1
|
Gardela J, Yautibug K, Talavera S, Vidal E, Sossah CC, Pagès N, Busquets N. Tissue distribution and transmission of Rift Valley fever phlebovirus in European Culex pipiens and Aedes albopictus mosquitoes following intrathoracic inoculation. J Gen Virol 2024; 105. [PMID: 39302189 DOI: 10.1099/jgv.0.002025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Rift Valley fever virus (Phlebovirus riftense, RVFV) poses significant economic challenges, particularly in African nations, causing substantial livestock losses and severe haemorrhagic disease in humans. In Europe, the risk of RVFV transmission is deemed moderate due to the presence of competent vectors like Culex pipiens and Aedes albopictus, along with susceptible animal vertebrate hosts across member states. This study investigates RVFV infection dynamics in European mosquito populations, aiming to enhance our understanding of their vectorial capacity and virus transmission, which can be useful for future investigations to improve RVFV surveillance, control programmes, and preventive treatments. Intrathoracic inoculation of European Cx. pipiens and Ae. albopictus with an RVFV virulent strain (RVF 56/74) enabled the assessment of virus tissue distribution and transmission. Immunohistochemistry analyses revealed widespread RVFV infection in all analysable anatomical structures at 5 and 14 days post-inoculation. Notably, the ganglionic nervous system exhibited the highest detection of RVFV in both species. Cx. pipiens showed more frequently infected structures than Ae. albopictus, particularly in reproductive structures. The identification of an RVFV-positive egg follicle in Cx. pipiens hints at potential vertical transmission. Saliva analysis indicated a higher transmission potential in Cx. pipiens (71.4%) compared to Ae. albopictus (4.3%) at the early time point. This study offers the first description and comparison of RVFV tissue distribution in Ae. albopictus and Cx. pipiens, shedding light on the susceptibility of their nervous systems, which may alter mosquito behaviour, which is critical for virus transmission. Overall, enhancing our knowledge of viral infection within mosquitoes holds promise for future vector biology research and innovative approaches to mitigate RVFV transmission.
Collapse
Affiliation(s)
- Jaume Gardela
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Karen Yautibug
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sandra Talavera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Enric Vidal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Catherine Cêtre Sossah
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier Cedex 34398, France
| | - Nonito Pagès
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
- CIRAD, UMR ASTRE, Guadeloupe, France
| | - Núria Busquets
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
2
|
Polycarpo CR, Walter-Nuno AB, Azevedo-Reis L, Paiva-Silva GO. The vector-symbiont affair: a relationship as (im)perfect as it can be. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101203. [PMID: 38705385 DOI: 10.1016/j.cois.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Vector-borne diseases are globally prevalent and represent a major socioeconomic problem worldwide. Blood-sucking arthropods transmit most pathogenic agents that cause these human infections. The pathogens transmission to their vertebrate hosts depends on how efficiently they infect their vector, which is particularly impacted by the microbiota residing in the intestinal lumen, as well as its cells or internal organs such as ovaries. The balance between costs and benefits provided by these interactions ultimately determines the outcome of the relationship. Here, we will explore aspects concerning the nature of microbe-vector interactions, including the adaptive traits required for their establishment, the varied outcomes of symbiotic interactions, as well as the factors influencing the transition of these relationships across a continuum from parasitism to mutualism.
Collapse
Affiliation(s)
- Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Ana B Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Leonan Azevedo-Reis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
3
|
He YJ, Lu G, Xu BJ, Mao QZ, Qi YH, Jiao GY, Weng HT, Tian YZ, Huang HJ, Zhang CX, Chen JP, Li JM. Maintenance of persistent transmission of a plant arbovirus in its insect vector mediated by the Toll-Dorsal immune pathway. Proc Natl Acad Sci U S A 2024; 121:e2315982121. [PMID: 38536757 PMCID: PMC10998634 DOI: 10.1073/pnas.2315982121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/01/2024] [Indexed: 04/08/2024] Open
Abstract
Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.
Collapse
Affiliation(s)
- Yu-Juan He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Bo-Jie Xu
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo315211, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Gao-Yang Jiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Hai-Tao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Yan-Zhen Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| |
Collapse
|
4
|
Cime-Castillo J, Vargas V, Hernández-Tablas JM, Quezada-Ruiz E, Díaz G, Lanz-Mendoza H. The costs of transgenerational immune priming for homologous and heterologous infections with different serotypes of dengue virus in Aedes aegypti mosquitoes. Front Immunol 2023; 14:1286831. [PMID: 38170025 PMCID: PMC10760805 DOI: 10.3389/fimmu.2023.1286831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The immune system is a network of molecules, signaling pathways, transcription, and effector modulation that controls, mitigates, or eradicates agents that may affect the integrity of the host. In mosquitoes, the innate immune system is highly efficient at combating foreign organisms but has the capacity to tolerate vector-borne diseases. These implications lead to replication, dissemination, and ultimately the transmission of pathogenic organisms when feeding on a host. In recent years, it has been discovered that the innate immune response of mosquitoes can trigger an enhanced immunity response to the stimulus of a previously encountered pathogen. This phenomenon, called immune priming, is characterized by a molecular response that prevents the replication of viruses, parasites, or bacteria in the body. It has been documented that immune priming can be stimulated through homologous organisms or molecules, although it has also been documented that closely related pathogens can generate an enhanced immune response to a second stimulus with a related organism. However, the cost involved in this immune response has not been characterized through the transmission of the immunological experience from parents to offspring by transgenerational immune priming (TGIP) in mosquitoes. Here, we address the impact on the rates of oviposition, hatching, development, and immune response in Aedes aegypti mosquitoes, the mothers of which were stimulated with dengue virus serotypes 2 and/or 4, having found a cost of TGIP on the development time of the progeny of mothers with heterologous infections, with respect to mothers with homologous infections. Our results showed a significant effect on the sex ratio, with females being more abundant than males. We found a decrease in transcripts of the siRNA pathway in daughters of mothers who had been exposed to an immune challenge with DV. Our research demonstrates that there are costs and benefits associated with TGIP in Aedes aegypti mosquitoes exposed to DV. Specifically, priming results in a lower viral load in the offspring of mothers who have previously been infected with the virus. Although some results from tests of two dengue virus serotypes show similarities, such as the percentage of pupae emergence, there are differences in the percentage of adult emergence, indicating differences in TGIP costs even within the same virus with different serotypes. This finding has crucial implications in the context of dengue virus transmission in endemic areas where multiple serotypes circulate simultaneously.
Collapse
Affiliation(s)
- Jorge Cime-Castillo
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Valeria Vargas
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
- Biomedical Research Institute, Universidad Nacional Autonoma de México, Ciudad de México, Mexico
| | - Juan Manuel Hernández-Tablas
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Edgar Quezada-Ruiz
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Grecia Díaz
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Humberto Lanz-Mendoza
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| |
Collapse
|
5
|
Maraschin M, Talyuli OAC, Luíza Rulff da Costa C, Granella LW, Moi DA, Figueiredo BRS, Mansur DS, Oliveira PL, Oliveira JHM. Exploring dose-response relationships in Aedes aegypti survival upon bacteria and arbovirus infection. JOURNAL OF INSECT PHYSIOLOGY 2023; 151:104573. [PMID: 37838284 DOI: 10.1016/j.jinsphys.2023.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
A detailed understanding of how host fitness changes in response to variations in microbe density (an ecological measure of disease tolerance) is an important aim of infection biology. Here, we applied dose-response curves to study Aedes aegypti survival upon exposure to different microbes. We challenged female mosquitoes with Listeria monocytogenes, a model bacterial pathogen, Dengue 4 virus and Zika virus, two medically relevant arboviruses, to understand the distribution of mosquito survival following microbe exposure. By correlating microbe loads and host health, we found that a blood meal promotes disease tolerance in our systemic bacterial infection model and that mosquitoes orally infected with bacteria had an enhanced defensive capacity than insects infected through injection. We also showed that Aedes aegypti displays a higher survival profile following arbovirus infection when compared to bacterial infections. Here, we applied a framework for investigating microbe-induced mosquito mortality and details how the lifespan of Aedes aegypti varies with different inoculum sizes of bacteria and arboviruses.
Collapse
Affiliation(s)
- Mariana Maraschin
- Departamento de Microbiologia, Imunologia e Parasitologia. Universidade Federal de Santa Catarina. Florianópolis, Brazil
| | - Octávio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro. Rio de Janeiro, Brazil
| | - Clara Luíza Rulff da Costa
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro. Rio de Janeiro, Brazil
| | - Lucilene W Granella
- Departamento de Microbiologia, Imunologia e Parasitologia. Universidade Federal de Santa Catarina. Florianópolis, Brazil
| | - Dieison A Moi
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Bruno R S Figueiredo
- Graduate Program in Ecology, Department of Ecology and Zoology, Federal University of Santa Catarina, Campus Universitário, Edifício Fritz Müller, Bloco B, Córrego Grande, CEP 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Daniel S Mansur
- Departamento de Microbiologia, Imunologia e Parasitologia. Universidade Federal de Santa Catarina. Florianópolis, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro. Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Brazil
| | - José Henrique M Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia. Universidade Federal de Santa Catarina. Florianópolis, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Brazil.
| |
Collapse
|
6
|
Magistrado D, El-Dougdoug NK, Short SM. Sugar restriction and blood ingestion shape divergent immune defense trajectories in the mosquito Aedes aegypti. Sci Rep 2023; 13:12368. [PMID: 37524824 PMCID: PMC10390476 DOI: 10.1038/s41598-023-39067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Immune defense is comprised of (1) resistance: the ability to reduce pathogen load, and (2) tolerance: the ability to limit the disease severity induced by a given pathogen load. The study of tolerance in the field of animal immunity is fairly nascent in comparison to resistance. Consequently, studies which examine immune defense comprehensively (i.e. considering both resistance and tolerance in conjunction) are uncommon, despite their exigency in achieving a thorough understanding of immune defense. Furthermore, understanding tolerance in arthropod disease vectors is uniquely relevant, as tolerance is essential to the cyclical transmission of pathogens by arthropods. Here, we tested the effect(s) of dietary sucrose concentration and blood ingestion on resistance and tolerance to Escherichia coli infection in the yellow fever mosquito Aedes aegypti. Resistance and tolerance were measured concurrently and at multiple timepoints. We found that mosquitoes from the restricted sugar treatment displayed enhanced resistance at all timepoints post-infection compared to those from the laboratory standard sugar treatment. Blood also improved resistance, but only early post-infection. While sucrose restriction had no effect on tolerance, we show that consuming blood prior to bacterial infection ameliorates a temporal decline in tolerance that mosquitoes experience when provided with only sugar meals. Taken together, our findings indicate that different dietary components can have unique and sometimes temporally dynamic impacts on resistance and tolerance.
Collapse
Affiliation(s)
- Dom Magistrado
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA
| | - Noha K El-Dougdoug
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, Egypt
| | - Sarah M Short
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Rose NH, Dabo S, da Veiga Leal S, Sylla M, Diagne CT, Faye O, Faye O, Sall AA, McBride CS, Lambrechts L. Enhanced mosquito vectorial capacity underlies the Cape Verde Zika epidemic. PLoS Biol 2022; 20:e3001864. [PMID: 36288328 PMCID: PMC9604947 DOI: 10.1371/journal.pbio.3001864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
The explosive emergence of Zika virus (ZIKV) across the Pacific and Americas since 2007 was associated with hundreds of thousands of human cases and severe outcomes, including congenital microcephaly caused by ZIKV infection during pregnancy. Although ZIKV was first isolated in Uganda, Africa has so far been exempt from large-scale ZIKV epidemics, despite widespread susceptibility among African human populations. A possible explanation for this pattern is natural variation among populations of the primary vector of ZIKV, the mosquito Aedes aegypti. Globally invasive populations of Ae. aegypti outside of Africa are considered effective ZIKV vectors because they are human specialists with high intrinsic ZIKV susceptibility, whereas African populations of Ae. aegypti across the species' native range are predominantly generalists with low intrinsic ZIKV susceptibility, making them less likely to spread viruses in the human population. We test this idea by studying a notable exception to the patterns observed across most of Africa: Cape Verde experienced a large ZIKV outbreak in 2015 to 2016. We find that local Ae. aegypti in Cape Verde have substantial human-specialist ancestry, show a robust behavioral preference for human hosts, and exhibit increased susceptibility to ZIKV infection, consistent with a key role for variation among mosquito populations in ZIKV epidemiology. These findings suggest that similar human-specialist populations of Ae. aegypti in the nearby Sahel region of West Africa, which may be expanding in response to rapid urbanization, could serve as effective vectors for ZIKV in the future.
Collapse
Affiliation(s)
- Noah H. Rose
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Stéphanie Dabo
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Silvânia da Veiga Leal
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Praia, Cabo Verde
| | - Massamba Sylla
- Department of Livestock Sciences and Techniques, University Sine Saloum El Hadji Ibrahima NIASS, Kaffrine, Senegal
| | - Cheikh T. Diagne
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Dakar, Senegal
| | - Oumar Faye
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Dakar, Senegal
| | - Ousmane Faye
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Dakar, Senegal
| | - Amadou A. Sall
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Dakar, Senegal
| | - Carolyn S. McBride
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| |
Collapse
|
8
|
Prakash A, Monteith KM, Vale PF. Mechanisms of damage prevention, signalling and repair impact disease tolerance. Proc Biol Sci 2022; 289:20220837. [PMID: 35975433 PMCID: PMC9382215 DOI: 10.1098/rspb.2022.0837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The insect gut is frequently exposed to pathogenic threats and must not only clear these potential infections, but also tolerate relatively high microbe loads. In contrast to the mechanisms that eliminate pathogens, we currently know less about the mechanisms of disease tolerance. We investigated how well-described mechanisms that prevent, signal, control or repair damage during infection contribute to the phenotype of disease tolerance. We established enteric infections with the bacterial pathogen Pseudomonas entomophila in transgenic lines of Drosophila melanogaster fruit flies affecting dcy (a major component of the peritrophic matrix), upd3 (a cytokine-like molecule), irc (a negative regulator of reactive oxygen species) and egfr1 (epithelial growth factor receptor). Flies lacking dcy experienced the highest mortality, while loss of function of either irc or upd3 reduced tolerance in both sexes. The disruption of egfr1 resulted in a severe loss in tolerance in male flies but had no substantial effect on the ability of female flies to tolerate P. entomophila infection, despite carrying greater microbe loads than males. Together, our findings provide evidence for the role of damage limitation mechanisms in disease tolerance and highlight how sexual dimorphism in these mechanisms could generate sex differences in infection outcomes.
Collapse
Affiliation(s)
- Arun Prakash
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Katy M. Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Pedro F. Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
9
|
PEBP balances apoptosis and autophagy in whitefly upon arbovirus infection. Nat Commun 2022; 13:846. [PMID: 35149691 PMCID: PMC8837789 DOI: 10.1038/s41467-022-28500-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Apoptosis and autophagy are two common forms of programmed cell death (PCD) used by host organisms to fight against virus infection. PCD in arthropod vectors can be manipulated by arboviruses, leading to arbovirus-vector coexistence, although the underlying mechanism is largely unknown. In this study, we find that coat protein (CP) of an insect-borne plant virus TYLCV directly interacts with a phosphatidylethanolamine-binding protein (PEBP) in its vector whitefly to downregulate MAPK signaling cascade. As a result, apoptosis is activated in the whitefly increasing viral load. Simultaneously, the PEBP4-CP interaction releases ATG8, a hallmark of autophagy initiation, which reduces arbovirus levels. Furthermore, apoptosis-promoted virus amplification is prevented by agonist-induced autophagy, whereas the autophagy-suppressed virus load is unaffected by manipulating apoptosis, suggesting that the viral load is predominantly determined by autophagy rather than by apoptosis. Our results demonstrate that a mild intracellular immune response including balanced apoptosis and autophagy might facilitate arbovirus preservation within its whitefly insect vector. Arbovirus has co-evolved with its insect vector, enabling efficient and persistent transmission by vectors. Here, the authors reveal an immune homeostatic mechanism shaped by apoptosis and autophagy that facilitates arbovirus preservation within its whitefly vector.
Collapse
|
10
|
Gestuveo RJ, Parry R, Dickson LB, Lequime S, Sreenu VB, Arnold MJ, Khromykh AA, Schnettler E, Lambrechts L, Varjak M, Kohl A. Mutational analysis of Aedes aegypti Dicer 2 provides insights into the biogenesis of antiviral exogenous small interfering RNAs. PLoS Pathog 2022; 18:e1010202. [PMID: 34990484 PMCID: PMC8769306 DOI: 10.1371/journal.ppat.1010202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/19/2022] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
The exogenous small interfering RNA (exo-siRNA) pathway is a key antiviral mechanism in the Aedes aegypti mosquito, a widely distributed vector of human-pathogenic arboviruses. This pathway is induced by virus-derived double-stranded RNAs (dsRNA) that are cleaved by the ribonuclease Dicer 2 (Dcr2) into predominantly 21 nucleotide (nt) virus-derived small interfering RNAs (vsiRNAs). These vsiRNAs are used by the effector protein Argonaute 2 within the RNA-induced silencing complex to cleave target viral RNA. Dcr2 contains several domains crucial for its activities, including helicase and RNase III domains. In Drosophila melanogaster Dcr2, the helicase domain has been associated with binding to dsRNA with blunt-ended termini and a processive siRNA production mechanism, while the platform-PAZ domains bind dsRNA with 3’ overhangs and subsequent distributive siRNA production. Here we analyzed the contributions of the helicase and RNase III domains in Ae. aegypti Dcr2 to antiviral activity and to the exo-siRNA pathway. Conserved amino acids in the helicase and RNase III domains were identified to investigate Dcr2 antiviral activity in an Ae. aegypti-derived Dcr2 knockout cell line by reporter assays and infection with mosquito-borne Semliki Forest virus (Togaviridae, Alphavirus). Functionally relevant amino acids were found to be conserved in haplotype Dcr2 sequences from field-derived Ae. aegypti across different continents. The helicase and RNase III domains were critical for silencing activity and 21 nt vsiRNA production, with RNase III domain activity alone determined to be insufficient for antiviral activity. Analysis of 21 nt vsiRNA sequences (produced by functional Dcr2) to assess the distribution and phasing along the viral genome revealed diverse yet highly consistent vsiRNA pools, with predominantly short or long sequence overlaps including 19 nt overlaps (the latter representing most likely true Dcr2 cleavage products). Combined with the importance of the Dcr2 helicase domain, this suggests that the majority of 21 nt vsiRNAs originate by processive cleavage. This study sheds new light on Ae. aegypti Dcr2 functions and properties in this important arbovirus vector species. Aedes aegypti mosquitoes that transmit human-pathogenic viruses rely on the exogenous small interfering RNA (exo-siRNA) pathway as part of antiviral responses. This pathway is triggered by virus-derived double-stranded RNA (dsRNA) produced during viral replication that is then cleaved by Dicer 2 (Dcr2) into virus-derived small interfering RNAs (vsiRNAs). These vsiRNAs target viral RNA, leading to suppression of viral replication. The importance of Dcr2 in this pathway has been intensely studied in the Drosophila melanogaster model but is largely lacking in mosquitoes. Here, we have identified conserved and functionally relevant amino acids in the helicase and RNase III domains of Ae. aegypti Dcr2 that are important in its silencing activity and antiviral responses against Semliki Forest virus (SFV). Small RNA sequencing of SFV-infected mosquito cells with functional or mutated Dcr2 gave new insights into the nature and origin of vsiRNAs. The findings of this study, together with the different molecular tools we have previously developed to investigate the exo-siRNA pathway of mosquito cells, have started to uncover important properties of Dcr2 that could be valuable in understanding mosquito-arbovirus interactions and potentially in developing or assisting vector control strategies.
Collapse
Affiliation(s)
- Rommel J. Gestuveo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Division of Biological Sciences, University of the Philippines Visayas, Miagao, Iloilo, Philippines
- * E-mail: (R.J.G.); (M.V.); (A.K.)
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Laura B. Dickson
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sebastian Lequime
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, Groningen, The Netherlands
| | | | - Matthew J. Arnold
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - Esther Schnettler
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University Hamburg, Hamburg, Germany
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Institute of Technology, University of Tartu, Tartu, Estonia
- * E-mail: (R.J.G.); (M.V.); (A.K.)
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- * E-mail: (R.J.G.); (M.V.); (A.K.)
| |
Collapse
|
11
|
Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021; 12:773211. [PMID: 34956136 PMCID: PMC8696169 DOI: 10.3389/fmicb.2021.773211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus–vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.
Collapse
Affiliation(s)
- Marine Viglietta
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Rachel Bellone
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Adrien Albert Blisnick
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Anna-Bella Failloux
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Xu Y, Zhong Z, Ren Y, Ma L, Ye Z, Gao C, Wang J, Li Y. Antiviral RNA interference in disease vector (Asian longhorned) ticks. PLoS Pathog 2021; 17:e1010119. [PMID: 34860862 PMCID: PMC8673602 DOI: 10.1371/journal.ppat.1010119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/15/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Disease vectors such as mosquitoes and ticks play a major role in the emergence and re-emergence of human and animal viral pathogens. Compared to mosquitoes, however, much less is known about the antiviral responses of ticks. Here we showed that Asian longhorned ticks (Haemaphysalis longicornis) produced predominantly 22-nucleotide virus-derived siRNAs (vsiRNAs) in response to severe fever with thrombocytopenia syndrome virus (SFTSV, an emerging tick-borne virus), Nodamura virus (NoV), or Sindbis virus (SINV) acquired by blood feeding. Notably, experimental acquisition of NoV and SINV by intrathoracic injection also initiated viral replication and triggered the production of vsiRNAs in H. longicornis. We demonstrated that a mutant NoV deficient in expressing its viral suppressor of RNAi (VSR) replicated to significantly lower levels than wildtype NoV in H. longicornis, but accumulated to higher levels after knockdown of the tick Dicer2-like protein identified by phylogeny comparison. Moreover, the expression of a panel of known animal VSRs in cis from the genome of SINV drastically enhanced the accumulation of the recombinant viruses. This study establishes a novel model for virus-vector-mouse experiments with longhorned ticks and provides the first in vivo evidence for an antiviral function of the RNAi response in ticks. Interestingly, comparing the accumulation levels of SINV recombinants expressing green fluorescent protein or SFTSV proteins identified the viral non-structural protein as a putative VSR. Elucidating the function of ticks’ antiviral RNAi pathway in vivo is critical to understand the virus-host interaction and the control of tick-borne viral pathogens. Tick-borne diseases (TBDs) are the most common illnesses transmitted by ticks, and the annual number of reported TBD cases continues to increase. The Asian longhorned tick, a vector associated with at least 30 human pathogens, is native to eastern Asia and recently reached the USA as an emerging disease threat. Newly identified tick-transmitted pathogens continue to be reported, raising concerns about how TBDs occur. Interestingly, tick can harbor pathogens without being affected themselves. For viral infections, ticks have their own immune systems that protect them from infection. Meanwhile, tick-borne viruses have evolved to avoid these defenses as they establish themselves within the vector. Here, we show in detail that infecting longhorned ticks with distinct arthropod-borne RNA viruses through two approaches natural blood feeding and injection, all induce the production of vsiRNAs. Dicer2-like homolog plays a role in regulating antiviral RNAi responses as knocking down of this gene enhanced viral replication. Furthermore, we demonstrate that tick antiviral RNAi responses are inhibited through expression heterologous VSR proteins in recombinant SINV. We identify both the virus and tick factors are critical components to understanding TBDs. Importantly, our study introduces a novel, in vivo virus-vector-mouse model system for exploring TBDs in the future.
Collapse
Affiliation(s)
- Yan Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhengwei Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanxin Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Liting Ma
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhi Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Chuang Gao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (JW); (YL)
| | - Yang Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (JW); (YL)
| |
Collapse
|
13
|
Seal S, Dharmarajan G, Khan I. Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm. eLife 2021; 10:e68874. [PMID: 34544548 PMCID: PMC8455132 DOI: 10.7554/elife.68874] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind's insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild.
Collapse
Affiliation(s)
| | - Guha Dharmarajan
- Savannah River Ecology Laboratory, University of GeorgiaAikenUnited States
| | | |
Collapse
|
14
|
Spadar A, Phelan JE, Benavente ED, Campos M, Gomez LF, Mohareb F, Clark TG, Campino S. Flavivirus integrations in Aedes aegypti are limited and highly conserved across samples from different geographic regions unlike integrations in Aedes albopictus. Parasit Vectors 2021; 14:332. [PMID: 34174947 PMCID: PMC8235865 DOI: 10.1186/s13071-021-04828-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
Mosquitoes of the genus Aedes are the main vectors of many viruses, e.g. dengue and Zika, which affect millions of people each year and for which there are limited treatment options. Understanding how Aedes mosquitoes tolerate high viral loads may lead to better disease control strategies. Elucidating endogenous viral elements (EVEs) within vector genomes may give exploitable biological insights. Previous studies have reported the presence of a large number of EVEs in Aedes genomes. Here we investigated if flavivirus EVEs are conserved across populations and different Aedes species by using ~ 500 whole genome sequence libraries from Aedes aegypti and Aedes albopictus, sourced from colonies and field mosquitoes across continents. We found that nearly all flavivirus EVEs in the Ae. aegypti reference genome originate from four separate putative viral integration events, and that they are highly conserved across geographically diverse samples. By contrast, flavivirus EVEs in the Ae. albopictus reference genome originate from up to nine distinct integration events and show low levels of conservation, even within samples from narrow geographical ranges. Our analysis suggests that flaviviruses integrated as long sequences and were subsequently fragmented and shuffled by transposable elements. Given that EVEs of Ae. aegypti and Ae. albopictus belong to different phylogenetic clades and have very differing levels of conservation, they may have different evolutionary origins and potentially different functional roles.
Collapse
Affiliation(s)
- Anton Spadar
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Monica Campos
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Lara Ferrero Gomez
- Unidade de Ciências da Natureza, da Vida e do Ambiente, Universidade Jean Piaget de Cabo Verde, Praia, Cabo Verde
| | - Fady Mohareb
- School of Water, Energy and Environment, Cranfield University, Bedford, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
15
|
McFarlane M, Laureti M, Levée T, Terry S, Kohl A, Pondeville E. Improved transient silencing of gene expression in the mosquito female Aedes aegypti. INSECT MOLECULAR BIOLOGY 2021; 30:355-365. [PMID: 33715239 DOI: 10.1111/imb.12700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Gene silencing using RNA interference (RNAi) has become a widely used genetic technique to study gene function in many organisms. In insects, this technique is often applied through the delivery of dsRNA. In the adult female Aedes aegypti, a main vector of human-infecting arboviruses, efficiency of gene silencing following dsRNA injection varies greatly according to targeted genes. Difficult knockdowns using dsRNA can thus hamper gene function analysis. Here, by analysing silencing of three different genes in female Ae. aegypti (p400, ago2 and E75), we show that gene silencing can indeed be dsRNA sequence dependent but different efficiencies do not correlate with dsRNA length. Our findings suggest that silencing is likely also gene dependent, probably due to gene-specific tissue expression and/or feedback mechanisms. We demonstrate that use of high doses of dsRNA can improve knockdown efficiency, and injection of a transfection reagent along with dsRNA reduces the variability in efficiency between replicates. Finally, we show that gene silencing cannot be achieved using siRNA injection in Ae. aegypti adult females. Overall, this work should help future gene function analyses using RNAi in adult females Ae. aegypti, leading toward a better understanding of physiological and infectious processes.
Collapse
Affiliation(s)
- M McFarlane
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - M Laureti
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - T Levée
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - S Terry
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - A Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - E Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
16
|
Marconcini M, Pischedda E, Houé V, Palatini U, Lozada-Chávez N, Sogliani D, Failloux AB, Bonizzoni M. Profile of Small RNAs, vDNA Forms and Viral Integrations in Late Chikungunya Virus Infection of Aedes albopictus Mosquitoes. Viruses 2021; 13:553. [PMID: 33806250 PMCID: PMC8066115 DOI: 10.3390/v13040553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
The Asian tiger mosquito Aedes albopictus is contributing to the (re)-emergence of Chikungunya virus (CHIKV). To gain insights into the molecular underpinning of viral persistence, which renders a mosquito a life-long vector, we coupled small RNA and whole genome sequencing approaches on carcasses and ovaries of mosquitoes sampled 14 days post CHIKV infection and investigated the profile of small RNAs and the presence of vDNA fragments. Since Aedes genomes harbor nonretroviral Endogenous Viral Elements (nrEVEs) which confers tolerance to cognate viral infections in ovaries, we also tested whether nrEVEs are formed after CHIKV infection. We show that while small interfering (si)RNAs are evenly distributed along the full viral genome, PIWI-interacting (pi)RNAs mostly arise from a ~1000 bp window, from which a unique vDNA fragment is identified. CHIKV infection does not result in the formation of new nrEVEs, but piRNAs derived from existing nrEVEs correlate with differential expression of an endogenous transcript. These results demonstrate that all three RNAi pathways contribute to the homeostasis during the late stage of CHIKV infection, but in different ways, ranging from directly targeting the viral sequence to regulating the expression of mosquito transcripts and expand the role of nrEVEs beyond immunity against cognate viruses.
Collapse
Affiliation(s)
- Michele Marconcini
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Elisa Pischedda
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Vincent Houé
- Arbovirus and Insect Vectors Unit, Department of Virology, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France; (V.H.); (A.-B.F.)
| | - Umberto Palatini
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Nabor Lozada-Chávez
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Davide Sogliani
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Anna-Bella Failloux
- Arbovirus and Insect Vectors Unit, Department of Virology, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France; (V.H.); (A.-B.F.)
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| |
Collapse
|
17
|
Life as a Vector of Dengue Virus: The Antioxidant Strategy of Mosquito Cells to Survive Viral Infection. Antioxidants (Basel) 2021; 10:antiox10030395. [PMID: 33807863 PMCID: PMC8000470 DOI: 10.3390/antiox10030395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue fever is a mosquito-borne viral disease of increasing global importance. The disease has caused heavy burdens due to frequent outbreaks in tropical and subtropical areas of the world. The dengue virus (DENV) is generally transmitted between human hosts via the bite of a mosquito vector, primarily Aedes aegypti and Ae. albopictus as a minor species. It is known that the virus needs to alternately infect mosquito and human cells. DENV-induced cell death is relevant to the pathogenesis in humans as infected cells undergo apoptosis. In contrast, mosquito cells mostly survive the infection; this allows infected mosquitoes to remain healthy enough to serve as an efficient vector in nature. Overexpression of antioxidant genes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutaredoxin (Grx), thioredoxin (Trx), and protein disulfide isomerase (PDI) have been detected in DENV2-infected mosquito cells. Additional antioxidants, including GST, eukaryotic translation initiation factor 5A (eIF5a), and p53 isoform 2 (p53-2), and perhaps some others, are also involved in creating an intracellular environment suitable for cell replication and viral infection. Antiapoptotic effects involving inhibitor of apoptosis (IAP) upregulation and subsequent elevation of caspase-9 and caspase-3 activities also play crucial roles in the ability of mosquito cells to survive DENV infection. This article focused on the effects of intracellular responses in mosquito cells to infection primarily by DENVs. It may provide more information to better understand virus/cell interactions that can possibly elucidate the evolutionary pathway that led to the mosquito becoming a vector.
Collapse
|
18
|
Talyuli OAC, Bottino-Rojas V, Polycarpo CR, Oliveira PL, Paiva-Silva GO. Non-immune Traits Triggered by Blood Intake Impact Vectorial Competence. Front Physiol 2021; 12:638033. [PMID: 33737885 PMCID: PMC7960658 DOI: 10.3389/fphys.2021.638033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-feeding arthropods are considered an enormous public health threat. They are vectors of a plethora of infectious agents that cause potentially fatal diseases like Malaria, Dengue fever, Leishmaniasis, and Lyme disease. These vectors shine due to their own physiological idiosyncrasies, but one biological aspect brings them all together: the requirement of blood intake for development and reproduction. It is through blood-feeding that they acquire pathogens and during blood digestion that they summon a collection of multisystemic events critical for vector competence. The literature is focused on how classical immune pathways (Toll, IMD, and JAK/Stat) are elicited throughout the course of vector infection. Still, they are not the sole determinants of host permissiveness. The dramatic changes that are the hallmark of the insect physiology after a blood meal intake are the landscape where a successful infection takes place. Dominant processes that occur in response to a blood meal are not canonical immunological traits yet are critical in establishing vector competence. These include hormonal circuitries and reproductive physiology, midgut permeability barriers, midgut homeostasis, energy metabolism, and proteolytic activity. On the other hand, the parasites themselves have a role in the outcome of these blood triggered physiological events, consistently using them in their favor. Here, to enlighten the knowledge on vector-pathogen interaction beyond the immune pathways, we will explore different aspects of the vector physiology, discussing how they give support to these long-dated host-parasite relationships.
Collapse
Affiliation(s)
- Octavio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Ma Q, Srivastav SP, Gamez S, Dayama G, Feitosa-Suntheimer F, Patterson EI, Johnson RM, Matson EM, Gold AS, Brackney DE, Connor JH, Colpitts TM, Hughes GL, Rasgon JL, Nolan T, Akbari OS, Lau NC. A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons. Genome Res 2021; 31:512-528. [PMID: 33419731 PMCID: PMC7919454 DOI: 10.1101/gr.265157.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Although mosquitoes are major transmission vectors for pathogenic arboviruses, viral infection has little impact on mosquito health. This immunity is caused in part by mosquito RNA interference (RNAi) pathways that generate antiviral small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). RNAi also maintains genome integrity by potently repressing mosquito transposon activity in the germline and soma. However, viral and transposon small RNA regulatory pathways have not been systematically examined together in mosquitoes. Therefore, we developed an integrated mosquito small RNA genomics (MSRG) resource that analyzes the transposon and virus small RNA profiles in mosquito cell cultures and somatic and gonadal tissues across four medically important mosquito species. Our resource captures both somatic and gonadal small RNA expression profiles within mosquito cell cultures, and we report the evolutionary dynamics of a novel Mosquito-Conserved piRNA Cluster Locus (MCpiRCL) made up of satellite DNA repeats. In the larger culicine mosquito genomes we detected highly regular periodicity in piRNA biogenesis patterns coinciding with the expansion of Piwi pathway genes. Finally, our resource enables detection of cross talk between piRNA and siRNA populations in mosquito cells during a response to virus infection. The MSRG resource will aid efforts to dissect and combat the capacity of mosquitoes to tolerate and spread arboviruses.
Collapse
Affiliation(s)
- Qicheng Ma
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Satyam P Srivastav
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Gargi Dayama
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Fabiana Feitosa-Suntheimer
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Edward I Patterson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Rebecca M Johnson
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Erik M Matson
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Alexander S Gold
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Douglas E Brackney
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - John H Connor
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Tonya M Colpitts
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Jason L Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tony Nolan
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Nelson C Lau
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Boston University Genome Science Institute and the National Emerging Infectious Disease Laboratory, Boston, Massachusetts 02118, USA
| |
Collapse
|
20
|
Aubry F, Dabo S, Manet C, Filipović I, Rose NH, Miot EF, Martynow D, Baidaliuk A, Merkling SH, Dickson LB, Crist AB, Anyango VO, Romero-Vivas CM, Vega-Rúa A, Dusfour I, Jiolle D, Paupy C, Mayanja MN, Lutwama JJ, Kohl A, Duong V, Ponlawat A, Sylla M, Akorli J, Otoo S, Lutomiah J, Sang R, Mutebi JP, Cao-Lormeau VM, Jarman RG, Diagne CT, Faye O, Faye O, Sall AA, McBride CS, Montagutelli X, Rašić G, Lambrechts L. Enhanced Zika virus susceptibility of globally invasive Aedes aegypti populations. Science 2021; 370:991-996. [PMID: 33214283 DOI: 10.1126/science.abd3663] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
The drivers and patterns of zoonotic virus emergence in the human population are poorly understood. The mosquito Aedes aegypti is a major arbovirus vector native to Africa that invaded most of the world's tropical belt over the past four centuries, after the evolution of a "domestic" form that specialized in biting humans and breeding in water storage containers. Here, we show that human specialization and subsequent spread of A. aegypti out of Africa were accompanied by an increase in its intrinsic ability to acquire and transmit the emerging human pathogen Zika virus. Thus, the recent evolution and global expansion of A. aegypti promoted arbovirus emergence not solely through increased vector-host contact but also as a result of enhanced vector susceptibility.
Collapse
Affiliation(s)
- Fabien Aubry
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Stéphanie Dabo
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Caroline Manet
- Mouse Genetics Laboratory, Institut Pasteur, Paris, France
| | - Igor Filipović
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Noah H Rose
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Elliott F Miot
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Daria Martynow
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Artem Baidaliuk
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Sarah H Merkling
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Laura B Dickson
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Anna B Crist
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Victor O Anyango
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Claudia M Romero-Vivas
- Laboratorio de Enfermedades Tropicales, Departamento de Medicina, Fundación Universidad del Norte, Barranquilla, Colombia
| | - Anubis Vega-Rúa
- Institut Pasteur of Guadeloupe, Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Morne Jolivière, Guadeloupe, France
| | - Isabelle Dusfour
- Vector Control and Adaptation, Institut Pasteur de la Guyane, Vectopole Amazonien Emile Abonnenc, Cayenne, French Guiana, France
| | - Davy Jiolle
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France.,Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France.,Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Martin N Mayanja
- Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Julius J Lutwama
- Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Veasna Duong
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Alongkot Ponlawat
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Massamba Sylla
- Unité d'Entomologie, de Bactériologie, de Virologie, Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Otoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joel Lutomiah
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Rosemary Sang
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - John-Paul Mutebi
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | | | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Cheikh T Diagne
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Dakar, Senegal
| | - Oumar Faye
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Dakar, Senegal
| | - Ousmane Faye
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Dakar, Senegal
| | - Amadou A Sall
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, Dakar, Senegal
| | - Carolyn S McBride
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Gordana Rašić
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.
| |
Collapse
|
21
|
Infection of Mammals and Mosquitoes by Alphaviruses: Involvement of Cell Death. Cells 2020; 9:cells9122612. [PMID: 33291372 PMCID: PMC7762023 DOI: 10.3390/cells9122612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Alphaviruses, such as the chikungunya virus, are emerging and re-emerging viruses that pose a global public health threat. They are transmitted by blood-feeding arthropods, mainly mosquitoes, to humans and animals. Although alphaviruses cause debilitating diseases in mammalian hosts, it appears that they have no pathological effect on the mosquito vector. Alphavirus/host interactions are increasingly studied at cellular and molecular levels. While it seems clear that apoptosis plays a key role in some human pathologies, the role of cell death in determining the outcome of infections in mosquitoes remains to be fully understood. Here, we review the current knowledge on alphavirus-induced regulated cell death in hosts and vectors and the possible role they play in determining tolerance or resistance of mosquitoes.
Collapse
|
22
|
Laureti M, Paradkar PN, Fazakerley JK, Rodriguez-Andres J. Superinfection Exclusion in Mosquitoes and Its Potential as an Arbovirus Control Strategy. Viruses 2020; 12:v12111259. [PMID: 33167513 PMCID: PMC7694488 DOI: 10.3390/v12111259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
The continuing emergence of arbovirus disease outbreaks around the world, despite the use of vector control strategies, warrants the development of new strategies to reduce arbovirus transmission. Superinfection exclusion, a phenomenon whereby a primary virus infection prevents the replication of a second closely related virus, has potential to control arbovirus disease emergence and outbreaks. This phenomenon has been observed for many years in plants, insects and mammalian cells. In this review, we discuss the significance of identifying novel vector control strategies, summarize studies exploring arbovirus superinfection exclusion and consider the potential for this phenomenon to be the basis for novel arbovirus control strategies.
Collapse
Affiliation(s)
- Mathilde Laureti
- Peter Doherty Institute for Infection and Immunity and Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3000 Melbourne, Australia;
- CSIRO Health & Biosecurity, Australian Centre for Diseases Preparedness, VIC 3220 Geelong, Australia;
- Correspondence: (M.L.); (J.R.-A.)
| | - Prasad N. Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Diseases Preparedness, VIC 3220 Geelong, Australia;
| | - John K. Fazakerley
- Peter Doherty Institute for Infection and Immunity and Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3000 Melbourne, Australia;
| | - Julio Rodriguez-Andres
- Peter Doherty Institute for Infection and Immunity and Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3000 Melbourne, Australia;
- Correspondence: (M.L.); (J.R.-A.)
| |
Collapse
|
23
|
Elrefaey AME, Abdelnabi R, Rosales Rosas AL, Wang L, Basu S, Delang L. Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses 2020; 12:E964. [PMID: 32878245 PMCID: PMC7552076 DOI: 10.3390/v12090964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses contribute significantly to global mortality and morbidity in humans and animals. These viruses are mainly transmitted between susceptible vertebrate hosts by hematophagous arthropod vectors, especially mosquitoes. Recently, there has been substantial attention for a novel group of viruses, referred to as insect-specific viruses (ISVs) which are exclusively maintained in mosquito populations. Recent discoveries of novel insect-specific viruses over the past years generated a great interest not only in their potential use as vaccine and diagnostic platforms but also as novel biological control agents due to their ability to modulate arbovirus transmission. While arboviruses infect both vertebrate and invertebrate hosts, the replication of insect-specific viruses is restricted in vertebrates at multiple stages of virus replication. The vertebrate restriction factors include the genetic elements of ISVs (structural and non-structural genes and the untranslated terminal regions), vertebrate host factors (agonists and antagonists), and the temperature-dependent microenvironment. A better understanding of these bottlenecks is thus warranted. In this review, we explore these factors and the complex interplay between ISVs and their hosts contributing to this host restriction phenomenon.
Collapse
Affiliation(s)
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Ana Lucia Rosales Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Sanjay Basu
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK;
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| |
Collapse
|
24
|
Suzuki Y, Baidaliuk A, Miesen P, Frangeul L, Crist AB, Merkling SH, Fontaine A, Lequime S, Moltini-Conclois I, Blanc H, van Rij RP, Lambrechts L, Saleh MC. Non-retroviral Endogenous Viral Element Limits Cognate Virus Replication in Aedes aegypti Ovaries. Curr Biol 2020; 30:3495-3506.e6. [PMID: 32679098 PMCID: PMC7522710 DOI: 10.1016/j.cub.2020.06.057] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022]
Abstract
Endogenous viral elements (EVEs) are viral sequences integrated in host genomes. A large number of non-retroviral EVEs was recently detected in Aedes mosquito genomes, leading to the hypothesis that mosquito EVEs may control exogenous infections by closely related viruses. Here, we experimentally investigated the role of an EVE naturally found in Aedes aegypti populations and derived from the widespread insect-specific virus, cell-fusing agent virus (CFAV). Using CRISPR-Cas9 genome editing, we created an Ae. aegypti line lacking the CFAV EVE. Absence of the EVE resulted in increased CFAV replication in ovaries, possibly modulating vertical transmission of the virus. Viral replication was controlled by targeting of viral RNA by EVE-derived P-element-induced wimpy testis-interacting RNAs (piRNAs). Our results provide evidence that antiviral piRNAs are produced in the presence of a naturally occurring EVE and its cognate virus, demonstrating a functional link between non-retroviral EVEs and antiviral immunity in a natural insect-virus interaction. Aedes aegypti harbors EVEs with high sequence identity to a contemporary RNA virus EVE-derived piRNAs target genomic viral RNA in infected mosquitoes Ablation of EVE results in increased viral replication in Aedes aegypti ovaries piRNA pathway fulfills antiviral function in presence of EVE and cognate virus
Collapse
Affiliation(s)
- Yasutsugu Suzuki
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Artem Baidaliuk
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France; Collège Doctoral, Sorbonne Université, 75005 Paris, France
| | - Pascal Miesen
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France; Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lionel Frangeul
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Anna B Crist
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Sarah H Merkling
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Albin Fontaine
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Sebastian Lequime
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | | | - Hervé Blanc
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France.
| |
Collapse
|
25
|
Yen PS, Failloux AB. A Review: Wolbachia-Based Population Replacement for Mosquito Control Shares Common Points with Genetically Modified Control Approaches. Pathogens 2020; 9:E404. [PMID: 32456036 PMCID: PMC7281599 DOI: 10.3390/pathogens9050404] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
The growing expansion of mosquito vectors has made mosquito-borne arboviral diseases a global threat to public health, and the lack of licensed vaccines and treatments highlight the urgent need for efficient mosquito vector control. Compared to genetically modified control strategies, the intracellular bacterium Wolbachia, endowing a pathogen-blocking phenotype, is considered an environmentally friendly strategy to replace the target population for controlling arboviral diseases. However, the incomplete knowledge regarding the pathogen-blocking mechanism weakens the reliability of a Wolbachia-based population replacement strategy. Wolbachia infections are also vulnerable to environmental factors, temperature, and host diet, affecting their densities in mosquitoes and thus the virus-blocking phenotype. Here, we review the properties of the Wolbachia strategy as an approach to control mosquito populations in comparison with genetically modified control methods. Both strategies tend to limit arbovirus infections but increase the risk of selecting arbovirus escape mutants, rendering these strategies less reliable.
Collapse
Affiliation(s)
- Pei-Shi Yen
- Unit Arboviruses and Insect Vectors, Department of Virology, Institut Pasteur, F-75724 Paris, France
| | - Anna-Bella Failloux
- Unit Arboviruses and Insect Vectors, Department of Virology, Institut Pasteur, F-75724 Paris, France
| |
Collapse
|
26
|
Vargas V, Cime-Castillo J, Lanz-Mendoza H. Immune priming with inactive dengue virus during the larval stage of Aedes aegypti protects against the infection in adult mosquitoes. Sci Rep 2020; 10:6723. [PMID: 32317699 PMCID: PMC7174395 DOI: 10.1038/s41598-020-63402-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Several studies have observed that the immune response in insects can be conserved, a phenomenon known as immune priming, which has been mostly tested in adult stages. However, it is unknown if induction of immune priming in larval stages protects against dengue virus (DENV) infections in adult mosquitoes. In this work, we primed larval instar 3rd of Aedes aegypti with inactive dengue virus, producing adult mosquitoes with i) an enhanced antiviral-immune response; ii) a reduction in the load and replication of RNA of dengue virus (DENV); iii) a decline in viral infective particles production. Adult mosquitoes previously primed during larval stages over-expressed RNA interference (RNAi) markers Argonaute-2 (AGO-2) and Dicer-2 (DCR-2). We also observed inter-individual variations of DENV infection in adult mosquitoes, indicating a heterogeneous response to DENV infection in the same mosquito strain. However, mosquitoes primed during larval stages appear to control the infection, reducing the viral load. The over-expression of interferon-like factors (VAGO) and AGO-2 in the pupa stage suggests a fast activation of antiviral mechanisms after immune priming in larvae, creating a condition in which adult mosquitoes are resistant to the pathogen in the posterior exposure.
Collapse
Affiliation(s)
- Valeria Vargas
- National Institute of Public Health, Center for Research on Infectious Diseases, Santa María Ahuacatitlán, Cuernavaca, 62100, Morelos, Mexico.,Postgraduate in Biological Sciences, National Autonomous University of Mexico, Av. Ciudad Universitaria 3000, Coyoacán, C.P. 04510, Mexico
| | - Jorge Cime-Castillo
- National Institute of Public Health, Center for Research on Infectious Diseases, Santa María Ahuacatitlán, Cuernavaca, 62100, Morelos, Mexico
| | - Humberto Lanz-Mendoza
- National Institute of Public Health, Center for Research on Infectious Diseases, Santa María Ahuacatitlán, Cuernavaca, 62100, Morelos, Mexico.
| |
Collapse
|
27
|
Differential Small RNA Responses against Co-Infecting Insect-Specific Viruses in Aedes albopictus Mosquitoes. Viruses 2020; 12:v12040468. [PMID: 32326240 PMCID: PMC7232154 DOI: 10.3390/v12040468] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022] Open
Abstract
The mosquito antiviral response has mainly been studied in the context of arthropod-borne virus (arbovirus) infection in female mosquitoes. However, in nature, both female and male mosquitoes are frequently infected with insect-specific viruses (ISVs). ISVs are capable of infecting the reproductive organs of both sexes and are primarily maintained by vertical transmission. Since the RNA interference (RNAi)-mediated antiviral response plays an important antiviral role in mosquitoes, ISVs constitute a relevant model to study sex-dependent antiviral responses. Using a naturally generated viral stock containing three distinct ISVs, Aedes flavivirus (AEFV), Menghai rhabdovirus (MERV), and Shinobi tetra virus (SHTV), we infected adult Aedes albopictus females and males and generated small RNA libraries from ovaries, testes, and the remainder of the body. Overall, both female and male mosquitoes showed unique small RNA profiles to each co-infecting ISV regardless of the sex or tissue tested. While all three ISVs generated virus-derived siRNAs, only MERV generated virus-derived piRNAs. We also studied the expression of PIWI genes in reproductive tissues and carcasses. In contrast to Piwi5-9, Piwi1-4 were abundantly expressed in ovaries and testes, suggesting that Piwi5-9 are involved in exogenous viral piRNA production. Together, our results show that ISV-infected Aedes albopictus produce viral small RNAs in a virus-specific manner and that male mosquitoes mount a similar small RNA-mediated antiviral response to that of females.
Collapse
|
28
|
Oliveira JH, Bahia AC, Vale PF. How are arbovirus vectors able to tolerate infection? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103514. [PMID: 31585195 DOI: 10.1016/j.dci.2019.103514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
One of the defining features of mosquito vectors of arboviruses such as Dengue and Zika is their ability to tolerate high levels of virus proliferation without suffering significant pathology. This adaptation is central to vector competence and disease spread. The molecular mechanisms, pathways, cellular and metabolic adaptations responsible for mosquito disease tolerance are still largely unknown and may represent effective ways to control mosquito populations and prevent arboviral diseases. In this review article, we describe the key link between disease tolerance and pathogen transmission, and how vector control methods may benefit by focusing efforts on dissecting the mechanisms underlying mosquito tolerance of arboviral infections. We briefly review recent work investigating tolerance mechanisms in other insects, describe the state of the art regarding the mechanisms of disease tolerance in mosquitos, and highlight the emerging role of gut microbiota in mosquito immunity and disease tolerance.
Collapse
Affiliation(s)
- José Henrique Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| | - Ana Cristina Bahia
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|