation, and high C-reactive protein (CRP) were independent risk factors for severe illness in hemodialysis patients infected with the Omicron variant. A history of diabetes and high C-reactive significantly increased the risk of severe illness in patients (aOR: 1.450; aOR: 1.011), while a high oxygen saturation level can reduce this risk (aOR: 0.871). In addition, respiratory distress was an independent risk factor for death in severely patients, significantly reducing the probability of discharge for patients (aOR: 0.152). The drugs thymalfasin and Tanreqing significantly increased the probability of discharge for patients (aOR: 1.472; aOR: 3.104), with the latter having a higher correlation, but with a relatively longer effective course. CONCLUSION Hemodialysis patients infected with the Omicron variant of COVID-19 should pay special attention to their history of diabetes, CRP, and oxygen saturation levels, as well as respiratory distress symptoms, to reduce the risk of severe illness and death. In addition, thymalfasin and Tanreqing may be considered in treatment.
Collapse
Affiliation(s)
- Yan Wu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Lingling He
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongping Guo
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Niansong Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Zersen KM. Setting the optimal positive end-expiratory pressure: a narrative review. Front Vet Sci 2023; 10:1083290. [PMID: 37538169 PMCID: PMC10395088 DOI: 10.3389/fvets.2023.1083290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
The primary goals of positive end-expiratory pressure (PEEP) are to restore functional residual capacity through recruitment and prevention of alveolar collapse. Through these mechanisms, PEEP improves arterial oxygenation and may reduce the risk of ventilator-induced lung injury (VILI). Because of the many potential negative effects associated with the use of PEEP, much research has concentrated on determining the optimal PEEP setting. Arterial oxygenation targets and pressure-volume loops have been utilized to set the optimal PEEP for decades. Several other techniques have been suggested, including the use of PEEP tables, compliance, driving pressure (DP), stress index (SI), transpulmonary pressures, imaging, and electrical impedance tomography. Each of these techniques has its own benefits and limitations and there is currently not one technique that is recommended above all others.
Collapse
|
12
|
Tsolaki V, Zakynthinos GE, Papanikolaou J, Karavidas N, Vazgiourakis V, Papadonta ME, Zygoulis P, Pantazopoulos I, Makris D, Zakynthinos E. Positive End-Expiratory Pressure Deescalation in COVID-19-induced Acute Respiratory Distress Syndrome Unloads the Right Ventricle, Improving Hemodynamics and Oxygenation. Am J Respir Crit Care Med 2023; 208:205-208. [PMID: 37236626 PMCID: PMC10395492 DOI: 10.1164/rccm.202301-0154le] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023] Open
Affiliation(s)
- Vasiliki Tsolaki
- Critical Care Department, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - John Papanikolaou
- Department of Cardiology, General Hospital of Trikala, Thessaly, Greece; and
| | - Nikitas Karavidas
- Critical Care Department, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Vazgiourakis
- Critical Care Department, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Paris Zygoulis
- Critical Care Department, University Hospital of Larissa, Larissa, Greece
| | - Ioannis Pantazopoulos
- Faculty of Medicine, University of Thessaly, Larissa, Greece
- Department of Emergency Medicine, General University Hospital of Larissa, Thessaly, Greece
| | - Demosthenes Makris
- Critical Care Department, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Epaminondas Zakynthinos
- Critical Care Department, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
13
|
Jonkman AH, Alcala GC, Pavlovsky B, Roca O, Spadaro S, Scaramuzzo G, Chen L, Dianti J, Sousa MLDA, Sklar MC, Piraino T, Ge H, Chen GQ, Zhou JX, Li J, Goligher EC, Costa E, Mancebo J, Mauri T, Amato M, Brochard LJ. Lung Recruitment Assessed by Electrical Impedance Tomography (RECRUIT): A Multicenter Study of COVID-19 Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2023; 208:25-38. [PMID: 37097986 PMCID: PMC10870845 DOI: 10.1164/rccm.202212-2300oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Rationale: Defining lung recruitability is needed for safe positive end-expiratory pressure (PEEP) selection in mechanically ventilated patients. However, there is no simple bedside method including both assessment of recruitability and risks of overdistension as well as personalized PEEP titration. Objectives: To describe the range of recruitability using electrical impedance tomography (EIT), effects of PEEP on recruitability, respiratory mechanics and gas exchange, and a method to select optimal EIT-based PEEP. Methods: This is the analysis of patients with coronavirus disease (COVID-19) from an ongoing multicenter prospective physiological study including patients with moderate-severe acute respiratory distress syndrome of different causes. EIT, ventilator data, hemodynamics, and arterial blood gases were obtained during PEEP titration maneuvers. EIT-based optimal PEEP was defined as the crossing point of the overdistension and collapse curves during a decremental PEEP trial. Recruitability was defined as the amount of modifiable collapse when increasing PEEP from 6 to 24 cm H2O (ΔCollapse24-6). Patients were classified as low, medium, or high recruiters on the basis of tertiles of ΔCollapse24-6. Measurements and Main Results: In 108 patients with COVID-19, recruitability varied from 0.3% to 66.9% and was unrelated to acute respiratory distress syndrome severity. Median EIT-based PEEP differed between groups: 10 versus 13.5 versus 15.5 cm H2O for low versus medium versus high recruitability (P < 0.05). This approach assigned a different PEEP level from the highest compliance approach in 81% of patients. The protocol was well tolerated; in four patients, the PEEP level did not reach 24 cm H2O because of hemodynamic instability. Conclusions: Recruitability varies widely among patients with COVID-19. EIT allows personalizing PEEP setting as a compromise between recruitability and overdistension. Clinical trial registered with www.clinicaltrials.gov (NCT04460859).
Collapse
Affiliation(s)
- Annemijn H. Jonkman
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Glasiele C. Alcala
- Pulmonology Division, Cardiopulmonary Department, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Bertrand Pavlovsky
- Department of Anesthesia, Critical Care and Emergency, Institute for Treatment and Research, Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
- University Hospital of Angers, Angers, France
| | - Oriol Roca
- Parc Taulí Hospital Universitari, Institut de Investigació i Innovació Parc Taulí, Sabadell, Spain
- Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Savino Spadaro
- Anesthesia and Intensive Care Medicine, University Hospital of Ferrara, Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gaetano Scaramuzzo
- Anesthesia and Intensive Care Medicine, University Hospital of Ferrara, Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Lu Chen
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jose Dianti
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Mayson L. de A. Sousa
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Pulmonology Division, Cardiopulmonary Department, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Michael C. Sklar
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Piraino
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Huiqing Ge
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guang-Qiang Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Li
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois
| | - Ewan C. Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Eduardo Costa
- Pulmonology Division, Cardiopulmonary Department, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Jordi Mancebo
- Servei de Medicina Intensiva Hospital de Sant Pau, Barcelona, Spain; and
| | - Tommaso Mauri
- Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca’ Granda General Hospital, Milan, Italy
| | - Marcelo Amato
- Pulmonology Division, Cardiopulmonary Department, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Laurent J. Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Rodrigues de Moraes L, Robba C, Battaglini D, Pelosi P, Rocco PRM, Silva PL. New and personalized ventilatory strategies in patients with COVID-19. Front Med (Lausanne) 2023; 10:1194773. [PMID: 37332761 PMCID: PMC10273276 DOI: 10.3389/fmed.2023.1194773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Coronavirus disease (COVID-19) is caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus and may lead to severe respiratory failure and the need for mechanical ventilation (MV). At hospital admission, patients can present with severe hypoxemia and dyspnea requiring increasingly aggressive MV strategies according to the clinical severity: noninvasive respiratory support (NRS), MV, and the use of rescue strategies such as extracorporeal membrane oxygenation (ECMO). Among NRS strategies, new tools have been adopted for critically ill patients, with advantages and disadvantages that need to be further elucidated. Advances in the field of lung imaging have allowed better understanding of the disease, not only the pathophysiology of COVID-19 but also the consequences of ventilatory strategies. In cases of refractory hypoxemia, the use of ECMO has been advocated and knowledge on handling and how to personalize strategies have increased during the pandemic. The aims of the present review are to: (1) discuss the evidence on different devices and strategies under NRS; (2) discuss new and personalized management under MV based on the pathophysiology of COVID-19; and (3) contextualize the use of rescue strategies such as ECMO in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Lucas Rodrigues de Moraes
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chiara Robba
- Unit of Anaesthesia and Intensive Care, San Martino Hospital (IRCCS), Genoa, Italy
| | - Denise Battaglini
- Unit of Anaesthesia and Intensive Care, San Martino Hospital (IRCCS), Genoa, Italy
| | - Paolo Pelosi
- Unit of Anaesthesia and Intensive Care, San Martino Hospital (IRCCS), Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Menga LS, Delle Cese L, Rosà T, Cesarano M, Scarascia R, Michi T, Biasucci DG, Ruggiero E, Dell’Anna AM, Cutuli SL, Tanzarella ES, Pintaudi G, De Pascale G, Sandroni C, Maggiore SM, Grieco DL, Antonelli M. Respective Effects of Helmet Pressure Support, Continuous Positive Airway Pressure, and Nasal High-Flow in Hypoxemic Respiratory Failure: A Randomized Crossover Clinical Trial. Am J Respir Crit Care Med 2023; 207:1310-1323. [PMID: 36378814 PMCID: PMC10595442 DOI: 10.1164/rccm.202204-0629oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/15/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: The respective effects of positive end-expiratory pressure (PEEP) and pressure support delivered through the helmet interface in patients with hypoxemia need to be better understood. Objectives: To assess the respective effects of helmet pressure support (noninvasive ventilation [NIV]) and continuous positive airway pressure (CPAP) compared with high-flow nasal oxygen (HFNO) on effort to breathe, lung inflation, and gas exchange in patients with hypoxemia (PaO2/FiO2 ⩽ 200). Methods: Fifteen patients underwent 1-hour phases (constant FiO2) of HFNO (60 L/min), helmet NIV (PEEP = 14 cm H2O, pressure support = 12 cm H2O), and CPAP (PEEP = 14 cm H2O) in randomized sequence. Measurements and Main Results: Inspiratory esophageal (ΔPES) and transpulmonary pressure (ΔPL) swings were used as surrogates for inspiratory effort and lung distension, respectively. Tidal Volume (Vt) and end-expiratory lung volume were assessed with electrical impedance tomography. ΔPES was lower during NIV versus CPAP and HFNO (median [interquartile range], 5 [3-9] cm H2O vs. 13 [10-19] cm H2O vs. 10 [8-13] cm H2O; P = 0.001 and P = 0.01). ΔPL was not statistically different between treatments. PaO2/FiO2 ratio was significantly higher during NIV and CPAP versus HFNO (166 [136-215] and 175 [158-281] vs. 120 [107-149]; P = 0.002 and P = 0.001). NIV and CPAP similarly increased Vt versus HFNO (mean change, 70% [95% confidence interval (CI), 17-122%], P = 0.02; 93% [95% CI, 30-155%], P = 0.002) and end-expiratory lung volume (mean change, 198% [95% CI, 67-330%], P = 0.001; 263% [95% CI, 121-407%], P = 0.001), mostly due to increased aeration/ventilation in dorsal lung regions. During HFNO, 14 of 15 patients had pendelluft involving >10% of Vt; pendelluft was mitigated by CPAP and further by NIV. Conclusions: Compared with HFNO, helmet NIV, but not CPAP, reduced ΔPES. CPAP and NIV similarly increased oxygenation, end-expiratory lung volume, and Vt, without affecting ΔPL. NIV, and to a lesser extent CPAP, mitigated pendelluft. Clinical trial registered with clinicaltrials.gov (NCT04241861).
Collapse
Affiliation(s)
- Luca S. Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Luca Delle Cese
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Roberta Scarascia
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Daniele G. Biasucci
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Ersilia Ruggiero
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Antonio M. Dell’Anna
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Salvatore L. Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Eloisa S. Tanzarella
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Gabriele Pintaudi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Gennaro De Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Claudio Sandroni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Salvatore Maurizio Maggiore
- University Department of Innovative Technologies in Medicine and Dentistry, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
- Department of Anesthesiology, Critical Care Medicine and Emergency, SS. Annunziata Hospital, Chieti, Italy
| | - Domenico L. Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
16
|
da Cruz MR, Camilo LM, da Costa Xavier TB, da Motta Ribeiro GC, Medeiros DM, da Fonseca Reis LF, da Silva Guimarães BL, Japiassú AM, Carvalho ARS. Positive end-expiratory pressure induced changes in airway driving pressure in mechanically ventilated COVID-19 Acute Respiratory Distress Syndrome patients. Crit Care 2023; 27:118. [PMID: 36945013 PMCID: PMC10029797 DOI: 10.1186/s13054-023-04345-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/02/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The profile of changes in airway driving pressure (dPaw) induced by positive-end expiratory pressure (PEEP) might aid for individualized protective ventilation. Our aim was to describe the dPaw versus PEEP curves behavior in ARDS from COVID-19 patients. METHODS Patients admitted in three hospitals were ventilated with fraction of inspired oxygen (FiO2) and PEEP initially adjusted by oxygenation-based table. Thereafter, PEEP was reduced from 20 until 6 cmH2O while dPaw was stepwise recorded and the lowest PEEP that minimized dPaw (PEEPmin_dPaw) was assessed. Each dPaw vs PEEP curve was classified as J-shaped, inverted-J-shaped, or U-shaped according to the difference between the minimum dPaw and the dPaw at the lowest and highest PEEP. In one hospital, hyperdistention and collapse at each PEEP were assessed by electrical impedance tomography (EIT). RESULTS 184 patients (41 including EIT) were studied. 126 patients (68%) exhibited a J-shaped dPaw vs PEEP profile (PEEPmin_dPaw of 7.5 ± 1.9 cmH2O). 40 patients (22%) presented a U (PEEPmin_dPaw of 12.2 ± 2.6 cmH2O) and 18 (10%) an inverted-J profile (PEEPmin_dPaw of 14,6 ± 2.3 cmH2O). Patients with inverted-J profiles had significant higher body mass index (BMI) and lower baseline partial pressure of arterial oxygen/FiO2 ratio. PEEPmin_dPaw was associated with lower fractions of both alveolar collapse and hyperinflation. CONCLUSIONS A PEEP adjustment procedure based on PEEP-induced changes in dPaw is feasible and may aid in individualized PEEP for protective ventilation. The PEEP required to minimize driving pressure was influenced by BMI and was low in the majority of patients.
Collapse
Affiliation(s)
- Mônica Rodrigues da Cruz
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (INI/Fiocruz), Rio de Janeiro, Brasil
- Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro (HUPE/UERJ), Rio de Janeiro, Brasil
| | - Luciana Moisés Camilo
- Instituto de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brasil
| | | | | | - Denise Machado Medeiros
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (INI/Fiocruz), Rio de Janeiro, Brasil
| | - Luís Felipe da Fonseca Reis
- Hospital Central da Polícia Militar (HCPM), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências da Reabilitação, Centro Universitário Augusto Motta (UNISUAM), Rio de Janeiro, Brasil
| | | | - André Miguel Japiassú
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (INI/Fiocruz), Rio de Janeiro, Brasil
| | - Alysson Roncally Silva Carvalho
- Laboratório de Fisiologia da Respiração, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), Rio de Janeiro, Brasil.
- Instituto D'or de Pesquisa e Ensino, Rio de Janeiro, Brasil.
- Hospital Barra D'Or, Rio de Janeiro, Brasil.
| |
Collapse
|
17
|
Jimenez JV, Munroe E, Weirauch AJ, Fiorino K, Culter CA, Nelson K, Labaki WW, Choi PJ, Co I, Standiford TJ, Prescott HC, Hyzy RC. Electric impedance tomography-guided PEEP titration reduces mechanical power in ARDS: a randomized crossover pilot trial. Crit Care 2023; 27:21. [PMID: 36650593 PMCID: PMC9843117 DOI: 10.1186/s13054-023-04315-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In patients with acute respiratory distress syndrome undergoing mechanical ventilation, positive end-expiratory pressure (PEEP) can lead to recruitment or overdistension. Current strategies utilized for PEEP titration do not permit the distinction. Electric impedance tomography (EIT) detects and quantifies the presence of both collapse and overdistension. We investigated whether using EIT-guided PEEP titration leads to decreased mechanical power compared to high-PEEP/FiO2 tables. METHODS A single-center, randomized crossover pilot trial comparing EIT-guided PEEP selection versus PEEP selection using the High-PEEP/FiO2 table in patients with moderate-severe acute respiratory distress syndrome. The primary outcome was the change in mechanical power after each PEEP selection strategy. Secondary outcomes included changes in the 4 × driving pressure + respiratory rate (4 ΔP, + RR index) index, driving pressure, plateau pressure, PaO2/FiO2 ratio, and static compliance. RESULTS EIT was consistently associated with a decrease in mechanical power compared to PEEP/FiO2 tables (mean difference - 4.36 J/min, 95% CI - 6.7, - 1.95, p = 0.002) and led to lower values in the 4ΔP + RR index (- 11.42 J/min, 95% CI - 19.01, - 3.82, p = 0.007) mainly driven by a decrease in the elastic-dynamic power (- 1.61 J/min, - 2.99, - 0.22, p = 0.027). The elastic-static and resistive powers were unchanged. Similarly, EIT led to a statistically significant change in set PEEP (- 2 cmH2O, p = 0.046), driving pressure, (- 2.92 cmH2O, p = 0.003), peak pressure (- 6.25 cmH2O, p = 0.003), plateau pressure (- 4.53 cmH2O, p = 0.006), and static respiratory system compliance (+ 7.93 ml/cmH2O, p = 0.008). CONCLUSIONS In patients with moderate-severe acute respiratory distress syndrome, EIT-guided PEEP titration reduces mechanical power mainly through a reduction in elastic-dynamic power. Trial registration This trial was prospectively registered on Clinicaltrials.gov (NCT03793842) on January 4th, 2019.
Collapse
Affiliation(s)
- Jose Victor Jimenez
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr. Floor 3 Reception C, Ann Arbor, MI, 48109, USA
| | - Elizabeth Munroe
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr. Floor 3 Reception C, Ann Arbor, MI, 48109, USA
| | - Andrew J Weirauch
- UH/CVC Department of Respiratory Care, University of Michigan, Ann Arbor, MI, USA
| | - Kelly Fiorino
- UH/CVC Department of Respiratory Care, University of Michigan, Ann Arbor, MI, USA
| | - Christopher A Culter
- UH/CVC Department of Respiratory Care, University of Michigan, Ann Arbor, MI, USA
| | - Kristine Nelson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr. Floor 3 Reception C, Ann Arbor, MI, 48109, USA
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr. Floor 3 Reception C, Ann Arbor, MI, 48109, USA
| | - Philip J Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr. Floor 3 Reception C, Ann Arbor, MI, 48109, USA
- UH/CVC Department of Respiratory Care, University of Michigan, Ann Arbor, MI, USA
| | - Ivan Co
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr. Floor 3 Reception C, Ann Arbor, MI, 48109, USA
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr. Floor 3 Reception C, Ann Arbor, MI, 48109, USA
| | - Hallie C Prescott
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr. Floor 3 Reception C, Ann Arbor, MI, 48109, USA
- VA Center for Clinical Management Research, Ann Arbor, MI, USA
| | - Robert C Hyzy
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr. Floor 3 Reception C, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
18
|
Schulz L, Stewart A, O’Regan W, McCanny P, Austin D, Hallback M, Wallin M, Aneman A. Capnodynamic monitoring of lung volume and blood flow in response to increased positive end-expiratory pressure in moderate to severe COVID-19 pneumonia: an observational study. Crit Care 2022; 26:232. [PMID: 35909174 PMCID: PMC9340710 DOI: 10.1186/s13054-022-04110-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background The optimal level of positive end-expiratory pressure (PEEP) during mechanical ventilation for COVID-19 pneumonia remains debated and should ideally be guided by responses in both lung volume and perfusion. Capnodynamic monitoring allows both end-expiratory lung volume (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{EELV}}_{{{\text{CO}}_{2} }}$$\end{document}EELVCO2) and effective pulmonary blood flow (EPBF) to be determined at the bedside with ongoing ventilation. Methods Patients with COVID-19-related moderate to severe respiratory failure underwent capnodynamic monitoring of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{EELV}}_{{{\text{CO}}_{2} }}$$\end{document}EELVCO2 and EPBF during a step increase in PEEP by 50% above the baseline (PEEPlow to PEEPhigh). The primary outcome was a > 20 mm Hg increase in arterial oxygen tension to inspired fraction of oxygen (P/F) ratio to define responders versus non-responders. Secondary outcomes included changes in physiological dead space and correlations with independently determined recruited lung volume and the recruitment-to-inflation ratio at an instantaneous, single breath decrease in PEEP. Mixed factor ANOVA for group mean differences and correlations by Pearson’s correlation coefficient are reported including their 95% confidence intervals. Results Of 27 patients studied, 15 responders increased the P/F ratio by 55 [24–86] mm Hg compared to 12 non-responders (p < 0.01) as PEEPlow (11 ± 2.7 cm H2O) was increased to PEEPhigh (18 ± 3.0 cm H2O). The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{EELV}}_{{{\text{CO}}_{2} }}$$\end{document}EELVCO2 was 461 [82–839] ml less in responders at PEEPlow (p = 0.02) but not statistically different between groups at PEEPhigh. Responders increased both \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{EELV}}_{{{\text{CO}}_{2} }}$$\end{document}EELVCO2 and EPBF at PEEPhigh (r = 0.56 [0.18–0.83], p = 0.03). In contrast, non-responders demonstrated a negative correlation (r = − 0.65 [− 0.12 to − 0.89], p = 0.02) with increased lung volume associated with decreased pulmonary perfusion. Decreased (− 0.06 [− 0.02 to − 0.09] %, p < 0.01) dead space was observed in responders. The change in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{EELV}}_{{{\text{CO}}_{2} }}$$\end{document}EELVCO2 correlated with both the recruited lung volume (r = 0.85 [0.69–0.93], p < 0.01) and the recruitment-to-inflation ratio (r = 0.87 [0.74–0.94], p < 0.01). Conclusions In mechanically ventilated patients with moderate to severe COVID-19 respiratory failure, improved oxygenation in response to increased PEEP was associated with increased end-expiratory lung volume and pulmonary perfusion. The change in end-expiratory lung volume was positively correlated with the lung volume recruited and the recruitment-to-inflation ratio. This study demonstrates the feasibility of capnodynamic monitoring to assess physiological responses to PEEP at the bedside to facilitate an individualised setting of PEEP. Trial registration: NCT05082168 (18th October 2021). Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04110-0.
Collapse
|
19
|
Richard JC, Sigaud F, Gaillet M, Orkisz M, Bayat S, Roux E, Ahaouari T, Davila E, Boussel L, Ferretti G, Yonis H, Mezidi M, Danjou W, Bazzani A, Dhelft F, Folliet L, Girard M, Pozzi M, Terzi N, Bitker L. Response to PEEP in COVID-19 ARDS patients with and without extracorporeal membrane oxygenation. A multicenter case–control computed tomography study. Crit Care 2022; 26:195. [PMID: 35780154 PMCID: PMC9250720 DOI: 10.1186/s13054-022-04076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background PEEP selection in severe COVID-19 patients under extracorporeal membrane oxygenation (ECMO) is challenging as no study has assessed the alveolar recruitability in this setting. The aim of the study was to compare lung recruitability and the impact of PEEP on lung aeration in moderate and severe ARDS patients with or without ECMO, using computed tomography (CT). Methods We conducted a two-center prospective observational case–control study in adult COVID-19-related patients who had an indication for CT within 72 h of ARDS onset in non-ECMO patients or within 72 h after ECMO onset. Ninety-nine patients were included, of whom 24 had severe ARDS under ECMO, 59 severe ARDS without ECMO and 16 moderate ARDS. Results Non-inflated lung at PEEP 5 cmH2O was significantly greater in ECMO than in non-ECMO patients. Recruitment induced by increasing PEEP from 5 to 15 cmH2O was not significantly different between ECMO and non-ECMO patients, while PEEP-induced hyperinflation was significantly lower in the ECMO group and virtually nonexistent. The median [IQR] fraction of recruitable lung mass between PEEP 5 and 15 cmH2O was 6 [4–10]%. Total superimposed pressure at PEEP 5 cmH2O was significantly higher in ECMO patients and amounted to 12 [11–13] cmH2O. The hyperinflation-to-recruitment ratio (i.e., a trade-off index of the adverse effects and benefits of PEEP) was significantly lower in ECMO patients and was lower than one in 23 (96%) ECMO patients, 41 (69%) severe non-ECMO patients and 8 (50%) moderate ARDS patients. Compliance of the aerated lung at PEEP 5 cmH2O corrected for PEEP-induced recruitment (CBABY LUNG) was significantly lower in ECMO patients than in non-ECMO patients and was linearly related to the logarithm of the hyperinflation-to-recruitment ratio. Conclusions Lung recruitability of COVID-19 pneumonia is not significantly different between ECMO and non-ECMO patients, with substantial interindividual variations. The balance between hyperinflation and recruitment induced by PEEP increase from 5 to 15 cmH2O appears favorable in virtually all ECMO patients, while this PEEP level is required to counteract compressive forces leading to lung collapse. CBABY LUNG is significantly lower in ECMO patients, independently of lung recruitability. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04076-z.
Collapse
|
20
|
Grieco DL, Bongiovanni F, Dell’Anna AM, Antonelli M. Why compliance and driving pressure may be inappropriate targets for PEEP setting during ARDS. Crit Care 2022; 26:234. [PMID: 35918772 PMCID: PMC9345391 DOI: 10.1186/s13054-022-04109-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
|
21
|
Scaramuzzo G, Karbing DS, Fogagnolo A, Mauri T, Spinelli E, Mari M, Turrini C, Montanaro F, Volta CA, Rees SE, Spadaro S. Heterogeneity of Ventilation/Perfusion Mismatch at Different Levels of PEEP and in Mechanical Phenotypes of COVID-19 ARDS. Respir Care 2022; 68:respcare.10242. [PMID: 36347564 PMCID: PMC9994283 DOI: 10.4187/respcare.10242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND COVID-19-related ARDS is characterized by severe hypoxemia with initially preserved lung compliance and impaired ventilation/perfusion (V̇/Q̇) matching. PEEP can increase end-expiratory lung volume, but its effect on V̇/Q̇ mismatch in COVID-19-related ARDS is not clear. METHODS We enrolled intubated and mechanically ventilated subjects with COVID-19 ARDS and used the automatic lung parameter estimator (ALPE) to measure V̇/Q̇. Respiratory mechanics measurements, shunt, and V̇/Q̇ mismatch (low V̇/Q̇ and high V̇/Q̇) were collected at 3 PEEP levels (clinical PEEP = intermediate PEEP, low PEEP [clinical - 50%], and high PEEP [clinical + 50%]). A mixed-effect model was used to evaluate the impact of PEEP on V̇/Q̇. We also investigated if PEEP might have a different effect on V̇/Q̇ mismatch in 2 different respiratory mechanics phenotypes, that is, high elastance/low compliance (phenotype H) and low elastance/high compliance (phenotype L). RESULTS Seventeen subjects with COVID-related ARDS age 66 [60-71] y with a PaO2 /FIO2 of 141 ± 74 mm Hg were studied at low PEEP = 5.6 ± 2.2 cm H2O, intermediate PEEP = 10.6 ± 3.8 cm H2O, and high PEEP = 15 ± 5 cm H2O. Shunt, low V̇/Q̇, high V̇/Q̇, and alveolar dead space were not significantly influenced, on average, by PEEP. Respiratory system compliance decreased significantly when increasing PEEP without significant variation of PaO2 /FIO2 (P = .26). In the 2 phenotypes, PEEP had opposite effects on shunt, with a decrease in the phenotype L and an increase in phenotype H (P = .048). CONCLUSIONS In subjects with COVID-related ARDS placed on invasive mechanical ventilation for > 48 h, PEEP had a heterogeneous effect on V̇/Q̇ mismatch and, on average, higher levels were not able to reduce shunt. The subject's compliance could influence the effect of PEEP on V̇/Q̇ mismatch since an increased shunt was observed in subjects with lower compliance, whereas the opposite occurred in those with higher compliance.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy; and Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Dan Stieper Karbing
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Alberto Fogagnolo
- Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Institute for Treatment and Research, Ca' Granda Maggiore Policlinico Hospital Foundation, Milan, Italy; and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Elena Spinelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Matilde Mari
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Cecilia Turrini
- Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Federica Montanaro
- Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Carlo Alberto Volta
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy; and Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Stephen Edward Rees
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Savino Spadaro
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy; and Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy.
| |
Collapse
|
22
|
Pulmonary air leak in COVID-19: time to learn from our mistakes. Intensive Care Med 2022; 48:1614-1616. [PMID: 35987966 PMCID: PMC9392431 DOI: 10.1007/s00134-022-06866-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/10/2022] [Indexed: 01/05/2023]
|
23
|
Protti A, Lanza E. Should We Encourage Prone Positioning in Patients With Non-Severe COVID-19? Chest 2022; 162:731-733. [PMID: 36210097 PMCID: PMC9535239 DOI: 10.1016/j.chest.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Alessandro Protti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy,CORRESPONDENCE TO: Alessandro Protti, MD
| | - Ezio Lanza
- Department of Anesthesia and Intensive Care Units and Radiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
24
|
COVID-19-Related ARDS: Key Mechanistic Features and Treatments. J Clin Med 2022; 11:jcm11164896. [PMID: 36013135 PMCID: PMC9410336 DOI: 10.3390/jcm11164896] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a heterogeneous syndrome historically characterized by the presence of severe hypoxemia, high-permeability pulmonary edema manifesting as diffuse alveolar infiltrate on chest radiograph, and reduced compliance of the integrated respiratory system as a result of widespread compressive atelectasis and fluid-filled alveoli. Coronavirus disease 19 (COVID-19)-associated ARDS (C-ARDS) is a novel etiology caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that may present with distinct clinical features as a result of the viral pathobiology unique to SARS-CoV-2. In particular, severe injury to the pulmonary vascular endothelium, accompanied by the presence of diffuse microthrombi in the pulmonary microcirculation, can lead to a clinical presentation in which the severity of impaired gas exchange becomes uncoupled from lung capacity and respiratory mechanics. The purpose of this review is to highlight the key mechanistic features of C-ARDS and to discuss the implications these features have on its treatment. In some patients with C-ARDS, rigid adherence to guidelines derived from clinical trials in the pre-COVID era may not be appropriate.
Collapse
|
25
|
Imaging the acute respiratory distress syndrome: past, present and future. Intensive Care Med 2022; 48:995-1008. [PMID: 35833958 PMCID: PMC9281340 DOI: 10.1007/s00134-022-06809-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
In patients with the acute respiratory distress syndrome (ARDS), lung imaging is a fundamental tool in the study of the morphological and mechanistic features of the lungs. Chest computed tomography studies led to major advances in the understanding of ARDS physiology. They allowed the in vivo study of the syndrome's lung features in relation with its impact on respiratory physiology and physiology, but also explored the lungs' response to mechanical ventilation, be it alveolar recruitment or ventilator-induced lung injuries. Coupled with positron emission tomography, morphological findings were put in relation with ventilation, perfusion or acute lung inflammation. Lung imaging has always been central in the care of patients with ARDS, with modern point-of-care tools such as electrical impedance tomography or lung ultrasounds guiding clinical reasoning beyond macro-respiratory mechanics. Finally, artificial intelligence and machine learning now assist imaging post-processing software, which allows real-time analysis of quantitative parameters that describe the syndrome's complexity. This narrative review aims to draw a didactic and comprehensive picture of how modern imaging techniques improved our understanding of the syndrome, and have the potential to help the clinician guide ventilatory treatment and refine patient prognostication.
Collapse
|
26
|
Protti A, Santini A, Pennati F, Chiurazzi C, Ferrari M, Iapichino GE, Carenzo L, Dalla Corte F, Lanza E, Martinetti N, Aliverti A, Cecconi M. Lung response to prone positioning in mechanically-ventilated patients with COVID-19. Crit Care 2022; 26:127. [PMID: 35526009 PMCID: PMC9076814 DOI: 10.1186/s13054-022-03996-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/23/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Prone positioning improves survival in moderate-to-severe acute respiratory distress syndrome (ARDS) unrelated to the novel coronavirus disease (COVID-19). This benefit is probably mediated by a decrease in alveolar collapse and hyperinflation and a more homogeneous distribution of lung aeration, with fewer harms from mechanical ventilation. In this preliminary physiological study we aimed to verify whether prone positioning causes analogue changes in lung aeration in COVID-19. A positive result would support prone positioning even in this other population. METHODS Fifteen mechanically-ventilated patients with COVID-19 underwent a lung computed tomography in the supine and prone position with a constant positive end-expiratory pressure (PEEP) within three days of endotracheal intubation. Using quantitative analysis, we measured the volume of the non-aerated, poorly-aerated, well-aerated, and over-aerated compartments and the gas-to-tissue ratio of the ten vertical levels of the lung. In addition, we expressed the heterogeneity of lung aeration with the standardized median absolute deviation of the ten vertical gas-to-tissue ratios, with lower values indicating less heterogeneity. RESULTS By the time of the study, PEEP was 12 (10-14) cmH2O and the PaO2:FiO2 107 (84-173) mmHg in the supine position. With prone positioning, the volume of the non-aerated compartment decreased by 82 (26-147) ml, of the poorly-aerated compartment increased by 82 (53-174) ml, of the normally-aerated compartment did not significantly change, and of the over-aerated compartment decreased by 28 (11-186) ml. In eight (53%) patients, the volume of the over-aerated compartment decreased more than the volume of the non-aerated compartment. The gas-to-tissue ratio of the ten vertical levels of the lung decreased by 0.34 (0.25-0.49) ml/g per level in the supine position and by 0.03 (- 0.11 to 0.14) ml/g in the prone position (p < 0.001). The standardized median absolute deviation of the gas-to-tissue ratios of those ten levels decreased in all patients, from 0.55 (0.50-0.71) to 0.20 (0.14-0.27) (p < 0.001). CONCLUSIONS In fifteen patients with COVID-19, prone positioning decreased alveolar collapse, hyperinflation, and homogenized lung aeration. A similar response has been observed in other ARDS, where prone positioning improves outcome. Therefore, our data provide a pathophysiological rationale to support prone positioning even in COVID-19.
Collapse
Affiliation(s)
- Alessandro Protti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Alessandro Santini
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Chiara Chiurazzi
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Michele Ferrari
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giacomo E Iapichino
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luca Carenzo
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Dalla Corte
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ezio Lanza
- Department of Radiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Nicolò Martinetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Maurizio Cecconi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
27
|
Lung Recruitability and Positive End-Expiratory Pressure Setting in ARDS Caused by COVID-19. Chest 2022; 161:869-871. [PMID: 35396041 PMCID: PMC8980520 DOI: 10.1016/j.chest.2021.12.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
|
28
|
Ball L, Silva PL, Giacobbe DR, Bassetti M, Zubieta-Calleja GR, Rocco PRM, Pelosi P. Understanding the pathophysiology of typical acute respiratory distress syndrome and severe COVID-19. Expert Rev Respir Med 2022; 16:437-446. [PMID: 35341424 PMCID: PMC9115784 DOI: 10.1080/17476348.2022.2057300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction Typical acute respiratory distress syndrome (ARDS) and severe coronavirus-19 (COVID-19) pneumonia share complex pathophysiology, a high mortality rate, and an unmet need for efficient therapeutics. Areas covered This review discusses the current advances in understanding the pathophysiologic mechanisms underlying typical ARDS and severe COVID-19 pneumonia, highlighting specific aspects of COVID-19-related acute hypoxemic respiratory failure that require attention. Two models have been proposed to describe the mechanisms of respiratory failure associated with typical ARDS and severe COVID-19 pneumonia. Expert opinion ARDS is defined as a syndrome rather than a distinct pathologic entity. There is great heterogeneity regarding the pathophysiologic, clinical, radiologic, and biological phenotypes in patients with ARDS, challenging clinicians, and scientists to discover new therapies. COVID-19 has been described as a cause of pulmonary ARDS and has reopened many questions regarding the pathophysiology of ARDS itself. COVID-19 lung injury involves direct viral epithelial cell damage and thrombotic and inflammatory reactions. There are some differences between ARDS and COVID-19 lung injury in aspects of aeration distribution, perfusion, and pulmonary vascular responses.
Collapse
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy.,Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | | | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy.,Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| |
Collapse
|