1
|
Li X, Li J, Yuan H, Chen Y, Li S, Jiang S, Zha Xi Y, Zhang G, Lu J. Effect of supplementation with Glycyrrhiza uralensis extract and Lactobacillus acidophilus on growth performance and intestinal health in broiler chickens. Front Vet Sci 2024; 11:1436807. [PMID: 39091388 PMCID: PMC11291472 DOI: 10.3389/fvets.2024.1436807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Intestinal microbiota community is an important factor affecting the nutritional and health status of poultry, and its balance is crucial for improving the overall health of poultry. The study aimed to investigate the effect of dietary supplementation with Glycyrrhiza uralensis extract (GUE), Lactobacillus acidophilus (Lac) and their combination (GL) on growth performance and intestinal health in broilers in an 84-day feeding experiment. Supplementary 0.1% GUE and 4.5×107 CFU/g Lac significantly increased average daily gain (ADG), and GL (0.1% GUE and 4.5×107 CFU/g Lac) increased ADG and average daily feed intake (ADFI), and decreased feed conversion rate (FCR) in broilers aged 29 to 84 d and 1 to 84 d. Dietary GUE, Lac and GL increased the superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity and decreased Malondialdehyde (MDA) content in the jejunum mucosa of broilers, and increased secretory IgA (sIgA) content in broilers at 84 d. Moreover, GUE, Lac and GL increased cecal microbial richness and diversity, and modulated microbial community composition. Both GUE and Lac reduced the harmful bacteria Epsilonbacteraeota, Helicobacter, and H. pullorum at 28 d and Proteobacteria, Escherichia, and E. coli at 84 d, while Lac and GL increased beneficial bacteria Lactobacillus and L. gallinarum at 28 d. Compared with individual supplementation, GL markedly increased the SOD activity and the sIgA content, and reduced Helicobacter and Helicobacter pullorum. In conclusion, GUE and Lactobacillus acidophilus as feed additives benefit growth performance and intestinal health, and their combined use shows an even more positive effect in broilers.
Collapse
Affiliation(s)
- Ximei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jiawei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Haotian Yuan
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yan Chen
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shuaibing Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Susu Jiang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
- Department of Animal Science and Technology, Gansu Agriculture Technology College, Lanzhou, China
| | - Yingpai Zha Xi
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Guohua Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jianxiong Lu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
2
|
Zhou X, Zhang H, Li S, Jiang Y, Deng J, Yang C, Chen X, Jiang L. Effects of different levels of Citri Sarcodactylis Fructus by-products fermented feed on growth performance, serum biochemical, and intestinal health of cyan-shank partridge birds. Sci Rep 2023; 13:20130. [PMID: 37978234 PMCID: PMC10656579 DOI: 10.1038/s41598-023-47303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023] Open
Abstract
This research aimed to investigate the effects of supplements containing fermented feed made from Citri Sarcodactylis Fructus by-products (CSFBP-Fermented feed) on the growth performance, immunological function, and gut health of broilers. 1080 cyan-shank partridge birds aged 47 days were chosen and casually distributed to four groups, each with 6 replicates and 45 birds per replicate. The experimental groups were provided with 1% (group T2), 3% (group T3) and 5% (group T4) of CSFBP-fermented feed in the basic diet, while the control group (group T1) received the basic diet. The findings revealed that supplementation with CSFBP-Fermented feed reduced ADFI and FCR and improved ADG in birds (P < 0.05). MDA levels in the serum of birds fed CSFBP-fermented feed were lower than in the control group (P < 0.05). The CAT activity in the serum of broilers increased after supplementation with 3% CSFBP-Fermented feed (P < 0.05). Supplementing broilers with CSFBP-fermented feed enhanced VH in the ileum, jejunum, and duodenum (P < 0.05). The addition of 3% CSFBP-Fermented feed decreased CD in the jejunum (P < 0.05). The addition of 3% and 5% CSFBP-Fermented feed increased the mRNA expression of ZO-1 and Occludin in the jejunum of broiler chickens and reduced the mRNA expression of IL-6 (P < 0.05). The addition of 3% CSFBP-Fermented feed increased the mRNA expression of Claudin in the jejunum of broiler chickens and reduced IL-1β mRNA expression (P < 0.05). Compared to the control group, all experimental groups exhibited decreased mRNA expression of TNF-α and INF-γ in the jejunal mucosa of the birds (P < 0.05). According to research using high-throughput sequencing of microorganisms' 16S rDNA, and an analysis of α-diversity found that supplementing broilers with 3% CSFBP-Fermented feed decreased the number of bacteria in their cecum (P < 0.05). Bacteroidota was higher in all groups after supplementation with CSFBP-Fermented feed. At the genus level, after addition with 3% CSFBP-Fermented feed, the abundance of Bacteroide and Prevotellaceae_Ga6A1_group were higher than the control group (33.36% vs 29.95%, 4.35% vs 2.94%). The abundance of Rikenellaceae_RC9_gut_group and Fusobacterium were lower than the control group (5.52% vs. 7.17%,0.38% vs. 1.33%). In summary, supplementing the diet with CSFBP-Fermented feed can promote the growth of performance by enhancing intestinal morphology, and barrier function, as well as modulating intestinal inflammatory factors and microbial composition in broilers.
Collapse
Affiliation(s)
- Xinhong Zhou
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Huaidan Zhang
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Shiyi Li
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Yilong Jiang
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Jicheng Deng
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Chuanpeng Yang
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Xianxin Chen
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China.
| | - Li Jiang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| |
Collapse
|
3
|
Liu L, Feng J, Jiang S, Zhou S, Yan M, Zhang Z, Wang W, Liu Y, Zhang J. Anti-inflammatory and intestinal microbiota modulation properties of Ganoderma lucidum β-d-glucans with different molecular weight in an ulcerative colitis model. Int J Biol Macromol 2023; 251:126351. [PMID: 37597635 DOI: 10.1016/j.ijbiomac.2023.126351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/11/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
This study systematically investigated the therapeutic effects and the corresponding mechanisms of β-D-glucans from Ganoderma lucidum (G. lucidum) with different molecular weights (Mws) on ulcerative colitis (UC). Results showed that three β-d-glucans (GLPS, GLPN and GLPW) from G. lucidum with different Mws exhibited the significant activities on the reduction of typical symptoms of UC by regulating inflammatory cytokine levels, modulating intestinal immunity, improving intestinal microbiota and metabolism of short-chain fatty acids (SCFAs) in the dextran sulfate sodium (DSS)-induced mice model. Among them, the effects of the microwave assisted degraded fraction (GLPW) mainly containing two fractions with smaller Mw (1.33 × 104 and 3.51 × 103 g/mol) on the regulation of inflammatory factors and SCFAs metabolism were found to be comparable to those of GLPN with medium Mw (3.49 × 104 g/mol), and superior to those of GLPS with large Mw (2.42 × 106 g/mol). The effect of GLPW on regulation of intestinal microbiota was even better than that of GLPN. These findings suggested that lowering Mw by means of physical degradation could improve the anti-inflammatory activities of G. lucidum β-d-glucans. The analysis of anti-inflammatory mechanism also provided a feasible and theoretical basis for potential use of degraded β-d-glucans in the prevention and treatment of UC.
Collapse
Affiliation(s)
- Liping Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Siqi Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Mengqiu Yan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
4
|
Hu X, Mao Y, Luo F, Wang X. Association between post-stroke cognitive impairment and gut microbiota: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e34764. [PMID: 37657030 PMCID: PMC10476824 DOI: 10.1097/md.0000000000034764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/24/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Accumulating evidence has indicated a possible connection between post-stroke cognitive impairment (PSCI) and gut microbiota imbalance. To further investigate this association, the present work was designed to systematically assess the dissimilarity of gut microbiota between PSCI and healthy individuals or stroke patients. METHODS A meta-analysis and systematic review was conducted by searching various databases including PubMed, Web of Science, Embase, VIP, CNKI, and Wangfang for relevant studies. The pooled outcomes were used to estimate the combined dissimilarity of gut microbiota composition between PSCI and healthy individuals or patients with stroke. RESULTS Nine eligible studies were included in this meta-analysis. The results showed that there were no significant changes in observed richness indexes (Chao1 and ACE) and Shannon index. Notably, a significant decrease in Simpson index was observed in PSCI patients in comparison to the healthy individuals (-0.31, 95% CI: -0.62 to -0.01, P = 0.04). Moreover, the microbiota composition at the phylum level (increased abundance of Proteobacteria), family level (increased abundance of Bacteroidaceae, Lachnospiraceae, and Veillonellaceae; decreased abundance of Enterobacteriaceae), and genus level (increased abundance of Bacteroides, Clostridium XIVa, and Parabacteroides; decreased abundance of Prevotella and Ruminococcus) was found to be significantly different between PSCI and controls. CONCLUSION This meta-analysis suggests a significant shift of observed species and microbiota composition in PSCI compared to healthy individuals or patients with stroke.
Collapse
Affiliation(s)
- Xiaozhen Hu
- Department of rehabilitation medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yajun Mao
- Department of rehabilitation medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Fang Luo
- Department of Rehabilitation, Zhejiang Tongde Hospital, Hangzhou, Zhejiang, China
| | - Xijun Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
5
|
Najafpour B, Pinto PIS, Sanz EC, Martinez-Blanch JF, Canario AVM, Moutou KA, Power DM. Core microbiome profiles and their modification by environmental, biological, and rearing factors in aquaculture hatcheries. MARINE POLLUTION BULLETIN 2023; 193:115218. [PMID: 37441915 DOI: 10.1016/j.marpolbul.2023.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
16S rRNA gene sequencing and bacteria- and genus-specific quantitative PCR was used to profile microbial communities and their associated functions in water, live feed (microalgae, Artemia, and rotifer), and European sea bass and gilthead sea bream larvae from hatcheries in Greece and Italy. The transfer to larvae of genus containing potential pathogens of fish was more likely with Artemia and rotifer than with microalgae or water, irrespective of geographic location. The presence of potentially pathogenic bacteria (Vibrio and Pseudoalteromonas) in the core microbiota of water, live feed, and fish larvae, the enrichment of different bacterial resistance pathways and biofilm formation, and the overall low beneficial bacteria load during larval ontogeny emphasizes the risk for disease outbreaks. The present data characterizing microbiota in commercial aquaculture hatcheries provides a baseline for the design of strategies to manage disease and to model or remediate potential adverse environmental impacts.
Collapse
Affiliation(s)
- Babak Najafpour
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| | - Patricia I S Pinto
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| | - Eric Climent Sanz
- ADM Biopolis, Parc Cientific Universidad De Valencia, Paterna, Spain
| | | | - Adelino V M Canario
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal; Shanghai Ocean University International Center for Marine Studies, Shanghai, China
| | - Katerina A Moutou
- Department of Biochemistry & Biotechnology, University of Thessaly, Ploutonos 26, Larissa, Greece
| | - Deborah M Power
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal; Shanghai Ocean University International Center for Marine Studies, Shanghai, China.
| |
Collapse
|
6
|
Qu J, Zuo X, Xu Q, Li M, Zou L, Tao R, Liu X, Wang X, Wang J, Wen L, Li R. Effect of Two Particle Sizes of Nano Zinc Oxide on Growth Performance, Immune Function, Digestive Tract Morphology, and Intestinal Microbiota Composition in Broilers. Animals (Basel) 2023; 13:ani13091454. [PMID: 37174491 PMCID: PMC10177391 DOI: 10.3390/ani13091454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
The effects of dietary supplementation with two particle sizes of nano zinc oxide (ZnO) on growth performance, immune function, intestinal morphology, and the gut microbiome were determined in a 42-day broiler chicken feeding experiment. A total of 75 one-day-old Arbor Acres broilers were randomized and divided into three groups with five replicates of five chicks each, including the conventional ZnO group (NC), the nano-ZnO group with an average particle size of 82 nm (ZNPL), and the nano-ZnO group with an average particle size of 21 nm (ZNPS). Each group was supplemented with 40 mg/kg of ZnO or nano-ZnO. Our results revealed that birds in the ZNPS group had a higher average daily gain and a lower feed-to-gain ratio than those in the NC group. ZNPS significantly increased the thymus index and spleen index, as well as the levels of serum metallothionein (MT), superoxide dismutase (SOD), and lysozyme (LZM). The ZNPS treatments reduced interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α) levels and increased IL-2 and interferon (IFN)-γ levels compared to that in the NC group. Additionally, compared with the birds in the NC group, those in the nano-ZnO group had a higher villus height to crypt depth ratio of the duodenum, jejunum, and ileum. Bacteroides increased in the ZNPS group at the genus level. Further, unidentified_Lachnospiraceae, Blautia, Lachnoclostridium, unidentified_Erysipelotrichaceae, and Intestinimonas were significantly increased in the ZNPL group. In conclusion, nano-ZnO improved the growth performance, promoted the development of immune organs, increased nonspecific immunity, improved the villus height to crypt depth ratio of the small intestine, and enriched the abundance of beneficial bacteria. Notably, the smaller particle size (21 nm) of nano-ZnO exhibited a more potent effect.
Collapse
Affiliation(s)
- Jianyu Qu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xixi Zuo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Qiurong Xu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Mengyao Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lirui Zou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Ran Tao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xiangyan Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xianglin Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Lvye Biotechnology Co., Ltd., Changsha 410100, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
7
|
Liu J, Lin H, Cao M, Lin T, Lin A, Xu W, Wang H, He J, Li Y, Tang H, Zhang B. Shifts and importance of viable bacteria in treatment of DSS-induced ulcerative colitis mice with FMT. Front Cell Infect Microbiol 2023; 13:1124256. [PMID: 36814445 PMCID: PMC9939747 DOI: 10.3389/fcimb.2023.1124256] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Background and Aims Ulcerative colitis (UC) has become a global public health concern, and is in urgent need of novel therapies. Fecal microbiota transplantation (FMT) targeting gut microbiota has recently been applied to the treatment of UC. Despite its recent successes, it is still largely unknown how FMT functionally modulates the gut microbiota and improves the disease. Methods We prospectively collected fecal samples from the 40 mice (30 mice for dextran sulfate sodium (DSS)-induced, 10 for controls), followed by Propidium monoazide treatment for 16S rRNA gene sequencing. These 30 mice were divided equally into 3 groups, which were transplanted with original donor microbiota (DO), inactivated donor microbiota (DI) and saline, respectively. Subsequently, we used 16S rRNA gene sequencing to analyze the viable gut bacteria of ulcerative colitis (UC) mice and histological analysis to evaluate the effects of fecal microbiota transplantation (FMT) with viable microbiota. Results We demonstrated that the community structure of viable bacteria was significantly different from fecal bacteria based on total DNA. Furthermore, the intestinal viable microbiota and colonic mucosal structure of mice were significantly changed by DSS induction. The histological analysis showed that only the mice treated with original donor microbiota group (HF) achieved a significant improvement. Compared with inactivated donor microbiota group (IF) and saline (NF), Lactobacillus and Halomonas were significantly enriched in the HF group. Conclusion We inferred that only live bacteria from human donor reversed the histopathology and symptoms of UC in mice and altered the gut microbiota. The activity of gut microbiota in donor samples should be considered in FMT and that detailed analysis of viable microbiota is essential to understand the mechanisms by which FMT produces therapeutic effects in the future.
Collapse
Affiliation(s)
- Jinglong Liu
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Hao Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Man Cao
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tan Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Aiqiang Lin
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Wei Xu
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Han Wang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Jianquan He
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Yuantao Li
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Hailing Tang
- Division of Gastroenterology, Xi’an Central Hospital, Xi’an, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Bangzhou Zhang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| |
Collapse
|
8
|
Song J, liu Q, Hao M, Zhai X, Chen J. Effects of neutral polysaccharide from Platycodon grandiflorum on high-fat diet-induced obesity via the regulation of gut microbiota and metabolites. Front Endocrinol (Lausanne) 2023; 14:1078593. [PMID: 36777345 PMCID: PMC9908743 DOI: 10.3389/fendo.2023.1078593] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
The obesity epidemic has become a global problem with far-reaching health and economic impact. Despite the numerous therapeutic efficacies of Platycodon grandiflorum, its role in modulating obesity-related metabolic disorders has not been clarified. In this study, a purified neutral polysaccharide, PGNP, was obtained from Platycodon grandiflorum. Based on methylation and NMR analyses, PGNP was found to be composed of 2,1-β-D-Fruf residues ending with a (1→2)-bonded α-D-Glcp. The protective effects of PGNP on high-fat HFD-induced obesity were assessed. According to our results, PGNP effectively alleviated the signs of metabolic syndrome, as demonstrated by reductions in body weight, hepatic steatosis, lipid profile, inflammatory response, and insulin resistance in obese mice. Under PGNP treatment, intestinal histomorphology and the tight junction protein, ZO-1, were well maintained. To elucidate the underlying mechanism, 16S rRNA gene sequencing and LC-MS were employed to assess the positive influence of PGNP on the gut microbiota and metabolites. PGNP effectively increased species diversity of gut microbiota and reversed the HFD-induced imbalance in the gut microbiota by decreasing the Firmicutes to Bacteroidetes ratio. The abundance of Bacteroides and Blautia were increased after PGNP treatment, while the relative abundance of Rikenella, Helicobacter were reduced. Furthermore, PGNP notably influenced the levels of microbial metabolites, including the increased levels of cholic and gamma-linolenic acid. Overall, PGNP might be a potential supplement for the regulation of gut microbiota and metabolites, further affecting obesity.
Collapse
Affiliation(s)
- Jing Song
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - Qin liu
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Mengqi Hao
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaohu Zhai
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Juan Chen
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, China
- *Correspondence: Juan Chen,
| |
Collapse
|
9
|
Jackson PPJ, Wijeyesekera A, Rastall RA. Determining the metabolic fate of human milk oligosaccharides: it may just be more complex than you think? GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e9. [PMID: 39295778 PMCID: PMC11406381 DOI: 10.1017/gmb.2022.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/10/2022] [Accepted: 08/26/2022] [Indexed: 09/21/2024]
Abstract
Human milk oligosaccharides (HMOs) are a class of structurally diverse and complex unconjugated glycans present in breast milk, which act as selective substrates for several genera of select microbes and inhibit the colonisation of pathogenic bacteria. Yet, not all infants are breastfed, instead being fed with formula milks which may or may not contain HMOs. Currently, formula milks only possess two HMOs: 2'-fucosyllactose (2'FL) and lacto-N-neotetraose (LNnT), which have been suggested to be similarly effective as human breast milk in supporting age-related growth. However, the in vivo evidence regarding their ability to beneficially reduce respiratory infections along with altering the composition of an infant's microbiota is limited at best. Thus, this review will explore the concept of HMOs and their metabolic fate, and summarise previous in vitro and in vivo clinical data regarding HMOs, with specific regard to 2'FL and LNnT.
Collapse
Affiliation(s)
| | - Anisha Wijeyesekera
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | |
Collapse
|
10
|
Fokt H, Unni R, Repnik U, Schmitz RA, Bramkamp M, Baines JF, Unterweger D. Bacteroides muris sp. nov. isolated from the cecum of wild-derived house mice. Arch Microbiol 2022; 204:546. [PMID: 35939214 PMCID: PMC9360105 DOI: 10.1007/s00203-022-03148-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Two bacterial strains, KH365_2T and KH569_7, were isolated from the cecum contents of wild-derived house mice. The strains were characterized as Gram-negative, rod-shaped, strictly anaerobic, and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences revealed that both strains were most closely related to Bacteroides uniformis ATCC 8492T. Whole genome sequences of KH365_2T and KH569_7 strains have a DNA G + C content of 46.02% and 46.03% mol, respectively. Most morphological and biochemical characteristics did not differ between the newly isolated strains and classified Bacteroides strains. However, the average nucleotide identity (ANI) and dDNA-DNA hybridization (dDDH) values clearly distinguished the two strains from described members of the genus Bacteroides. Here, we present the phylogeny, morphology, and physiology of a novel species of the genus Bacteroides and propose the name Bacteroides muris sp. nov., with KH365_2T (DSM 114231T = CCUG 76277T) as type strain.
Collapse
Affiliation(s)
- Hanna Fokt
- Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Rahul Unni
- Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
- Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Urska Repnik
- Central Microscopy Facility, Kiel University, 24118, Kiel, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Kiel University, 24118, Kiel, Germany
| | - Marc Bramkamp
- Central Microscopy Facility, Kiel University, 24118, Kiel, Germany
- Institute for General Microbiology, Kiel University, 24118, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
- Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany.
| | - Daniel Unterweger
- Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
- Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany.
| |
Collapse
|
11
|
Wang Q, Wang XF, Xing T, Li JL, Zhu XD, Zhang L, Gao F. The combined impact of xylo-oligosaccharides and gamma-irradiated astragalus polysaccharides on the immune response, antioxidant capacity and intestinal microbiota composition of broilers. Poult Sci 2022; 101:101996. [PMID: 35841635 PMCID: PMC9293642 DOI: 10.1016/j.psj.2022.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 04/18/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
The present study investigated the individual and combined effects of xylo-oligosaccharides (XOS) and gamma-irradiated astragalus polysaccharides (IAPS) on the immune response, antioxidant capacity and intestinal microbiota composition of broiler chickens. A total of 240 newly hatched Ross 308 chicks were randomly allocated into 5 dietary treatments including the basal diet (control), or the basal diet supplemented with 50 mg/kg chlortetracycline (CTC), 100 mg/kg XOS (XOS), 600 mg/kg IAPS (IAPS), and 100 mg/kg XOS + 600 mg/kg IAPS (XOS + IAPS) respectively. The results showed that birds in the control group had lower the thymus index and serum lysozyme activity than those in the other 4 groups (P < 0.05). Moreover, there was an interaction between XOS and IAPS treatments on increasing the serum lysozyme activity (P < 0.05). Birds in the CTC and XOS + IAPS groups had lower serum malondialdehyde concentration and higher serum total antioxidant capacity activity and mucosal interleukin 2 mRNA expression of jejunum than those in the control group (P < 0.05). In addition, birds in the control groups had lower duodenal and jejunal IgA-producing cells number than these in other 4 groups (P < 0.05). As compared with the CTC group, dietary individual XOS or IAPS administration increased duodenal IgA-producing cells number (P < 0.05). Meanwhile, there was an interaction between XOS and IAPS treatments on increasing duodenal and jejunal IgA-Producing cells numbers (P < 0.05). Dietary CTC administration increased the proportion of Bacteroides, and decreased the proportion of Negativibacillus (P < 0.05). However, dietary XOS + IAPS administration increased Firmicutes to Bacteroidetes ratio, the proportion of Ruminococcaceae, as well as decreased the proportion of Barnesiella and Negativibacillus (P < 0.05). In conclusion, the XOS and IAPS combination could improve intestinal mucosal immunity and barrier function of broilers by enhancing cytokine gene expression, IgA-producing cell production and modulates cecal microbiota, and the combination effect of XOS and IAPS is better than that of individual effect of CTC, XOS, or IAPS in the current study.
Collapse
Affiliation(s)
- Q Wang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - X F Wang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - T Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - J L Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - X D Zhu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - L Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - F Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Glover JS, Ticer TD, Engevik MA. Characterizing the mucin-degrading capacity of the human gut microbiota. Sci Rep 2022; 12:8456. [PMID: 35589783 PMCID: PMC9120202 DOI: 10.1038/s41598-022-11819-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
Mucin-degrading microbes are known to harbor glycosyl hydrolases (GHs) which cleave specific glycan linkages. Although several microbial species have been identified as mucin degraders, there are likely many other members of the healthy gut community with the capacity to degrade mucins. The aim of the present study was to systematically examine the CAZyme mucin-degrading profiles of the human gut microbiota. Within the Verrucomicrobia phylum, all Akkermansia glycaniphila and muciniphila genomes harbored multiple gene copies of mucin-degrading GHs. The only representative of the Lentisphaerae phylum, Victivallales, harbored a GH profile that closely mirrored Akkermansia. In the Actinobacteria phylum, we found several Actinomadura, Actinomyces, Bifidobacterium, Streptacidiphilus and Streptomyces species with mucin-degrading GHs. Within the Bacteroidetes phylum, Alistipes, Alloprevotella, Bacteroides, Fermenitomonas Parabacteroides, Prevotella and Phocaeicola species had mucin degrading GHs. Firmicutes contained Abiotrophia, Blautia, Enterococcus, Paenibacillus, Ruminococcus, Streptococcus, and Viridibacillus species with mucin-degrading GHs. Interestingly, far fewer mucin-degrading GHs were observed in the Proteobacteria phylum and were found in Klebsiella, Mixta, Serratia and Enterobacter species. We confirmed the mucin-degrading capability of 23 representative gut microbes using a chemically defined media lacking glucose supplemented with porcine intestinal mucus. These data greatly expand our knowledge of microbial-mediated mucin degradation within the human gut microbiota.
Collapse
Affiliation(s)
- Janiece S Glover
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Taylor D Ticer
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Melinda A Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
13
|
Commensal and Pathogenic Bacterial-Derived Extracellular Vesicles in Host-Bacterial and Interbacterial Dialogues: Two Sides of the Same Coin. J Immunol Res 2022; 2022:8092170. [PMID: 35224113 PMCID: PMC8872691 DOI: 10.1155/2022/8092170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) cause effective changes in various domains of life. These bioactive structures are essential to the bidirectional organ communication. Recently, increasing research attention has been paid to EVs derived from commensal and pathogenic bacteria in their potential role to affect human disease risk for cancers and a variety of metabolic, gastrointestinal, psychiatric, and mental disorders. The present review presents an overview of both the protective and harmful roles of commensal and pathogenic bacteria-derived EVs in host-bacterial and interbacterial interactions. Bacterial EVs could impact upon human health by regulating microbiota–host crosstalk intestinal homeostasis, even in distal organs. The importance of vesicles derived from bacteria has been also evaluated regarding epigenetic modifications and applications. Generally, the evaluation of bacterial EVs is important towards finding efficient strategies for the prevention and treatment of various human diseases and maintaining metabolic homeostasis.
Collapse
|
14
|
Zhang B, Liu N, Hao M, Zhou J, Xie Y, He Z. Plant-Derived Polysaccharides Regulated Immune Status, Gut Health and Microbiota of Broilers: A Review. Front Vet Sci 2022; 8:791371. [PMID: 35155646 PMCID: PMC8831899 DOI: 10.3389/fvets.2021.791371] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
In modern intensive breeding system, broilers are exposed to various challenges, such as diet changes and pathological environment, which may cause the increase in the incidence rate and even death. It is necessary to take measures to prevent diseases and maintain optimal health and productivity of broilers. With the forbidden use of antibiotics in animal feed, polysaccharides from plants have attracted much attention owing to their lower toxicity, lower drug resistance, fewer side effects, and broad-spectrum antibacterial activity. It had been demonstrated that polysaccharides derived from plant exerted various functions, such as growth promotion, anti-inflammation, maintaining the integrity of intestinal mucosa, and regulation of intestinal microbiota. Therefore, the current review aimed to provide an overview of the recent advances in the impacts of plant-derived polysaccharides on anti-inflammation, gut health, and intestinal microbiota community of broilers in order to provide a reference for further study on maintaining the integrity of intestinal structure and function, and the related mechanism involved in the polysaccharide administration intervention.
Collapse
|
15
|
Abstract
Little is known about the influence of gastric microbiota on host metabolism, even though the stomach plays an important role in the production of hormones involved in body weight regulation and glucose homeostasis. Proton pump inhibitors (PPIs) and Helicobacter pylori alter gut microbiota, but their impact on gastric microbiota in patients with obesity and the influence of these factors on the metabolic response to bariatric surgery is not fully understood. Forty-one subjects with morbid obesity who underwent sleeve gastrectomy were included in this study. The H. pylori group was established by the detection of H. pylori using a sequencing-based method (n = 16). Individuals in whom H. pylori was not detected were classified according to PPI treatment. Gastric biopsy specimens were obtained during surgery and were analyzed by a high-throughput-sequencing method. Patients were evaluated at baseline and 3, 6, and 12 months after surgery. β-Diversity measures were able to cluster patients according to their gastric mucosa-associated microbiota composition. H. pylori and PPI treatment are presented as two important factors for gastric mucosa-associated microbiota. H. pylori reduced diversity, while PPIs altered β-diversity. Both factors induced changes in the gastric mucosa-associated microbiota composition and its predicted functions. PPI users showed lower percentages of change in the body mass index (BMI) in the short term after surgery, while the H. pylori group showed higher glucose levels and lower percentages of reduction in body weight/BMI 1 year after surgery. PPIs and H. pylori colonization could modify the gastric mucosa-associated microbiota, altering its diversity, composition, and predicted functionality. These factors may have a role in the metabolic evolution of patients undergoing bariatric surgery. IMPORTANCE The gut microbiota has been shown to have an impact on host metabolism. In the stomach, factors like proton pump inhibitor treatment and Helicobacter pylori haven been suggested to alter gut microbiota; however, the influence of these factors on the metabolic response to bariatric surgery has not been fully studied. In this study, we highlight the impact of these factors on the gastric microbiota composition. Moreover, proton pump inhibitor treatment and the presence of Helicobacter pylori could have an influence on bariatric surgery outcomes, mainly on body weight loss and glucose homeostasis. Deciphering the relationship between gastric hormones and gastric microbiota and their contributions to bariatric surgery outcomes paves the way to develop gut manipulation strategies to improve the metabolic success of bariatric surgery.
Collapse
|
16
|
Hillman AR, Chrismas BCR. Thirty Days of Montmorency Tart Cherry Supplementation Has No Effect on Gut Microbiome Composition, Inflammation, or Glycemic Control in Healthy Adults. Front Nutr 2021; 8:733057. [PMID: 34604282 PMCID: PMC8481367 DOI: 10.3389/fnut.2021.733057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023] Open
Abstract
Tart cherries possess properties that may reduce inflammation and improve glycemic control, however human data on supplementation and the gut microbiota is equivocal. Processing (i.e., juice concentrate, dried, frozen) may affect the properties of tart cherries, and therefore alter their efficacious health benefits. Therefore, the purpose of this study was to investigate the effect of 30 days of supplementation with Montmorency tart cherry (MTC) in concentrate or freeze-dried form on the gut microbiome and markers of inflammation and glycemic control. Healthy participants with no known disease (n = 58, age: 28 ± 10 y, height: 169.76 ± 8.55 cm, body mass: 72.2 ± 12.9 kg) were randomly allocated to four groups and consumed either concentrate or freeze-dried capsules or their corresponding placebos for 30 days. Venous blood samples were drawn at baseline, day 7, 14, and 30 and analyzed for inflammatory markers TNF-alpha, uric acid, C-reactive protein, and erythrocyte sedimentation rate and glycemic control markers glycated albumin, glucose and insulin. A fecal sample was provided at baseline, day 14 and 30 for microbiome analysis. TNF-alpha was significantly lower at 30 vs. 14 days (p = 0.01), however there was no other significant change in the inflammatory markers. Insulin was not changed over time (p = 0.16) or between groups (p = 0.24), nor was glycated albumin different over time (p = 0.08) or between groups (p = 0.56), however glucose levels increased (p < 0.001) from baseline (4.79 ± 1.00 mmol·L-1) to 14 days (5.21 ± 1.02 mmol·L-1) and 30 days (5.61 ± 1.22 mmol·L-1) but this was no different between groups (p = 0.33). There was no significant change in composition of bacterial phyla, families, or subfamilies for the duration of this study nor was there a change in species richness. These data suggest that 30 days of MTC supplementation does not modulate the gut microbiome, inflammation, or improve glycemic control in a healthy, diverse group of adults. Clinical Trail Registration:https://clinicaltrials.gov/ct2/show/NCT04467372, identifier: NCT04467372.
Collapse
Affiliation(s)
- Angela R Hillman
- School of Applied Health Sciences and Wellness, Division of Exercise Physiology, Ohio University, Athens, OH, United States
| | - Bryna C R Chrismas
- College of Education, Department of Physical Education, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Cheng P, Shen P, Shan Y, Yang Y, Deng R, Chen W, Lu Y, Wei Z. Gut Microbiota-Mediated Modulation of Cancer Progression and Therapy Efficacy. Front Cell Dev Biol 2021; 9:626045. [PMID: 34568308 PMCID: PMC8455814 DOI: 10.3389/fcell.2021.626045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
The role of gut microbiota in the development of various tumors has been a rising topic of public interest, and in recent years, many studies have reported a close relationship between microbial groups and tumor development. Gut microbiota play a role in host metabolism, and the positive and negative alterations of these microbiota have an effect on tumor treatment. The microbiota directly promote, eliminate, and coordinate the efficacy of chemotherapy drugs and the toxicity of adjuvant drugs, and enhance the ability of patients to respond to tumors in adjuvant immunotherapy. In this review, we outline the significance of gut microbiota in tumor development, reveal its impacts on chemotherapy and immunotherapy, and discover various potential mechanisms whereby they influence tumor treatment. This review demonstrates the importance of intestinal microbiota-related research for clinical tumor treatment and provides additional strategy for clinical assistance in cancer treatment.
Collapse
Affiliation(s)
- Peng Cheng
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peiliang Shen
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yu Yang
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Deng
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Effects of Different Fermented Feeds on Production Performance, Cecal Microorganisms, and Intestinal Immunity of Laying Hens. Animals (Basel) 2021; 11:ani11102799. [PMID: 34679821 PMCID: PMC8532698 DOI: 10.3390/ani11102799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Fermented feed exerts beneficial effects on intestinal microorganisms, host health, and production performance. However, the effect of fermented feed on laying hens is uncertain due to the different types of inoculated probiotics, fermentation substrates, and fermentation technology. Hence, this experiment was conducted to investigate the effects of fermented feed with different compound strains on the performance and intestinal health of laying hens. Supplement fermented feed reduced the feed conversion ratio and promoted egg quality. Both dietary treatment (fermented feed A produced Bacillus subtilis, Lactobacillus, and Yeast and fermented feed B produced by C. butyricum and L. salivarius) influenced intestinal immunity and regulated cecal microbial structure. This may be because the metabolites of microorganisms in fermented feed and the reduced pH value inhibited the colonization of harmful bacteria, improved the intestinal morphology, and then had a positive impact on the production performance and albumen quality of laying hens. Abstract This experiment was conducted to investigate the effects of different compound probiotics on the performance, cecal microflora, and intestinal immunity of laying hens. A total of 270 Jing Fen No.6 (22-week-old) were randomly divided into 3 groups: basal diet (CON); basal diet supplemented with 6% fermented feed A by Bacillussubtilis,Lactobacillus, and Yeast (FA); and with 6% fermented feed B by C. butyricum and L. salivarius (FB). Phytic acid, trypsin inhibitor, β-glucan concentrations, and pH value in fermented feed were lower than the CON group (p < 0.05). The feed conversion ratio (FCR) in the experimental groups was decreased, while albumen height and Haugh unit were increased, compared with the CON group (p < 0.05). Fermented feed could upregulate the expression of the signal pathway (TLR4/MyD88/NF-κB) to inhibit mRNA expression of pro-inflammatory cytokines (p < 0.05). Fermented feed promoted the level of Romboutsia (in the FA group) Butyricicoccus (in the FB group), and other beneficial bacteria, and reduced opportunistic pathogens, such as Enterocooccus (p < 0.05). Spearman’s correlations showed that the above bacteria were closely related to albumen height and intestinal immunity. In summary, fermented feed can decrease the feed conversion ratio, and improve the performance and intestinal immunity of laying hens, which may be related to the improvement of the cecal microflora structure.
Collapse
|
19
|
Comparative analysis of the gut microbiota of mice fed a diet supplemented with raw and cooked beef loin powder. Sci Rep 2021; 11:11489. [PMID: 34075086 PMCID: PMC8169908 DOI: 10.1038/s41598-021-90461-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
We used 16S ribosomal RNA sequencing to evaluate changes in the gut microbiota of mice fed a diet supplemented with either raw or cooked beef loin powder for 9 weeks. Male BALB/c mice (n = 60) were randomly allocated to five groups: mice fed AIN-93G chow (CON), chow containing 5% (5RB) and 10% (10RB) raw beef loin powder, and chow containing 5% (5CB) and 10% (10CB) cooked beef loin powder. Dietary supplementation with both RB and CB increased the relative abundance of Clostridiales compared to the CON diet (p < 0.05). Mice fed 10RB showed a significantly higher relative abundance of Firmicutes (p = 0.018) and Lactobacillus (p = 0.001) than CON mice, and the ratio of Firmicutes/Bacteroidetes showed an increasing trend in the 10RB mice (p > 0.05). Mice fed 10CB showed a higher abundance of Peptostreptococcaceae and a lower abundance of Desulfovibrionaceae compared with the CON mice (p < 0.05). Genes for glycan biosynthesis, which result in short-chain fatty acid synthesis, were enriched in the CB mice compared to the RB mice, which was correlated to a high abundance of Bacteroides. Overall, dietary RB and CB changed the gut microbiota of mice (p < 0.05).
Collapse
|
20
|
Erturk-Hasdemir D, Ochoa-Repáraz J, Kasper DL, Kasper LH. Exploring the Gut-Brain Axis for the Control of CNS Inflammatory Demyelination: Immunomodulation by Bacteroides fragilis' Polysaccharide A. Front Immunol 2021; 12:662807. [PMID: 34025663 PMCID: PMC8131524 DOI: 10.3389/fimmu.2021.662807] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
The symbiotic relationship between animals and their resident microorganisms has profound effects on host immunity. The human microbiota comprises bacteria that reside in the gastrointestinal tract and are involved in a range of inflammatory and autoimmune diseases. The gut microbiota's immunomodulatory effects extend to extraintestinal tissues, including the central nervous system (CNS). Specific symbiotic antigens responsible for inducing immunoregulation have been isolated from different bacterial species. Polysaccharide A (PSA) of Bacteroides fragilis is an archetypical molecule for host-microbiota interactions. Studies have shown that PSA has beneficial effects in experimental disease models, including experimental autoimmune encephalomyelitis (EAE), the most widely used animal model for multiple sclerosis (MS). Furthermore, in vitro stimulation with PSA promotes an immunomodulatory phenotype in human T cells isolated from healthy and MS donors. In this review, we discuss the current understanding of the interactions between gut microbiota and the host in the context of CNS inflammatory demyelination, the immunomodulatory roles of gut symbionts. More specifically, we also discuss the immunomodulatory effects of B. fragilis PSA in the gut-brain axis and its therapeutic potential in MS. Elucidation of the molecular mechanisms responsible for the microbiota's impact on host physiology offers tremendous promise for discovering new therapies.
Collapse
Affiliation(s)
| | | | - Dennis L. Kasper
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Lloyd H. Kasper
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States
| |
Collapse
|
21
|
Khor B, Snow M, Herrman E, Ray N, Mansukhani K, Patel KA, Said-Al-Naief N, Maier T, Machida CA. Interconnections Between the Oral and Gut Microbiomes: Reversal of Microbial Dysbiosis and the Balance Between Systemic Health and Disease. Microorganisms 2021; 9:496. [PMID: 33652903 PMCID: PMC7996936 DOI: 10.3390/microorganisms9030496] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The human microbiota represents a complex array of microbial species that influence the balance between the health and pathology of their surrounding environment. These microorganisms impart important biological benefits to their host, such as immune regulation and resistance to pathogen colonization. Dysbiosis of microbial communities in the gut and mouth precede many oral and systemic diseases such as cancer, autoimmune-related conditions, and inflammatory states, and can involve the breakdown of innate barriers, immune dysregulation, pro-inflammatory signaling, and molecular mimicry. Emerging evidence suggests that periodontitis-associated pathogens can translocate to distant sites to elicit severe local and systemic pathologies, which necessitates research into future therapies. Fecal microbiota transplantation, probiotics, prebiotics, and synbiotics represent current modes of treatment to reverse microbial dysbiosis through the introduction of health-related bacterial species and substrates. Furthermore, the emerging field of precision medicine has been shown to be an effective method in modulating host immune response through targeting molecular biomarkers and inflammatory mediators. Although connections between the human microbiome, immune system, and systemic disease are becoming more apparent, the complex interplay and future innovations in treatment modalities will become elucidated through continued research and cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Brandon Khor
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Michael Snow
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Elisa Herrman
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nicholas Ray
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Kunal Mansukhani
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Karan A. Patel
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nasser Said-Al-Naief
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Tom Maier
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Curtis A. Machida
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| |
Collapse
|
22
|
Lee JJ, Yong D, Suk KT, Kim DJ, Woo HJ, Lee SS, Kim BS. Alteration of Gut Microbiota in Carbapenem-Resistant Enterobacteriaceae Carriers during Fecal Microbiota Transplantation According to Decolonization Periods. Microorganisms 2021; 9:microorganisms9020352. [PMID: 33578974 PMCID: PMC7916679 DOI: 10.3390/microorganisms9020352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has been suggested as an alternative therapeutic option to decolonize carbapenem-resistant Enterobacteriaceae (CRE). However, the analysis of gut microbiota alteration in CRE carriers during FMT is still limited. Here, gut microbiota changes in CRE carriers were evaluated during FMT according to decolonization periods. The decolonization of 10 CRE carriers was evaluated after FMT, using serial consecutive rectal swab cultures. Alterations of gut microbiota before and after FMT (56 serial samples) were analyzed using high-throughput sequencing. The decolonization rates of CRE carriers were 40%, 50%, and 90% within 1, 3 and 5 months after initial FMT, respectively. Gut microbiota significantly changed after FMT (p = 0.003). Microbiota alteration was different between the early decolonization carriers (EDC) and late decolonization carriers (LDC). Microbiota convergence in carriers to donors was detected in EDC within 4 weeks, and keystone genera within the Bacteroidetes were found in the gut microbiota of EDC before FMT. The relative abundance of Klebsiella was lower in EDC than in LDC, before and after FMT. Our results indicate that FMT is a potential option for CRE decolonization. The gut microbiota of CRE carriers could be used to predict decolonization timing after FMT, and determine repeated FMT necessity.
Collapse
Affiliation(s)
- Jin-Jae Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Korea;
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea; (K.T.S.); (D.J.K.)
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea; (K.T.S.); (D.J.K.)
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hallym University, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea; (K.T.S.); (D.J.K.)
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hallym University, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Korea
| | - Heung-Jeong Woo
- Department of Internal Medicine, Division of Infectious Diseases, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong 18450, Korea;
| | - Seung Soon Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea; (K.T.S.); (D.J.K.)
- Department of Internal Medicine, Division of Infectious Diseases, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Korea
- Correspondence: (S.S.L.); (B.-S.K.)
| | - Bong-Soo Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Korea;
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea; (K.T.S.); (D.J.K.)
- Correspondence: (S.S.L.); (B.-S.K.)
| |
Collapse
|
23
|
Ezzat-Zadeh Z, Henning SM, Yang J, Woo SL, Lee RP, Huang J, Thames G, Gilbuena I, Tseng CH, Heber D, Li Z. California strawberry consumption increased the abundance of gut microorganisms related to lean body weight, health and longevity in healthy subjects. Nutr Res 2020; 85:60-70. [PMID: 33450667 DOI: 10.1016/j.nutres.2020.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
It was our hypothesis that foods high in polyphenols and fiber have prebiotic activity. This human intervention study aimed to determine if daily consumption of freeze-dried California strawberry powder (SBP) leads to changes in the intestinal microbiota, fecal cholesterol and bile acid (BA) microbial metabolites. Fifteen healthy adults consumed a beige diet+26 g of SBP for 4 weeks, followed by 2 weeks of beige diet only. Stool samples were collected at 0, 4, and 6 weeks. Fecal microbiota was analyzed by 16S rRNA sequencing; fecal cholesterol, BA, and microbial metabolites by gas chromatography. Confirming compliance, urine concentration of pelargonidin, urolithin A glucuronide and dimethylellagic acid glucuronide were present after 4 weeks of SBP consumption. Daily SBP altered the abundance of 24 operational taxonomic units (OTUs). Comparing week 4 to baseline the most significant increases were observed for one OTU from Firmicutes\Clostridia\ Christensenellaceae\NA, one OTU from Firmicutes\ Clostridia\Mogibacteriacea\NA, one OTU from Verrucomicrobia\ Verrucomicrobiaceae\Akkermansia\Muciniphila, one OTU from Actinobacteria\ Bifidobacteriaceae\Bifidobacterium\NA, and one OTU from Bacteroidetes\Bacteroidia\ Bacteroidaceae\Bacteroides and decrease of one OTU from Proteobacteria\ Betaproteobacteria\Alcaligenaceae\Sutterella. Comparing week 4 to 6, we observed a reversal of the same OTUs from C Christensenellaceae, V muciniphilia and C Mogibacteriaceae. Fecal short chain fatty acids and most of the fecal markers including cholesterol, coprostanol, primary and secondary BAs were not changed significantly except for lithocholic acid, which was increased significantly at week 6 compared to baseline. In summary, SBP consumption increased the abundance of gut microorganisms related to lean body weight, health and longevity, and increased fecal lithocholic acid at week 6 in healthy study participants.
Collapse
Affiliation(s)
- Zahra Ezzat-Zadeh
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Susanne M Henning
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
| | - Jieping Yang
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Shih Lung Woo
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Ru-Po Lee
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Jianjun Huang
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Gail Thames
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Irene Gilbuena
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Chi-Hong Tseng
- Department of Statistics Core, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - David Heber
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Zhaoping Li
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| |
Collapse
|
24
|
Liu YS, Li S, Wang XF, Xing T, Li JL, Zhu XD, Zhang L, Gao F. Microbiota populations and short-chain fatty acids production in cecum of immunosuppressed broilers consuming diets containing γ-irradiated Astragalus polysaccharides. Poult Sci 2020; 100:273-282. [PMID: 33357691 PMCID: PMC7772697 DOI: 10.1016/j.psj.2020.09.089] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
This study was designed to evaluate the effects of γ-irradiated Astragalus polysaccharides (IAPS) on growth performance, cecal microbiota populations, and concentrations of cecal short-chain fatty acids of immunosuppressed broilers. A total of 144 one-day-old broiler chicks were randomly assigned into 3 groups: nontreated group (control), cyclophosphamide (CPM)-treated groups fed either a basal diet or the diets containing 900 mg/kg IAPS, respectively. On day 16, 18, and 20, broilers in the control group were intramuscularly injected with 0.5 mL sterilized saline (0.75%, wt/vol), and those in the CPM and IAPS groups were intramuscularly injected with 0.5 mL CPM (40 mg/kg of BW). The trial lasted 21 d. Compared with the control group, CPM treatment decreased the broiler average daily gain (ADG) and feed intake (P < 0.05) but did not affect the overall microbial diversity and compositions, as well as the concentrations of cecal acetate, propionate, and butyrate in cecum of broilers (P > 0.05). Dietary IAPS supplementation increased broiler ADG, Shannon index, and decreased Simpson index (P < 0.05). Specifically, broilers fed diets containing IAPS showed lower abundances of Faecalibacterium, Bacteroides, and Butyricicoccus and higher proportions of Ruminococcaceae UCG-014, Negativibacillus, Shuttleworthia, Sellimonas, and Mollicutes RF39_norank, respectively (P < 0.05). The IAPS treatment also increased butyrate concentration (P < 0.05) and tended to elevate acetate concentration (P = 0.052) in cecal digesta. The results indicated that IAPS are effective in increasing the cecal beneficial bacteria and short-chain fatty acids production, contributing to improvement in the growth performance of immunosuppressive broilers. These findings may expand our knowledge about the function of modified Astragalus polysaccharides in broiler chickens.
Collapse
Affiliation(s)
- Y S Liu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - S Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - X F Wang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - T Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - J L Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - X D Zhu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - L Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - F Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Kohl HM, Castillo AR, Ochoa-Repáraz J. The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease? Diseases 2020; 8:diseases8030033. [PMID: 32872621 PMCID: PMC7563507 DOI: 10.3390/diseases8030033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
There is an increasing interest in the intestinal microbiota as a critical regulator of the development and function of the immune, nervous, and endocrine systems. Experimental work in animal models has provided the foundation for clinical studies to investigate associations between microbiota composition and function and human disease, including multiple sclerosis (MS). Initial work done using an animal model of brain inflammation, experimental autoimmune encephalomyelitis (EAE), suggests the existence of a microbiota-gut-brain axis connection in the context of MS, and microbiome sequence analyses reveal increases and decreases of microbial taxa in MS intestines. In this review, we discuss the impact of the intestinal microbiota on the immune system and the role of the microbiome-gut-brain axis in the neuroinflammatory disease MS. We also discuss experimental evidence supporting the hypothesis that modulating the intestinal microbiota through genetically modified probiotics may provide immunomodulatory and protective effects as a novel therapeutic approach to treat this devastating disease.
Collapse
|
26
|
Ye M, Yu J, Shi X, Zhu J, Gao X, Liu W. Polysaccharides catabolism by the human gut bacterium - Bacteroides thetaiotaomicron: advances and perspectives. Crit Rev Food Sci Nutr 2020; 61:3569-3588. [PMID: 32779480 DOI: 10.1080/10408398.2020.1803198] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, the degradation processes of polysaccharides by human gut microbiota are receiving considerable attention due to the discoveries of the powerful function of gut microbiota. Gut microbiota has developed a sensitive, accurate, and complex system for sensing, capturing, and degrading different polysaccharides. Among the gut microbiota, Bacteroides thetaiotaomicron, a representative species of Bacteroides, is considered as the best degrader of polysaccharides and a potential probiotic in pharmaceutical and food industries. Here, we summarize the degradation system of B. thetaiotaomicron and the degradation pathways of different polysaccharides by B. thetaiotaomicron. We also describe a technical route for investigating a specific polysaccharide degradation pathway by human gut bacteria. In addition, we also provide the future perspectives in the development of novel polysaccharides or oligosaccharides drugs, precision microbiology medicine, and personalized nutrition.
Collapse
Affiliation(s)
- Meng Ye
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Juping Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xuexia Shi
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, PR China
| | - Jingyi Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.,Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, PR China
| |
Collapse
|
27
|
Like mother, like microbe: human milk oligosaccharide mediated microbiome symbiosis. Biochem Soc Trans 2020; 48:1139-1151. [PMID: 32597470 DOI: 10.1042/bst20191144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Starting shortly after parturition, and continuing throughout our lifetime, the gut microbiota coevolves with our metabolic and neurological programming. This symbiosis is regulated by a complex interplay between the host and environmental factors, including diet and lifestyle. Not surprisingly, the development of this microbial community is of critical importance to health and wellness. In this targeted review, we examine the gut microbiome from birth to 2 years of age to characterize the role human milk oligosaccharides play in early formation of microbial flora.
Collapse
|
28
|
Cao J, Hu Y, Liu F, Wang Y, Bi Y, Lv N, Li J, Zhu B, Gao GF. Metagenomic analysis reveals the microbiome and resistome in migratory birds. MICROBIOME 2020; 8:26. [PMID: 32122398 PMCID: PMC7053137 DOI: 10.1186/s40168-019-0781-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/27/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Antibiotic-resistant pathogens pose high risks to human and animal health worldwide. In recent years, the role of gut microbiota as a reservoir of antibiotic resistance genes (ARGs) in humans and animals has been increasingly investigated. However, the structure and function of the gut bacterial community, as well as the ARGs they carry in migratory birds remain unknown. RESULTS Here, we collected samples from migratory bird species and their associated environments and characterized their gut microbiomes and resistomes using shotgun metagenomic sequencing. We found that migratory birds vary greatly in gut bacterial composition but are similar in their microbiome metabolism and function. Birds from the same environment tend to harbor similar bacterial communities. In total, 1030 different ARGs (202 resistance types) conferring resistance to tetracycline, aminoglycoside, β-lactam, sulphonamide, chloramphenicol, macrolide-lincosamide-streptogramin (MLS), and quinolone are identified. Procrustes analysis indicated that microbial community structure is not correlated with the resistome in migratory birds. Moreover, metagenomic assembly-based host tracking revealed that most of the ARG-carrying contigs originate from Proteobacteria. Co-occurrence patterns revealed by network analysis showed that emrD, emrY, ANT(6)-Ia, and tetO, the hubs of ARG type network, are indicators of other co-occurring ARG types. Compared with the microbiomes and resistomes in the environment, migratory birds harbor a lower phylogenetic diversity but have more antibiotic resistance proteins. Interestingly, we found that the mcr-1 resistance gene is widespread among different birds, accounting for 50% of the total samples. Meanwhile, a large number of novel β-lactamase genes are also reconstructed from bird metagenomic assemblies based on fARGene software. CONCLUSIONS Our study provides a comprehensive overview of the diversity and abundance of ARGs in migratory birds and highlights the possible role of migratory birds as ARG disseminators into the environment. Video abstract.
Collapse
Affiliation(s)
- Jian Cao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Na Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
29
|
Vega-Magaña N, Galiana A, Jave-Suárez LF, Garcia-Benavides L, del Toro-Arreola S, Andrade-Villanueva JF, González-Hernández LA, Cremades R, Aguilar-Lemarroy A, Flores-Miramontes MG, Haramati J, Meza-Arroyo J, Bueno-Topete MR. Microbiome alterations are related to an imbalance of immune response and bacterial translocation in BDL-rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:178-185. [PMID: 32405360 PMCID: PMC7211354 DOI: 10.22038/ijbms.2019.36487.8753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Bacterial translocation in patients with cirrhosis is an important triggering factor for infections and mortality. In the bile duct ligation (BDL) model, crucial players of bacterial translocation are still unknown. This study aims to determine the interrelation between microbiome composition in the colon, mesenteric lymph nodes, and liver, as well as the local inflammatory microenvironment in the BDL model. MATERIALS AND METHODS Liver damage was assayed by Masson trichrome staining, and hepatic enzymes. The diversity of microbiota in colon stools, mesenteric lymph nodes, and liver was determined by 16S rRNA pyrosequencing. Cytokine expression in mesenteric lymph nodes was analyzed by qRT-PCR. RESULTS Our results show that Proteobacteria was the predominant phylum found to translocate to mesenteric lymph nodes and liver in cirrhotic rats. Bile duct ligation induces a drastic intestinal dysbiosis, revealed by an increased relative abundance of Sarcina, Clostridium, Helicobacter, Turicibacter, and Streptococcus genera. However, beneficial bacteria, such as Lactobacillus, Prevotella and Ruminococcus were found to be notably decreased in BDL groups. Mesenteric pro-inflammatory (TNF-α, IL-1β, IL-6, TLR-4) and regulatory (TGF-β, Foxp3, and IL-10) molecules at 30 days post-BDL were significantly increased. Conversely, TGF-β and Foxp3 were significantly augmented at 8 days post-BDL. CONCLUSION Dysbiosis in the colon and mesenteric lymph nodes is linked to an imbalance in the immune response; therefore, this may be an important trigger for bacterial translocation in the BDL model.
Collapse
Affiliation(s)
- Natali Vega-Magaña
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. CP 44340, Guadalajara, Jalisco, México
- Instituto de Investigación en Inmunodeficiencias y VIH. Departamento de Clínicas Médicas. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. CP 44340, Guadalajara, Jalisco, México
| | - Antonio Galiana
- FISABIO Fundación para el fomento de la Investigación Sanitaria y Biomédica de la comunidad de Valencia. CP 46015, España
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social. CP 44340, Guadalajara, Jalisco, México
| | - Leonel Garcia-Benavides
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara. CP 45425, Tonalá, Jalisco, México
| | - Susana del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. CP 44340, Guadalajara, Jalisco, México
| | - Jaime Federico Andrade-Villanueva
- Instituto de Investigación en Inmunodeficiencias y VIH. Departamento de Clínicas Médicas. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. CP 44340, Guadalajara, Jalisco, México
- Unidad de VIH, Antiguo Hospital Civil de Guadalajara “Fray Antonio Alcalde”. CP 44280, Guadalajara, Jalisco, México
| | - Luz Alicia González-Hernández
- Instituto de Investigación en Inmunodeficiencias y VIH. Departamento de Clínicas Médicas. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. CP 44340, Guadalajara, Jalisco, México
- Unidad de VIH, Antiguo Hospital Civil de Guadalajara “Fray Antonio Alcalde”. CP 44280, Guadalajara, Jalisco, México
| | - Rosa Cremades
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. CP 44340, Guadalajara, Jalisco, México
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social. CP 44340, Guadalajara, Jalisco, México
| | - María Guadalupe Flores-Miramontes
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social. CP 44340, Guadalajara, Jalisco, México
| | - Jesse Haramati
- Laboratorio de Inmunología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. CP 44600, Guadalajara, Jalisco, México
| | - Jesús Meza-Arroyo
- Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara. CP 46600, Ameca, Jalisco, México
| | - Miriam Ruth Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. CP 44340, Guadalajara, Jalisco, México
| |
Collapse
|
30
|
Yan J, Zhou B, Xi Y, Huan H, Li M, Yu J, Zhu H, Dai Z, Ying S, Zhou W, Shi Z. Fermented feed regulates growth performance and the cecal microbiota community in geese. Poult Sci 2019; 98:4673-4684. [PMID: 30993344 DOI: 10.3382/ps/pez169] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
This study was designed to investigate the effects of fermented feed diets on the growth performance and cecal microbial community in geese, and to examine associations between the gut microbiota and growth performance. A total of 720 healthy, 1-day-old male SanHua geese were used for the 55-D experiment. Geese were randomly divided into 4 groups, each with 6 replicates of 30 geese. Groups were fed a basal diet supplemented with 0.0, 2.5, 5.0, or 7.5% fermented feed. The results showed that 7.5% fermented feed had an increasing trend in the body weight and average daily gain of the geese; however, there was no significant response to increasing dietary fermented feed level with regards to ADFI and FCR. In addition, compared with the control group, there was a higher abundance of bacteria in the phylum Bacteroidetes in the cecal samples of geese in the 7.5% fermented feed group (53.18% vs. 41.77%, P < 0.05), whereas the abundance of Firmicutes was lower in the 7.5% fermented feed group (36.30% vs. 44.13%, P > 0.05). At the genus level, the abundance of Bacteroides was increased by adding fermented feed to geese diets, whereas the abundances of Desulfovibrio, Phascolarctobacterium, Lachnospiraceae_uncultured, Ruminiclostridium, and Oscillospira were decreased. These results indicate that fermented feeds have an important effect on the cecal microflora composition of geese, and may affect host growth, nutritional status, and intestinal health.
Collapse
Affiliation(s)
- Junshu Yan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bo Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yumeng Xi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hailin Huan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingyang Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianning Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zichun Dai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shijia Ying
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weiren Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
31
|
Abstract
The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite their having related microbial structures. Mechanisms of innate immune activation and the subsequent signaling pathways used by symbionts to communicate with the adaptive immune system are poorly understood. Polysaccharide A (PSA) of Bacteroides fragilis is the model symbiotic immunomodulatory molecule. Here we demonstrate that PSA-dependent immunomodulation requires the Toll-like receptor (TLR) 2/1 heterodimer in cooperation with Dectin-1 to initiate signaling by the downstream phosphoinositide 3-kinase (PI3K) pathway, with consequent CREB-dependent transcription of antiinflammatory genes, including antigen presentation and cosignaling molecules. High-resolution LC-MS/MS analysis of PSA identified a previously unknown small molecular-weight, covalently attached bacterial outer membrane-associated lipid that is required for activation of antigen-presenting cells. This archetypical commensal microbial molecule initiates a complex collaborative integration of Toll-like receptor and C-type lectin-like receptor signaling mechanisms culminating in the activation of the antiinflammatory arm of the PI3K pathway that serves to educate CD4+ Tregs to produce the immunomodulatory cytokine IL-10. Immunomodulation is a key function of the microbiome and is a focal point for developing new therapeutic agents.
Collapse
|
32
|
O’Connor K, Morrissette M, Strandwitz P, Ghiglieri M, Caboni M, Liu H, Khoo C, D’Onofrio A, Lewis K. Cranberry extracts promote growth of Bacteroidaceae and decrease abundance of Enterobacteriaceae in a human gut simulator model. PLoS One 2019; 14:e0224836. [PMID: 31714906 PMCID: PMC6850528 DOI: 10.1371/journal.pone.0224836] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023] Open
Abstract
The opportunistic pathogen Escherichia coli, a common member of the human gut microbiota belonging to the Enterobacteriaceae family, is the causative agent of the majority of urinary tract infections (UTIs). The gut microbiota serves as a reservoir for uropathogenic E. coli where they are shed in feces, colonize the periurethral area, and infect the urinary tract. Currently, front line treatment for UTIs consists of oral antibiotics, but the rise of antibiotic resistance is leading to higher rates of recurrence, and antibiotics cause collateral damage to other members of the gut microbiota. It is commonly believed that incorporation of the American cranberry, Vaccinium macrocarpon, into the diet is useful for reducing recurrence of UTIs. We hypothesized such a benefit might be explained by a prebiotic or antimicrobial effect on the gut microbiota. As such, we tested cranberry extracts and whole cranberry powder on a human gut microbiome-derived community in a gut simulator and found that cranberry components broadly modulate the microbiota by reducing the abundance of Enterobacteriaceae and increasing the abundance of Bacteroidaceae. To identify the specific compounds responsible for this, we tested a panel of compounds isolated from cranberries for activity against E. coli, and found that salicylate exhibited antimicrobial activity against both laboratory E. coli and human UTI E. coli isolates. In a gut simulator, salicylate reduced levels of Enterobacteriaceae and elevated Bacteroidaceae in a dose dependent manner.
Collapse
Affiliation(s)
- Kathleen O’Connor
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Madeleine Morrissette
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Philip Strandwitz
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Meghan Ghiglieri
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Mariaelena Caboni
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Haiyan Liu
- Global Scientific Affairs and Nutrition Policy, Research and Development, Ocean Spray Cranberries, Inc., Lakeville-Middleboro, Massachusetts, United States of America
| | - Christina Khoo
- Global Scientific Affairs and Nutrition Policy, Research and Development, Ocean Spray Cranberries, Inc., Lakeville-Middleboro, Massachusetts, United States of America
| | - Anthony D’Onofrio
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
33
|
Seo SH, Unno T, Park SE, Kim EJ, Lee YM, Na CS, Son HS. Korean Traditional Medicine ( Jakyakgamcho-tang) Ameliorates Colitis by Regulating Gut Microbiota. Metabolites 2019; 9:metabo9100226. [PMID: 31615012 PMCID: PMC6835967 DOI: 10.3390/metabo9100226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to examine the anti-colitis activity of Jakyakgamcho-tang (JGT) in dextran sulfate sodium (DSS)-induced colitis and explore changes of the gut microbial community using 16S rRNA amplicon sequencing and metabolomics approaches. It was found that treatment with JGT or 5-aminosalicylic acid (5-ASA) alleviated the severity of colitis symptoms by suppressing inflammatory cytokine levels of IL-6, IL-12, and IFN-γ. The non-metric multidimensional scaling analysis of gut microbiome revealed that JGT groups were clearly separated from the DSS group, suggesting that JGT administration altered gut microbiota. The operational taxonomic units (OTUs) that were decreased by DSS but increased by JGT include Akkermansia and Allobaculum. On the other hand, OTUs that were increased by DSS but decreased by 5-ASA or JGT treatments include Bacteroidales S24-7, Ruminococcaceae, and Rikenellaceae, and the genera Bacteroides, Parabacteroides, Oscillospira, and Coprobacillus. After JGT administration, the metabolites, including most amino acids and lactic acid that were altered by colitis induction, became similar to those of the control group. This study demonstrates that JGT might have potential to effectively treat colitis by restoring dysbiosis of gut microbiota and host metabolites.
Collapse
Affiliation(s)
- Seung-Ho Seo
- School of Korean Medicine, Dongshin University, Naju 58245, Korea.
| | - Tatsuya Unno
- School of Life Sciences, Faculty of Biotechnology, SARI Jeju National University, Jeju 63243, Korea.
- Subtropical/tropical Organism Gene Bank Jeju National University, Jeju 63243, Korea.
| | - Seong-Eun Park
- School of Korean Medicine, Dongshin University, Naju 58245, Korea.
| | - Eun-Ju Kim
- School of Korean Medicine, Dongshin University, Naju 58245, Korea.
| | - Yu-Mi Lee
- School of Korean Medicine, Dongshin University, Naju 58245, Korea.
| | - Chang-Su Na
- School of Korean Medicine, Dongshin University, Naju 58245, Korea.
| | - Hong-Seok Son
- School of Korean Medicine, Dongshin University, Naju 58245, Korea.
| |
Collapse
|
34
|
Martínez-Carrillo BE, Rosales-Gómez CA, Ramírez-Durán N, Reséndiz-Albor AA, Escoto-Herrera JA, Mondragón-Velásquez T, Valdés-Ramos R, Castillo-Cardiel A. Effect of Chronic Consumption of Sweeteners on Microbiota and Immunity in the Small Intestine of Young Mice. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2019; 2019:9619020. [PMID: 31531343 PMCID: PMC6719272 DOI: 10.1155/2019/9619020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
The consumption of sweeteners has increased as a measure to reduce the consumption of calories and thus combat obesity and diabetes. Sweeteners are found in a large number of products, so chronic consumption has been little explored. The objective of the study was to evaluate the effect of chronic sweetener consumption on the microbiota and immunity of the small intestine in young mice. We used 72 CD1 mice of 21 days old, divided into 3 groups: (i) No treatment, (ii) Group A (6 weeks of treatment), and (iii) Group B (12 weeks of treatment). Groups A and B were divided into 4 subgroups: Control (CL), Sucrose (Suc), Splenda® (Spl), and Svetia® (Sv). The following were determined: anthropometric parameters, percentage of lymphocytes of Peyer's patches and lamina propria, IL-6, IL-17, leptin, resistin, C-peptide, and TNF-α. From feces, the microbiota of the small intestine was identified. The BMI was not modified; the mice preferred the consumption of Splenda® and Svetia®. The percentage of CD3+ lymphocytes in Peyer's patches was increased. In the lamina propria, Svetia® increased the percentage of CD3+ lymphocytes, but Splenda® decreases it. The Splenda® and Svetia® subgroups elevate leptin, C-peptide, IL-6, and IL-17, with reduction of resistin. The predominant genus in all groups was Bacillus. The chronic consumption of sweeteners increases the population of lymphocytes in the mucosa of the small intestine. Maybe, Bacillus have the ability to adapt to sweeteners regardless of the origin or nutritional contribution of the same.
Collapse
Affiliation(s)
- B. E. Martínez-Carrillo
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan, Esquina Jesús Carranza, s/n, Colonia Moderna de la Cruz, C.P. 50180, Toluca, Mexico
| | - C. A. Rosales-Gómez
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan, Esquina Jesús Carranza, s/n, Colonia Moderna de la Cruz, C.P. 50180, Toluca, Mexico
| | - N. Ramírez-Durán
- Laboratorio de Microbiología Médica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan, Esquina Jesús Carranza, s/n, Colonia Moderna de la Cruz, C.P. 50180, Toluca, Mexico
| | - A. A. Reséndiz-Albor
- Laboratorio de Inmunología de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, C.P. 11340, Ciudad de México, Mexico
| | - J. A. Escoto-Herrera
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan, Esquina Jesús Carranza, s/n, Colonia Moderna de la Cruz, C.P. 50180, Toluca, Mexico
| | - T. Mondragón-Velásquez
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan, Esquina Jesús Carranza, s/n, Colonia Moderna de la Cruz, C.P. 50180, Toluca, Mexico
| | - R. Valdés-Ramos
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan, Esquina Jesús Carranza, s/n, Colonia Moderna de la Cruz, C.P. 50180, Toluca, Mexico
| | - A. Castillo-Cardiel
- Departamento de Cirugía Experimental, Universidad Quetzalcoátl de Irapuato, Blvd. Arandas No. 975 Colonia Tabachines, C.P. 36715, Irapuato, Guanajuato, Mexico
| |
Collapse
|
35
|
Geva‐Zatorsky N, Elinav E, Pettersson S. When Cultures Meet: The Landscape of “Social” Interactions between the Host and Its Indigenous Microbes. Bioessays 2019; 41:e1900002. [DOI: 10.1002/bies.201900002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/27/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Naama Geva‐Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion—Israel Institute of TechnologyTechnion Integrated Cancer Center (TICC) Efron Street, POB 9649 Bat Galim Haifa 3109601 Israel
- Canadian Institute for Advanced Research (CIFAR)MaRS Centre West Tower 661 University Ave., Suite 505 Toronto ON M5G 1M1 Canada
| | - Eran Elinav
- Canadian Institute for Advanced Research (CIFAR)MaRS Centre West Tower 661 University Ave., Suite 505 Toronto ON M5G 1M1 Canada
- Department of ImmunologyWeizmann Institute of Science 7610001 Rehovot Israel
| | - Sven Pettersson
- Canadian Institute for Advanced Research (CIFAR)MaRS Centre West Tower 661 University Ave., Suite 505 Toronto ON M5G 1M1 Canada
- Singapore Centre for Environmental Life Sciences Engineering 60 Nanyang Drive Singapore 637551 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
- Department of Neurobiology, Care Science & SocietyKarolinska Institute Stockholm SE‐171 77 Sweden
| |
Collapse
|
36
|
Can Gut Microbiota and Lifestyle Help Us in the Handling of Anorexia Nervosa Patients? Microorganisms 2019; 7:microorganisms7020058. [PMID: 30813265 PMCID: PMC6406897 DOI: 10.3390/microorganisms7020058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota is composed of different microorganisms that play an important role in the host. New research shows that bidirectional communications happen between intestinal microbiota and the brain, which is known as the gut⁻brain axis. This communication is significant and could have a negative or positive effect depending on the state of the gut microbiota. Anorexia nervosa (AN) is a mental illness associated with metabolic, immunologic, biochemical, sensory abnormalities, and extremely low body weight. Different studies have shown a dysbiosis in patients with AN. Due to the gut⁻brain axis, it was observed that some of the symptoms could be improved in these patients by boosting their gut microbiota. This paper highlights some evidence connecting the role of microbiota in the AN onset and disease progress. Finally, a proposal is done to include the microbiota analysis as part of the recovery protocol used to treat AN patients. When conducting clinical studies of gut microbiota in AN patients, dysbiosis is expected to be found. Then the prescription of a personalized treatment rich in prebiotics and probiotics could be proposed to reverse the dysbiosis.
Collapse
|
37
|
Kim CC, Healey GR, Kelly WJ, Patchett ML, Jordens Z, Tannock GW, Sims IM, Bell TJ, Hedderley D, Henrissat B, Rosendale DI. Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon. ISME JOURNAL 2019; 13:1437-1456. [PMID: 30728469 PMCID: PMC6776006 DOI: 10.1038/s41396-019-0363-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/07/2019] [Accepted: 01/19/2019] [Indexed: 12/16/2022]
Abstract
Pectin is abundant in modern day diets, as it comprises the middle lamellae and one-third of the dry carbohydrate weight of fruit and vegetable cell walls. Currently there is no specialized model organism for studying pectin fermentation in the human colon, as our collective understanding is informed by versatile glycan-degrading bacteria rather than by specialist pectin degraders. Here we show that the genome of Monoglobus pectinilyticus possesses a highly specialized glycobiome for pectin degradation, unique amongst Firmicutes known to be in the human gut. Its genome encodes a simple set of metabolic pathways relevant to pectin sugar utilization, and its predicted glycobiome comprises an unusual distribution of carbohydrate-active enzymes (CAZymes) with numerous extracellular methyl/acetyl esterases and pectate lyases. We predict the M. pectinilyticus degradative process is facilitated by cell-surface S-layer homology (SLH) domain-containing proteins, which proteomics analysis shows are differentially expressed in response to pectin. Some of these abundant cell surface proteins of M. pectinilyticus share unique modular organizations rarely observed in human gut bacteria, featuring pectin-specific CAZyme domains and the cell wall-anchoring SLH motifs. We observed M. pectinilyticus degrades various pectins, RG-I, and galactan to produce polysaccharide degradation products (PDPs) which are presumably shared with other inhabitants of the human gut microbiome (HGM). This strain occupies a new ecological niche for a primary degrader specialized in foraging a habitually consumed plant glycan, thereby enriching our understanding of the diverse community profile of the HGM.
Collapse
Affiliation(s)
- Caroline C Kim
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand. .,Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand.
| | - Genelle R Healey
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand.,Massey Institute of Food Science and Technology, School of Food and Nutrition, Massey University, Palmerston North, New Zealand
| | | | - Mark L Patchett
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Zoe Jordens
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Gerald W Tannock
- Department of Microbiology and Immunology, Microbiome Otago, University of Otago, Dunedin, 9016, New Zealand
| | - Ian M Sims
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, 5040, New Zealand
| | - Tracey J Bell
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, 5040, New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, F-13288, France.,Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, F-13288, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Douglas I Rosendale
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand.
| |
Collapse
|
38
|
van der Meulen TA, Harmsen HJ, Vila AV, Kurilshikov A, Liefers SC, Zhernakova A, Fu J, Wijmenga C, Weersma RK, de Leeuw K, Bootsma H, Spijkervet FK, Vissink A, Kroese FG. Shared gut, but distinct oral microbiota composition in primary Sjögren's syndrome and systemic lupus erythematosus. J Autoimmun 2019; 97:77-87. [DOI: 10.1016/j.jaut.2018.10.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
|
39
|
Preparation, characterization and improvement in intestinal function of polysaccharide fractions from okra. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
40
|
Karav S, Casaburi G, Frese SA. Reduced colonic mucin degradation in breastfed infants colonized by Bifidobacterium longum subsp . infantis EVC001. FEBS Open Bio 2018; 8:1649-1657. [PMID: 30338216 PMCID: PMC6168692 DOI: 10.1002/2211-5463.12516] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Mucin glycoproteins play an important role in protecting the gut epithelium by keeping gut microbes from direct contact with the gut epithelium while allowing for diffusion of small molecules from the lumen to the epithelium. The mucin glycocalyx can be degraded by gut bacteria such as Bacteroides and Akkermansia, but other bacteria, such as Bifidobacterium longum subsp. Infantis, cannot consume mucin glycans. Untargeted mass spectrometry profiles were compared to microbiome profiles to assess how different gut microbiomes affect colonic mucin degradation. Samples obtained from nine infants colonized by Bifidobacterium infantis EVC001 and from 10 infants colonized by higher levels of mucolytic taxa (controls), including Bacteroides, were compared. Previously performed untargeted nano‐high‐performance liquid chromatography‐chip/time‐of‐flight mass spectrometry was used to detect and quantify glycans originating from colonic mucin. Colonic mucin‐derived O‐glycans from control infants composed 37.68% (± 3.14% SD) of the total glycan structure pool, whereas colonic mucin‐derived O‐glycans made up of only 1.78% (± 0.038% SD) of the total in B. infantis EVC001 samples. The relative abundance of these colonic mucin‐derived O‐glycans in the total glycan pool was higher among control, 26.98% (± 8.48% SD), relative to B. infantis‐colonized infants, 1.68% (± 1.12% SD). Key taxa, such as Bacteroidaceae, were significantly and positively correlated with the abundance of these structures, while Bifidobacteriaceae were significantly and negatively associated with these structures. These results suggest that colonization of infants by B. infantis may diminish colonic glycan degradation and help maintain barrier function in the gastrointestinal tract of infants.
Collapse
Affiliation(s)
- Sercan Karav
- Department of Molecular Biology and Genetics Çanakkale Onsekiz Mart University Turkey
| | | | - Steven A Frese
- Evolve Biosystems, Inc. Davis CA USA.,Department of Food Science and Technology University of Nebraska Lincoln NE USA
| |
Collapse
|
41
|
Maternal Soluble Fiber Diet during Pregnancy Changes the Intestinal Microbiota, Improves Growth Performance, and Reduces Intestinal Permeability in Piglets. Appl Environ Microbiol 2018; 84:AEM.01047-18. [PMID: 29959248 DOI: 10.1128/aem.01047-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence suggests that maternal diet during pregnancy modifies an offspring's microbiota composition and intestinal development in a long-term manner. However, the effects of maternal soluble fiber diet during pregnancy on growth traits and the developing intestine are still underexplored. Sows were allocated to either a control or 2.0% pregelatinized waxy maize starch plus guar gum (SF) dietary treatment during gestation. Growth performance, diarrhea incidence, gut microbiota composition and metabolism, and gut permeability and inflammation status of 14-day-old suckling piglets were analyzed. The maternal SF diet improved the growth rate and decreased the incidence of diarrhea in the piglets. Next-generation sequencing analysis revealed that the intestinal microbiota composition was altered by a maternal SF diet. The fecal and plasma levels of acetate and butyrate were also increased. Furthermore, a maternal SF diet reduced the levels of plasma zonulin and fecal lipocalin-2 but increased the plasma concentrations of interleukin 10 (IL-10) and transforming growth factor β (TGF-β). Additionally, the increased relative abundances of Lactobacillus spp. in SF piglets were positively correlated with growth rate, while the decreased abundances of Bilophila spp. were positively correlated with fecal lipocalin-2 levels. Our data reveal that a maternal SF diet during pregnancy has remarkable effects on an offspring's growth traits and intestinal permeability and inflammation, perhaps by modulating the composition and metabolism of gut microbiota.IMPORTANCE Although the direct effects of dietary soluble fiber on gut microbiota have been extensively studied, the more indirect effects of maternal nutrition solely during pregnancy on the development of the offspring's intestine are until now largely unexplored. Our data show that a maternal soluble fiber diet during pregnancy is independently associated with changes in the intestinal microbiota composition and metabolism of suckling piglets. These findings have direct implications for refining dietary recommendations in pregnancy. Moreover, a maternal soluble fiber diet reduces intestinal permeability and prevents intestinal inflammation and an excessive systemic immune response of suckling piglets. Therefore, the suckling piglets' resistance to disease was enhanced, diarrhea was reduced, and weight gain was raised. Additionally, the changes in gut microbiota in response to a maternal soluble fiber diet may also be directly correlated with the offspring's growth and gut development.
Collapse
|
42
|
Mayta-Apaza AC, Pottgen E, De Bodt J, Papp N, Marasini D, Howard L, Abranko L, Van de Wiele T, Lee SO, Carbonero F. Impact of tart cherries polyphenols on the human gut microbiota and phenolic metabolites in vitro and in vivo. J Nutr Biochem 2018; 59:160-172. [PMID: 30055451 DOI: 10.1016/j.jnutbio.2018.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
Tart cherries have been reported to exert potential health benefits attributed to their specific and abundant polyphenol content. However, there is a need to study the impact and fate of tart cherries polyphenols in the gut microbiota. Here, tart cherries, pure polyphenols (and apricots) were submitted to in vitro bacterial fermentation assays and assessed through 16S rRNA gene sequence sequencing and metabolomics. A short-term (5 days, 8 oz. daily) human dietary intervention study was also conducted for microbiota analyses. Tart cherry concentrate juices were found to contain expected abundances of anthocyanins (cyanidin-glycosylrutinoside) and flavonoids (quercetin-rutinoside) and high amounts of chlorogenic and neochlorogenic acids. Targeted metabolomics confirmed that gut microbes were able to degrade those polyphenols mainly to 4-hydroxyphenylpropionic acids and to lower amounts of epicatechin and 4-hydroxybenzoic acids. Tart cherries were found to induce a large increase of Bacteroides in vitro, likely due to the input of polysaccharides, but prebiotic effect was also suggested by Bifidobacterium increase from chlorogenic acid. In the human study, two distinct and inverse responses to tart cherry consumption were associated with initial levels of Bacteroides. High-Bacteroides individuals responded with a decrease in Bacteroides and Bifidobacterium, and an increase of Lachnospiraceae, Ruminococcus and Collinsella. Low-Bacteroides individuals responded with an increase in Bacteroides or Prevotella and Bifidobacterium, and a decrease of Lachnospiraceae, Ruminococcus and Collinsella. These data confirm that gut microbiota metabolism, in particular the potential existence of different metabotypes, needs to be considered in studies attempting to link tart cherries consumption and health.
Collapse
Affiliation(s)
| | - Ellen Pottgen
- Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Jana De Bodt
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of BioScience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Nora Papp
- Faculty of Food Science, Department of Applied Chemistry, Szent István University, 1118 Budapest, Hungary
| | - Daya Marasini
- Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Luke Howard
- Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Laszlo Abranko
- Faculty of Food Science, Department of Applied Chemistry, Szent István University, 1118 Budapest, Hungary
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of BioScience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Sun-Ok Lee
- Food Science, University of Arkansas, Fayetteville, AR, United States; Center for Human Nutrition, Division of Agriculture, University of Arkansas, United States
| | - Franck Carbonero
- Food Science, University of Arkansas, Fayetteville, AR, United States; Center for Human Nutrition, Division of Agriculture, University of Arkansas, United States.
| |
Collapse
|
43
|
Erturk-Hasdemir D, Kasper DL. Finding a needle in a haystack: Bacteroides fragilis polysaccharide A as the archetypical symbiosis factor. Ann N Y Acad Sci 2018. [PMID: 29528123 DOI: 10.1111/nyas.13660] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Starting from birth, all animals develop a symbiotic relationship with their resident microorganisms that benefits both the microbe and the host. Recent advances in technology have substantially improved our ability to direct research toward the identification of important microbial species that affect host physiology. The identification of specific commensal molecules from these microbes and their mechanisms of action is still in its early stages. Polysaccharide A (PSA) of Bacteroides fragilis is the archetypical example of a commensal molecule that can modulate the host immune system in health and disease. This zwitterionic polysaccharide has a critical impact on the development of the mammalian immune system and also on the stimulation of interleukin 10-producing CD4+ T cells; consequently, PSA confers benefits to the host with regard to experimental autoimmune, inflammatory, and infectious diseases. In this review, we summarize the current understanding of the immunomodulatory effects of B. fragilis PSA and discuss these effects as a novel immunological paradigm. In particular, we discuss recent advances in our understanding of the unique functional mechanisms of this molecule and its therapeutic potential, and we review the recent literature in the field of microbiome research aimed at discovering new commensal products and their immunomodulatory potential.
Collapse
Affiliation(s)
- Deniz Erturk-Hasdemir
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Dennis L Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Allaire JM, Morampudi V, Crowley SM, Stahl M, Yu H, Bhullar K, Knodler LA, Bressler B, Jacobson K, Vallance BA. Frontline defenders: goblet cell mediators dictate host-microbe interactions in the intestinal tract during health and disease. Am J Physiol Gastrointest Liver Physiol 2018; 314:G360-G377. [PMID: 29122749 PMCID: PMC5899238 DOI: 10.1152/ajpgi.00181.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Goblet cells (GCs) are the predominant secretory epithelial cells lining the luminal surface of the mammalian gastrointestinal (GI) tract. Best known for their apical release of mucin 2 (Muc2), which is critical for the formation of the intestinal mucus barrier, GCs have often been overlooked for their active contributions to intestinal protection and host defense. In part, this oversight reflects the limited tools available to study their function but also because GCs have long been viewed as relatively passive players in promoting intestinal homeostasis and host defense. In light of recent studies, this perspective has shifted, as current evidence suggests that Muc2 as well as other GC mediators are actively released into the lumen to defend the host when the GI tract is challenged by noxious stimuli. The ability of GCs to sense and respond to danger signals, such as bacterial pathogens, has recently been linked to inflammasome signaling, potentially intrinsic to the GCs themselves. Moreover, further work suggests that GCs release Muc2, as well as other mediators, to modulate the composition of the gut microbiome, leading to both the expansion as well as the depletion of specific gut microbes. This review will focus on the mechanisms by which GCs actively defend the host from noxious stimuli, as well as describe advanced technologies and new approaches by which their responses can be addressed. Taken together, we will highlight current insights into this understudied, yet critical, aspect of intestinal mucosal protection and its role in promoting gut defense and homeostasis.
Collapse
Affiliation(s)
- Joannie M. Allaire
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vijay Morampudi
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shauna M. Crowley
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Stahl
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongbing Yu
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirandeep Bhullar
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leigh A. Knodler
- 2Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Brian Bressler
- 3Division of Gastroenterology, Department of Medicine, St. Paul’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevan Jacobson
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A. Vallance
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
45
|
Cereal products derived from wheat, sorghum, rice and oats alter the infant gut microbiota in vitro. Sci Rep 2017; 7:14312. [PMID: 29085002 PMCID: PMC5662621 DOI: 10.1038/s41598-017-14707-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
The introduction of different nutrient and energy sources during weaning leads to significant changes in the infant gut microbiota. We used an in vitro infant digestive and gut microbiota model system to investigate the effect of four commercially available cereal products based on either wheat, sorghum, rice or oats, on the gut microbiota of six infants. Our results indicated cereal additions induced numerous changes in the gut microbiota composition. The relative abundance of bacterial families associated with fibre degradation, Bacteroidaceae, Bifidobacteriaceae, Lactobacillaceae, Prevotellaceae, Ruminococcaceae and Veillonellaceae increased, whilst the abundance of Enterobacteriaceae decreased with cereal additions. Corresponding changes in the production of SCFAs showed higher concentrations of acetate following all cereal additions, whilst, propionate and butyrate varied between specific cereal additions. These cereal-specific variations in the concentrations of SCFAs showed a moderate correlation with the relative abundance of potential SCFA-producing bacterial families. Overall, our results demonstrated clear shifts in the abundance of bacterial groups associated with weaning and an increase in the production of SCFAs following cereal additions.
Collapse
|
46
|
Ravcheev DA, Thiele I. Comparative Genomic Analysis of the Human Gut Microbiome Reveals a Broad Distribution of Metabolic Pathways for the Degradation of Host-Synthetized Mucin Glycans and Utilization of Mucin-Derived Monosaccharides. Front Genet 2017; 8:111. [PMID: 28912798 PMCID: PMC5583593 DOI: 10.3389/fgene.2017.00111] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/11/2017] [Indexed: 12/27/2022] Open
Abstract
The colonic mucus layer is a dynamic and complex structure formed by secreted and transmembrane mucins, which are high-molecular-weight and heavily glycosylated proteins. Colonic mucus consists of a loose outer layer and a dense epithelium-attached layer. The outer layer is inhabited by various representatives of the human gut microbiota (HGM). Glycans of the colonic mucus can be used by the HGM as a source of carbon and energy when dietary fibers are not sufficiently available. Both commensals and pathogens can utilize mucin glycans. Commensals are mostly involved in the cleavage of glycans, while pathogens mostly utilize monosaccharides released by commensals. This HGM-derived degradation of the mucus layer increases pathogen susceptibility and causes many other health disorders. Here, we analyzed 397 individual HGM genomes to identify pathways for the cleavage of host-synthetized mucin glycans to monosaccharides as well as for the catabolism of the derived monosaccharides. Our key results are as follows: (i) Genes for the cleavage of mucin glycans were found in 86% of the analyzed genomes, which significantly higher than a previous estimation. (ii) Genes for the catabolism of derived monosaccharides were found in 89% of the analyzed genomes. (iii) Comparative genomic analysis identified four alternative forms of the monosaccharide-catabolizing enzymes and four alternative forms of monosaccharide transporters. (iv) Eighty-five percent of the analyzed genomes may be involved in potential feeding pathways for the monosaccharides derived from cleaved mucin glycans. (v) The analyzed genomes demonstrated different abilities to degrade known mucin glycans. Generally, the ability to degrade at least one type of mucin glycan was predicted for 81% of the analyzed genomes. (vi) Eighty-two percent of the analyzed genomes can form mutualistic pairs that are able to degrade mucin glycans and are not degradable by any of the paired organisms alone. Taken together, these findings provide further insight into the inter-microbial communications of the HGM as well as into host-HGM interactions.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| |
Collapse
|
47
|
Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS One 2017; 12:e0178426. [PMID: 28594855 PMCID: PMC5464538 DOI: 10.1371/journal.pone.0178426] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
Artificial sweeteners have been widely used in the modern diet, and their observed effects on human health have been inconsistent, with both beneficial and adverse outcomes reported. Obesity and type 2 diabetes have dramatically increased in the U.S. and other countries over the last two decades. Numerous studies have indicated an important role of the gut microbiome in body weight control and glucose metabolism and regulation. Interestingly, the artificial sweetener saccharin could alter gut microbiota and induce glucose intolerance, raising questions about the contribution of artificial sweeteners to the global epidemic of obesity and diabetes. Acesulfame-potassium (Ace-K), a FDA-approved artificial sweetener, is commonly used, but its toxicity data reported to date are considered inadequate. In particular, the functional impact of Ace-K on the gut microbiome is largely unknown. In this study, we explored the effects of Ace-K on the gut microbiome and the changes in fecal metabolic profiles using 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS) metabolomics. We found that Ace-K consumption perturbed the gut microbiome of CD-1 mice after a 4-week treatment. The observed body weight gain, shifts in the gut bacterial community composition, enrichment of functional bacterial genes related to energy metabolism, and fecal metabolomic changes were highly gender-specific, with differential effects observed for males and females. In particular, ace-K increased body weight gain of male but not female mice. Collectively, our results may provide a novel understanding of the interaction between artificial sweeteners and the gut microbiome, as well as the potential role of this interaction in the development of obesity and the associated chronic inflammation.
Collapse
Affiliation(s)
- Xiaoming Bian
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, United States of America
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bei Gao
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, United States of America
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
48
|
Tsapekos P, Kougias PG, Vasileiou SA, Treu L, Campanaro S, Lyberatos G, Angelidaki I. Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues. BIORESOURCE TECHNOLOGY 2017; 234:350-359. [PMID: 28340440 DOI: 10.1016/j.biortech.2017.03.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 05/23/2023]
Abstract
Bioaugmentation with hydrolytic microbes was applied to improve the methane yield of bioreactors fed with agricultural wastes. The efficiency of Clostridium thermocellum and Melioribacter roseus to degrade lignocellulosic matter was evaluated in batch and continuously stirred tank reactors (CSTRs). Results from batch assays showed that C. thermocellum enhanced the methane yield by 34%. A similar increase was recorded in CSTR during the bioaugmentation period; however, at steady-state the effect was noticeably lower (7.5%). In contrast, the bioaugmentation with M. roseus did not promote markedly the anaerobic biodegradability, as the methane yield was increased up to 10% in batch and no effect was shown in CSTR. High-throughput 16S rRNA amplicon sequencing was used to assess the effect of bioaugmentation strategies on bacterial and archaeal populations. The microbial analysis revealed that both strains were not markedly resided into biogas microbiome. Additionally, the applied strategies did not alter significantly the microbial communities.
Collapse
Affiliation(s)
- P Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - P G Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| | - S A Vasileiou
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark; School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - L Treu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - S Campanaro
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35121 Padova, Italy
| | - G Lyberatos
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - I Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
49
|
New JS, King RG, Kearney JF. Manipulation of the glycan-specific natural antibody repertoire for immunotherapy. Immunol Rev 2016; 270:32-50. [PMID: 26864103 DOI: 10.1111/imr.12397] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural immunoglobulin derived from innate-like B lymphocytes plays important roles in the suppression of inflammatory responses and represents a promising therapeutic target in a growing number of allergic and autoimmune diseases. These antibodies are commonly autoreactive and incorporate evolutionarily conserved specificities, including certain glycan-specific antibodies. Despite this conservation, exposure to bacterial polysaccharides during innate-like B lymphocyte development, through either natural exposure or immunization, induces significant changes in clonal representation within the glycan-reactive B cell pool. Glycan-reactive natural antibodies (NAbs) have been reported to play protective and pathogenic roles in autoimmune and inflammatory diseases. An understanding of the composition and functions of a healthy glycan-reactive NAb repertoire is therefore paramount. A more thorough understanding of NAb repertoire development holds promise for the design of both biological diagnostics and therapies. In this article, we review the development and functions of NAbs and examine three glycan specificities, represented in the innate-like B cell pool, to illustrate the complex roles environmental antigens play in NAb repertoire development. We also discuss the implications of increased clonal plasticity of the innate-like B cell repertoire during neonatal and perinatal periods, and the prospect of targeting B cell development with interventional therapies and correct defects in this important arm of the adaptive immune system.
Collapse
Affiliation(s)
- J Stewart New
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
50
|
The mouse gut microbiome revisited: From complex diversity to model ecosystems. Int J Med Microbiol 2016; 306:316-327. [DOI: 10.1016/j.ijmm.2016.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
|