1
|
Mousavi Shafi ZS, Firouz ZM, Pirahmadi S. Gene expression analysis of Anopheles Meigen, 1818 (Diptera: Culicidae) innate immunity after Plasmodium Marchiafava & Celli, 1885 (Apicomplexa) infection: Toward developing new malaria control strategies. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105650. [PMID: 39089500 DOI: 10.1016/j.meegid.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Despite the critical role of the Anopheles innate immune system in defending against Plasmodium infection, there is still limited information about the key immune mechanisms in Anopheles. This review assesses recent findings on the expression characteristics of immune-related genes in Anopheles following exposure to Plasmodium. A literature review, unrestricted by publication date, was conducted to evaluate immune-related gene expression in different organs of Anopheles after Plasmodium infection. Mosquito immune responses in the midgut are essential for reducing parasite populations. Additionally, innate immune responses in the salivary glands and hemocytes circulating in the hemocoel play key roles in defense against the parasite. Transcriptomic analysis of the mosquito's innate immune response to Plasmodium infection provides valuable insights into key immune mechanisms in mosquito defense. A deeper understanding of immune mechanisms in different organs of Anopheles following Plasmodium infection will aid in discovering critical targets for designing novel control strategies.
Collapse
Affiliation(s)
- Zahra Sadat Mousavi Shafi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Becchimanzi A, Nicoletti R, Di Lelio I, Russo E. Immune Gene Repertoire of Soft Scale Insects (Hemiptera: Coccidae). Int J Mol Sci 2024; 25:4922. [PMID: 38732132 PMCID: PMC11084805 DOI: 10.3390/ijms25094922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Insects possess an effective immune system, which has been extensively characterized in several model species, revealing a plethora of conserved genes involved in recognition, signaling, and responses to pathogens and parasites. However, some taxonomic groups, characterized by peculiar trophic niches, such as plant-sap feeders, which are often important pests of crops and forestry ecosystems, have been largely overlooked regarding their immune gene repertoire. Here we annotated the immune genes of soft scale insects (Hemiptera: Coccidae) for which omics data are publicly available. By using immune genes of aphids and Drosophila to query the genome of Ericerus pela, as well as the transcriptomes of Ceroplastes cirripediformis and Coccus sp., we highlight the lack of peptidoglycan recognition proteins, galectins, thaumatins, and antimicrobial peptides in Coccidae. This work contributes to expanding our knowledge about the evolutionary trajectories of immune genes and offers a list of promising candidates for developing new control strategies based on the suppression of pests' immunity through RNAi technologies.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics, 81100 Caserta, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
| |
Collapse
|
3
|
Chen Y, Zhao Z, Liu J, Fan C, Zhang Z. Identification, diversity, and evolution analysis of thioester-containing protein family in Pacific oyster (Crassostrea gigas) and immune response to biotic and abiotic stresses. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109330. [PMID: 38159874 DOI: 10.1016/j.fsi.2023.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/31/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Thioester-containing proteins (TEPs) play a vital role in the innate immune response to biotic and abiotic stresses. In this study, the TEPs in C. gigas were identified, and their gene structure, phylogenetic relationships, collinearity relationships, expression profiles, sequence diversity, and alternative splicing were analyzed. Eight Tep genes were identified in C. gigas genome. Functional analysis and evolutionary relationships indicated a high level of homology to other mollusks TEPs. The transcriptome quantitative analysis results showed that the Tep genes in C. gigas respond to heat stress and Vibrio stress. Alternative splicing analysis revealed four Tep genes (designated A2M_1, CD109_3, CD109_5, complement C3) encode multiple alternative splice variants. Analysis of gene structure and multiple alignments revealed that seven CD109_5 variants are produced through the alternative splicing of the 19th exon, which encodes the highly variable central region. Sequence diversity analysis revealed thirteen missense variants within the 19th exon region of these seven CD109_5 alternative splice variants. Furthermore, the differential alternative splicing analysis showed significant induction of CD109_5, A2M_1 and A2M_2 variants after infection with V. parahaemolyticus. This study explores the Tep genes of C. gigas, providing insights into the molecular mechanisms underlying the involvement of C. gigas TEPs in innate immunity.
Collapse
Affiliation(s)
- Yuping Chen
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Zhao
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinqiang Liu
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Fan
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ziping Zhang
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Arora G, Tang X, Cui Y, Yang J, Chuang YM, Joshi J, Sajid A, Dong Y, Cresswell P, Dimopoulos G, Fikrig E. mosGILT controls innate immunity and germ cell development in Anopheles gambiae. BMC Genomics 2024; 25:42. [PMID: 38191283 PMCID: PMC10775533 DOI: 10.1186/s12864-023-09887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
Gene-edited mosquitoes lacking a gamma-interferon-inducible lysosomal thiol reductase-like protein, namely (mosGILTnull) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILTnull Anopheles gambiae was therefore compared to wild type (WT) mosquitoes by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILTnull A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg, an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILTnull mosquitoes. These results provide a crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Jing Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
- Current Affiliation: Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Jayadev Joshi
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06510, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
5
|
Abou-El-Naga IF, Mogahed NMFH. Immuno-molecular profile for Biomphalaria glabrata/Schistosoma mansoni interaction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105083. [PMID: 37852455 DOI: 10.1016/j.dci.2023.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
The complex innate immune defense of Biomphalaria glabrata, the intermediate host of Schistosoma mansoni, governs the successful development of the intramolluscan stages of the parasite. The interaction between the snail and the parasite involves a complex immune molecular crosstalk between several parasite antigens and the snail immune recognition receptors, evoking different signals and effector molecules. This work seeks to discuss the immune-related molecules that influence compatibility in Biomphalaria glabrata/Schistosoma mansoni interaction and the differential expression of these molecules between resistant and susceptible snails. It also includes the current understanding of the immune molecular determinants that govern the compatibility in sympatric and allopatric interactions, and the expression of these molecules after immune priming and the secondary immune response. Herein, the differences in the immune-related molecules in the interaction of other Biomphalaria species with Schistosoma mansoni compared to the Biomphalaria glabrata model snail are highlighted. Understanding the diverse immune molecular determinants in the snail/schistosome interaction can lead to alternative control strategies for schistosomiasis.
Collapse
|
6
|
Abstract
Haematophagous arthropods, including mosquitoes, ticks, flies, triatomine bugs and lice (here referred to as vectors), are involved in the transmission of various pathogens to mammals on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. Although the vector arthropods differ in life histories, feeding behaviour as well as reproductive strategies, they all harbour symbiotic microorganisms, known as microbiota, on which they depend for completing essential aspects of their biology, such as development and reproduction. In this Review, we summarize the shared and unique key features of the symbiotic associations that have been characterized in the major vector taxa. We discuss the crosstalks between microbiota and their arthropod hosts that influence vector metabolism and immune responses relevant for pathogen transmission success, known as vector competence. Finally, we highlight how current knowledge on symbiotic associations is being explored to develop non-chemical-based alternative control methods that aim to reduce vector populations, or reduce vector competence. We conclude by highlighting the remaining knowledge gaps that stand to advance basic and translational aspects of vector-microbiota interactions.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Arora G, Tang X, Cui Y, Yang J, Chuang YM, Joshi J, Sajid A, Dong Y, Cresswell P, Dimopoulos G, Fikrig E. Anopheles gambiae mosGILT regulates innate immune genes and zpg expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551536. [PMID: 37577703 PMCID: PMC10418185 DOI: 10.1101/2023.08.01.551536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gene-edited mosquitoes lacking a g amma-interferon-inducible lysosomal thiol reductase-like protein, namely ( mosGILT null ) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILT null A. gambiae was therefore compared to wild type (WT) by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILT null A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg , an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILT null mosquitoes. These results provide the crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.
Collapse
|
8
|
Ribeiro JM, Hartmann D, Bartošová-Sojková P, Debat H, Moos M, Šimek P, Fara J, Palus M, Kučera M, Hajdušek O, Sojka D, Kopáček P, Perner J. Blood-feeding adaptations and virome assessment of the poultry red mite Dermanyssus gallinae guided by RNA-seq. Commun Biol 2023; 6:517. [PMID: 37179447 PMCID: PMC10183022 DOI: 10.1038/s42003-023-04907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Dermanyssus gallinae is a blood-feeding mite that parasitises wild birds and farmed poultry. Its remarkably swift processing of blood, together with the capacity to blood-feed during most developmental stages, makes this mite a highly debilitating pest. To identify specific adaptations to digestion of a haemoglobin-rich diet, we constructed and compared transcriptomes from starved and blood-fed stages of the parasite and identified midgut-enriched transcripts. We noted that midgut transcripts encoding cysteine proteases were upregulated with a blood meal. Mapping the full proteolytic apparatus, we noted a reduction in the suite of cysteine proteases, missing homologues for Cathepsin B and C. We have further identified and phylogenetically analysed three distinct transcripts encoding vitellogenins that facilitate the reproductive capacity of the mites. We also fully mapped transcripts for haem biosynthesis and the ferritin-based system of iron storage and inter-tissue trafficking. Additionally, we identified transcripts encoding proteins implicated in immune signalling (Toll and IMD pathways) and activity (defensins and thioester-containing proteins), RNAi, and ion channelling (with targets for commercial acaricides such as Fluralaner, Fipronil, and Ivermectin). Viral sequences were filtered from the Illumina reads and we described, in part, the RNA-virome of D. gallinae with identification of a novel virus, Red mite quaranjavirus 1.
Collapse
Affiliation(s)
- José M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - David Hartmann
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Humberto Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
| | - Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Petr Šimek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Jiří Fara
- International Poultry Testing Station Ústrašice, Ústrašice, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Matěj Kučera
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
9
|
Hamid-Adiamoh M, Jabang AMJ, Opondo KO, Ndiath MO, Assogba BS, Amambua-Ngwa A. Distribution of Anopheles gambiae thioester-containing protein 1 alleles along malaria transmission gradients in The Gambia. Malar J 2023; 22:89. [PMID: 36899431 PMCID: PMC9999626 DOI: 10.1186/s12936-023-04518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Thioester-containing protein 1 (TEP1) is a highly polymorphic gene playing an important role in mosquito immunity to parasite development and associated with Anopheles gambiae vectorial competence. Allelic variations in TEP1 could render mosquito either susceptible or resistant to parasite infection. Despite reports of TEP1 genetic variations in An. gambiae, the correlation between TEP1 allelic variants and transmission patterns in malaria endemic settings remains unclear. METHODS TEP1 allelic variants were characterized by PCR from archived genomic DNA of > 1000 An. gambiae mosquitoes collected at 3 time points between 2009 and 2019 from eastern Gambia, where malaria transmission remains moderately high, and western regions with low transmission. RESULTS Eight common TEP1 allelic variants were identified at varying frequencies in An. gambiae from both transmission settings. These comprised the wild type TEP1, homozygous susceptible genotype, TEP1s; homozygous resistance genotypes: TEP1rA and TEP1rB, and the heterozygous resistance genotypes: TEP1srA, TEP1srB, TEP1rArB and TEP1srArB. There was no significant disproportionate distribution of the TEP1 alleles by transmission setting and the temporal distribution of alleles was also consistent across the transmission settings. TEP1s was the most common in all vector species in both settings (allele frequencies: East = 21.4-68.4%. West = 23.5-67.2%). In Anopheles arabiensis, the frequency of wild type TEP1 and susceptible TEP1s was significantly higher in low transmission setting than in high transmission setting (TEP1: Z = - 4.831, P < 0.0001; TEP1s: Z = - 2.073, P = 0.038). CONCLUSIONS The distribution of TEP1 allele variants does not distinctly correlate with malaria endemicity pattern in The Gambia. Further studies are needed to understand the link between genetic variations in vector population and transmission pattern in the study settings. Future studies on the implication for targeting TEP1 gene for vector control strategy such as gene drive systems in this settings is also recommended.
Collapse
Affiliation(s)
- Majidah Hamid-Adiamoh
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia.
| | - Abdoulie Mai Janko Jabang
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Kevin Ochieng Opondo
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Mamadou Ousmane Ndiath
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Benoit Sessinou Assogba
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
10
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
11
|
Onyango SA, Ochwedo KO, Machani MG, Olumeh JO, Debrah I, Omondi CJ, Ogolla SO, Lee MC, Zhou G, Kokwaro E, Kazura JW, Afrane YA, Githeko AK, Zhong D, Yan G. Molecular characterization and genotype distribution of thioester-containing protein 1 gene in Anopheles gambiae mosquitoes in western Kenya. Malar J 2022; 21:235. [PMID: 35948910 PMCID: PMC9364548 DOI: 10.1186/s12936-022-04256-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary pressures lead to the selection of efficient malaria vectors either resistant or susceptible to Plasmodium parasites. These forces may favour the introduction of species genotypes that adapt to new breeding habitats, potentially having an impact on malaria transmission. Thioester-containing protein 1 (TEP1) of Anopheles gambiae complex plays an important role in innate immune defenses against parasites. This study aims to characterize the distribution pattern of TEP1 polymorphisms among populations of An. gambiae sensu lato (s.l.) in western Kenya. METHODS Anopheles gambiae adult and larvae were collected using pyrethrum spray catches (PSC) and plastic dippers respectively from Homa Bay, Kakamega, Bungoma, and Kisumu counties between 2017 and 2020. Collected adults and larvae reared to the adult stage were morphologically identified and then identified to sibling species by PCR. TEP1 alleles were determined in 627 anopheles mosquitoes using restriction fragment length polymorphisms-polymerase chain reaction (RFLP-PCR) and to validate the TEP1 genotyping results, a representative sample of the alleles was sequenced. RESULTS Two TEP1 alleles (TEP1*S1 and TEP1*R2) and three corresponding genotypes (*S1/S1, *R2/S1, and *R2/R2) were identified. TEP1*S1 and TEP1*R2 with their corresponding genotypes, homozygous *S1/S1 and heterozygous *R2/S1 were widely distributed across all sites with allele frequencies of approximately 80% and 20%, respectively both in Anopheles gambiae and Anopheles arabiensis. There was no significant difference detected among the populations and between the two mosquito species in TEP1 allele frequency and genotype frequency. The overall low levels in population structure (FST = 0.019) across all sites corresponded to an effective migration index (Nm = 12.571) and low Nei's genetic distance values (< 0.500) among the subpopulation. The comparative fixation index values revealed minimal genetic differentiation between species and high levels of gene flow among populations. CONCLUSION Genotyping TEP1 has identified two common TEP1 alleles (TEP1*S1 and TEP1*R2) and three corresponding genotypes (*S1/S1, *R2/S1, and *R2/R2) in An. gambiae s.l. The TEP1 allele genetic diversity and population structure are low in western Kenya.
Collapse
Affiliation(s)
- Shirley A. Onyango
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
| | - Kevin O. Ochwedo
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Maxwell G. Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Julius O. Olumeh
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
| | - Isaiah Debrah
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
- Department of Biochemistry, Cell and Molecular Biology, West Africa Centre for Cell Biology of Infectious Pathogen, University of Ghana, Accra, Ghana
| | - Collince J. Omondi
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Sidney O. Ogolla
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology, Medical School, University of Ghana, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West Africa Centre for Cell Biology of Infectious Pathogen, University of Ghana, Accra, Ghana
- Center for Global Health and Diseases, Case Western Reserve University, LC 4983, Cleveland, OH 44106 USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Elizabeth Kokwaro
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
| | - James W. Kazura
- Center for Global Health and Diseases, Case Western Reserve University, LC 4983, Cleveland, OH 44106 USA
| | - Yaw A. Afrane
- Department of Medical Microbiology, Medical School, University of Ghana, University of Ghana, Accra, Ghana
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
12
|
Kulkarni A, Pandey A, Trainor P, Carlisle S, Yu W, Kukutla P, Xu J. Aryl hydrocarbon receptor and Krüppel like factor 10 mediate a transcriptional axis modulating immune homeostasis in mosquitoes. Sci Rep 2022; 12:6005. [PMID: 35397616 PMCID: PMC8994780 DOI: 10.1038/s41598-022-09817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Immune responses require delicate controls to maintain homeostasis while executing effective defense. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. The Krüppel-like factor 10 (KLF10) is a C2H2 zinc-finger containing transcription factor. The functions of mosquito AhR and KLF10 have not been characterized. Here we show that AhR and KLF10 constitute a transcriptional axis to modulate immune responses in mosquito Anopheles gambiae. The manipulation of AhR activities via agonists or antagonists repressed or enhanced the mosquito antibacterial immunity, respectively. KLF10 was recognized as one of the AhR target genes in the context. Phenotypically, silencing KLF10 reversed the immune suppression caused by the AhR agonist. The transcriptome comparison revealed that silencing AhR and KLF10 plus challenge altered the expression of 2245 genes in the same way. The results suggest that KLF10 is downstream of AhR in a transcriptional network responsible for immunomodulation. This AhR–KLF10 axis regulates a set of genes involved in metabolism and circadian rhythms in the context. The axis was required to suppress the adverse effect caused by the overactivation of the immune pathway IMD via the inhibitor gene Caspar silencing without a bacterial challenge. These results demonstrate that the AhR–KLF10 axis mediates an immunoregulatory transcriptional network as a negative loop to maintain immune homeostasis.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ashmita Pandey
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Patrick Trainor
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Samantha Carlisle
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Wanqin Yu
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Phanidhar Kukutla
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jiannong Xu
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
13
|
Ruzzante L, Feron R, Reijnders MJMF, Thiébaut A, Waterhouse RM. Functional constraints on insect immune system components govern their evolutionary trajectories. Mol Biol Evol 2021; 39:6459179. [PMID: 34893861 PMCID: PMC8788225 DOI: 10.1093/molbev/msab352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Roles of constraints in shaping evolutionary outcomes are often considered in the contexts of developmental biology and population genetics, in terms of capacities to generate new variants and how selection limits or promotes consequent phenotypic changes. Comparative genomics also recognizes the role of constraints, in terms of shaping evolution of gene and genome architectures, sequence evolutionary rates, and gene gains or losses, as well as on molecular phenotypes. Characterizing patterns of genomic change where putative functions and interactions of system components are relatively well described offers opportunities to explore whether genes with similar roles exhibit similar evolutionary trajectories. Using insect immunity as our test case system, we hypothesize that characterizing gene evolutionary histories can define distinct dynamics associated with different functional roles. We develop metrics that quantify gene evolutionary histories, employ these to characterize evolutionary features of immune gene repertoires, and explore relationships between gene family evolutionary profiles and their roles in immunity to understand how different constraints may relate to distinct dynamics. We identified three main axes of evolutionary trajectories characterized by gene duplication and synteny, maintenance/stability and sequence conservation, and loss and sequence divergence, highlighting similar and contrasting patterns across these axes amongst subsets of immune genes. Our results suggest that where and how genes participate in immune responses limit the range of possible evolutionary scenarios they exhibit. The test case study system of insect immunity highlights the potential of applying comparative genomics approaches to characterize how functional constraints on different components of biological systems govern their evolutionary trajectories.
Collapse
Affiliation(s)
- Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Antonin Thiébaut
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| |
Collapse
|
14
|
Yang Z, Shi Y, Cui H, Yang S, Gao H, Yuan J. A malaria parasite phospholipid flippase safeguards midgut traversal of ookinetes for mosquito transmission. SCIENCE ADVANCES 2021; 7:7/30/eabf6015. [PMID: 34301597 PMCID: PMC8302136 DOI: 10.1126/sciadv.abf6015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/08/2021] [Indexed: 05/03/2023]
Abstract
Mosquito midgut epithelium traversal is essential for malaria parasite transmission. Phospholipid flippases are eukaryotic type 4 P-type adenosine triphosphatases (P4-ATPases), which, in association with CDC50, translocate phospholipids across the membrane lipid bilayers. In this study, we investigated the function of a putative P4-ATPase, ATP7, from the rodent malaria parasite Plasmodium yoelii Disruption of ATP7 blocks the parasite infection of mosquitoes. ATP7 is localized on the ookinete plasma membrane. While ATP7-depleted ookinetes are capable of invading the midgut, they are eliminated within the epithelial cells by a process independent from the mosquito complement-like immunity. ATP7 colocalizes and interacts with the flippase cofactor CDC50C. Depletion of CDC50C phenocopies ATP7 deficiency. ATP7-depleted ookinetes fail to uptake phosphatidylcholine across the plasma membrane. Ookinete microinjection into the mosquito hemocoel reverses the ATP7 deficiency phenotype. Our study identifies Plasmodium flippase as a mechanism of parasite survival in the midgut epithelium that is required for mosquito transmission.
Collapse
Affiliation(s)
- Zhenke Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yang Shi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuzhen Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Han Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
15
|
Fogaça AC, Sousa G, Pavanelo DB, Esteves E, Martins LA, Urbanová V, Kopáček P, Daffre S. Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges. Front Immunol 2021; 12:628054. [PMID: 33737931 PMCID: PMC7962413 DOI: 10.3389/fimmu.2021.628054] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Ticks are ectoparasitic arthropods that necessarily feed on the blood of their vertebrate hosts. The success of blood acquisition depends on the pharmacological properties of tick saliva, which is injected into the host during tick feeding. Saliva is also used as a vehicle by several types of pathogens to be transmitted to the host, making ticks versatile vectors of several diseases for humans and other animals. When a tick feeds on an infected host, the pathogen reaches the gut of the tick and must migrate to its salivary glands via hemolymph to be successfully transmitted to a subsequent host during the next stage of feeding. In addition, some pathogens can colonize the ovaries of the tick and be transovarially transmitted to progeny. The tick immune system, as well as the immune system of other invertebrates, is more rudimentary than the immune system of vertebrates, presenting only innate immune responses. Although simpler, the large number of tick species evidences the efficiency of their immune system. The factors of their immune system act in each tick organ that interacts with pathogens; therefore, these factors are potential targets for the development of new strategies for the control of ticks and tick-borne diseases. The objective of this review is to present the prevailing knowledge on the tick immune system and to discuss the challenges of studying tick immunity, especially regarding the gaps and interconnections. To this end, we use a comparative approach of the tick immune system with the immune system of other invertebrates, focusing on various components of humoral and cellular immunity, such as signaling pathways, antimicrobial peptides, redox metabolism, complement-like molecules and regulated cell death. In addition, the role of tick microbiota in vector competence is also discussed.
Collapse
Affiliation(s)
- Andréa C. Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Géssica Sousa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel B. Pavanelo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eliane Esteves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa A. Martins
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
- Laboratory of Bacteriology, Tick-Pathogen Transmission Unit, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Veronika Urbanová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Sirlei Daffre
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Volohonsky G, Paul-Gilloteaux P, Štáfková J, Soichot J, Salamero J, Levashina EA. Kinetics of Plasmodium midgut invasion in Anopheles mosquitoes. PLoS Pathog 2020; 16:e1008739. [PMID: 32946522 PMCID: PMC7526910 DOI: 10.1371/journal.ppat.1008739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/30/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023] Open
Abstract
Malaria-causing Plasmodium parasites traverse the mosquito midgut cells to establish infection at the basal side of the midgut. This dynamic process is a determinant of mosquito vector competence, yet the kinetics of the parasite migration is not well understood. Here we used transgenic mosquitoes of two Anopheles species and a Plasmodium berghei fluorescence reporter line to track parasite passage through the mosquito tissues at high spatial resolution. We provide new quantitative insight into malaria parasite invasion in African and Indian Anopheles species and propose that the mosquito complement-like system contributes to the species-specific dynamics of Plasmodium invasion. The traversal of the mosquito midgut cells is one of the critical stages in the life cycle of malaria parasites. Motile parasite forms, called ookinetes, traverse the midgut epithelium in a dynamic process which is not fully understood. Here, we harnessed transgenic reporters to track invasion of Plasmodium parasites in African and Indian mosquito species. We found important differences in parasite dynamics between the two Anopheles species and demonstrated a role of the mosquito complement-like system in regulation of parasite invasion of the midgut cells.
Collapse
Affiliation(s)
- Gloria Volohonsky
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Perrine Paul-Gilloteaux
- SERPICO Inria Team/CNRS UMR 144, Institut Curie, Paris, France.,National Biology and Health Infrastructure "France Bioimaging", Institut Curie, Paris, France.,Cell and Tissue Imaging Facility, IBiSA, Institut Curie, Paris, France
| | - Jitka Štáfková
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Julien Soichot
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Jean Salamero
- SERPICO Inria Team/CNRS UMR 144, Institut Curie, Paris, France.,National Biology and Health Infrastructure "France Bioimaging", Institut Curie, Paris, France.,Cell and Tissue Imaging Facility, IBiSA, Institut Curie, Paris, France
| | - Elena A Levashina
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France.,Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
17
|
Peirce MJ, Mitchell SN, Kakani EG, Scarpelli P, South A, Shaw WR, Werling KL, Gabrieli P, Marcenac P, Bordoni M, Talesa V, Catteruccia F. JNK signaling regulates oviposition in the malaria vector Anopheles gambiae. Sci Rep 2020; 10:14344. [PMID: 32873857 PMCID: PMC7462981 DOI: 10.1038/s41598-020-71291-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
The reproductive fitness of the Anopheles gambiae mosquito represents a promising target to prevent malaria transmission. The ecdysteroid hormone 20-hydroxyecdysone (20E), transferred from male to female during copulation, is key to An. gambiae reproductive success as it licenses females to oviposit eggs developed after blood feeding. Here we show that 20E-triggered oviposition in these mosquitoes is regulated by the stress- and immune-responsive c-Jun N-terminal kinase (JNK). The heads of mated females exhibit a transcriptional signature reminiscent of a JNK-dependent wounding response, while mating—or injection of virgins with exogenous 20E—selectively activates JNK in the same tissue. RNAi-mediated depletion of JNK pathway components inhibits oviposition in mated females, whereas JNK activation by silencing the JNK phosphatase puckered induces egg laying in virgins. Together, these data identify JNK as a potential conduit linking stress responses and reproductive success in the most important vector of malaria.
Collapse
Affiliation(s)
- Matthew J Peirce
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy.
| | - Sara N Mitchell
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.,Verily Life Sciences, South San Francisco, CA, 94080, USA
| | - Evdoxia G Kakani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.,Verily Life Sciences, South San Francisco, CA, 94080, USA
| | - Paolo Scarpelli
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Adam South
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Kristine L Werling
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Paolo Gabrieli
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy.,Dipartimento Bioscienze, University of Milan, 20133, Milan, Italy
| | - Perrine Marcenac
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Martina Bordoni
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Vincenzo Talesa
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Castillo MG, Humphries JE, Mourão MM, Marquez J, Gonzalez A, Montelongo CE. Biomphalaria glabrata immunity: Post-genome advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103557. [PMID: 31759924 PMCID: PMC8995041 DOI: 10.1016/j.dci.2019.103557] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The freshwater snail, Biomphalaria glabrata, is an important intermediate host in the life cycle for the human parasite Schistosoma mansoni, the causative agent of schistosomiasis. Current treatment and prevention strategies have not led to a significant decrease in disease transmission. However, the genome of B. glabrata was recently sequenced to provide additional resources to further our understanding of snail biology. This review presents an overview of recently published, post-genome studies related to the topic of snail immunity. Many of these reports expand on findings originated from the genome characterization. These novel studies include a complementary gene linkage map, analysis of the genome of the B. glabrata embryonic (Bge) cell line, as well as transcriptomic and proteomic studies looking at snail-parasite interactions and innate immune memory responses towards schistosomes. Also included are biochemical investigations on snail pheromones, neuropeptides, and attractants, as well as studies investigating the frontiers of molluscan epigenetics and cell signaling were also included. Findings support the current hypotheses on snail-parasite strain compatibility, and that snail host resistance to schistosome infection is dependent not only on genetics and expression, but on the ability to form multimeric molecular complexes in a timely and tissue-specific manner. The relevance of cell immunity is reinforced, while the importance of humoral factors, especially for secondary infections, is supported. Overall, these studies reflect an improved understanding on the diversity, specificity, and complexity of molluscan immune systems.
Collapse
Affiliation(s)
- Maria G Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | - Marina M Mourão
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Brazil
| | - Joshua Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Adrian Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Cesar E Montelongo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
19
|
Yang L, Wang J, Jin H, Fang Q, Yan Z, Lin Z, Zou Z, Song Q, Stanley D, Ye G. Immune signaling pathways in the endoparasitoid, Pteromalus puparum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21629. [PMID: 31599031 DOI: 10.1002/arch.21629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Parasitoids serve as effective biocontrol agents for agricultural pests. However, they face constant challenges from host immune defense and numerous pathogens and must develop potent immune defense against these threats. Despite the recent advances in innate immunity, little is known about the immunological mechanisms of parasitoids. Here, we identified and characterized potential immune-related genes of the endoparasitoid, Pteromalus puparum, which act in regulating populations of some members of the Pieridae. We identified 216 immune-related genes based on interrogating the P. puparum genome and transcriptome databases. We categorized the cognate gene products into recognition molecules, signal moieties and effector proteins operating in four pathways, Toll, IMD, JAK/STAT, and JNK. Comparative analyses of immune-related genes from seven insect species indicate that recognition molecules and effector proteins are more expanded and diversified than signaling genes in these signal pathways. There are common 1:1 orthologs between the endoparasitoid P. puparum and its relative, the ectoparasitoid Nasonia vitripennis. The developmental expression profiles of immune genes randomly selected from the transcriptome analysis were verified by a quantitative polymerase chain reaction. Our work provides comprehensive analyses of P. puparum immune genes, some of which may be exploited in advancing parasitoid-based biocontrol technologies.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongxia Jin
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, 1503 S. Providence Rd, Columbia, Missouri, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Li H, Hambrook JR, Pila EA, Gharamah AA, Fang J, Wu X, Hanington P. Coordination of humoral immune factors dictates compatibility between Schistosoma mansoni and Biomphalaria glabrata. eLife 2020; 9:e51708. [PMID: 31916937 PMCID: PMC6970513 DOI: 10.7554/elife.51708] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
Immune factors in snails of the genus Biomphalaria are critical for combating Schistosoma mansoni, the predominant cause of human intestinal schistosomiasis. Independently, many of these factors play an important role in, but do not fully define, the compatibility between the model snail B. glabrata, and S. mansoni. Here, we demonstrate association between four previously characterized humoral immune molecules; BgFREP3, BgTEP1, BgFREP2 and Biomphalysin. We also identify unique immune determinants in the plasma of S. mansoni-resistant B. glabrata that associate with the incompatible phenotype. These factors coordinate to initiate haemocyte-mediated destruction of S. mansoni sporocysts via production of reactive oxygen species. The inclusion of BgFREP2 in a BgFREP3-initiated complex that also includes BgTEP1 almost completely explains resistance to S. mansoni in this model. Our study unifies many independent lines of investigation to provide a more comprehensive understanding of the snail immune system in the context of infection by this important human parasite.
Collapse
Affiliation(s)
- Hongyu Li
- Ocean CollegeBeibu Gulf UniversityQinzhouChina
- School of Public HealthUniversity of AlbertaEdmontonCanada
| | | | | | | | - Jing Fang
- Ocean CollegeBeibu Gulf UniversityQinzhouChina
- School of Public HealthUniversity of AlbertaEdmontonCanada
| | - Xinzhong Wu
- Ocean CollegeBeibu Gulf UniversityQinzhouChina
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | | |
Collapse
|
21
|
A New Assessment of Thioester-Containing Proteins Diversity of the Freshwater Snail Biomphalaria glabrata. Genes (Basel) 2020; 11:genes11010069. [PMID: 31936127 PMCID: PMC7016707 DOI: 10.3390/genes11010069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Thioester-containing proteins (TEPs) superfamily is known to play important innate immune functions in a wide range of animal phyla. TEPs are involved in recognition, and in the direct or mediated killing of several invading organisms or pathogens. While several TEPs have been identified in many invertebrates, only one TEP (named BgTEP) has been previously characterized in the freshwater snail, Biomphalaria glabrata. As the presence of a single member of that family is particularly intriguing, transcriptomic data and the recently published genome were used to explore the presence of other BgTEP related genes in B. glabrata. Ten other TEP members have been reported and classified into different subfamilies: Three complement-like factors (BgC3-1 to BgC3-3), one α-2-macroblobulin (BgA2M), two macroglobulin complement-related proteins (BgMCR1, BgMCR2), one CD109 (BgCD109), and three insect TEP (BgTEP2 to BgTEP4) in addition to the previously characterized BgTEP that we renamed BgTEP1. This is the first report on such a level of TEP diversity and of the presence of macroglobulin complement-related proteins (MCR) in mollusks. Gene structure analysis revealed alternative splicing in the highly variable region of three members (BgA2M, BgCD109, and BgTEP2) with a particularly unexpected diversity for BgTEP2. Finally, different gene expression profiles tend to indicate specific functions for such novel family members.
Collapse
|
22
|
Yang J, Schleicher TR, Dong Y, Park HB, Lan J, Cresswell P, Crawford J, Dimopoulos G, Fikrig E. Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection. J Exp Med 2020; 217:e20190682. [PMID: 31658986 PMCID: PMC7037243 DOI: 10.1084/jem.20190682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 11/04/2022] Open
Abstract
Plasmodium infection in Anopheles is influenced by mosquito-derived factors. We previously showed that a protein in saliva from infected Anopheles, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT), inhibits the ability of sporozoites to traverse cells and readily establish infection of the vertebrate host. To determine whether mosGILT influences Plasmodium within the mosquito, we generated Anopheles gambiae mosquitoes carrying mosaic mutations in the mosGILT gene using CRISPR/CRISPR associated protein 9 (Cas9). Here, we show that female mosaic mosGILT mutant mosquitoes display defects in ovarian development and refractoriness to Plasmodium. Following infection by either Plasmodium berghei or Plasmodium falciparum, mutant mosquitoes have significantly reduced oocyst numbers as a result of increased thioester-containing protein 1 (TEP1)-dependent parasite killing. Expression of vitellogenin (Vg), the major yolk protein that can reduce the parasite-killing efficiency of TEP1, is severely impaired in mutant mosquitoes. MosGILT is a mosquito factor that is essential for ovarian development and indirectly protects both human and rodent Plasmodium species from mosquito immunity.
Collapse
Affiliation(s)
- Jing Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Tyler R. Schleicher
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Yuemei Dong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT
- Chemical Biology Institute, Yale University, West Haven, CT
| | - Jiangfeng Lan
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Jason Crawford
- Department of Chemistry, Yale University, New Haven, CT
- Chemical Biology Institute, Yale University, West Haven, CT
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
23
|
Janeh M, Osman D, Kambris Z. Comparative Analysis of Midgut Regeneration Capacity and Resistance to Oral Infection in Three Disease-Vector Mosquitoes. Sci Rep 2019; 9:14556. [PMID: 31601867 PMCID: PMC6787257 DOI: 10.1038/s41598-019-50994-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/23/2019] [Indexed: 11/09/2022] Open
Abstract
Mosquitoes acquire the pathogens they transmit through ingestion, and the insects' gut constitutes the first line of defense against invading pathogens. Indeed the gut epithelium acts as a physical barrier, activates local antimicrobial peptides production and triggers the systemic immune response. Consequently, gut epithelium is constantly confronted to stress and often suffers cellular damage. We have previously shown that regenerative cells are present in the guts of adult Aedes albopictus, and that chemical damage or bacterial infection leads to the proliferation of these regenerative cells in the midgut. In this study, we extended the analysis of gut cells response to stress to two other important disease vector mosquitoes: Culex pipiens and Anopheles gambiae. We fed mosquitoes on sucrose solutions or on sucrose supplemented with pathogenic bacteria or with damage-inducing chemicals. We also assayed the survival of mosquitoes following the ingestion of pathogenic bacteria. We found that in adult C. pipiens, dividing cells exist in the digestive tract and that these cells proliferate in the midgut after bacterial or chemical damage, similarly to what we previously observed in A. albopictus. In sharp contrast, we did not detect any mitotic cell in the midguts of A. gambiae mosquitoes, neither in normal situation nor after the induction of gut damage. In agreement with this observation, A. gambiae mosquitoes were more sensitive to oral bacterial infections compared to A. albopictus and C. pipiens. This work provides evidence that major differences in gut physiological responses exist between different mosquitoes. The presence of regenerative cells in the mosquito guts and their ability to multiply after gut damage affect the mosquito survival to oral infections, and is also likely to affect its vectorial capacity.
Collapse
Affiliation(s)
- Maria Janeh
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, 1300, Tripoli, Lebanon
| | - Zakaria Kambris
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
24
|
Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103182. [PMID: 31265904 PMCID: PMC6639037 DOI: 10.1016/j.ibmb.2019.103182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 05/14/2023]
Abstract
The mosquito immune system has evolved in the presence of continuous encounters with fungi that range from food to foes. Herein, we review the field of mosquito-fungal interactions, providing an overview of current knowledge and topics of interest. Mosquitoes encounter fungi in their aquatic and terrestrial habitats. Mosquito larvae are exposed to fungi on plant detritus, within the water column, and at the water surface. Adult mosquitoes are exposed to fungi during indoor and outdoor resting, blood and sugar feeding, mating, and oviposition. Fungi enter the mosquito body through different routes, including ingestion and through active or passive breaches in the cuticle. Oral uptake of fungi can be beneficial to mosquitoes, as yeasts hold nutritional value and support larval development. However, ingestion of or surface contact with fungal entomopathogens leads to colonization of the mosquito with often lethal consequences to the host. The mosquito immune system recognizes fungi and mounts cellular and humoral immune responses in the hemocoel, and possibly epithelial immune responses in the gut. These responses are regulated transcriptionally through multiple signal transduction pathways. Proteolytic protease cascades provide additional regulation of antifungal immunity. Together, these immune responses provide an efficient barrier to fungal infections, which need to be overcome by entomopathogens. Therefore, fungi constitute an excellent tool to examine the molecular underpinnings of mosquito immunity and to identify novel antifungal peptides. In addition, recent advances in mycobiome analyses can now be used to examine the contribution of fungi to various mosquito traits, including vector competence.
Collapse
Affiliation(s)
- P Tawidian
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA
| | - V L Rhodes
- Missouri Southern State University, Biology Department, Reynolds Hall 220, 3950 E. Newman Rd., Joplin, MO, 64801-1595, USA
| | - K Michel
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
25
|
Bai L, Wang L, Vega-Rodríguez J, Wang G, Wang S. A Gut Symbiotic Bacterium Serratia marcescens Renders Mosquito Resistance to Plasmodium Infection Through Activation of Mosquito Immune Responses. Front Microbiol 2019; 10:1580. [PMID: 31379768 PMCID: PMC6657657 DOI: 10.3389/fmicb.2019.01580] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/25/2019] [Indexed: 01/04/2023] Open
Abstract
The malaria development in the mosquito midgut is a complex process that results in considerable parasite losses. The mosquito gut microbiota influences the outcome of pathogen infection in mosquitoes, but the underlying mechanisms through which gut symbiotic bacteria affect vector competence remain elusive. Here, we identified two Serratia strains (Y1 and J1) isolated from field-caught female Anopheles sinensis from China and assessed their effect on Plasmodium development in An. stephensi. Colonization of An. stephensi midgut by Serratia Y1 significantly renders the mosquito resistant to Plasmodium berghei infection, while Serratia J1 has no impact on parasite development. Parasite inhibition by Serratia Y1 is induced by the activation of the mosquito immune system. Genome-wide transcriptomic analysis by RNA-seq shows a similar pattern of midgut gene expression in response to Serratia Y1 and J1 in sugar-fed mosquitoes. However, 24 h after blood ingestion, Serratia Y1 modulates more midgut genes than Serratia J1 including the c-type lectins (CTLs), CLIP serine proteases and other immune effectors. Furthermore, silencing of several Serratia Y1-induced anti-Plasmodium factors like the thioester-containing protein 1 (TEP1), fibrinogen immunolectin 9 (FBN9) or leucine-rich repeat protein LRRD7 can rescue parasite oocyst development in the presence of Serratia Y1, suggesting that these factors modulate the Serratia Y1-mediated anti-Plasmodium effect. This study enhances our understanding of how gut bacteria influence mosquito-Plasmodium interactions.
Collapse
Affiliation(s)
- Liang Bai
- School of Life Science and Technology, Tongji University, Shanghai, China.,CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Guandong Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Reyes Ruiz VM, Sousa GL, Sneed SD, Farrant KV, Christophides GK, Povelones M. Stimulation of a protease targeting the LRIM1/APL1C complex reveals specificity in complement-like pathway activation in Anopheles gambiae. PLoS One 2019; 14:e0214753. [PMID: 30958840 PMCID: PMC6453449 DOI: 10.1371/journal.pone.0214753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
The complement-like pathway of the African malaria mosquito Anopheles gambiae provides protection against infection by diverse pathogens. A functional requirement for a core set of proteins during infections by rodent and human malaria parasites, bacteria, and fungi suggests a similar mechanism operates against different pathogens. However, the extent to which the molecular mechanisms are conserved is unknown. In this study we probed the biochemical responses of complement-like pathway to challenge by the Gram-positive bacterium Staphyloccocus aureus. Western blot analysis of the hemolymph revealed that S. aureus challenge activates a TEP1 convertase-like activity and promotes the depletion of the protein SPCLIP1. S. aureus challenge did not lead to an apparent change in the abundance of the LRIM1/APL1C complex compared to challenge by the Gram-negative bacterium, Escherichia coli. Following up on this observation using a panel of LRIM1 and APL1C antibodies, we found that E. coli challenge, but not S. aureus, specifically activates a protease that cleaves the C-terminus of APL1C. Inhibitor studies in vivo and in vitro protease assays suggest that a serine protease is responsible for APL1C cleavage. This study reveals that despite different challenges converging on activation of a TEP1 convertase-like activity, the mosquito complement-like pathway also includes pathogen-specific reactions.
Collapse
Affiliation(s)
- Valeria M. Reyes Ruiz
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory L. Sousa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah D. Sneed
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katie V. Farrant
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
27
|
Ruiz JL, Yerbanga RS, Lefèvre T, Ouedraogo JB, Corces VG, Gómez-Díaz E. Chromatin changes in Anopheles gambiae induced by Plasmodium falciparum infection. Epigenetics Chromatin 2019; 12:5. [PMID: 30616642 PMCID: PMC6322293 DOI: 10.1186/s13072-018-0250-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Infection by the human malaria parasite leads to important changes in mosquito phenotypic traits related to vector competence. However, we still lack a clear understanding of the underlying mechanisms and, in particular, of the epigenetic basis for these changes. We have examined genome-wide distribution maps of H3K27ac, H3K9ac, H3K9me3 and H3K4me3 by ChIP-seq and the transcriptome by RNA-seq, of midguts from Anopheles gambiae mosquitoes blood-fed uninfected and infected with natural isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. RESULTS We report 15,916 regions containing differential histone modification enrichment between infected and uninfected, of which 8339 locate at promoters and/or intersect with genes. The functional annotation of these regions allowed us to identify infection-responsive genes showing differential enrichment in various histone modifications, such as CLIP proteases, antimicrobial peptides-encoding genes, and genes related to melanization responses and the complement system. Further, the motif analysis of regions differentially enriched in various histone modifications predicts binding sites that might be involved in the cis-regulation of these regions, such as Deaf1, Pangolin and Dorsal transcription factors (TFs). Some of these TFs are known to regulate immunity gene expression in Drosophila and are involved in the Notch and JAK/STAT signaling pathways. CONCLUSIONS The analysis of malaria infection-induced chromatin changes in mosquitoes is important not only to identify regulatory elements and genes underlying mosquito responses to P. falciparum infection, but also for possible applications to the genetic manipulation of mosquitoes and to other mosquito-borne systems.
Collapse
Affiliation(s)
- José L. Ruiz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| | - Rakiswendé S. Yerbanga
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 171, Bobo Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 171, Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jean B. Ouedraogo
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 171, Bobo Dioulasso, Burkina Faso
| | - Victor G. Corces
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322 USA
| | - Elena Gómez-Díaz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| |
Collapse
|
28
|
Sharma A, Nuss AB, Gulia-Nuss M. Insulin-Like Peptide Signaling in Mosquitoes: The Road Behind and the Road Ahead. Front Endocrinol (Lausanne) 2019; 10:166. [PMID: 30984106 PMCID: PMC6448002 DOI: 10.3389/fendo.2019.00166] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Insulin signaling is a conserved pathway in all metazoans. This pathway contributed toward primordial metazoans responding to a greater diversity of environmental signals by modulating nutritional storage, reproduction, and longevity. Most of our knowledge of insulin signaling in insects comes from the vinegar fly, Drosophila melanogaster, where it has been extensively studied and shown to control several physiological processes. Mosquitoes are the most important vectors of human disease in the world and their control constitutes a significant area of research. Recent studies have shown the importance of insulin signaling in multiple physiological processes such as reproduction, innate immunity, lifespan, and vectorial capacity in mosquitoes. Although insulin-like peptides have been identified and functionally characterized from many mosquito species, a comprehensive review of this pathway in mosquitoes is needed. To fill this gap, our review provides up-to-date knowledge of this subfield.
Collapse
Affiliation(s)
- Arvind Sharma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Andrew B. Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV, United States
- *Correspondence: Andrew B. Nuss
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
- Monika Gulia-Nuss
| |
Collapse
|
29
|
Matetovici I, Van Den Abbeele J. Thioester-containing proteins in the tsetse fly (Glossina) and their response to trypanosome infection. INSECT MOLECULAR BIOLOGY 2018; 27. [PMID: 29528164 PMCID: PMC5969219 DOI: 10.1111/imb.12382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Thioester-containing proteins (TEPs) are conserved proteins with a role in innate immune immunity. In the current study, we characterized the TEP family in the genome of six tsetse fly species (Glossina spp.). Tsetse flies are the biological vectors of several African trypanosomes, which cause sleeping sickness in humans or nagana in livestock. The analysis of the tsetse TEP sequences revealed information about their structure, evolutionary relationships and expression profiles under both normal and trypanosome infection conditions. Phylogenetic analysis of the family showed that tsetse flies harbour a genomic expansion of specific TEPs that are not found in other dipterans. We found a general expression of all TEP genes in the alimentary tract, mouthparts and salivary glands. Glossina morsitans and Glossina palpalis TEP genes display a tissue-specific expression pattern with some that are markedly up-regulated when the fly is infected with the trypanosome parasite. A different TEP response was observed to infection with Trypanosoma brucei compared to Trypanosoma congolense, indicating that the tsetse TEP response is trypanosome-specific. These findings are suggestive for the involvement of the TEP family in tsetse innate immunity, with a possible role in the control of the trypanosome parasite.
Collapse
Affiliation(s)
- I. Matetovici
- Unit of Veterinary Protozoology, Department of Biomedical SciencesInstitute of Tropical Medicine Antwerp (ITM)AntwerpBelgium
| | - J. Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical SciencesInstitute of Tropical Medicine Antwerp (ITM)AntwerpBelgium
| |
Collapse
|
30
|
Portet A, Galinier R, Pinaud S, Portela J, Nowacki F, Gourbal B, Duval D. BgTEP: An Antiprotease Involved in Innate Immune Sensing in Biomphalaria glabrata. Front Immunol 2018; 9:1206. [PMID: 29899746 PMCID: PMC5989330 DOI: 10.3389/fimmu.2018.01206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Insect thioester-containing protein (iTEP) is the most recently defined group among the thioester-containing protein (TEP) superfamily. TEPs are key components of the immune system, and iTEPs from flies and mosquitoes were shown to be major immune weapons. Initially characterized from insects, TEP genes homologous to iTEP were further described from several other invertebrates including arthropods, cniderians, and mollusks albeit with few functional characterizations. In the freshwater snail Biomphalaria glabrata, a vector of the schistosomiasis disease, the presence of a TEP protein (BgTEP) was previously described in a well-defined immune complex involving snail lectins (fibrinogen-related proteins) and schistosome parasite mucins (SmPoMuc). To investigate the potential role of BgTEP in the immune response of the snail, we first characterized its genomic organization and its predicted protein structure. A phylogenetic analysis clustered BgTEP in a well-conserved subgroup of mollusk TEP. We then investigated the BgTEP expression profile in different snail tissues and followed immune challenges using different kinds of intruders during infection kinetics. Results revealed that BgTEP is particularly expressed in hemocytes, the immune-specialized cells in invertebrates, and is secreted into the hemolymph. Transcriptomic results further evidenced an intruder-dependent differential expression pattern of BgTEP, while interactome experiments showed that BgTEP is capable of binding to the surface of different microbes and parasite either in its full length form or in processed forms. An immunolocalization approach during snail infection by the Schistosoma mansoni parasite revealed that BgTEP is solely expressed by a subtype of hemocytes, the blast-like cells. This hemocyte subtype is present in the hemocytic capsule surrounding the parasite, suggesting a potential role in the parasite clearance by encapsulation. Through this work, we report the first characterization of a snail TEP. Our study also reveals that BgTEP may display an unexpected functional dual role. In addition to its previously characterized anti-protease activity, we demonstrate that BgTEP can bind to the intruder surface membrane, which supports a likely opsonin role.
Collapse
Affiliation(s)
- Anaïs Portet
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Richard Galinier
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Silvain Pinaud
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Julien Portela
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Fanny Nowacki
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Benjamin Gourbal
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - David Duval
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| |
Collapse
|
31
|
Gerdol M, Luo YJ, Satoh N, Pallavicini A. Genetic and molecular basis of the immune system in the brachiopod Lingula anatina. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:7-30. [PMID: 29278680 DOI: 10.1016/j.dci.2017.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
The extension of comparative immunology to non-model systems, such as mollusks and annelids, has revealed an unexpected diversity in the complement of immune receptors and effectors among evolutionary lineages. However, several lophotrochozoan phyla remain unexplored mainly due to the lack of genomic resources. The increasing accessibility of high-throughput sequencing technologies offers unique opportunities for extending genome-wide studies to non-model systems. As a result, the genome-based study of the immune system in brachiopods allows a better understanding of the alternative survival strategies developed by these immunologically neglected phyla. Here we present a detailed overview of the molecular components of the immune system identified in the genome of the brachiopod Lingula anatina. Our findings reveal conserved intracellular signaling pathways as well as unique strategies for pathogen detection and killing in brachiopods.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy.
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy; Anton Dohrn Zoological Station, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
32
|
Thioester-Containing Proteins 2 and 4 Affect the Metabolic Activity and Inflammation Response in Drosophila. Infect Immun 2018; 86:IAI.00810-17. [PMID: 29463615 DOI: 10.1128/iai.00810-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/06/2018] [Indexed: 12/17/2022] Open
Abstract
Drosophila melanogaster is an outstanding model for studying host antipathogen defense. Although substantial progress has been made in understanding how metabolism and immunity are interrelated in flies, little information has been obtained on the molecular players that regulate metabolism and inflammation in Drosophila during pathogenic infection. Recently, we reported that the inactivation of thioester-containing protein 2 (Tep2) and Tep4 promotes survival and decreases the bacterial burden in flies upon infection with the virulent pathogens Photorhabdus luminescens and Photorhabdus asymbiotica Here, we investigated physiological and pathological defects in tep mutant flies in response to Photorhabdus challenge. We find that tep2 and tep4 loss-of-function mutant flies contain increased levels of carbohydrates and triglycerides in the presence or absence of Photorhabdus infection. We also report that Photorhabdus infection leads to higher levels of nitric oxide and reduced transcript levels of the apical caspase-encoding gene Dronc in tep2 and tep4 mutants. We show that Tep2 and Tep4 are upregulated mainly in the fat body rather than the gut in Photorhabdus-infected wild-type flies and that tep mutants contain decreased numbers of Photorhabdus bacteria in both tissue types. We propose that the inactivation of Tep2 or Tep4 in adult Drosophila flies results in lower levels of inflammation and increased energy reserves in response to Photorhabdus, which could confer a survival-protective effect during the initial hours of infection.
Collapse
|
33
|
Lefevre T, Ohm J, Dabiré KR, Cohuet A, Choisy M, Thomas MB, Cator L. Transmission traits of malaria parasites within the mosquito: Genetic variation, phenotypic plasticity, and consequences for control. Evol Appl 2018; 11:456-469. [PMID: 29636799 PMCID: PMC5891056 DOI: 10.1111/eva.12571] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Abstract
Evaluating the risk of emergence and transmission of vector-borne diseases requires knowledge of the genetic and environmental contributions to pathogen transmission traits. Compared to the significant effort devoted to understanding the biology of malaria transmission from vertebrate hosts to mosquito vectors, the strategies that malaria parasites have evolved to maximize transmission from vectors to vertebrate hosts have been largely overlooked. While determinants of infection success within the mosquito host have recently received attention, the causes of variability for other key transmission traits of malaria, namely the duration of parasite development and its virulence within the vector, as well as its ability to alter mosquito behavior, remain largely unknown. This important gap in our knowledge needs to be bridged in order to obtain an integrative view of the ecology and evolution of malaria transmission strategies. Associations between transmission traits also need to be characterized, as they trade-offs and constraints could have important implications for understanding the evolution of parasite transmission. Finally, theoretical studies are required to evaluate how genetic and environmental influences on parasite transmission traits can shape malaria dynamics and evolution in response to disease control.
Collapse
Affiliation(s)
- Thierry Lefevre
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo DioulassoBurkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT)Bobo DioulassoBurkina Faso
| | - Johanna Ohm
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPAUSA
| | - Kounbobr R. Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo DioulassoBurkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT)Bobo DioulassoBurkina Faso
| | - Anna Cohuet
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
| | - Marc Choisy
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
- Oxford University Clinical Research UnitHanoiVietnam
| | - Matthew B. Thomas
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPAUSA
| | - Lauren Cator
- Grand Challenges in Ecosystems and EnvironmentImperial College LondonAscotUK
| |
Collapse
|
34
|
Bartholomay LC, Michel K. Mosquito Immunobiology: The Intersection of Vector Health and Vector Competence. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:145-167. [PMID: 29324042 DOI: 10.1146/annurev-ento-010715-023530] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As holometabolous insects that occupy distinct aquatic and terrestrial environments in larval and adult stages and utilize hematophagy for nutrient acquisition, mosquitoes are subjected to a wide variety of symbiotic interactions. Indeed, mosquitoes play host to endosymbiotic, entomopathogenic, and mosquito-borne organisms, including protozoa, viruses, bacteria, fungi, fungal-like organisms, and metazoans, all of which trigger and shape innate infection-response capacity. Depending on the infection or interaction, the mosquito may employ, for example, cellular and humoral immune effectors for septic infections in the hemocoel, humoral infection responses in the midgut lumen, and RNA interference and programmed cell death for intracellular pathogens. These responses often function in concert, regardless of the infection type, and provide a robust front to combat infection. Mosquito-borne pathogens and entomopathogens overcome these immune responses, employing avoidance or suppression strategies. Burgeoning methodologies are capitalizing on this concerted deployment of immune responses to control mosquito-borne disease.
Collapse
Affiliation(s)
- Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin 53706;
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, Kansas 66506;
| |
Collapse
|
35
|
Theopold U, Schmid M. Thioester-containing proteins: At the crossroads of immune effector mechanisms. Virulence 2017; 8:1468-1470. [PMID: 28704162 DOI: 10.1080/21505594.2017.1355662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ulrich Theopold
- a Department of Molecular Biosciences, The Wenner-Gren Institute (MBW) , Stockholm University , Stockholm , Sweden
| | - Martin Schmid
- a Department of Molecular Biosciences, The Wenner-Gren Institute (MBW) , Stockholm University , Stockholm , Sweden
| |
Collapse
|
36
|
Shokal U, Eleftherianos I. Evolution and Function of Thioester-Containing Proteins and the Complement System in the Innate Immune Response. Front Immunol 2017; 8:759. [PMID: 28706521 PMCID: PMC5489563 DOI: 10.3389/fimmu.2017.00759] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/16/2017] [Indexed: 01/09/2023] Open
Abstract
The innate immune response is evolutionary conserved among organisms. The complement system forms an important and efficient immune defense mechanism. It consists of plasma proteins that participate in microbial detection, which ultimately results in the production of various molecules with antimicrobial activity. Thioester-containing proteins (TEPs) are a superfamily of secreted effector proteins. In vertebrates, certain TEPs act in the innate immune response by promoting recruitment of immune cells, phagocytosis, and direct lysis of microbial invaders. Insects are excellent models for dissecting the molecular basis of innate immune recognition and response to a wide range of microbial infections. Impressive progress in recent years has generated crucial information on the role of TEPs in the antibacterial and antiparasite response of the tractable model insect Drosophila melanogaster and the mosquito malaria vector Anopheles gambiae. This knowledge is critical for better understanding the evolution of TEPs and their involvement in the regulation of the host innate immune system.
Collapse
Affiliation(s)
- Upasana Shokal
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
37
|
Shokal U, Kopydlowski H, Eleftherianos I. The distinct function of Tep2 and Tep6 in the immune defense of Drosophila melanogaster against the pathogen Photorhabdus. Virulence 2017; 8:1668-1682. [PMID: 28498729 DOI: 10.1080/21505594.2017.1330240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous and recent investigations on the innate immune response of Drosophila have identified certain mechanisms that promote pathogen elimination. However, the function of Thioester-containing proteins (TEPs) in the fly still remains elusive. Recently we have shown the contribution of TEP4 in the antibacterial immune defense of Drosophila against non-pathogenic E. coli, and the pathogens Photorhabdus luminescens and P. asymbiotica. Here we studied the function of Tep genes in both humoral and cellular immunity upon E. coli and Photorhabdus infection. We found that while Tep2 is induced after Photorhabdus and E. coli infection; Tep6 is induced by P. asymbiotica only. Moreover, functional ablation of hemocytes results in significantly low transcript levels of Tep2 and Tep6 in response to Photorhabdus. We show that Tep2 and Tep6 loss-of-function mutants have prolonged survival against P. asymbiotica, Tep6 mutants survive better the infection of P. luminescens, and both tep mutants are resistant to E. coli and Photorhabdus. We also find a distinct pattern of immune signaling pathway induction in E. coli or Photorhabdus infected Tep2 and Tep6 mutants. We further show that Tep2 and Tep6 participate in the activation of hemocytes in Drosophila responding to Photorhabdus. Finally, inactivation of Tep2 or Tep6 affects phagocytosis and melanization in flies infected with Photorhabdus. Our results indicate that distinct Tep genes might be involved in different yet crucial functions in the Drosophila antibacterial immune response.
Collapse
Affiliation(s)
- Upasana Shokal
- a Insect Infection and Immunity Lab, Department of Biological Sciences , Institute for Biomedical Sciences, The George Washington University , Washington DC , USA
| | - Hannah Kopydlowski
- a Insect Infection and Immunity Lab, Department of Biological Sciences , Institute for Biomedical Sciences, The George Washington University , Washington DC , USA
| | - Ioannis Eleftherianos
- a Insect Infection and Immunity Lab, Department of Biological Sciences , Institute for Biomedical Sciences, The George Washington University , Washington DC , USA
| |
Collapse
|
38
|
Wu XJ, Dinguirard N, Sabat G, Lui HD, Gonzalez L, Gehring M, Bickham-Wright U, Yoshino TP. Proteomic analysis of Biomphalaria glabrata plasma proteins with binding affinity to those expressed by early developing larval Schistosoma mansoni. PLoS Pathog 2017; 13:e1006081. [PMID: 28520808 PMCID: PMC5433772 DOI: 10.1371/journal.ppat.1006081] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 11/20/2016] [Indexed: 11/19/2022] Open
Abstract
Interactions between early developing Schistosoma mansoni larval stages and the hemolymph of its snail intermediate host represent the first molecular encounter with the snail’s immune system. To gain a more comprehensive understanding of this early parasite-host interaction, biotinylated sporocyst tegumental membrane (Mem) proteins and larval transformation proteins (LTP) were affixed to streptavidin-agarose beads and used as affinity matrices to enrich for larval-reactive plasma proteins from susceptible (NMRI) and resistant (BS-90) strains of the snail Biomphalaria glabrata. Nano-LC/MS-MS proteomic analyses of isolated plasma proteins revealed a diverse array of 94 immune-and nonimmune-related plasma proteins. Included among the immune-related subset were pattern recognition receptors (lectins, LPS-binding protein, thioester-containing proteins-TEPs), stress proteins (HSP60 and 70), adhesion proteins (dermatopontins), metalloproteases (A Disintegrin And Metalloproteinase (ADAM), ADAM-related Zn proteinases), cytotoxins (biomphalysin) and a Ca2+-binding protein (neo-calmodulin). Variable immunoglobulin and lectin domain (VIgL) gene family members, including fibrinogen-related proteins (FREPs), galectin-related proteins (GREPs) and C-type lectin-related proteins (CREPs), were the most prevalent of larval-reactive immune lectins present in plasma. FREPs were highly represented, although only a subset of FREP subfamilies (FREP 2, 3 and 12) were identified, suggesting potential selectivity in the repertoire of plasma lectins recognizing larval glycoconjugates. Other larval-binding FREP-like and CREP-like proteins possessing a C-terminal fibrinogen-related domain (FReD) or C-type lectin binding domain, respectively, and an Ig-fold domain also were identified as predicted proteins from the B. glabrata genome, although incomplete sequence data precluded their placement into specific FREP/CREP subfamilies. Similarly, a group of FReD-containing proteins (angiopoeitin-4, ficolin-2) that lacked N-terminal Ig-fold(s) were identified as a distinct group of FREP-like proteins, separate from the VIgL lectin family. Finally, differential appearance of GREPs in BS-90 plasma eluates, and others proteins exclusively found in eluates of the NMRI strain, suggested snail strain differences in the expression of select larval-reactive immune proteins. This hypothesis was supported by the finding that differential gene expression of the GREP in BS-90 and ADAM in NMRI snail strains generally correlated with their patterns of protein expression. In summary, this study is the first to provide a global comparative proteomic analysis of constitutively expressed plasma proteins from susceptible and resistant B. glabrata strains capable of binding early-expressed larval S. mansoni proteins. Identified proteins, especially those exhibiting differential expression, may play a role in determining immune compatibility in this snail host-parasite system. A complete listing of raw peptide data are available via ProteomeXchange using identifier PXD004942. Transmission of the human blood fluke Schistosoma mansoni critically depends on the successful establishment of infections within species of its snail intermediate host, Biomphalaria. One of the most important barriers to infection is the host’s innate immune system, comprised of plasma proteins and immunocytes (hemocytes) circulating in the hemolymph. Although expression of plasma lectin genes appears to be associated with larval resistance in B. glabrata, few studies have attempted an in depth analysis of gene-encoded lectins, and other immune proteins, that are capable of directly binding schistosome larvae. Using affinity matrices linked to schistosome proteins expressed during early larval development, we identified and compared the parasite-reactive plasma proteins from the susceptible NMRI and resistant BS-90 strains of B. glabrata. Proteomic analyses of isolated plasma proteins revealed a diversity immune-related proteins including lectins, pathogen recognition receptors, cytotoxins, adhesion proteins, metalloproteinases, and Ca2+-binding proteins. Of the lectins, the variable immunoglobulin and lectin domain (VIgL) gene family of proteins comprised of fibrinogen-related proteins (FREPs), galectin-related proteins (GREPs) and C-type lectin-related proteins (CREPs), were highly represented, and consistent with their role in host immunity. Two proteins (GREP and a Zn-metalloproteinase) exhibited snail strain-associated protein and gene expression patterns suggesting their involvement in innate immune responses to larval infection. This comparative proteomic analysis of larval S. mansoni-reactive plasma proteins from susceptible and resistant B. glabrata strains represents the first of its kind and provides valuable insights into possible pathogen recognition receptors and other immune factors regulating parasite-host compatibility in this model system.
Collapse
Affiliation(s)
- Xiao-Jun Wu
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Nathalie Dinguirard
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Grzegorz Sabat
- Biotechnology Center, Mass Spectrometry/Proteomics Facility, University of Wisconsin, Madison, WI, United States of America
| | - Hong-di Lui
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Laura Gonzalez
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Michael Gehring
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Utibe Bickham-Wright
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Timothy P. Yoshino
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
39
|
Li C, Li H, Xiao B, Chen Y, Wang S, Lǚ K, Yin B, Li S, He J. Identification and functional analysis of a TEP gene from a crustacean reveals its transcriptional regulation mediated by NF-κB and JNK pathways and its broad protective roles against multiple pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:45-58. [PMID: 28069434 DOI: 10.1016/j.dci.2017.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Thioester-containing proteins (TEPs) are present in a wide range of species from deuterostomes to protostomes and are thought to be involved in innate immunity. In the current study, a TEP gene homologous to insect TEPs (iTEP) from the crustacean Litopenaeus vannamei, named LvTEP1, is cloned and functionally characterized. The open reading frame (ORF) of LvTEP1 is 4383 bp in length, encoding a polypeptide of 1460 amino acids with a calculated molecular weight of 161.1 kDa LvTEP1, which is most similar to other TEPs from insects, contains some conserved sequence features, including a N-terminal signal peptide, a canonical thioester (TE) motif, and a C-terminal distinctive cysteine signature. LvTEP1 is expressed in most immune-related tissues, such as intestine, epithelium, and hemocytes, and the mRNA level of LvTEP1 is upregulated in hemocytes after bacterial and viral challenges, indicating its involvement in the shrimp innate immune response. An expression assay in Drosophila S2 cells shows LvTEP1 to be a full-length secretory protein, and processed forms are present in the supernatant. Of note, only the processed form of LvTEP1 protein can bind to both the gram-negative bacterium Vibrio parahaemolyticus and the gram-positive bacterium Staphylococcus aureus in vitro, and its abundance can be induced after bacterial treatment. Moreover, knockdown of LvTEP1 renders shrimps more susceptible to both V. parahaemolyticus and S. aureus, as well as white spot syndrome virus (WSSV) infection, suggesting its essential defensive role against these invading microbes. We also observe that the expression of LvTEP1 is regulated in a manner dependent on both NF-κB and AP-1 transcription factors in naive shrimps and in vitro, suggesting that LvTEP1 could be poised in the body cavity prior to infection and thus play an important role in basal immunity. Taken together, our findings provide some in vitro and in vivo evidence for the involvement of LvTEP1 in shrimp innate immunity and provide some insight into its expression regulation mediated by multiple transcription factors or signaling pathways.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Haoyang Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bang Xiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Yonggui Chen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bin Yin
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Sedong Li
- Fisheries Research Institute of Zhanjiang, Zhanjiang, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
40
|
Volohonsky G, Hopp AK, Saenger M, Soichot J, Scholze H, Boch J, Blandin SA, Marois E. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae. PLoS Pathog 2017; 13:e1006113. [PMID: 28095489 PMCID: PMC5240933 DOI: 10.1371/journal.ppat.1006113] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/06/2016] [Indexed: 12/18/2022] Open
Abstract
Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1) is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs) in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites.
Collapse
Affiliation(s)
- Gloria Volohonsky
- Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- * E-mail: (GV); (EM)
| | - Ann-Katrin Hopp
- Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Mélanie Saenger
- Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Julien Soichot
- Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Heidi Scholze
- Martin-Luther Universität Halle-Wittenberg, Institut für Genetik, Halle (Saale), Germany
| | - Jens Boch
- Martin-Luther Universität Halle-Wittenberg, Institut für Genetik, Halle (Saale), Germany
| | - Stéphanie A. Blandin
- Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Eric Marois
- Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- * E-mail: (GV); (EM)
| |
Collapse
|
41
|
Airs PM, Bartholomay LC. RNA Interference for Mosquito and Mosquito-Borne Disease Control. INSECTS 2017; 8:E4. [PMID: 28067782 PMCID: PMC5371932 DOI: 10.3390/insects8010004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
Abstract
RNA interference (RNAi) is a powerful tool to silence endogenous mosquito and mosquito-borne pathogen genes in vivo. As the number of studies utilizing RNAi in basic research grows, so too does the arsenal of physiological targets that can be developed into products that interrupt mosquito life cycles and behaviors and, thereby, relieve the burden of mosquitoes on human health and well-being. As this technology becomes more viable for use in beneficial and pest insect management in agricultural settings, it is exciting to consider its role in public health entomology. Existing and burgeoning strategies for insecticide delivery could be adapted to function as RNAi trigger delivery systems and thereby expedite transformation of RNAi from the lab to the field for mosquito control. Taken together, development of RNAi-based vector and pathogen management techniques & strategies are within reach. That said, tools for successful RNAi design, studies exploring RNAi in the context of vector control, and studies demonstrating field efficacy of RNAi trigger delivery have yet to be honed and/or developed for mosquito control.
Collapse
Affiliation(s)
- Paul M Airs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
42
|
Mitta G, Gourbal B, Grunau C, Knight M, Bridger J, Théron A. The Compatibility Between Biomphalaria glabrata Snails and Schistosoma mansoni: An Increasingly Complex Puzzle. ADVANCES IN PARASITOLOGY 2017; 97:111-145. [PMID: 28325369 DOI: 10.1016/bs.apar.2016.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This review reexamines the results obtained in recent decades regarding the compatibility polymorphism between the snail, Biomphalaria glabrata, and the pathogen, Schistosoma mansoni, which is one of the agents responsible for human schistosomiasis. Some results point to the snail's resistance as explaining the incompatibility, while others support a "matching hypothesis" between the snail's immune receptors and the schistosome's antigens. We propose here that the two hypotheses are not exclusive, and that the compatible/incompatible status of a particular host/parasite couple probably reflects the balance of multiple molecular determinants that support one hypothesis or the other. Because these genes are involved in a coevolutionary arms race, we also propose that the underlying mechanisms can vary. Finally, some recent results show that environmental factors could influence compatibility. Together, these results make the compatibility between B. glabrata and S. mansoni an increasingly complex puzzle. We need to develop more integrative approaches in order to find targets that could potentially be manipulated to control the transmission of schistosomiasis.
Collapse
|
43
|
Saraiva RG, Kang S, Simões ML, Angleró-Rodríguez YI, Dimopoulos G. Mosquito gut antiparasitic and antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:53-64. [PMID: 26827888 DOI: 10.1016/j.dci.2016.01.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Mosquitoes are responsible for the transmission of diseases with a serious impact on global human health, such as malaria and dengue. All mosquito-transmitted pathogens complete part of their life cycle in the insect gut, where they are exposed to mosquito-encoded barriers and active factors that can limit their development. Here we present the current understanding of mosquito gut immunity against malaria parasites, filarial worms, and viruses such as dengue, Chikungunya, and West Nile. The most recently proposed immune mediators involved in intestinal defenses are discussed, as well as the synergies identified between the recognition of gut microbiota and the mounting of the immune response.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yesseinia I Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
44
|
Wang Z, Wang B, Chen G, Lu Y, Jian J, Wu Z. An alpha-2 macroglobulin in the pearl oyster Pinctada fucata: Characterization and function in hemocyte phagocytosis of Vibrio alginolyticus. FISH & SHELLFISH IMMUNOLOGY 2016; 55:585-594. [PMID: 27346151 DOI: 10.1016/j.fsi.2016.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Alpha-2 macroglobulin (α2M) is a ubiquitous protease inhibitor and considered to be an evolutionarily conserved constituent of innate host defence system. Here, an α2M gene (designated as Pfα2M) was obtained from the pearl oyster Pinctada fucata by RT-PCR, PCR walking and rapid amplification of cDNA ends (RACE). The Pfα2M cDNA consists of 6394 bp with an open reading frame (ORF) of 5745 bp encoding a protein of 1914 amino acids with a 19 residues signal peptide. Pfα2M sequence contains three putative functional domains, including a bait region, a thiol ester domain and a receptor-binding domain. Phylogenetic analysis revealed that Pfα2M is closely related to the α2Ms from other molluscs. Pfα2M was expressed in all tested tissues including digestive gland, gill, adductor muscle, mantle and foot, while the highest expression was found in hemocytes. Following challenge with Vibrio alginolyticus, Pfα2M expression in hemocytes was significantly up-regulated at 2 h and then returned to the original level at 48 h. Knockdown of Pfα2M by RNA interference significantly reduced the phagocytosis of V. alginolyticus by hemocytes in vivo, and similar results were obtained upon chemical inactivation of the reactive thioester bond in Pfα2M by methylamine treatment. Taken together, it is suggested that Pfα2M is an immune-relevant molecule and involved in phagocytosis of V. alginolyticus by P. fucata hemocytes, and the function of Pfα2M in phagocytosis is dependent on the active thioester bond.
Collapse
Affiliation(s)
- Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animals, Zhanjiang 524025, China
| | - Bei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animals, Zhanjiang 524025, China
| | - Yishan Lu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China
| | - Jichang Jian
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China.
| |
Collapse
|
45
|
Meri S. Self-nonself discrimination by the complement system. FEBS Lett 2016; 590:2418-34. [PMID: 27393384 DOI: 10.1002/1873-3468.12284] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023]
Abstract
The alternative pathway (AP) of complement can recognize nonself structures by only two molecules, C3b and factor H. The AP deposits C3b covalently on nonself structures via an amplification system. The actual discrimination is performed by factor H, which has binding sites for polyanions (sialic acids, glycosaminoglycans, phospholipids). This robust recognition of 'self' protects our own intact viable cells and tissues, while activating structures are recognized by default. Foreign targets are opsonized for phagocytosis or killed. Mutations in factor H predispose to severe diseases. In hemolytic uremic syndrome, they promote complement attack against blood cells and vascular endothelial cells and lead, for example, to kidney and brain damage. Even pathogens can exploit factor H. In fact, the ability to bind factor H discriminates most pathogenic microbes from nonpathogenic ones.
Collapse
Affiliation(s)
- Seppo Meri
- Immunobiology, Research Programs Unit, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Finland.,Humanitas University, Milan, Italy
| |
Collapse
|
46
|
Gourbal B, Théron A, Grunau C, Duval D, Mitta G. Polymorphic Mucin-Like Proteins in Schistosoma mansoni, a Variable Antigen and a Key Component of the Compatibility Between the Schistosome and Its Snail Host. Results Probl Cell Differ 2016; 57:91-108. [PMID: 26537378 DOI: 10.1007/978-3-319-20819-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The arms race between vertebrate hosts and parasites has led to diversification systems able to generate huge repertoires of immune recognition receptors and antigenic variants. Until recently, the invertebrate immunity was considered to be poorly specific, and consequently, antigenic variability was not expected to be high for their respective parasites. In the present chapter, we show how the study of the interaction between the snail Biomphalaria glabrata and its parasite Schistosome mansoni has shaken this paradigm. We show that the fate of the interaction between the snail and its parasite is at least partly the result of the concordance of highly variable repertoires of immune recognition receptors in the snail and corresponding antigenic variants in the parasite. We call these antigenic variants of the schistosome Schistosoma mansoni polymorphic mucins (SmPoMucs). We show that their high level of diversification is the result of a complex cascade of mechanisms, thus presenting evidence for antigenic variation in a parasite infecting an invertebrate species.
Collapse
Affiliation(s)
- Benjamin Gourbal
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, Perpignan, 66860, France.
| | - André Théron
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, Perpignan, 66860, France.
| | - Christoph Grunau
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, Perpignan, 66860, France.
| | - David Duval
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, Perpignan, 66860, France.
| | - Guillaume Mitta
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, Perpignan, 66860, France.
| |
Collapse
|
47
|
Judice CC, Bourgard C, Kayano ACAV, Albrecht L, Costa FTM. MicroRNAs in the Host-Apicomplexan Parasites Interactions: A Review of Immunopathological Aspects. Front Cell Infect Microbiol 2016; 6:5. [PMID: 26870701 PMCID: PMC4735398 DOI: 10.3389/fcimb.2016.00005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding regulatory RNAs, have been detected in a variety of organisms ranging from ancient unicellular eukaryotes to mammals. They have been associated with numerous molecular mechanisms involving developmental, physiological and pathological changes of cells and tissues. Despite the fact that miRNA-silencing mechanisms appear to be absent in some Apicomplexan species, an increasing number of studies have reported a role for miRNAs in host-parasite interactions. Host miRNA expression can change following parasite infection and the consequences can lead, for instance, to parasite clearance. In this context, the immune system signaling appears to have a crucial role.
Collapse
Affiliation(s)
- Carla C Judice
- Laboratory of Tropical Diseases, Department of Genetics, Evolution and Bioagents, University of Campinas UNICAMP, Campinas, Brazil
| | - Catarina Bourgard
- Laboratory of Tropical Diseases, Department of Genetics, Evolution and Bioagents, University of Campinas UNICAMP, Campinas, Brazil
| | - Ana C A V Kayano
- Laboratory of Tropical Diseases, Department of Genetics, Evolution and Bioagents, University of Campinas UNICAMP, Campinas, Brazil
| | | | - Fabio T M Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution and Bioagents, University of Campinas UNICAMP, Campinas, Brazil
| |
Collapse
|
48
|
Wang K, Pales Espinosa E, Tanguy A, Allam B. Alterations of the immune transcriptome in resistant and susceptible hard clams (Mercenaria mercenaria) in response to Quahog Parasite Unknown (QPX) and temperature. FISH & SHELLFISH IMMUNOLOGY 2016; 49:163-176. [PMID: 26690665 DOI: 10.1016/j.fsi.2015.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
Quahog Parasite Unknown (QPX) is a fatal protistan parasite that causes severe losses in the hard clam (Mercenaria mercenaria) fisheries along the northeastern coast of the US. Field and laboratory studies of QPX disease have demonstrated a major role for water temperature and M. mercenaria genetic origin in disease development. Infections are more likely to occur at cold temperatures, with clam stocks originating from southern states being more susceptible than clams from northern origin where disease is enzootic. Even though the influence of temperature on QPX infection have been examined in susceptible and resistant M. mercenaria at physiological and cellular scales, the underlying molecular mechanisms associated with host-pathogen interactions remain largely unknown. This study was carried out to explore the molecular changes in M. mercenaria in response to temperature and QPX infection on the transcriptomic level, and also to compare molecular responses between susceptible and resistant clam stocks. A M. mercenaria oligoarray (15 K Agilent) platform was produced based on our previously generated transcriptomic data and was used to compare gene expression profiles in naive and QPX-infected susceptible (Florida stock) and resistant (Massachusetts) clams maintained at temperatures favoring disease development (13 °C) or clam healing (21 °C). In addition, transcriptomic changes reflecting focal (the site of infection, mantle) and systemic (circulating hemocytes) responses were also assessed using the oligoarray platform. Results revealed significant regulation of multiple biological pathways by temperature and QPX infection, mainly associated with immune recognition, microbial killing, protein synthesis, oxidative protection and metabolism. Alterations were widely systemic with most changes in gene expression revealed in hemocytes, highlighting the role of circulating hemocytes as the first line of defense against pathogenic stress. A large number of complement-related recognition molecules with fibrinogen or C1q domains were shown to be specially induced following QPX challenge, and the expression of these molecules was significantly higher in resistant clams as compared to susceptible ones. These highly variable immune proteins may be potent candidate molecular markers for future study of M. mercenaria resistance against QPX. Beyond the specific case of clam response to QPX, this study also provides insights into the primitive complement-like system in the hard clam.
Collapse
Affiliation(s)
- Kailai Wang
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Arnaud Tanguy
- UPMC Université Paris 6, Station Biologique de Roscoff, 29682, Roscoff, France
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
49
|
Pales Espinosa E, Koller A, Allam B. Proteomic characterization of mucosal secretions in the eastern oyster, Crassostrea virginica. J Proteomics 2015; 132:63-76. [PMID: 26612663 DOI: 10.1016/j.jprot.2015.11.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/03/2015] [Accepted: 11/17/2015] [Indexed: 12/24/2022]
Abstract
The soft body surface of marine invertebrates is covered by a layer of mucus, a slippery gel secreted by mucocytes lining epithelia. The functions of this gel are diverse including locomotion, cleansing, food particles processing and defense against physicochemical injuries and infectious agents. In oysters, mucus covering pallial organs has been demonstrated to have a major importance in the processing of food particles and in the interactions with waterborne pathogens. Given the limited information available on mucus in bivalves and the apparent wide spectra of activity of bioactive molecules present in this matrix, the characterization of these mucosal secretions has become a research priority. In this study, mucus was separately collected from the mantle, gills and labial palps of the eastern oyster (Crassostrea virginica) and analyzed by liquid chromatography and tandem mass spectrometry. Results showed the presence of a wide variety of molecules involved in host-microbe interactions, including putative adhesion molecules (e.g. c-type lectins) confirming that transcripts previously identified in epithelial cells are translated into proteins secreted in mucus. Mucus composition was different among samples collected from different organs. These results generate a reference map for C. virginica pallial mucus to better characterize the various physiological functions of mucosal secretions.
Collapse
Affiliation(s)
- Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, United States.
| | - Antonius Koller
- Proteomics Center, Stony Brook University Medical Center, Stony Brook, NY 11794-8691, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, United States
| |
Collapse
|
50
|
Smith RC, Vega-Rodríguez J, Jacobs-Lorena M. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector. Mem Inst Oswaldo Cruz 2015. [PMID: 25185005 PMCID: PMC4156458 DOI: 10.1590/0074-0276130597] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| | - Joel Vega-Rodríguez
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| |
Collapse
|