1
|
Olawuyi IF, Heo E, Jeong M, Kim JH, Park JJ, Chae J, Gwon S, Do Lee S, Kim H, Ojulari OV, Song YB, Lee BH, Gu BB, Kim SR, Lee JH, Lee W, Hwang JS, Nam JO, Hahn D, Byun S. Acidic polysaccharide from the edible insect Protaetia brevitarsis seulensis activates antiviral immunity to suppress norovirus infection. Carbohydr Polym 2025; 347:122587. [PMID: 39486915 DOI: 10.1016/j.carbpol.2024.122587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 11/04/2024]
Abstract
Edible insects are gaining attention as potential nutraceutical sources with immunomodulatory properties. This study reports purification and structural characterization of polysaccharides from Protaetia brevitarsis seulensis larvae (PBSL) with antiviral activity against murine norovirus. Four polysaccharide fractions purified from PBSL water extracts exhibited varying molecular weights (458.5-627.3 kDa) and monosaccharide compositions, including glucose (42.4-99.2 %), galactose (5.9-13.9 %), rhamnose (0.7-18.7 %), arabinose (3.8-5.4 %), and glucuronic acid (0-15.3 %). The immunomodulatory activity, assessed by interferon-β (IFN-β) production, positively correlated with higher galactose, mannose, rhamnose, and uronic acid contents. Among the fractions, PBS-P, eluted with 0.5 M NaCl, demonstrated superior in vitro antiviral activity with IFN-β production exceeding 8-fold compared to other fractions and 82-fold higher than PBSL water extract, confirming it as the main antiviral active component. Structural analysis revealed PBS-P backbone consisted of α-(1 → 4)-D-Glcp, α-(1 → 4,6)-D-Glcp, α-(1 → 4)-D-GlcpA, α-(1 → 3)-D-Galp and α-(1 → 4)-D-Manp residues, and branched chains of α-D-Glcp-(1→, and α-L-Arap-(1 → 2)-α-L-Rhap-(1 → residues. PBS-P suppressed norovirus replication by stimulating IFN-β, TNF-α, and activating NF-κB, STAT1/2, and TBK1-IRF3 pathways, and its oral administration reduced viral loads in infected mice intestines. This study provides the first report on the detailed structural feature of polysaccharide from an edible insect and its antiviral mechanism, highlighting its potential as a new antiviral agent.
Collapse
Affiliation(s)
- Ibukunoluwa Fola Olawuyi
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea; School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun Heo
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Minju Jeong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Hwan Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Jin Park
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Jongbeom Chae
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Subin Gwon
- Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong Do Lee
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hunseong Kim
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Oyindamola Vivian Ojulari
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Bo Song
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Bon Bin Gu
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo Rin Kim
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea; School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Joon Ha Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55362, Republic of Korea
| | - Wonyoung Lee
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea; School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Ju-Ock Nam
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea; School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Sanguine Byun
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
2
|
Jiang N, He X, Li Y. Two Monoclonal Antibodies Targeting Distinct Subdomains of Human Norovirus P Protein. Monoclon Antib Immunodiagn Immunother 2024. [PMID: 39463379 DOI: 10.1089/mab.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
The human norovirus (HuNov) major capsid VP1comprises an S (shell) and a P (protruding) domain; the latter is responsible for virus attachment and infection. The dimeric formation of P (containing P1 and P2 subdomains) is indispensable for forming a receptor-binding pocket, enabling HuNov to dock to attachment factor histo-blood group antigens (HBGAs) on the host cell. Thus, the P-specific antibody may hamper the engagement of P and HBGA, thereby inhibiting virus infection. In this study, we developed and characterized two HuNov P-specific murine monoclonal antibodies (MAbs), namely, 5C6 and 1H12. They can bind to P protein with high affinity, as evidenced by the results of indirect fluorescent assay, western blot, and Biolayer interferometry assay. Particularly, the MAb 1H12 recognizes the P2 subdomain, whereas the 5C6 targets the distal P1. These MAbs may contribute to the exploration of novel epitopes on HuNov VP1 and to the development of new antivirals.
Collapse
Affiliation(s)
- Nianzhu Jiang
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Xin He
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary, Huazhong Agricultural University, Wuhan, China
| | - Yaoming Li
- Department of Biology of Mucosal Pathogen, College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, China
- Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| |
Collapse
|
3
|
Srinivas MA, Pierce LR, Olson MC, Roberston SJ, Sturdevant GL, Best SM, Orchard RC. Trim7 does not have a role in the restriction of murine norovirus infection in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618898. [PMID: 39464121 PMCID: PMC11507913 DOI: 10.1101/2024.10.17.618898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Trim7 is an E3 ubiquitin ligase that was recently identified as a central regulator of host-viral interactions with both pro-viral and anti-viral activity in cell culture. As an inhibitor, Trim7 overexpression ubiquitinates viral proteins by recognizing C-terminal glutamines that are hallmarks of 3C-like protease cleavage events. Here we sought to determine the physiological impact of Trim7 in resolving murine norovirus (MNV) infection of mice as MNV is potently inhibited by Trim7 in vitro. Utilizing two independently derived Trim7 deficient mouse lines we found no changes in the viral burden or tissue distribution of MNV in both an acute and persistent model of infection. Additionally, no changes in cytokine responses were observed after acute MNV infection of Trim7-deficient mice. Furthermore, removal of potentially confounding innate immune responses such as STING and STAT1 did not reveal any role for Trim7 in regulating MNV replication. Taken together, our data fails to find a physiological role for Trim7 in regulating MNV infection outcomes in mice and serves as a caution for defining Trim7 as a broad acting antiviral.
Collapse
Affiliation(s)
| | - Linley R. Pierce
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mikayla C. Olson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shelly J. Roberston
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton MT, USA
| | - Gail L. Sturdevant
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton MT, USA
| | - Sonja M. Best
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton MT, USA
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Zhan X, Li Q, Tian P, Wang D. The attachment factors and attachment receptors of human noroviruses. Food Microbiol 2024; 123:104591. [PMID: 39038896 DOI: 10.1016/j.fm.2024.104591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Human noroviruses (HuNoVs) are the leading etiological agent causing the worldwide outbreaks of acute epidemic non-bacterial gastroenteritis. Histo-blood group antigens (HBGAs) are commonly acknowledged as cellular receptors or co-receptors for HuNoVs. However, certain genotypes of HuNoVs cannot bind with any HBGAs, suggesting potential additional co-factors and attachment receptors have not been identified yet. In addition, food items, such as oysters and lettuce, play an important role in the transmission of HuNoVs. In the past decade, a couple of attachment factors other than HBGAs have been identified and analyzed from foods and microbiomes. Attachment factors exhibit potential as inhibitors of viral binding to receptors on host cells. Therefore, it is imperative to further characterize the attachment factors for HuNoVs present in foods to effectively control the spread of HuNoVs within the food chain. This review summarizes the potential attachment factors/receptors of HuNoVs in humans, foods, and microbiome.
Collapse
Affiliation(s)
- Xiangjun Zhan
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service-United States Department of Agriculture, Albany, CA, 94706, USA
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Ma J, Liu J, Huo Y. Biological and immunological characterization of major capsid protein VP1 from distinct GII.2 norovirus clusters. Sci Rep 2024; 14:21035. [PMID: 39251865 PMCID: PMC11385941 DOI: 10.1038/s41598-024-72062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute viral gastroenteritis worldwide. Infectious outbreaks due to recombinant NoV genotype called GII.P16-GII.2 have been frequently reported since 2016. In this study, we expressed the major capsid protein VP1 from three GII.2 NoV strains using the recombinant baculovirus expression system. The assembly, histo-blood group antigen (HBGA)-binding patterns, and cross-blocking abilities of VP1 proteins were investigated. All the three NoV VP1 proteins successfully assembled into virus-like particles (VLPs). The HBGA-binding assay demonstrated a temporal binding pattern. The latest isolate bound to saliva samples of all blood types. Sequence alignment suggested that the observed gain in HBGA-binding ability was attributed to a limited number of amino acid mutations. Using chimeric VP1 proteins, we demonstrated that synergistic effects resulted in enhanced binding ability. Bile salts increased GII.2 VLP avidity for HBGAs except GII.2-2011/M1. In vitro blockade assay of salivary HBGA-VLP binding demonstrated the presence of cross-blocking effects among different strains. This study provides insight into the evolutionary binding characteristics and cross-blocking effects of GII.2 NoVs to facilitate the development of measures to control this type of viruses.
Collapse
Affiliation(s)
- Jie Ma
- Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 450000, People's Republic of China
| | - Jinjin Liu
- Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 450000, People's Republic of China
| | - Yuqi Huo
- Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
6
|
Liu Y, Li Q, Shao H, Mao Y, Liu L, Yi D, Duan Z, Lv H, Cen S. CX-6258 hydrochloride hydrate: A potential non-nucleoside inhibitor targeting the RNA-dependent RNA polymerase of norovirus. Virology 2024; 595:110088. [PMID: 38643657 DOI: 10.1016/j.virol.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Human norovirus (HuNoV), a primary cause of non-bacterial gastroenteritis, currently lacks approved treatment. RdRp is vital for virus replication, making it an attractive target for therapeutic intervention. By application of structure-based virtual screening procedure, we present CX-6258 hydrochloride hydrate as a potent RdRp non-nucleoside inhibitor, effectively inhibiting HuNoV RdRp activity with an IC50 of 3.61 μM. Importantly, this compound inhibits viral replication in cell culture, with an EC50 of 0.88 μM. In vitro binding assay validate that CX-6258 hydrochloride hydrate binds to RdRp through interaction with the "B-site" binding pocket. Interestingly, CX-6258-contacting residues such as R392, Q439, and Q414 are highly conserved among major norovirus GI and GII variants, suggesting that it may be a general inhibitor of norovirus RdRp. Given that CX-6258 hydrochloride hydrate is already utilized as an orally efficacious pan-Pim kinase inhibitor, it may serve as a potential lead compound in the effort to control HuNoV infections.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Huihan Shao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yang Mao
- Ningbo Prefectural Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Lufei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhaojun Duan
- Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Huiqing Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
7
|
He X, Jiang N, Li Y. Saccharomyces cerevisiae cells that display norovirus P induce both systemic and mucosal neutralizing antibodies. Virology 2024; 594:110034. [PMID: 38460411 DOI: 10.1016/j.virol.2024.110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/11/2024]
Abstract
The human norovirus (HuNov) is the leading cause of acute gastroenteritis (AGE) worldwide. Mucosal secretory IgA (sIgA) in the gastrointestinal tract interrupts the interaction between host cells and HuNov, thus inhibiting viral infection. In this study, we constructed a recombinant Saccharomyces cerevisiae (S. cerevisiae) expressing the HuNov P protein (GII. 4) and evaluated its immunogenicity in mice after oral delivery. First, the recombinant S. cerevisiae (EBY100/pYD1-P) efficiently expressed P, as evidenced by western blotting and indirect fluorescent assay. Second, after oral administration, EBY100/pYD1-P, especially the high-dose group (5 × 109 clone formation units), elicited systemic and mucosal immune responses characterized by significant sera IgG, IgA, and mucosal sIgA. More importantly, these antibodies showed a substantial neutralization effect against P. Lastly, EBY100/pYD1-P induced significant P-specific IFN-γ-secreting T cells and IL4-secreting T cells. Collectively, the recombinant S. cerevisiae expressing HuNov P is a promising mucosal vaccine candidate against HuNov.
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary, Huazhong Agricultural University, Wuhan, China
| | - Nianzhu Jiang
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Yaoming Li
- Department of Biology of Mucosal Pathogen, College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, China; Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China.
| |
Collapse
|
8
|
Omatola CA, Mshelbwala PP, Okolo MLO, Onoja AB, Abraham JO, Adaji DM, Samson SO, Okeme TO, Aminu RF, Akor ME, Ayeni G, Muhammed D, Akoh PQ, Ibrahim DS, Edegbo E, Yusuf L, Ocean HO, Akpala SN, Musa OA, Adamu AM. Noroviruses: Evolutionary Dynamics, Epidemiology, Pathogenesis, and Vaccine Advances-A Comprehensive Review. Vaccines (Basel) 2024; 12:590. [PMID: 38932319 PMCID: PMC11209302 DOI: 10.3390/vaccines12060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Noroviruses constitute a significant aetiology of sporadic and epidemic gastroenteritis in human hosts worldwide, especially among young children, the elderly, and immunocompromised patients. The low infectious dose of the virus, protracted shedding in faeces, and the ability to persist in the environment promote viral transmission in different socioeconomic settings. Considering the substantial disease burden across healthcare and community settings and the difficulty in controlling the disease, we review aspects related to current knowledge about norovirus biology, mechanisms driving the evolutionary trends, epidemiology and molecular diversity, pathogenic mechanism, and immunity to viral infection. Additionally, we discuss the reservoir hosts, intra-inter host dynamics, and potential eco-evolutionary significance. Finally, we review norovirus vaccines in the development pipeline and further discuss the various host and pathogen factors that may complicate vaccine development.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | | | - Anyebe Bernard Onoja
- Department of Virology, University College Hospital, Ibadan 211101, Oyo State, Nigeria
| | - Joseph Oyiguh Abraham
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - David Moses Adaji
- Department of Biotechnology Science and Engineering, University of Alabama, Huntsville, AL 35899, USA
| | - Sunday Ocholi Samson
- Department of Molecular Biology, Biotechnology, and Biochemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| | - Therisa Ojomideju Okeme
- Department of Biological Sciences, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Ruth Foluke Aminu
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Monday Eneojo Akor
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Gideon Ayeni
- Department of Biochemistry, Kogi State University, Anyigba 272102, Kogi State, Nigeria
| | - Danjuma Muhammed
- Epidemiology and Public Health Unit, Department of Biology, Universiti Putra, Seri Kembangan 43300, Malaysia
| | - Phoebe Queen Akoh
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Emmanuel Edegbo
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Lamidi Yusuf
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Sumaila Ndah Akpala
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
- Department of Biotechnology, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Oiza Aishat Musa
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Andrew Musa Adamu
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, QLD, Australia
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville 4811, QLD, Australia
- Centre for Tropical Biosecurity, James Cook University, Townsville 4811, QLD, Australia
| |
Collapse
|
9
|
Kalugotla G, Marmerstein V, Baldridge MT. Regulation of host/pathogen interactions in the gastrointestinal tract by type I and III interferons. Curr Opin Immunol 2024; 87:102425. [PMID: 38763032 PMCID: PMC11162908 DOI: 10.1016/j.coi.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Interferons (IFNs) are an integral component of the host innate immune response during viral infection. Recent advances in the study of type I and III IFNs suggest that though both types counteract viral infection, type III IFNs act predominantly at epithelial barrier sites, while type I IFNs drive systemic responses. The dynamics and specific roles of type I versus III IFNs have been studied in the context of infection by a variety of enteric pathogens, including reovirus, rotavirus, norovirus, astrovirus, and intestinal severe acute respiratory syndrome coronavirus 2, revealing shared patterns of regulatory influence. An important role for the gut microbiota, including the virome, in regulating homeostasis and priming of intestinal IFN responses has also recently emerged.
Collapse
Affiliation(s)
- Gowri Kalugotla
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivien Marmerstein
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
10
|
Kim NE, Kim MJ, Park BJ, Kwon JW, Lee JM, Park JH, Song YJ. A DNA vaccine against GII.4 human norovirus VP1 induces blocking antibody production and T cell responses. Vaccine 2024; 42:1392-1400. [PMID: 38320930 DOI: 10.1016/j.vaccine.2024.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
Human noroviruses (HuNoVs) are highly contagious and a leading cause of epidemics of acute gastroenteritis worldwide. Among the various HuNoV genotypes, GII.4 is the most prevalent cause of outbreaks. However, no vaccines have been approved for HuNoVs to date. DNA vaccines are proposed to serve as an ideal platform against HuNoV since they can be easily produced and customized to express target proteins. In this study, we constructed a CMV/R vector expressing a major structural protein, VP1, of GII.4 HuNoV (CMV/R-GII.4 HuNoV VP1). Transfection of CMV/R-GII.4 HuNoV VP1 into human embryonic kidney 293T (HEK293T) cells resulted in successful expression of VP1 proteins in vitro. Intramuscular or intradermal immunization of mice with the CMV/R-GII.4 HuNoV VP1 construct elicited the production of blocking antibodies and activation of T cell responses against GII.4 HuNoV VP1. Our collective data support the utility of CMV/R-GII.4 HuNoV VP1 as a promising DNA vaccine candidate against GII.4 HuNoV.
Collapse
Affiliation(s)
- Na-Eun Kim
- Department of Life Science, Gachon University, Seongnam-Si, South Korea
| | - Mun-Jin Kim
- Department of BioNano Technology, Gachon University, Seongnam-Si, South Korea
| | - Bum Ju Park
- Department of Life Science, Gachon University, Seongnam-Si, South Korea
| | - Jung Won Kwon
- Department of Life Science, Gachon University, Seongnam-Si, South Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon University, Seongnam-Si, South Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-Si, South Korea.
| |
Collapse
|
11
|
Li C, Song S, Huang X, Liu X, Lv H, Shen Y, Wei X, Zhang W, Xu Y. Molecular epidemiology and genetic diversity of norovirus among hospitalized patients with acute gastroenteritis in Shandong, China, 2016-2018. J Med Virol 2023; 95:e29339. [PMID: 38130177 DOI: 10.1002/jmv.29339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Norovirus (NoV) infection is a leading cause of acute gastroenteritis (AGE) for people of all ages. Here, we reported the molecular epidemiology and genetic diversity of NoVs among hospitalized patients with AGE between 2016 and 2018 in Shandong Province, China. Two thousand sixty-nine AGE patients from sentinel hospitals were enrolled. The stool samples were collected and tested for NoVs by real-time RT-PCR. The RNA-dependent RNA polymerase (RdRp) and capsid gene of 163 strains were amplified and sequenced for genotyping. Phylogenetic analyses and genomic characterization were conducted with the VP1 and RdRp region of the full genome sequences. Four hundred seventy two (21.76%) samples were NoV-positive. The positive rate in 2016 was higher than those of 2017 and 2018. We observed diverse NoV genotypes. GII.2[P16] emerged in January 2017 and became the dominant genotype between May and June 2017. Phylogenetic analyses showed that our GII.2[P16] genomes clustered in the SC1 in VP1 region, while they belonged to the Emerging GⅡ.P16 (2015-2017) clade in RdRp region. Our GⅡ.4 strains displayed two amino acid mutations, positions R297H and D372N, in epitope A of the VP1 region. Our study highlighted that NoV is an important pathogen of viral AGE in Shandong and, therefore, it is necessary to strengthen its surveillance.
Collapse
Affiliation(s)
- Chao Li
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shaoxia Song
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Infectious Disease Prevention and Control, Preventive healthcare Research Institute of Shandong University, Jinan, China
| | - Xianglin Huang
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaolin Liu
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Infectious Disease Prevention and Control, Preventive healthcare Research Institute of Shandong University, Jinan, China
| | - Hui Lv
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Infectious Disease Prevention and Control, Preventive healthcare Research Institute of Shandong University, Jinan, China
| | - Yuanyuan Shen
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuemin Wei
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenqiang Zhang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Infectious Disease Prevention and Control, Preventive healthcare Research Institute of Shandong University, Jinan, China
| | - Yifei Xu
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Bernard-Raichon L, Cadwell K. Immunomodulation by Enteric Viruses. Annu Rev Virol 2023; 10:477-502. [PMID: 37380186 DOI: 10.1146/annurev-virology-111821-112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Enteric viruses display intricate adaptations to the host mucosal immune system to successfully reproduce in the gastrointestinal tract and cause maladies ranging from gastroenteritis to life-threatening disease upon extraintestinal dissemination. However, many viral infections are asymptomatic, and their presence in the gut is associated with an altered immune landscape that can be beneficial or adverse in certain contexts. Genetic variation in the host and environmental factors including the bacterial microbiota influence how the immune system responds to infections in a remarkably viral strain-specific manner. This immune response, in turn, determines whether a given virus establishes acute versus chronic infection, which may have long-lasting consequences such as susceptibility to inflammatory disease. In this review, we summarize our current understanding of the mechanisms involved in the interaction between enteric viruses and the immune system that underlie the impact of these ubiquitous infectious agents on our health.
Collapse
Affiliation(s)
- Lucie Bernard-Raichon
- Cell Biology Department, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine; Department of Systems Pharmacology and Translational Therapeutics; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
13
|
Wang G, Zhang D, Orchard RC, Hancks DC, Reese TA. Norovirus MLKL-like protein initiates cell death to induce viral egress. Nature 2023; 616:152-158. [PMID: 36991121 PMCID: PMC10348409 DOI: 10.1038/s41586-023-05851-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 02/15/2023] [Indexed: 03/30/2023]
Abstract
Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but there is no known mechanism that causes norovirus infection-triggered cell death and lysis1-3. Here we identify a molecular mechanism of norovirus-induced cell death. We found that the norovirus-encoded NTPase NS3 contains an N-terminal four-helix bundle domain homologous to the membrane-disruption domain of the pseudokinase mixed lineage kinase domain-like (MLKL). NS3 has a mitochondrial localization signal and thus induces cell death by targeting mitochondria. Full-length NS3 and an N-terminal fragment of the protein bound the mitochondrial membrane lipid cardiolipin, permeabilized the mitochondrial membrane and induced mitochondrial dysfunction. Both the N-terminal region and the mitochondrial localization motif of NS3 were essential for cell death, viral egress from cells and viral replication in mice. These findings suggest that noroviruses have acquired a host MLKL-like pore-forming domain to facilitate viral egress by inducing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Di Zhang
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert C Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Dinu S, Oprea M, Iordache RI, Rusu LC, Usein CR. Genome characterisation of norovirus GII.P17-GII.17 detected during a large gastroenteritis outbreak in Romania in 2021. Arch Virol 2023; 168:116. [PMID: 36947248 DOI: 10.1007/s00705-023-05741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
Norovirus (NoV) is one of the leading causes of acute gastroenteritis worldwide. Genotype GII.P17-G.II.17 emerged in Asia between 2013 and 2015 and transiently replaced the GII.4 Sydney 2012 variant circulating at that time. We present the genome characterisation of a GII.P17-GII.17 strain causing a large outbreak in Romania in 2021. Our study shows that the 2021 strain belongs to a novel cluster of genotype GII.17, different from the two previously recognised P.17 clusters. Distinctive substitutions in predicted conformational epitopes of VP1 were identified for this new cluster. Also, our phylogenetic analysis showed the existence of another P.17 cluster grouping strains from France and Canada.
Collapse
Affiliation(s)
- Sorin Dinu
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, Bucharest, 050096, Romania.
| | - Mihaela Oprea
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, Bucharest, 050096, Romania
| | - Ramona-Ionela Iordache
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, Bucharest, 050096, Romania
| | - Lavinia-Cipriana Rusu
- National Institute of Public Health, National Center for Surveillance and Control of Communicable Diseases, 1-3 Doctor Leonte Anastasievici, Bucharest, 050463, Romania
| | - Codruța-Romanița Usein
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, Bucharest, 050096, Romania
| |
Collapse
|
15
|
Jahun AS, Sorgeloos F, Chaudhry Y, Arthur SE, Hosmillo M, Georgana I, Izuagbe R, Goodfellow IG. Leaked genomic and mitochondrial DNA contribute to the host response to noroviruses in a STING-dependent manner. Cell Rep 2023; 42:112179. [PMID: 36943868 DOI: 10.1016/j.celrep.2023.112179] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 10/11/2022] [Accepted: 02/12/2023] [Indexed: 03/23/2023] Open
Abstract
The cGAS-STING pathway is central to the interferon response against DNA viruses. However, recent studies are increasingly demonstrating its role in the restriction of some RNA viruses. Here, we show that the cGAS-STING pathway also contributes to the interferon response against noroviruses, currently the commonest causes of infectious gastroenteritis worldwide. We show a significant reduction in interferon-β induction and a corresponding increase in viral replication in norovirus-infected cells after deletion of STING, cGAS, or IFI16. Further, we find that immunostimulatory host genome-derived DNA and mitochondrial DNA accumulate in the cytosol of norovirus-infected cells. Lastly, overexpression of the viral NS4 protein is sufficient to drive the accumulation of cytosolic DNA. Together, our data find a role for cGAS, IFI16, and STING in the restriction of noroviruses and show the utility of host genomic DNA as a damage-associated molecular pattern in cells infected with an RNA virus.
Collapse
Affiliation(s)
- Aminu S Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK.
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK; Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, 74 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Sabastine E Arthur
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Iliana Georgana
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Rhys Izuagbe
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
16
|
Wang G, Zhang D, Orchard R, Hancks DC, Reese TA. Norovirus MLKL-like pore forming protein initiates programed cell death for viral egress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533118. [PMID: 36993770 PMCID: PMC10055165 DOI: 10.1101/2023.03.17.533118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but a mechanism of norovirus-infection triggered cell death and lysis are unknown. Here we have identified a molecular mechanism of norovirus-induced cell death. We found that the norovirus-encoded NTPase contains a N-terminal four helix bundle domain homologous to the pore forming domain of the pseudokinase Mixed Lineage Kinase Domain-Like (MLKL). Norovirus NTPase acquired a mitochondrial localization signal, thereby inducing cell death by targeting mitochondria. NTPase full length (NTPase-FL) and N-terminal fragment (NTPase-NT) bound mitochondrial membrane lipid cardiolipin, permeabilized mitochondrial membrane and induced mitochondrial dysfunction. Both the N-terminal region and the mitochondrial localization motif of NTPase were essential for cell death, virus egress from cells and virus replication in mice. These findings suggest that noroviruses stole a MLKL-like pore forming domain and co-opted it to facilitate viral egress by inducing mitochondrial dysfunction.
Collapse
|
17
|
Soorneedi AR, Moore MD. Recent developments in norovirus interactions with bacteria. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Maffei ME, Salata C, Gribaudo G. Tackling the Future Pandemics: Broad-Spectrum Antiviral Agents (BSAAs) Based on A-Type Proanthocyanidins. Molecules 2022; 27:8353. [PMID: 36500445 PMCID: PMC9736452 DOI: 10.3390/molecules27238353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
A-type proanthocyanidins (PAC-As) are plant-derived natural polyphenols that occur as oligomers or polymers of flavan-3-ol monomers, such as (+)-catechin and (-)-epicatechin, connected through an unusual double A linkage. PAC-As are present in leaves, seeds, flowers, bark, and fruits of many plants, and are thought to exert protective natural roles against microbial pathogens, insects, and herbivores. Consequently, when tested in isolation, PAC-As have shown several biological effects, through antioxidant, antibacterial, immunomodulatory, and antiviral activities. PAC-As have been observed in fact to inhibit replication of many different human viruses, and both enveloped and non-enveloped DNA and RNA viruses proved sensible to their inhibitory effect. Mechanistic studies revealed that PAC-As cause reduction of infectivity of viral particles they come in contact with, as a result of their propensity to interact with virion surface capsid proteins or envelope glycoproteins essential for viral attachment and entry. As viral infections and new virus outbreaks are a major public health concern, development of effective Broad-Spectrum Antiviral Agents (BSAAs) that can be rapidly deployable even against future emerging viruses is an urgent priority. This review summarizes the antiviral activities and mechanism of action of PAC-As, and their potential to be deployed as BSAAs against present and future viral infections.
Collapse
Affiliation(s)
- Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| |
Collapse
|
19
|
Philip AA, Patton JT. Generation of Recombinant Rotaviruses Expressing Human Norovirus Capsid Proteins. J Virol 2022; 96:e0126222. [PMID: 36314817 PMCID: PMC9682992 DOI: 10.1128/jvi.01262-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Rotavirus, a segmented double-stranded RNA virus of the Reoviridae family, is a primary cause of acute gastroenteritis in young children. In countries where rotavirus vaccines are widely used, norovirus (NoV) has emerged as the major cause of acute gastroenteritis. Towards the goal of creating a combined rotavirus-NoV vaccine, we explored the possibility of generating recombinant rotaviruses (rRVs) expressing all or portions of the NoV GII.4 VP1 capsid protein. This was accomplished by replacing the segment 7 NSP3 open reading frame with a cassette encoding, sequentially, NSP3, a 2A stop-restart translation element, and all or portions (P, P2) of NoV VP1. In addition to successfully recovering rRVs with modified SA11 segment 7 RNAs encoding NoV capsid proteins, analogous rRVs were recovered through modification of the segment 7 RNA of the RIX4414 vaccine strain. An immunoblot assay confirmed that rRVs expressed NoV capsid proteins as independent products. Moreover, VP1 expressed by rRVs underwent dimerization and was recognized by conformational-dependent anti-VP1 antibodies. Serially passaged rRVs that expressed the NoV P and P2 were genetically stable, retaining additional sequences of up to 1.1 kbp without change. However, serially passaged rRVs containing the longer 1.6-kb VP1 sequence were less stable and gave rise to virus populations with segment 7 RNAs lacking VP1 coding sequences. Together, these studies suggest that it may be possible to develop combined rotavirus-NoV vaccines using modified segment 7 RNA to express NoV P or P2. In contrast, development of potential rotavirus-NoV vaccines expressing NoV VP1 will need additional efforts to improve genetic stability. IMPORTANCE Rotavirus (RV) and norovirus (NoV) are the two most important causes of acute viral gastroenteritis (AGE) in infants and young children. While the incidence of RV AGE has been brought under control in many countries through the introduction of universal mass vaccination with live attenuated RV vaccines, similar highly effective NoV vaccines are not available. To pursue the development of a combined RV-NoV vaccine, we examined the potential of using RV as an expression vector of all or portions of the NoV capsid protein VP1. Our results showed that by replacing the NSP3 open reading frame in RV genome segment 7 RNA with a coding cassette for NSP3, a 2A stop-restart translation element, and VP1, recombinant RVs can be generated that express NoV capsid proteins. These findings raise the possibility of developing new generations of RV-based combination vaccines that provide protection against a second enteric pathogen, such as NoV.
Collapse
Affiliation(s)
- Asha A. Philip
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
20
|
Strine MS, Alfajaro MM, Graziano VR, Song J, Hsieh LL, Hill R, Guo J, VanDussen KL, Orchard RC, Baldridge MT, Lee S, Wilen CB. Tuft-cell-intrinsic and -extrinsic mediators of norovirus tropism regulate viral immunity. Cell Rep 2022; 41:111593. [PMID: 36351394 PMCID: PMC9662704 DOI: 10.1016/j.celrep.2022.111593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/19/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Murine norovirus (MNoV) is a model for human norovirus and for interrogating mechanisms of viral tropism and persistence. We previously demonstrated that the persistent strain MNoVCR6 infects tuft cells, which are dispensable for the non-persistent strain MNoVCW3. We now show that diverse MNoV strains require tuft cells for chronic enteric infection. We also demonstrate that interferon-λ (IFN-λ) acts directly on tuft cells to cure chronic MNoVCR6 infection and that type I and III IFNs signal together via STAT1 in tuft cells to restrict MNoVCW3 tropism. We then develop an enteroid model and find that MNoVCR6 and MNoVCW3 similarly infect tuft cells with equal IFN susceptibility, suggesting that IFN derived from non-epithelial cells signals on tuft cells in trans to restrict MNoVCW3 tropism. Thus, tuft cell tropism enables MNoV persistence and is determined by tuft cell-intrinsic factors (viral receptor expression) and -extrinsic factors (immunomodulatory signaling by non-epithelial cells).
Collapse
Affiliation(s)
- Madison S Strine
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Vincent R Graziano
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Jaewon Song
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Leon L Hsieh
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ryan Hill
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jun Guo
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kelli L VanDussen
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Robert C Orchard
- Department of Immunology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sanghyun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| | - Craig B Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Wang Z, Guo K, Liu Y, Huang C, Wu M. Dynamic impact of virome on colitis and colorectal cancer: Immunity, inflammation, prevention and treatment. Semin Cancer Biol 2022; 86:943-954. [PMID: 34656791 PMCID: PMC9008076 DOI: 10.1016/j.semcancer.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/20/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023]
Abstract
The gut microbiome includes a series of microorganism genomes, such as bacteriome, virome, mycobiome, etc. The gut microbiota is critically involved in intestine immunity and diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC); however, the underlying mechanism remains incompletely understood. Clarifying the relationship between microbiota and inflammation may profoundly improve our understanding of etiology, disease progression, patient management, and the development of prevention and treatment. In this review, we discuss the latest studies of the influence of enteric viruses (i.e., commensal viruses, pathogenic viruses, and bacteriophages) in the initiation, progression, and complication of colitis and colorectal cancer, and their potential for novel preventative approaches and therapeutic application. We explore the interplay between gut viruses and host immune systems for its effects on the severity of inflammatory diseases and cancer, including both direct and indirect interactions between enteric viruses with other microbes and microbial products. Furthermore, the underlying mechanisms of the virome's roles in gut inflammatory response have been explained to infer potential therapeutic targets with examples in specific clinical trials. Given that very limited literature has thus far discussed these various topics with the gut virome, we believe these extensive analyses may provide insight into the understanding of the molecular pathogenesis of IBD and CRC, which could help add the design of improved therapies for these important human diseases.
Collapse
Affiliation(s)
- Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yingying Liu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA.
| |
Collapse
|
22
|
Ghosh S, Kumar M, Santiana M, Mishra A, Zhang M, Labayo H, Chibly AM, Nakamura H, Tanaka T, Henderson W, Lewis E, Voss O, Su Y, Belkaid Y, Chiorini JA, Hoffman MP, Altan-Bonnet N. Enteric viruses replicate in salivary glands and infect through saliva. Nature 2022; 607:345-350. [PMID: 35768512 PMCID: PMC9243862 DOI: 10.1038/s41586-022-04895-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Enteric viruses like norovirus, rotavirus and astrovirus have long been accepted as spreading in the population through fecal-oral transmission: viruses are shed into feces from one host and enter the oral cavity of another, bypassing salivary glands (SGs) and reaching the intestines to replicate, be shed in feces and repeat the transmission cycle1. Yet there are viruses (for example, rabies) that infect the SGs2,3, making the oral cavity one site of replication and saliva one conduit of transmission. Here we report that enteric viruses productively and persistently infect SGs, reaching titres comparable to those in the intestines. We demonstrate that enteric viruses get released into the saliva, identifying a second route of viral transmission. This is particularly significant for infected infants, whose saliva directly transmits enteric viruses to their mothers' mammary glands through backflow during suckling. This sidesteps the conventional gut-mammary axis route4 and leads to a rapid surge in maternal milk secretory IgA antibodies5,6. Lastly, we show that SG-derived spheroids7 and cell lines8 can replicate and propagate enteric viruses, generating a scalable and manageable system of production. Collectively, our research uncovers a new transmission route for enteric viruses with implications for therapeutics, diagnostics and importantly sanitation measures to prevent spread through saliva.
Collapse
Affiliation(s)
- S Ghosh
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Kumar
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Santiana
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - A Mishra
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Zhang
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - H Labayo
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - A M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - H Nakamura
- AAV Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - T Tanaka
- AAV Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - W Henderson
- Faculty of Nursing, University of Connecticut, Storrs, CT, USA
| | - E Lewis
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - O Voss
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Y Su
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Y Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J A Chiorini
- AAV Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - M P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - N Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Improper handling of vomitus as a risk factor in the human norovirus outbreak in a kindergarten in Wuyi County, Zhejiang Province, China. Epidemiol Infect 2022; 150:e111. [PMID: 35578778 PMCID: PMC9214846 DOI: 10.1017/s0950268822000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Cao H, Wu J, Luan N, Wang Y, Lin K, Liu C. Evaluation of a bivalent recombinant vaccine candidate targeting norovirus and rotavirus: Antibodies to rotavirus NSP4 exert antidiarrheal effects without virus neutralization. J Med Virol 2022; 94:3847-3856. [PMID: 35474320 DOI: 10.1002/jmv.27809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/10/2022]
Abstract
We previously found that when tandemly expressed with SR69A -VP8*, nonstructural protein 4 (NSP4) of the rotavirus Wa strain exerts a minor effect on elevating the antibody responses targeting the rotavirus antigen VP8* of the 60-valent nanoparticle SR69A -VP8* but could fully protect mice from diarrhea induced by the rotavirus strain Wa. In this study, we chose comparably less immunogenic norovirus 24-valent P particles with homogenous (i.e., VP8* from rotavirus) and heterogeneous (i.e., protruding domain of norovirus) antigens and in more challenging rotavirus SA11 strain-induced diarrhea mouse models to evaluate its main role in recombinant gastroenteritis virus-specific vaccines. The results showed that although as an adjuvant NSP4 exerted limited effects on the elevation of norovirus-specific or VP8*-specific neutralizing antibody production, as an antigen it could confer potent protection, particularly when synergized with VP8*, in rotavirus SA11 strain-induced diarrhea mouse models, possibly blocking the invasion of the intestinal wall by enterotoxin. NSP4 may be unnecessary for other recombinant vaccines as adjuvants, and its display mode should be evaluated specifically to avoid blocking coexpressed antigens in the norovirus P particles. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Jinyuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Yunfei Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Kangyang Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| |
Collapse
|
25
|
Zhang M, Zhang B, Chen R, Li M, Zheng Z, Xu W, Zhang Y, Gong S, Hu Q. Human Norovirus Induces Aquaporin 1 Production by Activating NF-κB Signaling Pathway. Viruses 2022; 14:842. [PMID: 35458572 PMCID: PMC9028284 DOI: 10.3390/v14040842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/17/2022] Open
Abstract
Human norovirus (HuNoV) is one of the major pathogens of acute nonbacterial gastroenteritis. Due to the lack of a robust and reproducible in vitro culture system and an appropriate animal model, the mechanism underlying HuNoV-caused diarrhea remains unknown. In the current study, we found that HuNoV transfection induced the expression of aquaporin 1 (AQP1), which was further confirmed in the context of virus infection, whereas the enterovirus EV71 (enterovirus 71) did not have such an effect. We further revealed that VP1, the major capsid protein of HuNoV, was crucial in promoting AQP1 expression. Mechanistically, HuNoV induces AQP1 production through the NF-κB signaling pathway via inducing the expression, phosphorylation and nuclear translocation of p65. By using a model of human intestinal epithelial barrier (IEB), we demonstrated that HuNoV and VP1-mediated enhancement of small molecule permeability is associated with the AQP1 channel. Collectively, we revealed that HuNoV induced the production of AQP1 by activating the NF-κB signaling pathway. The findings in this study provide a basis for further understanding the significance of HuNoV-induced AQP1 expression and the potential mechanism underlying HuNoV-caused diarrhea.
Collapse
Affiliation(s)
- Mudan Zhang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Binman Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Miaomiao Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifeng Zheng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yifan Zhang
- Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|
26
|
Yu P, Miao Z, Li Y, Bansal R, Peppelenbosch MP, Pan Q. cGAS-STING effectively restricts murine norovirus infection but antagonizes the antiviral action of N-terminus of RIG-I in mouse macrophages. Gut Microbes 2022; 13:1959839. [PMID: 34347572 PMCID: PMC8344765 DOI: 10.1080/19490976.2021.1959839] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling has been well recognized in defending DNA viruses, the role of cGAS-STING signaling in regulating infection of RNA viruses remains largely elusive. Noroviruses, as single-stranded RNA viruses, are the main causative agents of acute viral gastroenteritis worldwide. This study comprehensively investigated the role of cGAS-STING in response to murine norovirus (MNV) infection. We found that STING agonists potently inhibited MNV replication in mouse macrophages partially requiring the JAK/STAT pathway that induced transcription of interferon (IFN)-stimulated genes (ISGs). Loss- and gain-function assays revealed that both cGAS and STING were necessary for host defense against MNV propagation. Knocking out cGAS or STING in mouse macrophages led to defects in induction of antiviral ISGs upon MNV infection. Overexpression of cGAS and STING moderately increased ISG transcription but potently inhibited MNV replication in human HEK293T cells ectopically expressing the viral receptor CD300lf. This inhibitory effect was not affected by JAK inhibitor treatment or expression of different MNV viral proteins. Interestingly, STING but not cGAS interacted with mouse RIG-I, and attenuated its N-terminus-mediated anti-MNV effects. Our results implicate an essential role for mouse cGAS and STING in regulating innate immune response and defending MNV infection. This further strengthens the evidence of cGAS-STING signaling in response to RNA virus infection.
Collapse
Affiliation(s)
- Peifa Yu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands,CONTACT Qiuwei Pan Department of Gastroenterology and Hepatology, Erasmus MC, room Na-1005, ‘s-Gravendijkwal 230, RotterdamNL-3015 CE, The Netherlands
| |
Collapse
|
27
|
Abstract
Human noroviruses (HuNoVs) are increasingly becoming the main cause of transmissible gastroenteritis worldwide, with hundreds of thousands of deaths recorded annually. Yet, decades after their discovery, there is still no effective treatment or vaccine. Efforts aimed at developing vaccines or treatment will benefit from a greater understanding of norovirus-host interactions, including the host response to infection. In this review, we provide a concise overview of the evidence establishing the significance of type I and type III interferon (IFN) responses in the restriction of noroviruses. We also critically examine our current understanding of the molecular mechanisms of IFN induction in norovirus-infected cells, and outline the diverse strategies deployed by noroviruses to supress and/or avoid host IFN responses. It is our hope that this review will facilitate further discussion and increase interest in this area.
Collapse
Affiliation(s)
- Aminu S. Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- *Correspondence: Aminu S. Jahun,
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
28
|
Ye Q, Ling Q, Shen J, Shi L, Chen J, Yang T, Hou Z, Zhao J, Zhou H. Protective effect of pogostone on murine norovirus infected-RAW264.7 macrophages through inhibition of NF-κB/NLRP3-dependent pyroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114250. [PMID: 34089810 DOI: 10.1016/j.jep.2021.114250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pogostemon cablin, the dry overground parts of Pogostemon cablin (Blanco) Benth, has been widely used in the treatment of gastrointestinal dysfunction, such as nausea, diarrhea, headaches and fever. Pogostone (PO) is a major component of Pogostemon cablin which has a variety of pharmacological properties, including antiinflammatory, and immunosuppressive activities, and antioxidant. However, the effect of PO on norovirus gastroenteritis and the underlying molecular mechanism remain unclear. AIM OF THE STUDY The purpose of our study is to investigate the effects of PO against MNV infection using RAW264.7 cells and to elucidate its active mechanisms. MATERIALS AND METHODS The cell viability was assessed using Cell Counting Kit-8 (CCK-8) assay and Fluorescein diacetate (FDA) staining. The activation of nuclear factor kappa B (NF-κB) signaling and NOD-like receptor 3 (NLRP3) inflammasome was evaluated by assessing the level of phospho-NF-κB p65, interleukin (IL)-6, TNF-α, NLRP3, cleaved caspase-1, IL-18, IL-1β using Western blot and quantitative real-time PCR (qPCR), respectively. The number of infected cells were determined by immunofluorescence microscopic assay. RESULTS PO did not possess a cytotoxic effect toward RAW264.7 cells. The cytotoxic damage caused by MNV infection in RAW264.7 cells decreased significantly in the presence of PO. Cell viability assays showed that pyroptosis is the major mechanism of death in MNV-infected RAW264.7 cells. PO could decreased the expression levels of p-p65, IL-6, TNF-α, NLRP3, cleaved caspase-1, IL-1β, and IL-18. CONCLUSIONS These results demonstrate that PO decreases MNV-induced RAW264.7 macrophages death and MNV replication through repressing NF-κB/NLRP3-dependent pyroptosis. Therefore PO may be considered as a potential therapeutic agent for preventing and treating norovirus gastroenteritis.
Collapse
Affiliation(s)
- Qingyan Ye
- Department of Paediatrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qihua Ling
- Department of Emergency, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Shen
- Department of Paediatrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Shi
- Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianjie Chen
- Department of Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijun Hou
- Department of Emergency, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Zhao
- Department of Paediatrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
29
|
König KMK, Jahun AS, Nayak K, Drumright LN, Zilbauer M, Goodfellow I, Hosmillo M. Design, development, and validation of a strand-specific RT-qPCR assay for GI and GII human Noroviruses. Wellcome Open Res 2021; 6:245. [PMID: 34708158 PMCID: PMC8506223 DOI: 10.12688/wellcomeopenres.17078.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses (HuNoV) are the major cause of viral gastroenteritis worldwide. Similar to other positive-sense single-stranded RNA viruses, norovirus RNA replication requires the formation of a negative strand RNA intermediate. Methods for detecting and quantifying the viral positive or negative sense RNA in infected cells and tissues can be used as important tools in dissecting virus replication. In this study, we have established a sensitive and strand-specific Taqman-based quantitative polymerase chain reaction (qPCR) assay for both genogroups GI and GII HuNoV. This assay shows good reproducibility, has a broad dynamic range and is able to detect a diverse range of isolates. We used tagged primers containing a non-viral sequence for the reverse transcription (RT) reaction and targeted this tag in the succeeding qPCR reaction to achieve strand specificity. The specificity of the assay was confirmed by the detection of specific viral RNA strands in the presence of high levels of the opposing strands, in both RT and qPCR reactions. Finally, we further validated the assay in norovirus replicon-bearing cell lines and norovirus-infected human small intestinal organoids, in the presence or absence of small-molecule inhibitors. Overall, we have established a strand-specific qPCR assay that can be used as a reliable method to understand the molecular details of the human norovirus life cycle.
Collapse
Affiliation(s)
- Katja Marie Kjara König
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
- Insitute of Chemistry and Metabolomics, Center for Structural and Cell Biology in Medicine (CSCM), University of Lübeck, Lübeck, Germany
| | - Aminu S. Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Komal Nayak
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Lydia N. Drumright
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
30
|
Borg C, Jahun AS, Thorne L, Sorgeloos F, Bailey D, Goodfellow IG. Murine norovirus virulence factor 1 (VF1) protein contributes to viral fitness during persistent infection. J Gen Virol 2021; 102. [PMID: 34491891 PMCID: PMC8567427 DOI: 10.1099/jgv.0.001651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Murine norovirus (MNV) is widely used as a model for studying norovirus biology. While MNV isolates vary in their pathogenesis, infection of immunocompetent mice mostly results in persistent infection. The ability of a virus to establish a persistent infection is dependent on its ability to subvert or avoid the host immune response. Previously, we described the identification and characterization of virulence factor 1 (VF1) in MNV, and demonstrated its role as an innate immune antagonist. Here, we explore the role of VF1 during persistent MNV infection in an immunocompetent host. Using reverse genetics, we generated MNV-3 viruses carrying a single or a triple termination codon inserted in the VF1 ORF. VF1-deleted MNV-3 replicated to comparable levels to the wildtype virus in tissue culture. Comparative studies between MNV-3 and an acute MNV-1 strain show that MNV-3 VF1 exerts the same functions as MNV-1 VF1, but with reduced potency. C57BL/6 mice infected with VF1-deleted MNV-3 showed significantly reduced replication kinetics during the acute phase of the infection, but viral loads rapidly reached the levels seen in mice infected with wildtype virus after phenotypic restoration of VF1 expression. Infection with an MNV-3 mutant that had three termination codons inserted into VF1, in which reversion was suppressed, resulted in consistently lower replication throughout a 3 month persistent infection in mice, suggesting a role for VF1 in viral fitness in vivo. Our results indicate that VF1 expressed by a persistent strain of MNV also functions to antagonize the innate response to infection. We found that VF1 is not essential for viral persistence, but instead contributes to viral fitness in mice. These data fit with the hypothesis that noroviruses utilize multiple mechanisms to avoid and/or control the host response to infection and that VF1 is just one component of this.
Collapse
Affiliation(s)
- Constantina Borg
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge, CB2 0QQ, UK
| | - Aminu S Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge, CB2 0QQ, UK
| | - Lucy Thorne
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge, CB2 0QQ, UK.,Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Frédéric Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge, CB2 0QQ, UK.,Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, 74 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Dalan Bailey
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
31
|
Donowitz JR, Drew J, Taniuchi M, Platts-Mills JA, Alam M, Ferdous T, Shama T, Islam MO, Kabir M, Nayak U, Haque R, Petri WA. Diarrheal Pathogens Associated With Growth and Neurodevelopment. Clin Infect Dis 2021; 73:e683-e691. [PMID: 33399861 PMCID: PMC8326554 DOI: 10.1093/cid/ciaa1938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Background Diarrheal pathogens have been associated with linear growth deficits. The effect of diarrheal pathogens on growth is likely due to inflammation, which also adversely affects neurodevelopment. We hypothesized that diarrheagenic pathogens would be negatively associated with both growth and neurodevelopment. Methods We conducted a longitudinal birth cohort study of 250 children with diarrheal surveillance and measured pathogen burden in diarrheal samples using quantitative polymerase chain reaction. Pathogen attributable fraction estimates of diarrhea over the first 2 years of life, corrected for socioeconomic variables, were used to predict both growth and scores on the Bayley-III Scales of Infant and Toddler Development. Results One hundred eighty children were analyzed for growth and 162 for neurodevelopmental outcomes. Rotavirus, Campylobacter, and Shigella were the leading causes of diarrhea in year 1 while Shigella, Campylobacter, and heat-stable toxin–producing enterotoxigenic Escherichia coli were the leading causes in year 2. Norovirus was the only pathogen associated with length-for-age z score at 24 months and was positively associated (regression coefficient [RC], 0.42 [95% confidence interval {CI}, .04 to .80]). Norovirus (RC, 2.46 [95% CI, .05 to 4.87]) was also positively associated with cognitive scores while sapovirus (RC, –2.64 [95% CI, –4.80 to –.48]) and typical enteropathogenic E. coli (RC, –4.14 [95% CI, –8.02 to –.27]) were inversely associated. No pathogens were associated with language or motor scores. Significant maternal, socioeconomic, and perinatal predictors were identified for both growth and neurodevelopment. Conclusions Maternal, prenatal, and socioeconomic factors were common predictors of growth and neurodevelopment. Only a limited number of diarrheal pathogens were associated with these outcomes.
Collapse
Affiliation(s)
- Jeffrey R Donowitz
- Division of Pediatric Infectious Diseases, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia, USA.,Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Jeannie Drew
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Mami Taniuchi
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Masud Alam
- Division of Parasitology, International Centre for Diarrhoeal Disease Research, Bangladesh , Dhaka, Bangladesh
| | - Tahsin Ferdous
- Division of Parasitology, International Centre for Diarrhoeal Disease Research, Bangladesh , Dhaka, Bangladesh
| | - Talat Shama
- Division of Parasitology, International Centre for Diarrhoeal Disease Research, Bangladesh , Dhaka, Bangladesh
| | - Md Ohedul Islam
- Division of Parasitology, International Centre for Diarrhoeal Disease Research, Bangladesh , Dhaka, Bangladesh
| | - Mamun Kabir
- Division of Parasitology, International Centre for Diarrhoeal Disease Research, Bangladesh , Dhaka, Bangladesh
| | - Uma Nayak
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Rashidul Haque
- Division of Parasitology, International Centre for Diarrhoeal Disease Research, Bangladesh , Dhaka, Bangladesh
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
32
|
Zhang M, Fu M, Hu Q. Advances in Human Norovirus Vaccine Research. Vaccines (Basel) 2021; 9:732. [PMID: 34358148 PMCID: PMC8310286 DOI: 10.3390/vaccines9070732] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Human norovirus (HuNoV) is the leading cause of acute gastroenteritis (AGE) worldwide, which is highly stable and contagious, with a few virus particles being sufficient to establish infection. Although the World Health Organization in 2016 stated that it should be an absolute priority to develop a HuNoV vaccine, unfortunately, there is currently no licensed HuNoV vaccine available. The major barrier to the development of an effective HuNoV vaccine is the lack of a robust and reproducible in vitro cultivation system. To develop a HuNoV vaccine, HuNoV immunogen alone or in combination with other viral immunogens have been designed to assess whether they can simultaneously induce protective immune responses against different viruses. Additionally, monovalent and multivalent vaccines from different HuNoV genotypes, including GI and GII HuNoV virus-like particles (VLPs), have been assessed in order to induce broad protection. Although there are several HuNoV vaccine candidates based on VLPs that are being tested in clinical trials, the challenges to develop effective HuNoV vaccines remain largely unresolved. In this review, we summarize the advances of the HuNoV cultivation system and HuNoV vaccine research and discuss current challenges and future perspectives in HuNoV vaccine development.
Collapse
Affiliation(s)
- Mudan Zhang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China;
| | - Ming Fu
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou 510623, China;
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Institute for Infection and Immunity, St George’s, University of London, London SW17 0RE, UK
| |
Collapse
|
33
|
Development of a Tetraplex qPCR for the Molecular Identification and Quantification of Human Enteric Viruses, NoV and HAV, in Fish Samples. Microorganisms 2021; 9:microorganisms9061149. [PMID: 34071891 PMCID: PMC8227966 DOI: 10.3390/microorganisms9061149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
Human enteric viruses such as norovirus (NoV) and hepatitis A virus (HAV) are some of the most important causes of foodborne infections worldwide. Usually, infection via fish consumption is not a concern regarding these viruses, since fish are mainly consumed cooked. However, in the last years, raw fish consumption has become increasingly common, especially involving the use of seabass and gilthead seabream in dishes like sushi, sashimi, poke, and carpaccio. Therefore, the risk for viral infection via the consumption of raw fish has also increased. In this study, a virologic screening was performed in 323 fish specimens captured along the Portuguese coast using a tetraplex qPCR optimised for two templates (plasmid and in vitro transcribed RNA) to detect and quantify NoV GI, NoV GII and HAV genomes. A difference of approximately 1-log was found between the use of plasmid or in vitro transcribed RNA for molecular-based quantifications, showing an underestimation of genome copy-number equivalents using plasmid standard-based curves. Additionally, the presence of NoV genomic RNA in a pool of seabass brains was identified, which was shown to cluster with a major group of human norovirus sequences from genogroup I (GI.1) by phylogenetic analysis. None of the analysed fish revealed the presence of NoV GII or HAV. This result corroborates the hypothesis that enteric viruses circulate in seawater or that fish were contaminated during their transportation/handling, representing a potential risk to humans through raw or undercooked fish consumption.
Collapse
|
34
|
Ludwig-Begall LF, Di Felice E, Toffoli B, Ceci C, Di Martino B, Marsilio F, Mauroy A, Thiry E. Analysis of Synchronous and Asynchronous In Vitro Infections with Homologous Murine Norovirus Strains Reveals Time-Dependent Viral Interference Effects. Viruses 2021; 13:823. [PMID: 34063220 PMCID: PMC8147416 DOI: 10.3390/v13050823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Viral recombination is a key mechanism in the evolution and diversity of noroviruses. In vivo, synchronous single-cell coinfection by multiple viruses, the ultimate prerequisite to viral recombination, is likely to be a rare event and delayed secondary infections are a more probable occurrence. Here, we determine the effect of a temporal separation of in vitro infections with the two homologous murine norovirus strains MNV-1 WU20 and CW1 on the composition of nascent viral populations. WU20 and CW1 were either synchronously inoculated onto murine macrophage cell monolayers (coinfection) or asynchronously applied (superinfection with varying titres of CW1 at half-hour to 24-h delays). Then, 24 h after initial co-or superinfection, quantification of genomic copy numbers and discriminative screening of plaque picked infectious progeny viruses demonstrated a time-dependent predominance of primary infecting WU20 in the majority of viral progenies. Our results indicate that a time interval from one to two hours onwards between two consecutive norovirus infections allows for the establishment of a barrier that reduces or prevents superinfection.
Collapse
Affiliation(s)
- Louisa F. Ludwig-Begall
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
| | - Elisabetta Di Felice
- Department of Diagnosis and Surveillance of Exotic Disease, IZS Istituto Zooprofilattico Sperimentale A&M G. Caporale, 64100 Teramo, Italy;
| | - Barbara Toffoli
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
| | - Chiara Ceci
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (C.C.); (B.D.M.); (F.M.)
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (C.C.); (B.D.M.); (F.M.)
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (C.C.); (B.D.M.); (F.M.)
| | - Axel Mauroy
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
- Staff Direction for Risk Assessment, Control Policy, FASFC, 1000 Brussels, Belgium
| | - Etienne Thiry
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
| |
Collapse
|
35
|
Qin Z, Xiang X, Xue L, Cai W, Gao J, Yang J, Liang Y, Wang L, Chen M, Pang R, Li Y, Zhang J, Hu Y, Wu Q. Development of a novel RAA-based microfluidic chip for absolute quantitative detection of human norovirus. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
CD300lf Conditional Knockout Mouse Reveals Strain-Specific Cellular Tropism of Murine Norovirus. J Virol 2021; 95:JVI.01652-20. [PMID: 33177207 DOI: 10.1128/jvi.01652-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Noroviruses are a leading cause of gastrointestinal infection in humans and mice. Understanding human norovirus (HuNoV) cell tropism has important implications for our understanding of viral pathogenesis. Murine norovirus (MNoV) is extensively used as a surrogate model for HuNoV. We previously identified CD300lf as the receptor for MNoV. Here, we generated a Cd300lf conditional knockout (CD300lfF/F ) mouse to elucidate the cell tropism of persistent and nonpersistent strains of murine norovirus. Using this mouse model, we demonstrated that CD300lf expression on intestinal epithelial cells (IECs), and on tuft cells in particular, is essential for transmission of the persistent MNoV strain CR6 (MNoVCR6) in vivo In contrast, the nonpersistent MNoV strain CW3 (MNoVCW3) does not require CD300lf expression on IECs for infection. However, deletion of CD300lf in myelomonocytic cells (LysM Cre+) partially reduces CW3 viral load in lymphoid and intestinal tissues. Disruption of CD300lf expression on B cells (CD19 Cre), neutrophils (Mrp8 Cre), and dendritic cells (CD11c Cre) did not affect MNoVCW3 viral RNA levels. Finally, we show that the transcription factor STAT1, which is critical for the innate immune response, partially restricts the cell tropism of MNoVCW3 to LysM+ cells. Taken together, these data demonstrate that CD300lf expression on tuft cells is essential for MNoVCR6; that myelomonocytic cells are a major, but not exclusive, target cell of MNoVCW3; and that STAT1 signaling restricts the cellular tropism of MNoVCW3 This study provides the first genetic system for studying the cell type-specific role of CD300lf in norovirus pathogenesis.IMPORTANCE Human noroviruses (HuNoVs) are a leading cause of gastroenteritis resulting in up to 200,000 deaths each year. The receptor and cell tropism of HuNoV in immunocompetent humans are unclear. We use murine norovirus (MNoV) as a model for HuNoV. We recently identified CD300lf as the sole physiologic receptor for MNoV. Here, we leverage this finding to generate a Cd300lf conditional knockout mouse to decipher the contributions of specific cell types to MNoV infection. We demonstrate that persistent MNoVCR6 requires CD300lf expression on tuft cells. In contrast, multiple CD300lf+ cell types, dominated by myelomonocytic cells, are sufficient for nonpersistent MNoVCW3 infection. CD300lf expression on epithelial cells, B cells, neutrophils, and dendritic cells is not critical for MNoVCW3 infection. Mortality associated with the MNoVCW3 strain in Stat1-/- mice does not require CD300lf expression on LysM+ cells, highlighting that both CD300lf receptor expression and innate immunity regulate MNoV cell tropism in vivo.
Collapse
|
37
|
Pattekar A, Mayer LS, Lau CW, Liu C, Palko O, Bewtra M, Consortium HPAP, Lindesmith LC, Brewer-Jensen PD, Baric RS, Betts MR, Naji A, Wherry EJ, Tomov VT. Norovirus-Specific CD8 + T Cell Responses in Human Blood and Tissues. Cell Mol Gastroenterol Hepatol 2021; 11:1267-1289. [PMID: 33444817 PMCID: PMC8010716 DOI: 10.1016/j.jcmgh.2020.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Noroviruses (NoVs) are the leading cause of acute gastroenteritis worldwide and are associated with significant morbidity and mortality. Moreover, an asymptomatic carrier state can persist following acute infection, promoting NoV spread and evolution. Thus, defining immune correlates of NoV protection and persistence is needed to guide the development of future vaccines and limit viral spread. Whereas antibody responses following NoV infection or vaccination have been studied extensively, cellular immunity has received less attention. Data from the mouse NoV model suggest that T cells are critical for preventing persistence and achieving viral clearance, but little is known about NoV-specific T-cell immunity in humans, particularly at mucosal sites. METHODS We screened peripheral blood mononuclear cells from 3 volunteers with an overlapping NoV peptide library. We then used HLA-peptide tetramers to track virus-specific CD8+ T cells in peripheral, lymphoid, and intestinal tissues. Tetramer+ cells were further characterized using markers for cellular trafficking, exhaustion, cytotoxicity, and proliferation. RESULTS We defined 7 HLA-restricted immunodominant class I epitopes that were highly conserved across pandemic strains from genogroup II.4. NoV-specific CD8+ T cells with central, effector, or tissue-resident memory phenotypes were present at all sites and were especially abundant in the intestinal lamina propria. The properties and differentiation states of tetramer+ cells varied across donors and epitopes. CONCLUSIONS Our findings are an important step toward defining the breadth, distribution, and properties of human NoV T-cell immunity. Moreover, the molecular tools we have developed can be used to evaluate future vaccines and engineer novel cellular therapeutics.
Collapse
Affiliation(s)
- Ajinkya Pattekar
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lena S. Mayer
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,Department of Medicine II: Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Chi Wai Lau
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Olesya Palko
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,Department of Orthopedic Surgery, Montefiore Medical Center, Bronx, New York
| | - Meenakshi Bewtra
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Paul D. Brewer-Jensen
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - E. John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania,Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Vesselin T. Tomov
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania,Correspondence Address correspondence to: Vesselin Tomov, MD, PhD, Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Perelman School of Medicine, 421 Curie Boulevard, BRB 313, Philadelphia, Pennsylvania 19103. fax: (215) 349-5915.
| |
Collapse
|
38
|
Xie D, Chen J, Yu J, Pei F, Koroma MM, Wang L, Qiu M, Hou Y, Yu D, Zhang XF, Dai YC. Characterization of Antigenic Relatedness Among GI Norovirus Genotypes Using Serum Samples From Norovirus-Infected Patients and Mouse Sera. Front Microbiol 2020; 11:607723. [PMID: 33363528 PMCID: PMC7752868 DOI: 10.3389/fmicb.2020.607723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 12/03/2022] Open
Abstract
Characterizing diversity and the antigenic relatedness of norovirus remains a primary focus in understanding its biological properties and vaccine designs. The precise antigenic and serological features of GI genotypes have not been studied. The study represented an investigation on a gastroenteritis outbreak related to GI.3 norovirus and the three most detected GI genotypes, GI.2 (belonging to immunotype B), GI.3 and GI.9 (belonging to immunotype C), were selected to characterize their phylogenetic relationship, HBGA binding profiles and antigenic relatedness within (intra-immunotype), and between (inter-immunotypes) genotypes using mouse sera and patient’s serum samples from the GI.3 related outbreak. Wide HBGA binding profiles and evolution of binding affinity were observed in the three GI genotypes studied. A low specific blockade antibody to GI.3 in the population generated the pool of susceptible individuals and supported virus spread in the outbreak. We found strong blockade immune response in homologous strains, moderate intra-immunotype blockade but weak inter-immunotypes blockade in humans following GI.3 norovirus infections. These findings further support the immunotypes grouping and will be valuable for optimizing the design of norovirus vaccine.
Collapse
Affiliation(s)
- Dongjie Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junrui Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingrong Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fuyu Pei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mark Momoh Koroma
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mengsi Qiu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuzhen Hou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dexian Yu
- Guangzhou Military Command Center for Disease Control and Prevention, Guangzhou, China
| | - Xu-Fu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ying-Chun Dai
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Rathnayake AD, Kim Y, Dampalla CS, Nguyen HN, Jesri ARM, Kashipathy MM, Lushington GH, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-Guided Optimization of Dipeptidyl Inhibitors of Norovirus 3CL Protease. J Med Chem 2020; 63:11945-11963. [PMID: 32945669 DOI: 10.1021/acs.jmedchem.0c01252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute gastroenteritis caused by noroviruses has a major impact on public health worldwide in terms of morbidity, mortality, and economic burden. The disease impacts most severely immunocompromised patients, the elderly, and children. The current lack of approved vaccines and small-molecule therapeutics for the treatment and prophylaxis of norovirus infections underscores the need for the development of norovirus-specific drugs. The studies described herein entail the use of the gem-dimethyl moiety as a means of improving the pharmacological activity and physicochemical properties of a dipeptidyl series of transition state inhibitors of norovirus 3CL protease, an enzyme essential for viral replication. Several compounds were found to be potent inhibitors of the enzyme in biochemical and cell-based assays. The pharmacological activity and cellular permeability of the inhibitors were found to be sensitive to the location of the gem-dimethyl group.
Collapse
Affiliation(s)
- Athri D Rathnayake
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chamandi S Dampalla
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Abdul-Rahman M Jesri
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Maithri M Kashipathy
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | | | - Kevin P Battaile
- NYX, New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
40
|
Yu P, Li Y, Li Y, Miao Z, Wang Y, Peppelenbosch MP, Pan Q. Murine norovirus replicase augments RIG-I-like receptors-mediated antiviral interferon response. Antiviral Res 2020; 182:104877. [PMID: 32755662 DOI: 10.1016/j.antiviral.2020.104877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023]
Abstract
Noroviruses are the main causative agents for acute viral gastroenteritis worldwide. RIG-I-like receptors (RLRs) triggered interferon (IFN) activation is essential for host defense against viral infections. In turn, viruses have developed sophisticated strategies to counteract host antiviral response. This study aims to investigate how murine norovirus (MNV) replicase interacts with RLRs-mediated antiviral IFN response. Counterintuitively, we found that the MNV replicase NS7 enhances the activation of poly (I:C)-induced IFN response and the transcription of downstream interferon-stimulated genes (ISGs). Interestingly, NS7 protein augments RIG-I and MDA5-triggered antiviral IFN response, which conceivably involves direct interactions with the caspase activation and recruitment domains (CARDs) of RIG-I and MDA5. Consistently, RIG-I and MDA5 exert anti-MNV activity in human HEK293T cells with ectopic expression of viral receptor CD300lf. This effect requires the activation of JAK/STAT pathway, and is further enhanced by NS7 overexpression. These findings revealed an unconventional role of MNV NS7 as augmenting RLRs-mediated IFN response to inhibit viral replication.
Collapse
Affiliation(s)
- Peifa Yu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yining Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
41
|
Khiralla A, Spina R, Varbanov M, Philippot S, Lemiere P, Slezack-Deschaumes S, André P, Mohamed I, Yagi SM, Laurain-Mattar D. Evaluation of Antiviral, Antibacterial and Antiproliferative Activities of the Endophytic Fungus Curvularia papendorfii, and Isolation of a New Polyhydroxyacid. Microorganisms 2020; 8:microorganisms8091353. [PMID: 32899776 PMCID: PMC7564059 DOI: 10.3390/microorganisms8091353] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
An endophytic fungus isolated from Vernonia amygdalina, a medicinal plant from Sudan, was taxonomically characterized as Curvularia papendorfii. Ethyl acetate crude extract of C. papendorfii revealed an important antiviral effect against two viral pathogens, the human coronavirus HCoV 229E and a norovirus surrogate, the feline coronavirus FCV F9. For the last one, 40% of the reduction of the virus-induced cytopathogenic effect at lower multiplicity of infection (MOI) 0.0001 was observed. Selective antibacterial activity was obtained against Staphylococcus sp. (312 µg/mL), and interesting antiproliferative activity with half maximal inhibitory concentration (IC50) value of 21.5 ± 5.9 µg/mL was observed against human breast carcinoma MCF7 cell line. Therefore, C. papendorfii crude extract was further investigated and fractionated. Twenty-two metabolites were identified by gas chromatography coupled to mass spectrometry (GC–MS), and two pure compounds, mannitol and a new polyhydroxyacid, called kheiric acid, were characterized. A combination of spectroscopic methods was used to elucidate the structure of the new aliphatic carboxylic acid: kheiric acid (3,7,11,15-tetrahydroxy-18-hydroxymethyl-14,16,20,22,24-pentamethyl-hexacosa-4E,8E,12E,16,18-pentaenoic acid). Kheiric acid showed an interesting result with a minimum inhibitory concentration (MIC) value of 62.5 µg/mL against meticillin-resistant Staphylococcus aureus (MRSA). Hence, endophytes associated with medicinal plants from Sudan merit more attention, as they could be a treasure of new bioactive compounds.
Collapse
Affiliation(s)
- Afra Khiralla
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.K.); (M.V.); (S.P.); (P.L.)
- Botany Department, Faculty of Sciences and Technologies, Shendi University, P.O. Box 142 Shendi, Sudan
| | - Rosella Spina
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.K.); (M.V.); (S.P.); (P.L.)
- Correspondence: (R.S.); (D.L.-M.); Tel.: +33-3-7274-5226 (R.S.); +33-3-7274-5675 (D.L.-M.)
| | - Mihayl Varbanov
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.K.); (M.V.); (S.P.); (P.L.)
| | - Stéphanie Philippot
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.K.); (M.V.); (S.P.); (P.L.)
| | - Pascal Lemiere
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.K.); (M.V.); (S.P.); (P.L.)
| | | | - Philippe André
- Université de Strasbourg, UMR 7021 CNRS, 67401 Illkirch, France;
| | - Ietidal Mohamed
- Department of Botany, Faculty of Science, University of Khartoum, 11115 Khartoum, Sudan; (I.M.); (S.M.Y.)
| | - Sakina Mohamed Yagi
- Department of Botany, Faculty of Science, University of Khartoum, 11115 Khartoum, Sudan; (I.M.); (S.M.Y.)
| | - Dominique Laurain-Mattar
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.K.); (M.V.); (S.P.); (P.L.)
- Correspondence: (R.S.); (D.L.-M.); Tel.: +33-3-7274-5226 (R.S.); +33-3-7274-5675 (D.L.-M.)
| |
Collapse
|
42
|
Furlong K, Biering SB, Choi J, Wilen CB, Orchard RC, Wobus CE, Nelson CA, Fremont DH, Baldridge MT, Randall G, Hwang S. CD300LF Polymorphisms of Inbred Mouse Strains Confer Resistance to Murine Norovirus Infection in a Cell Type-Dependent Manner. J Virol 2020; 94:e00837-20. [PMID: 32581099 PMCID: PMC7431780 DOI: 10.1128/jvi.00837-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Human norovirus is the leading cause of gastroenteritis worldwide, yet basic questions about its life cycle remain unanswered due to an historical lack of robust experimental systems. Recent studies on the closely related murine norovirus (MNV) have identified CD300LF as an indispensable entry factor for MNV. We compared the MNV susceptibilities of cells from different mouse strains and identified polymorphisms in murine CD300LF which are critical for its function as an MNV receptor. Bone marrow-derived macrophages (BMDMs) from I/LnJ mice were resistant to infection from multiple MNV strains which readily infect BMDMs from C57BL/6J mice. The resistance of I/LnJ BMDMs was specific to MNV, since the cells supported infection of other viruses comparably to C57BL/6J BMDMs. Transduction of I/LnJ BMDMs with C57BL/6J CD300LF made the cells permissible to MNV infection, suggesting that the cause of resistance lies in the entry step of MNV infection. In fact, we mapped this phenotype to a 4-amino-acid difference at the CC' loop of CD300LF; swapping of these amino acids between C57BL/6J and I/LnJ CD300LF proteins made the mutant C57BL/6J CD300LF functionally impaired and the corresponding mutant of I/LnJ CD300LF functional as an MNV entry factor. Surprisingly, expression of the I/LnJ CD300LF in other cell types made the cells infectible by MNV, even though the I/LnJ allele did not function as an MNV receptor in macrophage-like cells. Correspondingly, I/LnJ CD300LF bound MNV virions in permissive cells but not in nonpermissive cells. Collectively, our data suggest the existence of a cell type-specific modifier of MNV entry.IMPORTANCE MNV is a prevalent model system for studying human norovirus, which is the leading cause of gastroenteritis worldwide and thus a sizeable public health burden. Elucidating mechanisms underlying susceptibility of host cells to MNV infection can lead to insights on the roles that specific cell types play during norovirus pathogenesis. Here, we show that different alleles of the proteinaceous receptor for MNV, CD300LF, function in a cell type-dependent manner. In contrast to the C57BL/6J allele, which functions as an MNV entry factor in all tested cell types, including human cells, I/LnJ CD300LF does not function as an MNV entry factor in macrophage-like cells but does allow MNV entry in other cell types. Together, these observations indicate the existence of cell type-specific modifiers of CD300LF-dependent MNV entry.
Collapse
MESH Headings
- Animals
- Binding Sites
- Caliciviridae Infections/virology
- Disease Resistance/genetics
- Gastroenteritis/virology
- Macrophages/virology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Models, Molecular
- Norovirus
- Polymorphism, Genetic
- Protein Conformation
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Sequence Analysis, Protein
- Virus Internalization
Collapse
Affiliation(s)
- Kevin Furlong
- Committee on Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Scott B Biering
- Committee on Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jayoung Choi
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert C Orchard
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher A Nelson
- Department of Pathology & Immunology, Washington University, St. Louis, Missouri, USA
- Department of Biochemistry & Molecular Biophysics, Washington University, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University, St. Louis, Missouri, USA
- Department of Biochemistry & Molecular Biophysics, Washington University, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, USA
| | - Megan T Baldridge
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Seungmin Hwang
- Committee on Microbiology, The University of Chicago, Chicago, Illinois, USA
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
43
|
Yu P, Wang Y, Li Y, Li Y, Miao Z, Peppelenbosch MP, Pan Q. 2'-Fluoro-2'-deoxycytidine inhibits murine norovirus replication and synergizes MPA, ribavirin and T705. Arch Virol 2020; 165:2605-2613. [PMID: 32770483 PMCID: PMC7414258 DOI: 10.1007/s00705-020-04759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022]
Abstract
Noroviruses are the main causative agents of acute viral gastroenteritis worldwide. However, no vaccine or specific antiviral treatment is available, imposing a heavy global health burden. The nucleoside analogue 2’-fluoro-2’-deoxycytidine (2’-FdC) has been reported to have broad antiviral activity. Here, we report that 2’-FdC significantly inhibits murine norovirus replication in macrophages. This effect was partially reversed by exogenous supplementation of cytidine triphosphate. The combination of 2’-FdC with mycophenolic acid, ribavirin or favipiravir (T705) exerts synergistic antiviral effects. These results indicate that 2’-FdC is a potential candidate for antiviral drug development against norovirus infection.
Collapse
Affiliation(s)
- Peifa Yu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Yining Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| |
Collapse
|
44
|
Broggi A, Granucci F, Zanoni I. Type III interferons: Balancing tissue tolerance and resistance to pathogen invasion. J Exp Med 2020; 217:132623. [PMID: 31821443 PMCID: PMC7037241 DOI: 10.1084/jem.20190295] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/23/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Type III IFNs, or IFN-λ, are the latest addition to the IFN family. Thanks to a restricted pattern of expression of their receptor and to unique immunomodulatory properties, IFN-λ stimulates pathogen clearance while, at the same time, curbing inflammation to maintain barrier integrity. Type III IFNs, or IFN-λ, are the newest members of the IFN family and were long believed to play roles that were redundant with those of type I IFNs. However, IFN-λ displays unique traits that delineate them as primary protectors of barrier integrity at mucosal sites. This unique role stems both from the restricted expression of IFN-λ receptor, confined to epithelial cells and to a limited pool of immune cells, and from unique immunomodulatory properties of IFN-λ. Here, we discuss recent findings that establish the unique capacity of IFN-λ to act at the barriers of the host to balance tissue tolerance and immune resistance against viral and bacterial challenges.
Collapse
Affiliation(s)
- Achille Broggi
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA.,Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Ivan Zanoni
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA.,Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
45
|
Vinjé J, Estes MK, Esteves P, Green KY, Katayama K, Knowles NJ, L'Homme Y, Martella V, Vennema H, White PA, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Caliciviridae. J Gen Virol 2020; 100:1469-1470. [PMID: 31573467 PMCID: PMC7011698 DOI: 10.1099/jgv.0.001332] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The family Caliciviridae includes viruses with single-stranded, positive-sense RNA genomes of 7.4–8.3 kb. The most clinically important representatives are human noroviruses, which are a leading cause of acute gastroenteritis in humans. Virions are non-enveloped with icosahedral symmetry. Members of seven genera infect mammals (Lagovirus, Norovirus, Nebovirus, Recovirus, Sapovirus, Valovirus and Vesivirus), members of two genera infect birds (Bavovirus and Nacovirus), and members of two genera infect fish (Minovirus and Salovirus). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caliciviridae, which is available at ictv.global/report/caliciviridae.
Collapse
Affiliation(s)
- Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Pedro Esteves
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Kim Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kazuhiko Katayama
- Laboratory of Viral infection I, Kitasato Institute for Life Sciences Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | | | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Bari, Italy
| | - Harry Vennema
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
46
|
Lei S, Twitchell EL, Ramesh AK, Bui T, Majette E, Tin CM, Avery R, Arango-Argoty G, Zhang L, Becker-Dreps S, Azcarate-Peril MA, Jiang X, Yuan L. Enhanced GII.4 human norovirus infection in gnotobiotic pigs transplanted with a human gut microbiota. J Gen Virol 2020; 100:1530-1540. [PMID: 31596195 DOI: 10.1099/jgv.0.001336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The role of commensal microbiota in enteric viral infections has been explored extensively, but the interaction between human gut microbiota (HGM) and human norovirus (HuNoV) is poorly understood. In this study, we established an HGM-Transplanted gnotobiotic (Gn) pig model of HuNoV infection and disease, using an infant stool as HGM transplant and a HuNoV GII.4/2006b strain for virus inoculation. Compared to germ-free Gn pigs, HuNoV inoculation in HGMT Gn pigs resulted in increased HuNoV shedding, characterized by significantly higher shedding titres on post inoculation day (PID) 3, 4, 6, 8 and 9, and significantly longer mean duration of virus shedding. In addition, virus titres were significantly higher in duodenum and distal ileum of HGMT Gn pigs on PID10, while comparable and transient HuNoV viremia was detected in both groups. 16S rRNA gene sequencing demonstrated that HuNoV infection dramatically altered intestinal microbiota in HGMT Gn pigs at the phylum (Proteobacteria, Firmicutes and Bacteroidetes) and genus (Enterococcus, Bifidobacterium, Clostridium, Ruminococcus, Anaerococcus, Bacteroides and Lactobacillus) levels. In summary, enhanced GII.4 HuNoV infection was observed in the presence of HGM, and host microbiota was susceptible to disruption upon HuNoV infection.
Collapse
Affiliation(s)
- Shaohua Lei
- Present address: Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Erica L Twitchell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ashwin K Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tammy Bui
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Elizabeth Majette
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Christine M Tin
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Roger Avery
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Gustavo Arango-Argoty
- Department of Computer Science, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Liqing Zhang
- Department of Computer Science, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sylvia Becker-Dreps
- Department of Family Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - M Andrea Azcarate-Peril
- Division of Gastroenterology and Hepatology, Department of Medicine, Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
47
|
Tomov V. Towards a Comprehensive Understanding of Human Norovirus Immunity. Cell Mol Gastroenterol Hepatol 2020; 10:422-423. [PMID: 32479756 PMCID: PMC7371940 DOI: 10.1016/j.jcmgh.2020.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/10/2022]
|
48
|
Yu P, Li Y, Li Y, Miao Z, Peppelenbosch MP, Pan Q. Guanylate-binding protein 2 orchestrates innate immune responses against murine norovirus and is antagonized by the viral protein NS7. J Biol Chem 2020; 295:8036-8047. [PMID: 32354743 DOI: 10.1074/jbc.ra120.013544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
Noroviruses are the main causative agents of acute viral gastroenteritis, but the host factors that restrict their replication remain poorly identified. Guanylate-binding proteins (GBPs) are interferon (IFN)-inducible GTPases that exert broad antiviral activity and are important mediators of host defenses against viral infections. Here, we show that both IFN-γ stimulation and murine norovirus (MNV) infection induce GBP2 expression in murine macrophages. Results from loss- and gain-of-function assays indicated that GBP2 is important for IFN-γ-dependent anti-MNV activity in murine macrophages. Ectopic expression of MNV receptor (CD300lf) in human HEK293T epithelial cells conferred susceptibility to MNV infection. Importantly, GBP2 potently inhibited MNV in these human epithelial cells. Results from mechanistic dissection experiments revealed that the N-terminal G domain of GBP2 mediates these anti-MNV effects. R48A and K51A substitutions in GBP2, associated with loss of GBP2 GTPase activity, attenuated the anti-MNV effects of GBP2. Finally, we found that nonstructural protein 7 (NS7) of MNV co-localizes with GBP2 and antagonizes the anti-MNV activity of GBP2. These findings reveal that GBP2 is an important mediator of host defenses against murine norovirus.
Collapse
Affiliation(s)
- Peifa Yu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
49
|
Ahmed K, Dony JJF, Mori D, Haw LY, Giloi N, Jeffree MS, Iha H. An outbreak of gastroenteritis by emerging norovirus GII.2[P16] in a kindergarten in Kota Kinabalu, Malaysian Borneo. Sci Rep 2020; 10:7137. [PMID: 32346119 PMCID: PMC7189370 DOI: 10.1038/s41598-020-64148-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/08/2020] [Indexed: 11/09/2022] Open
Abstract
Outbreaks of diarrhea in kindergartens are underreported and frequently go unnoticed in developing countries. To better understand the etiology this study was performed during an outbreak of diarrhea in a kindergarten in Sabah, Malaysia. Outbreak investigation was performed according to the standard procedures. In this outbreak a total of 34 (36.5%) children and 4 (30.8%) teachers suffered from gastroenteritis. Stool samples from seven children and 13 teachers were tested for rotavirus and norovirus. During the investigation stool samples were collected and sent in cold chain to the laboratory. The samples were subjected to rotavirus enzyme linked immunosorbent assay, and reverse transcription PCR for norovirus. All samples were negative for rotavirus but positive for norovirus. To determine the genogroup and genotype of norovirus, nucleotide sequencing of the amplicons was performed. All norovirus from the outbreak was of genotype GII.2[16]. To determine the relatedness of the strains phylogenetic analysis was done using neighbor-joining method. Phylogenetically these strains were highly related to GII.2[P16] noroviruses from China and Japan. This study provided evidence that a diarrheal outbreak in a kindergarten was caused by GII.2[P16] norovirus which is an emerging strain in East Asia and Europe.
Collapse
Affiliation(s)
- Kamruddin Ahmed
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia. .,Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia.
| | | | - Daisuke Mori
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Liaw Yun Haw
- KPJ Sabah Specialist Hospital, Kota Kinabalu, 88300, Sabah, Malaysia
| | - Nelbon Giloi
- Department of Community Medicine and Public Health, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Mohammad Saffree Jeffree
- Department of Community Medicine and Public Health, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, 879-5593, Oita, Japan
| |
Collapse
|
50
|
Lipopolysaccharide restricts murine norovirus infection in macrophages mainly through NF-kB and JAK-STAT signaling pathway. Virology 2020; 546:109-121. [PMID: 32452409 DOI: 10.1016/j.virol.2020.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022]
Abstract
The inflammasome machinery has recently been recognized as an emerging pillar of innate immunity. However, little is known regarding the interaction between the classical interferon (IFN) response and inflammasome activation in response to norovirus infection. We found that murine norovirus (MNV-1) infection induces the transcription of IL-1β, a hallmark of inflammasome activation, which is further increased by inhibition of IFN response, but fails to trigger the release of mature IL-1β. Interestingly, pharmacological inflammasome inhibitors do not affect viral replication, but slightly reverse the inflammasome activator lipopolysaccharide (LPS)-mediated inhibition of MNV replication. LPS efficiently stimulates the transcription of IFN-β through NF-ĸB, which requires the transcription factors IRF3 and IRF7. This activates downstream antiviral IFN-stimulated genes (ISGs) via the JAK-STAT pathway. Moreover, inhibition of NF-ĸB and JAK-STAT signaling partially reverse LPS-mediated anti-MNV activity, suggesting additional antiviral mechanisms activated by NF-ĸB. This study reveals additional insight in host defense against MNV infection.
Collapse
|