1
|
Tsopelas F, Stergiopoulos C, Danias P, Tsantili-Kakoulidou A. Biomimetic separations in chemistry and life sciences. Mikrochim Acta 2025; 192:133. [PMID: 39904888 PMCID: PMC11794418 DOI: 10.1007/s00604-025-06980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
Since Otto Schmitt introduced the term "biomimetics" in 1957, the imitation of biological systems to develop separation methods and simulate biological processes has seen continuous growth, particularly over the past five decades. The biomimetic approach relies on the use of specific ligands-biospecific, biomimetic, or synthetic-which target biomolecules, such as proteins, antibodies, nucleic acids, enzymes, drugs, pesticides, and other bioactive analytes. This review highlights advances in biomimetic separations, focusing on biomimetic liquid chromatography (including immobilized artificial membrane chromatography, cell membrane chromatography, biomimetic affinity chromatography, weak affinity chromatography, micellar liquid chromatography, immobilized liposome chromatography, and liposome electrokinetic capillary chromatography) for the complex separation and purification of biomolecules and other important chemical compounds. It also explores their application in studying drug-receptor interactions, screening chemical permeability, absorption, distribution, toxicity, as well as predicting environmental risks. Additionally, this review discusses the application of biomimetic magnetic nanoparticles, which leverage biological membranes and proteins for drug discovery, protein purification, and diagnostics.
Collapse
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780, Zografou Athens, Greece.
| | - Chrysanthos Stergiopoulos
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780, Zografou Athens, Greece
| | - Panagiotis Danias
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780, Zografou Athens, Greece
| | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou Athens, Greece
| |
Collapse
|
2
|
Shao SM, Ji X, Wang X, Liu RZ, Cai YR, Lin X, Zeng ZJ, Chen L, Yang L, Yang H, Gao W. Two-dimensional cell membrane chromatography guided screening of myocardial protective compounds from Yindan Xinnaotong soft capsule. Chin Med 2025; 20:5. [PMID: 39755669 DOI: 10.1186/s13020-024-01046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Cell membrane chromatography (CMC) is a biochromatography with a dual function of recognition and separation, offering a distinct advantage in screening bioactive compounds from Chinese medicines (CMs). Yindan Xinnaotong soft capsule (YD), a CM formulation, has been widely utilized in the treatment of cardiovascular disease. However, a comprehensive mapping of the myocardial protective active compounds remains elusive. PURPOSE To establish a stable and efficient 2D H9c2/CMC-RPLC-MS system, and to utilize it for screening the active compounds of YD that are associated with myocardial protection. METHODS An imidazole-modified silica gel exhibiting high modification efficiency and protein binding capacity was synthesized to enhance the longevity and efficiency of H9c2/CMC. Subsequently, the potentially bioactive compounds of YD were screened by integrating the 2D H9c2/CMC-RPLC-MS system with a high-content component knockout strategy. Additionally, an RNA-seq approach was employed to predict the targets and mechanisms of YD and the active compounds for myocardial protection. RESULTS The developed imidazole-modified H9c2/CMC exhibits remarkable selectivity, specificity, stability, and reproducibility. Following three rounds of screening, a total of 24 potential myocardial protective compounds were identified, comprising 8 flavonoids, 8 phenolic acids, 4 saponins, and 4 tanshinones. Bioinformatic analysis utilizing RNA-seq indicated that the FOXO signaling pathway, with FOXO3 identified as a key target, plays a significant role in the cardioprotective effects of YD. Furthermore, all 24 screened compounds exhibit strong binding affinities with FOXO3 evaluated by molecular docking. CONCLUSION A highly stable and efficient 2D imidazole-modified H9c2/CMC-RPLC-MS system was developed, allowing for the screening of potentially active compounds from YD. Through the integration of the bioinformatic analysis, the pharmacodynamic foundation of YD for myocardial protection has been comprehensively characterized.
Collapse
Affiliation(s)
- Si-Min Shao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Xuan Ji
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Xing Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Run-Zhou Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Yu-Ru Cai
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Xiaobing Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Ze-Jie Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Ling Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.
| |
Collapse
|
3
|
Lu S, Fang C. Isosakuranetin inhibits subchondral osteoclastogenesis for attenuating osteoarthritis via suppressing NF-κB/CXCL2 axis. Int Immunopharmacol 2024; 143:113321. [PMID: 39388890 DOI: 10.1016/j.intimp.2024.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
As the most predominant form of arthritis, osteoarthritis (OA) is featured with irreversible progress and involvement of the whole joint. Since OA onset, abnormal mechanical load initiates excessive osteoclastogenesis, evolving a rapid turnover of subchondral bone, cyst creation, synovitis, cartilage degradation, and ultimately resulting in joint failure. Additionally, aberrant vascularization and nociceptive pain are invoked by osteoclast-induced angiogenesis and sensory innervation in the subchondral bone. Rhizoma anemarrhenae (Zhimu) has been extensively demonstrated to show multiple pharmacological effects including anti-inflammation, anti-aging, and immunomodulation. Herein, Broussonin a (BRA), Markogein (MAN), and Isosakuranetin (ISN) derived from Rhizoma anemarrhenae, were initially discovered for their affinity with Bone marrow mononuclear cell (BMMC) membranes using the Cell membrane chromatography/Time of flight mass spectrometry (CMC/TOFMS) method, while only ISN exerted a significant inhibitory effect on RANKL-induced osteoclastogenesis in BMMC in vitro. Intriguingly, we disclosed that ISN blunted the overactivation of Tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts in subchondral bone in OA mice, as indicated by enhanced bone volume/total volume (BV/TV), trabecular number (Tb.N), and trabeculae thickness (Tb.Th), as well as diminished trabecular pattern factor (Tb.pf). Treatment with ISN also impaired aberrant angiogenesis and nociceptive reaction in the subchondral bone marrow. Moreover, ISN hindered the loss of articular cartilage proteoglycan and lowered the Osteoarthritis Research Society International (OARSI) grade, boosting the expression amount of Aggrecan (ACAN) and Collagen II (COL II) positive cells while reducing Matrix metalloproteinase 13 (MMP-13) positive cells. For mechanisms, We verified that ISN hampered subchondral osteoclastogenesis by blocking nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling and C-X-C Motif Chemokine Ligand 2 (CXCL2) stimulation. Taken together, we reveal that ISN impedes the progression of OA by preventing hyperactivated subchondral osteoclastogenesis via suppressing the NF-κB/CXCL2 axis.
Collapse
Affiliation(s)
- Shuai Lu
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Chao Fang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
4
|
Shan Y, Lu J, Qian H, Xia Z, Mo X, An M, Yang W, Wang S, Che D, Wang C, He H. Immobilized protein strategies based on cell membrane chromatography and its application in discovering active and toxic substances in traditional Chinese medicine. Pharmacol Res 2024; 210:107492. [PMID: 39491633 DOI: 10.1016/j.phrs.2024.107492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/13/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Traditional Chinese medicine (TCM) contributes significantly to human health. Owing to the complexity of the ingredients in TCM, it is necessary to conduct basic research on effective substances and identify toxic substances to control the safety of medication. Cell membrane chromatography (CMC) is an important method for identifying target components in complex systems. The cell membrane stationary phase (CMSP) is the core component and key factor in determining the effectiveness of CMC. This review summarizes the development of CMSP with different membrane protein immobilization strategies and the application of CMC in the discovery of active and toxic substances in TCM, with the aim of providing an effective means for the discovery of active ingredients and quality control of TCM.
Collapse
Affiliation(s)
- Yi Shan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jiayu Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Hua Qian
- Department of Cardiology, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zhaomin Xia
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiaoxue Mo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Meidi An
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Wen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Siqi Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Delu Che
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University Second Afffliated Hospital, Xi'an 710000, PR China
| | - Cheng Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Huaizhen He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
5
|
Jiang Y, Guo N, Zhang Q, Xu X, Qiang M, Lv Y. MrgX2-targeted ligand screening from Artemisia capillaris Thunb. extract and receptor-ligand interaction analysis based on MrgX2-HALO-tag/CMC. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124252. [PMID: 39067315 DOI: 10.1016/j.jchromb.2024.124252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Artemisia capillaris Thunb. (A. capillaris) is a well-known traditional Chinese herbal medicine with a wide range of pharmacological effects, such as soothing the liver and gallbladder, heat clearance, and detoxifying. Hence, its extract is commonly added to various traditional Chinese medicine formulas. Traditional Chinese medicine injection (TCMI) is a mature pharmaceutical dosage form developed using TCM theory combined with modern science and technology. Notably, allergic reactions, especially pseudo‑allergic reactions (PARs), greatly limited the use of these injections. Therefore, screening pseudo‑allergic components in A. capillaris extract is clinically significant. In the present study, we proposed a two-dimensional screening and identification system based on mas-related G protein-coupled receptor X2-HALO-tag/cell membrane chromatography (MrgX2-HALO-tag/CMC) high performance liquid chromatography mass spectrometry (HPLC-MS); seven potential active components were screened from 75 % ethanol extract of A. capillaris: NCA, CA, CCA, 1,3-diCQA, ICA-B, ICA-A, and ICA-C. The receptor-ligand interactions between these seven compounds and MrgX2 protein were analyzed using frontal analysis and molecular docking technology. Furthermore, a mast cell degranulation-related assay was used to assess the pseudo‑allergic activity of these compounds. The screened compounds can serve as ligands of MrgX2, and this study provides a research basis for pseudo‑allergic reactions caused by TCMIs containing A. capillaris.
Collapse
Affiliation(s)
- Yuhan Jiang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China
| | - Na Guo
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China
| | - Quan Zhang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China
| | - Xiaochan Xu
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
| | - Mengyang Qiang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China.
| |
Collapse
|
6
|
Jia Q, Lv Y, Miao C, Feng J, Ding Y, Zhou T, Han S, He L. A new MAS-related G protein-coupled receptor X2 cell membrane chromatography analysis model based on HALO-tag technology and its applications. Talanta 2024; 268:125317. [PMID: 37879202 DOI: 10.1016/j.talanta.2023.125317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/04/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
Cell membrane chromatography (CMC) is an effective method for studying receptors with multiple transmembrane structure such as MAS-related G protein-coupled receptor X2 (MrgX2). CMC relies on the maintenance of the complete biological structure of a membrane receptor; however, it needs to be further improved to obtain a more convenient and stable CMC model. In the present study, the haloalkane dehalogenase protein tag (HALO-tag) technology was used to construct a new MrgX2/CMC model. The fusion receptors of MrgX2 with HALO-tag at the C terminus were expressed in HEK293 cells. The silica gel was modified with a substrate of HALO-tag (chloroalkanes) via one-step acylation for the rapid capture of fusion receptors. The new CMC model (MrgX2-HALO-tag/CMC model) was not only quicker to prepare but also more stable and had a longer lifespan than a previous MrgX2-SNAP-tag/CMC model. In combination with the high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) system, the MrgX2-HALO-tag/CMC model was used to screen and identify bioactive components in traditional Chinese medicine. Using this combination, sanggenon C and morusin were identified from Mori Cortex as anti-pseudo-allergic components. The MrgX2-HALO-tag/CMC model alone was also applied to analyze ligand-receptor interaction. The affinity order of four ligands to MrgX2 was as follows: desipramine < imipramine < amitriptyline < clomipramine. This was consistent with the results obtained using the MrgX2-SNAP-tag/CMC model. The MrgX2-HALO-tag/CMC model provides ideas and application prospects for the immobilization of cell membrane that contains receptors with more transmembrane structures.
Collapse
Affiliation(s)
- Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Chenyang Miao
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Jingting Feng
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Yifan Ding
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Tongpei Zhou
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China.
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China.
| |
Collapse
|
7
|
Zhang H, Wang J, Wang C. Multi-target bioactive compound screening from the infructescence of Platycarya strobilacea Sieb. et Zucc. by affinity chromatography using immobilized β 2 -adrenoceptor and muscarinic-3 acetylcholine receptor as the stationary phase. J Sep Sci 2023; 46:e2300129. [PMID: 37339788 DOI: 10.1002/jssc.202300129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
As a main source for the recognition and identification of lead compounds, traditional Chinese medicine plays a pivotal role in preventing diseases for years. However, screening bioactive compounds from traditional Chinese medicine remains challenging because of the complexity of the systems and the occurrence of the synergic effect of the compounds. The infructescence of Platycarya strobilacea Sieb. et Zucc is prescribed for allergic rhinitis treatment with unknown bioactive compounds and unclear mechanisms. Herein, we immobilized the β2 -adrenoceptor and muscarine-3 acetylcholine receptor onto the silica gel surface to prepare the stationary phase in a covalent bond through one step. The feasibility of the columns was investigated by the chromatographic method. Ellagic acid and catechin were identified as the bioactive compounds targeting the receptors. The binding constants of ellagic acid were calculated to be (1.56 ± 0.23)×107 M-1 for muscarine-3 acetylcholine receptor and (2.93 ± 0.15)×107 M-1 for β2 -adrenoceptor by frontal analysis. While catechin can bind with muscarine-3 acetylcholine receptor with an affinity of (3.21 ± 0.05)×105 M-1 . Hydrogen bonds and van der Waals' force were the main driving forces for the two compounds with the receptors. The established method provides an alternative for multi-target bioactive compound screening in complex matrices.
Collapse
Affiliation(s)
- HaoSen Zhang
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an, China
| | - Chaozhan Wang
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| |
Collapse
|
8
|
Huang H, Dai Y, Zhang Y, Li Y, Ye H, Guo D, Lu Q, Cai X. System to screen and purify active ingredients from herbal medicines using hydrogel-modified human umbilical vein endothelial cell membrane chromatography coupled with semi-preparative high-performance liquid chromatography-offline-high-performance liquid chromatography-mass spectrometry. J Sep Sci 2023:e2201010. [PMID: 37192526 DOI: 10.1002/jssc.202201010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Analytical screening and validation systems based on a combination of cell membrane chromatography and two-dimensional chromatography-tandem mass spectrometry are incapable of providing prepared samples containing the active ingredients found in traditional Chinese medicine; therefore, these samples cannot be directly used in subsequent studies. In this study, a semi-preparative cell membrane chromatography column was developed using a hydrogel-modified carrier and human umbilical vein endothelial cells to optimize prepared conditions, such as hydrogel polymerization, cell fragmentation, and cell membrane volume. This increased the binding ratio of membrane protein and carrier to 15.79 mg/g. The column was systematically evaluated using multitarget tyrosine kinase inhibitors that displayed good specificity and reproducibility. Subsequently, using the column coupled with a semi-preparative high-performance liquid chromatography-offline-high-performance liquid chromatography-mass spectrometry system, 15 active ingredients were screened and purified from Indigo naturalis, and five main components were identified: l-lysine, oxyresveratrol, tryptanthrin, isorhamnetin, and indirubin. Furthermore, the pharmacological effects of the ingredients were confirmed using cell proliferation and apoptosis assays. Results revealed potent proliferation-inhibiting and apoptosis-promoting abilities on human chronic myelogenous leukemic cells and human promyelocytic leukemic cells (p < 0.001). Overall, the system presented screening and purification functions that could be used to prepare I. naturalis samples acting on the epidermal growth factor receptor and vascular endothelial cell growth factor.
Collapse
Affiliation(s)
- Hui Huang
- Technical Assistance Center, Fu Jian Health College, Fuzhou, P. R. China
| | - Yabin Dai
- Technical Assistance Center, Fu Jian Health College, Fuzhou, P. R. China
| | - Yuefen Zhang
- Technical Assistance Center, Fu Jian Health College, Fuzhou, P. R. China
| | - Yongning Li
- School of Pharmacy, Fu Jian Health College, Fuzhou, P. R. China
| | - Huazhen Ye
- School of Pharmacy, Fu Jian Health College, Fuzhou, P. R. China
| | - Dan Guo
- Technical Assistance Center, Fu Jian Health College, Fuzhou, P. R. China
| | - Qiaomei Lu
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou University, Fuzhou, P. R. China
| | - Xiaohua Cai
- Technical Assistance Center, Fu Jian Health College, Fuzhou, P. R. China
- School of Pharmacy, Fu Jian Health College, Fuzhou, P. R. China
| |
Collapse
|
9
|
Hu L, Luo J, Wen G, Sun L, Liu W, Hu H, Li J, Wang L, Su W, Lin L. Identification of the active compounds in the Yi-Fei-San-Jie formula using a comprehensive strategy based on cell extraction/UPLC-MS/MS, network pharmacology, and molecular biology techniques. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154843. [PMID: 37149966 DOI: 10.1016/j.phymed.2023.154843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Chinese herbal formulae has multiple active constituents and targets, and the good clinical response is encouraging more scientists to explore the bio-active ingredients in such complex systems. Yi-Fei-San-Jie formula (YFSJF) is commonly used to treat patients with lung cancer in South China; however, its bio-active ingredients remain unknown. PURPOSE We investigated the bio-active ingredients of the YFSJF using a novel comprehensive strategy. METHODS A549 cell extraction coupled with ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS) was used for the screening of potential bio-active ingredients. Network pharmacology approach and molecular dynamics simulation were performed for the screening of targets. Surface plasmon resonance (SPR) assay and molecular biology techniques were used to verify the targets. RESULTS Nine A549 cell membrane-binding compounds were identified through cell extraction/UPLC-MS/MS. Five compounds, namely ginsenoside Ro, ginsenoside Rb1, ginsenoside Rc, peimisine, and peimine were cytotoxic to A549 cells, and they were considered the bio-active ingredients of the YFSJF in vitro. Network pharmacology analysis revealed that TGFBR2 is the key target and the TGFβ pathway is the key pathway targeted by YFSJF in non-small cell lung cancer. Peimisine showed an affinity to TGFBR2 using molecular docking and dynamic stimulation, which was confirmed using surface plasmon resonance spectroscopy. The molecular biology-based analysis further confirmed that peimisine targets TGFBR2 and can reverse A549 epithelial-mesenchymal transition by inhibiting the TGFβ pathway. CONCLUSION Taken together, cell extraction/UPLC-MS/MS, network pharmacology, and molecular biology-based analysis comprise a feasible strategy to explore active ingredients in YFSJF.
Collapse
Affiliation(s)
- Leihao Hu
- School of the First Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510402, China
| | - Jiamin Luo
- School of the First Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Guiqing Wen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lingling Sun
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510402, China
| | - Wei Liu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hao Hu
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510402, China
| | - Jing Li
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410000, China
| | - Lisheng Wang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Lizhu Lin
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510402, China.
| |
Collapse
|
10
|
Skullcapflavone II, a novel NQO1 inhibitor, alleviates aristolochic acid I-induced liver and kidney injury in mice. Acta Pharmacol Sin 2023:10.1038/s41401-023-01052-3. [PMID: 36697978 PMCID: PMC9876410 DOI: 10.1038/s41401-023-01052-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/08/2023] [Indexed: 01/26/2023] Open
Abstract
Aristolochic acid I (AAI) is a well established nephrotoxin and human carcinogen. Cytosolic NAD(P)H quinone oxidoreductase 1 (NQO1) plays an important role in the nitro reduction of aristolochic acids, leading to production of aristoloactam and AA-DNA adduct. Application of a potent NQO1 inhibitor dicoumarol is limited by its life-threatening side effect as an anticoagulant and the subsequent hemorrhagic complications. As traditional medicines containing AAI remain available in the market, novel NQO1 inhibitors are urgently needed to attenuate the toxicity of AAI exposure. In this study, we employed comprehensive 2D NQO1 biochromatography to screen candidate compounds that could bind with NQO1 protein. Four compounds, i.e., skullcapflavone II (SFII), oroxylin A, wogonin and tectochrysin were screened out from Scutellaria baicalensis. Among them, SFII was the most promising NQO1 inhibitor with a binding affinity (KD = 4.198 μmol/L) and inhibitory activity (IC50 = 2.87 μmol/L). In human normal liver cell line (L02) and human renal proximal tubular epithelial cell line (HK-2), SFII significantly alleviated AAI-induced DNA damage and apoptosis. In adult mice, oral administration of SFII dose-dependently ameliorated AAI-induced renal fibrosis and dysfunction. In infant mice, oral administration of SFII suppressed AAI-induced hepatocellular carcinoma initiation. Moreover, administration of SFII did not affect the coagulation function in short term in adult mice. In conclusion, SFII has been identified as a novel NQO1 inhibitor that might impede the risk of AAI to kidney and liver without obvious side effect.
Collapse
|
11
|
Xiang H, Xu P, Qiu H, Wen W, Zhang A, Tong S. Two-dimensional chromatography in screening of bioactive components from natural products. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1161-1176. [PMID: 35934878 DOI: 10.1002/pca.3168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Screening and analysis of bioactive components from natural products is a fundamental part of new drug development and innovation. Two-dimensional (2D) chromatography has been demonstrated to be an effective method for screening and preparation of specific bioactive components from complex natural products. OBJECTIVE To collect details of application of 2D chromatography in screening of natural product bioactive components and to outline the research progress of different separation mechanisms and strategies. METHODOLOGY Three screening strategies based on 2D chromatography are reviewed, including traditional separation-based screening, bioactivity-guided screening and affinity chromatography-based screening. Meanwhile, in order to cover these aspects, selections of different separation mechanisms and modes are also presented. RESULTS Compared with traditional one-dimensional (1D) chromatography, 2D chromatography has unique advantages in terms of peak capacity and resolution, and it is more effective for screening and identifying bioactive components of complex natural products. CONCLUSION Screening of natural bioactive components using 2D chromatography helps separation and analysis of complex samples with greater targeting and relevance, which is very important for development of innovative drug leads.
Collapse
Affiliation(s)
- Haiping Xiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Huiyun Qiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Weiyi Wen
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ailian Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
12
|
Si H, Wang Q, Guo Y, Zhao Y, Li H, Li S, Wang S, Zhu B. Functionalized monolithic columns: Recent advancements and their applications for high-efficiency separation and enrichment in food and medicine. Front Chem 2022; 10:951649. [PMID: 35991596 PMCID: PMC9388943 DOI: 10.3389/fchem.2022.951649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
The chromatographic column is the core of a high-performance liquid chromatography (HPLC) system, and must have excellent separation efficiency and selectivity. Therefore, functional modification materials for monolithic columns have been rapidly developed. This study is a systematic review of the recently reported functionalized monolithic columns. In particular, the study reviews the types of functional monomers under different modification conditions, as well as the separation and detection techniques combined with chromatography, and their development prospects. In addition, the applications of functionalized monolithic columns in food analysis, biomedicine, and the analysis of active ingredient of Chinese herbal medicines in recent years are also discussed. Also reviewed are the functionalized monolithic columns for qualitative and quantitative analysis. It provided a reference for further development and application of organic polymer monolithic columns.
Collapse
Affiliation(s)
- Helong Si
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
| | - Quan Wang
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
- *Correspondence: Quan Wang,
| | - Yuanyuan Guo
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Yuxin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Hongya Li
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Shuna Li
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Shuxiang Wang
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Baocheng Zhu
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| |
Collapse
|
13
|
Chai X, Gu Y, Lv L, Chen C, Feng F, Cao Y, Liu Y, Zhu Z, Hong Z, Chai Y, Chen X. Screening of immune cell activators from Astragali Radix using a comprehensive two-dimensional NK-92MI cell membrane chromatography/C18 column/time-of-flight mass spectrometry system. J Pharm Anal 2022; 12:725-732. [PMID: 36320599 PMCID: PMC9615523 DOI: 10.1016/j.jpha.2022.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Astragali Radix (AR) is a clinically used herbal medicine with multiple immunomodulatory activities that can strengthen the activity and cytotoxicity of natural killer (NK) cells. However, owing to the complexity of its composition, the specific active ingredients in AR that act on NK cells are not clear yet. Cell membrane chromatography (CMC) is mainly used to screen the active ingredients in a complex system of herbal medicines. In this study, a new comprehensive two-dimensional (2D) NK-92MI CMC/C18 column/time-of-flight mass spectrometry (TOFMS) system was established to screen for potential NK cell activators. To obtain a higher column efficiency, 3-mercaptopropyltrimethoxysilane-modified silica was synthesized to prepare the NK-92MI CMC column. In total, nine components in AR were screened from this system, which could be washed out from the NK-92MI/CMC column after 10 min, and they showed good affinity for NK-92MI/CMC column. Two representative active compounds of AR, isoastragaloside I and astragaloside IV, promoted the killing effect of NK cells on K562 cells in a dose-dependent manner. It can thus suggest that isoastragaloside I and astragaloside IV are the main immunomodulatory components of AR. This comprehensive 2D NK-92MI CMC analytical system is a practical method for screening immune cell activators from other herbal medicines with immunomodulatory effects. A comprehensive 2D NK-92MI/CMC system was developed to screen for immune cell activators. Nine components of Astragali Radix were screened as potential immune activators. Isoastragaloside I and astragaloside IV were first confirmed to have immunomodulatory effects.
Collapse
|
14
|
In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography. Acta Pharm Sin B 2022; 12:3682-3693. [PMID: 36176904 PMCID: PMC9513493 DOI: 10.1016/j.apsb.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Cell membrane affinity chromatography has been widely applied in membrane protein (MP)-targeted drug screening and interaction analysis. However, in current methods, the MP sources are derived from cell lines or recombinant protein expression, which are time-consuming for cell culture or purification, and also difficult to ensure the purity and consistent orientation of MPs in the chromatographic stationary phase. In this study, a novel in situ synthesis membrane protein affinity chromatography (iSMAC) method was developed utilizing cell-free protein expression (CFE) and covalent immobilized affinity chromatography, which achieved efficient in situ synthesis and unidirectional insertion of MPs into liposomes in the stationary phase. The advantages of iSMAC are: 1) There is no need to culture cells or prepare recombinant proteins; 2) Specific and purified MPs with stable and controllable content can be obtained within 2 h; 3) MPs maintain the transmembrane structure and a consistent orientation in the chromatographic stationary phase; 4) The flexible and personalized construction of cDNAs makes it possible to analyze drug binding sites. iSMAC was successfully applied to screen PDGFRβ inhibitors from Salvia miltiorrhiza and Schisandra chinensis. Micro columns prepared by in-situ synthesis maintain satisfactory analysis activity within 72 h. Two new PDGFRβ inhibitors, salvianolic acid B and gomisin D, were screened out with KD values of 13.44 and 7.39 μmol/L, respectively. In vitro experiments confirmed that the two compounds decreased α-SMA and collagen Ӏ mRNA levels raised by TGF-β in HSC-T6 cells through regulating the phosphorylation of p38, AKT and ERK. In vivo, Sal B could also attenuate CCl4-induced liver fibrosis by downregulating PDGFRβ downstream related protein levels. The iSMAC method can be applied to other general MPs, and provides a practical approach for the rapid preparation of MP-immobilized or other biological solid-phase materials.
Collapse
|
15
|
Zhou H, Fu J, Jia Q, Wang S, Liang P, Wang Y, Lv Y, Han S. Magnetic nanoparticles covalently immobilizing epidermal growth factor receptor by SNAP-Tag protein as a platform for drug discovery. Talanta 2022; 240:123204. [PMID: 35026637 DOI: 10.1016/j.talanta.2021.123204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022]
Abstract
Magnetic nanoparticles (NPs) cloaked with cell membranes expressing high levels of the epidermal growth factor receptor (EGFR) have been used to screen for EGFR-targeting active compounds in traditional Chinese medicine (TCM) formulations. However, previous strategies involved physical immobilization of the biomaterials on the surface of the nanocarrier, resulting in highly unstable platforms since the biological materials could dislodge easily. Chemical bonding of biomaterials to the nanoparticles surface can improve the stability of the biomimetic platforms. In this study, membrane fragments from cells expressing SNAP-Tag-EGFR (ST-EGFR) were immobilized on the surface of magnetic NPs. The ST-EGFR magnetic cell membrane nanoparticles (ST-EGFR/MCMNs) showed greater stability, and higher binding capacity, selectivity adsorption of gefitinib after 7 days compared to the un-immobilized magnetic cell membrane nanoparticles (EGFR/MCMNs). The ST-EGFR/MCMNs were used to screen for the EGFR-targeting active compounds of Zanthoxyli Radix (ZR), and identified toddalolactone and nitidine chloride. The latter significantly inhibited the proliferation of EGFR-overexpressing cancer cells, and was more effective compared to gefitinib. This innovative technology can be used to rapidly screen for active compounds from complex extracts, and aid in drug discovery.
Collapse
Affiliation(s)
- Huaxin Zhou
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Jia Fu
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Saisai Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Peida Liang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Yamin Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, Guangzhou, 510289, China.
| |
Collapse
|
16
|
Zhang F, Jiang Y, Jiao P, Li S, Tang C. Ligand fishing via a monolithic column coated with white blood cell membranes: A useful technique for screening active compounds in Astractylodes lancea. J Chromatogr A 2021; 1656:462544. [PMID: 34543881 DOI: 10.1016/j.chroma.2021.462544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023]
Abstract
The cell membrane-coated monolithic column (CMMC) ligand fishing assay is an interesting approach set up for the study of natural products (NPs). NPs such as Atractylodes lancea contain many compounds. Traditional methods used to separate compounds and determine active compounds by pharmacological tests are time-consuming and inefficient. Therefore, an alternative method is required to determine active compounds in NPs. Here, white blood cells were broken, and the white blood cell membranes (WBCMs) were immobilized on the surface of a monolithic column to form a CMMC. The column was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy. Combined with gas chromatography/mass spectrometry (GC/MS), the CMMC was used to screen active compounds in Atractylodes lancea. Three potential active compounds including hinesol, β-eudesmol, and 4-phenylbenzaldehyde were discovered. A molecular docking assay demonstrated that these compounds could bind to MD-2 laid on WBCMs. In addition, antiinflammatory effects by the discovered compound in vitro were confirmed, and β-eudesmol showed a concentration-dependent inhibitory effect on the tumor necrosis factor (TNF)-α of a RAW264.7 cell (P < 0.05). The CMMC ligand fishing assay exhibits good selectivity, great speed effects and is a potentially reliable tool for drug discovery in NPs.
Collapse
Affiliation(s)
- Fan Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Jiang
- Department of Pharmacy, Tianjin Union Medical Center, 130, Jieyuan Road, Hongqiao District, Tianjin 300121, China
| | - Pan Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shaoyong Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Cheng Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
17
|
Fu J, Jia Q, Liang P, Wang S, Zhou H, Zhang L, Gao C, Wang H, Lv Y, Han S. Targeting and Covalently Immobilizing the EGFR through SNAP-Tag Technology for Screening Drug Leads. Anal Chem 2021; 93:11719-11728. [PMID: 34415741 DOI: 10.1021/acs.analchem.1c01664] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Membrane protein immobilization is particularly significant in in vitro drug screening and determining drug-receptor interactions. However, there are still some problems in the immobilization of membrane proteins with controllable direction and high conformational stability, activity, and specificity. Cell membrane chromatography (CMC) retains the complete biological structure of membrane proteins. However, conventional CMC has the limitation of poor stability, which results in its limited life span and low reproducibility. To overcome this limitation, we propose a method for the specific covalent immobilization of membrane proteins in cell membranes. We used the SNAP-tag as an immobilization tag fused to the epidermal growth factor receptor (EGFR), and Cys145 located at the active site of the SNAP-tag reacted with the benzyl group of O6-benzylguanine (BG). The SNAP-tagged EGFR was expressed in HEK293 cells. We captured the SNAP-tagged EGFR from the cell membrane suspension onto a BG-derivative-modified silica gel. Our immobilization strategy improved the life span and specificity of CMC and minimized loss of activity and nonspecific attachment of proteins. Next, a SNAP-tagged EGFR/CMC online HPLC-IT-TOF-MS system was established to screen EGFR antagonists from Epimedii folium. Icariin, magnoflorine, epimedin B, and epimedin C were retained in this model, and pharmacological assays revealed that magnoflorine could inhibit cancer cell growth by targeting the EGFR. This EGFR immobilization method may open up possibilities for the immobilization of other membrane proteins and has the potential to serve as a useful platform for screening receptor-binding leads from natural medicinal herbs.
Collapse
Affiliation(s)
- Jia Fu
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Peida Liang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Saisai Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Huaxin Zhou
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Liyang Zhang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Chunlei Gao
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Hong Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| |
Collapse
|
18
|
Qiao Y, Shi Y, Wu C, Hou X, Pan X, Deng Z, Wang S. Rapid screening and identification of anticoagulation component from carthami flos by two-dimensional thrombin affinity chromatography combined with HPLC-MS/MS. J Sep Sci 2021; 44:3061-3069. [PMID: 34110096 DOI: 10.1002/jssc.202100092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/13/2021] [Accepted: 06/08/2021] [Indexed: 11/09/2022]
Abstract
Carthami flos, commonly known as Honghua in China, is the dried floret of safflower and widely acknowledged as a blood stasis promoting herb. The study aimed at investigating the relationship between thrombin and carthami flos through a high-performance thrombin affinity chromatography combined with a high-performance liquid chromatography-tandem mass spectrometry system. First, thrombin was immobilized on the glutaraldehyde-modified amino silica gel to prepare the thrombin affinity stationary phase, which was packed into a small column (1.0 × 2.0 mm, id) for recognizing the anticoagulant active components of carthami flos. The target component was enriched and analyzed by the high-performance liquid chromatography-tandem mass spectrometry system. Finally, hydroxysafflor yellow A was screened out and identified as the active component. The anticoagulant effects of hydroxysafflor yellow A were analyzed by anticoagulant experiments in vitro, and the interaction of hydroxysafflor yellow A with thrombin was investigated by the molecular docking method. The results proved that hydroxysafflor yellow A (30 μg/mL, 0.05 mM) and carthami flos extract (30 μg/mL) could prolong activated partial thrombin time and thrombin time by 50 and 11%, respectively. Moreover, hydroxysafflor yellow A exhibits a good hydrogen bond field and stereo field matching with thrombin. Overall, it was concluded that hydroxysafflor yellow A might exert an anticoagulation effect by interacting with thrombin and thus could be potential anticoagulant drugs for the prevention and treatment of venous thrombosis.
Collapse
Affiliation(s)
- Yanru Qiao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| | - Yingdi Shi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| | - Chen Wu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, P. R. China
| | - Xiaofang Hou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Zijie Deng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| |
Collapse
|
19
|
Zhang FX, Li ZT, Yang X, Xie ZN, Chen MH, Yao ZH, Chen JX, Yao XS, Dai Y. Discovery of anti-flu substances and mechanism of Shuang-Huang-Lian water extract based on serum pharmaco-chemistry and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113660. [PMID: 33276058 DOI: 10.1016/j.jep.2020.113660] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuang-Huang-Lian preparation has captured wide attention since its clinical applications for the successful treatment of upper respiratory tract infection. However, its functional basis under actual therapeutic dose in vivo was still unrevealed. AIM OF THE STUDY This study aimed to reveal the anti-flu substances and mechanism of Shuang-Huang-Lian water extract (SHL) on H1N1 infected mouse model by a strategy based on serum pharmaco-chemistry under actual therapeutic dose and network pharmacology. MATERIALS AND METHODS H1N1 infected mouse model was employed for evaluation of the anti-flu effects of SHL. A simultaneous quantification method was developed by UPLC-TQ-XS MS coupled switch-ions mode and applied to characterize the pharmacokinetics of the multiple components of SHL under actual therapeutic dose. The potential active ingredients were screened out based on their pharmacokinetic parameters. And then, a compound mixture of these active candidates was re-evaluated for the anti-flu activity on H1N1 infected mouse model. Furthermore, the anti-flu mechanism of SHL was also predicted by network pharmacology coupled with the experimental result. RESULTS SHL significantly increased the survival rate and prolonged survival days on H1N1 infected mice at a dosage of 20 g crude drug/kg/day by reversing the increased lung index, down-regulating the inflammatory cytokines (TNF-α, IL-1β, IL-6) and inhibiting the release of IFN-β in bronchoalveolar lavage fluids (BALF). Concomitantly, the pharmacokinetic parameters of fourteen quantified and twenty-one semi-quantified constituents of SHL were characterized. And then, five compounds (baicalin, sweroside, chlorogenic acid, forsythoside A and phillyrin), which displayed satisfactory pharmacokinetic features, were considered as potential active ingredients. Thus, a mixture of these five ingredients was administered to H1N1-infected mice at a dose of 4.24 mg/kg/day. As a result, the therapeutical effects of the mixture were similar to SHL in terms of survival rate, lung index and the release of cytokines (TNF-α, IL-1β and IL-6) in BALF. Moreover, network pharmacology analysis indicated that the TNF-signal pathways might play a role in the anti-flu mechanism of SHL. CONCLUSIONS A mixture of five compounds (baicalin, sweroside, chlorogenic acid, forsythoside A and phillyrin) were the anti-flu substances of SHL. The strategy based on serum pharmaco-chemistry under actual therapeutic dose provided a new sight on exploring in vivo effective substances of TCM.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China; Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Zi-Ting Li
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510632, China.
| | - Zhi-Neng Xie
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Ming-Hao Chen
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Zhi-Hong Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Jian-Xin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510632, China.
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
20
|
Ma W, Wang C, Liu R, Wang N, Lv Y, Dai B, He L. Advances in cell membrane chromatography. J Chromatogr A 2021; 1639:461916. [PMID: 33548663 DOI: 10.1016/j.chroma.2021.461916] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Cell membrane chromatography (CMC) is a biomimetic chromatographic method based on the ability of membrane receptors to selectively interact with their ligands in vivo. Using membrane receptors as a stationary phase, the CMC method helps in determining the binding characteristics between ligands and membrane receptors and in efficiently identifying specific target components in a complex sample that produce the cellular biological effects of ligands (drugs, antibodies, enzymes, cytokines, etc.). CMC is an analytical tool for revealing characteristics of ligand-receptor interactions, screening and discovering target substances, and accurately controlling the quality of drugs. Since establishment of CMC in the early 1990s, with the rapid development of cell biology, significant progress has been made in the development of high-expression receptors, engineered cell cultures, and standardized preparations, which allowed in vitro immobilization of cell membrane receptors and miniaturization of binding assays. A variety of CMC models have been established using different membrane receptors as a stationary phase, and many new methods have been developed by combining CMC with high-performance liquid chromatography (HPLC)/mass spectrometry or HPLC-IT-TOF technologies. CMC methods have been widely used to study drug-receptor interactions and to screen complex samples for effective or harmful components.
Collapse
Affiliation(s)
- Weina Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Cheng Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Rui Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Bingling Dai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China.
| |
Collapse
|
21
|
Chen C, Gu Y, Wang R, Chai X, Jiang S, Wang S, Zhu Z, Chen X, Yuan Y. Comparative two-dimensional GPC3 overexpressing SK-Hep1 cell membrane chromatography /C18/ time-of-flight mass spectrometry for screening selective GPC3 inhibitor components from Scutellariae Radix. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1163:122492. [PMID: 33418242 DOI: 10.1016/j.jchromb.2020.122492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Screening active components targeting membrane proteins is important for drug discovery from traditional Chinese medicine. Cell membrane chromatography (CMC) has achieved a wide application in screening active components on pathological cells due to its high sensitivity and effectiveness. However, it is hard to clarify the specific target protein through simply using pathological and normal cells. In this study, a novel comparative two-dimensional (2D) cell membrane chromatography system was established. Based on the construction of hepatocellular carcinoma cell line SK-Hep1-GPC3 with high expression of protein Glypican-3 (GPC3), SK-Hep1-GPC3/CMC column was loaded to screen selective antitumor components from Scutellariae Radix according to the retention behaviors on column. Viscidulin I was retained on SK-Hep1-GPC3/CMC column, and showed 4.33 μM affinity to GPC3 according to surface plasmon resonance (SPR). The IC50 of viscidulin I on SK-Hep1-GPC3 cells was 18.01 μM in cell proliferation assay. Thus, this method can be applied to screen complex herbal medicines for ligands bound to specific target protein receptor related to hepatic carcinoma.
Collapse
Affiliation(s)
- Chun Chen
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Xinyi Chai
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Shuya Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Shaozhan Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Zhenyu Zhu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China.
| |
Collapse
|
22
|
Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening. Acta Pharm Sin B 2021; 11:222-236. [PMID: 33072499 PMCID: PMC7547831 DOI: 10.1016/j.apsb.2020.10.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Lianhuaqingwen (LHQW) capsule, a herb medicine product, has been clinically proved to be effective in coronavirus disease 2019 (COVID-19) pneumonia treatment. However, human exposure to LHQW components and their pharmacological effects remain largely unknown. Hence, this study aimed to determine human exposure to LHQW components and their anti-COVID-19 pharmacological activities. Analysis of LHQW component profiles in human plasma and urine after repeated therapeutic dosing was conducted using a combination of HRMS and an untargeted data-mining approach, leading to detection of 132 LHQW prototype and metabolite components, which were absorbed via the gastrointestinal tract and formed via biotransformation in human, respectively. Together with data from screening by comprehensive 2D angiotensin-converting enzyme 2 (ACE2) biochromatography, 8 components in LHQW that were exposed to human and had potential ACE2 targeting ability were identified for further pharmacodynamic evaluation. Results show that rhein, forsythoside A, forsythoside I, neochlorogenic acid and its isomers exhibited high inhibitory effect on ACE2. For the first time, this study provides chemical and biochemical evidence for exploring molecular mechanisms of therapeutic effects of LHQW capsule for the treatment of COVID-19 patients based on the components exposed to human. It also demonstrates the utility of the human exposure-based approach to identify pharmaceutically active components in Chinese herb medicines.
Collapse
Key Words
- ACE2
- ACE2, angiotensin-converting enzyme 2
- AT2, alveolar type II
- Biochromatography
- COVID-19
- COVID-19, corona virus disease 2019
- Comprehensive 2D analysis
- DMF, N,N-dimethylformamide
- DMSO, dimethyl sulfoxide
- ESI, electrospray ionization
- GMBS, N-(4-maleimide butyryl oxide)succinimide
- HPLC, high performance liquid chromatography
- HRMS, high resolution mass spectrometry
- In vivo exposure
- LHQW, Lianhuaqingwen
- Lianhuaqingwen capsule
- MPTS, mercaptopropyltrimethoxysilane
- Molecular docking
- NMPA, National Medical Products Administration
- PATBS
- PATBS, precise-and-thorough background-subtraction
- RAS, renin–angiotensin system
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SPR, surface plasmon resonance
- Surface plasma response
- TCM, traditional Chinese medicine
- TIC, total ion chromatography
- TOF/MS, time-of-flight mass spectrometry
- ddMS2, data dependent tandem mass spectrometry 2
Collapse
|
23
|
He X, Xu X, Sui Y, Xu K, Wang S. Screening of the active compound from Tetradium ruticarpum fruits and analysis of its binding characteristics to the α 1A adrenoceptor by high expression α 1A adrenoceptor cell membrane chromatography. J Pharm Biomed Anal 2020; 195:113874. [PMID: 33422833 DOI: 10.1016/j.jpba.2020.113874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/26/2020] [Accepted: 12/25/2020] [Indexed: 12/18/2022]
Abstract
The dried fruit of the Tetradium ruticarpum (Wu Zhu Yu) tree is commonly used in traditional Chinese medicine, and its decoction can be used for treating conditions such as headaches and hypotension. In the present study, an offline two-dimensional combination method of α1A/HEK293 cell membrane chromatography (α1A/CMC) and UHPLC-MS/MS was established to screen and identify the active compound from the Tetradium ruticarpum fruits. The binding characteristics between this active compound and the α1A receptor were also analyzed by an α1A/CMC method. By this process, dehydroevodiamine was identified as the potential active compound. Equilibrium dissociation constant (Kd) values between α1A receptor and dehydroevodiamine, obtained by both stepwise frontal analysis and zonal elution analysis, were (5.18 ± 0.50) × 10-6 mol/L and (2.70 ± 0.74) × 10-6 mol/L, respectively. Our results indicate that the α1A/CMC method can not only screen active compounds from complex sample, but can also be used to calculate the binding parameters of the identified compound.
Collapse
Affiliation(s)
- Xiaoshuang He
- Department of Pharmacy, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China; School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xianliang Xu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Yue Sui
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ke Xu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China.
| |
Collapse
|
24
|
He X, Sui Y, Wang S. Application of a stepwise frontal analysis method in cell membrane chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1161:122436. [PMID: 33246282 DOI: 10.1016/j.jchromb.2020.122436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
Bio-affinity chromatography is used in the study of drug-receptor interactions. A stepwise frontal analysis (SFA) method was developed based on frontal analysis (FA). A high expression alpha 1A adrenergic receptor (α1A AR) cell membrane chromatography (CMC) method was then developed and combined with SFA to investigate the affinity of three model α1A AR-binding drugs towards α1A AR. Equilibrium dissociation constant (Kd) values for drug-receptor interactions were determined by FA and SFA; results showed that these methods were highly consistent. The results demonstrate that the CMC/SFA method is a time-saving and less wasteful method than traditional method for the evaluation of drug-receptor binding characteristics, and could be used to study the interactions between drugs and membrane receptors.
Collapse
Affiliation(s)
- Xiaoshuang He
- Department of Pharmacy, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China; School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yue Sui
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular DrugsScreening & Analysis, Xi'an, 710061, China.
| |
Collapse
|
25
|
Pan P, Cheng J, Si Y, Chen W, Hou J, Zhao T, Gu Y, Lv L, Hong Z, Zhu Z, Chai Y, Guo Z, Chen X. A stop-flow comprehensive two-dimensional HK-2 and HK-2/CIKI cell membrane chromatography comparative analysis system for screening the active ingredients from Pyrrosia calvata (Bak.) Ching against crystal-induced kidney injury. J Pharm Biomed Anal 2020; 195:113825. [PMID: 33339641 DOI: 10.1016/j.jpba.2020.113825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022]
Abstract
Crystal-induced kidney injury (CIKI) is the fundamental pathological change during nephrolithiasis, although the molecular mechanism is still unclear. Pyrrosia calvata (Bak.) Ching has been used in folk medicine to treat urolithiasis for years. To clarify the pharmacodynamic substances and the mechanism of its antiurolithiasis effects, in this study, a novel, stop-flow, comprehensive, two-dimensional (2D) HK-2 and HK-2/CIKI cell membrane chromatography (CMC) comparative analysis system was developed to screen for the potential active ingredients from Pyrrosia calvata (Bak.) Ching against CIKI. The comprehensive 2D CMC comparative analysis system showed satisfactory selectivity, and eight ingredients were screened and identified by this system. Among them, mangiferin exhibited higher affinity for the HK-2/CIKI CMC column than the HK-2 CMC column and was selected for further efficacy verification. Cell proliferation assays showed that mangiferin could protect HK-2 cell viability after stimulation with sodium oxalate (NaOX). Additionally, in a rodent model of CIKI, mangiferin decreased the deposition of calcium oxalate (CaOX) crystals in mouse kidneys, alleviated the pathological damage to kidney tissue, and inhibited the upregulation of OPN, MCP1, and CD44 expression caused by CaOX crystals. The established comprehensive 2D CMC comparative analysis system can be applied to screen active ingredients with disease specificity from traditional Chinese medicine (TCM) and is suitable for other cell models.
Collapse
Affiliation(s)
- Pengchao Pan
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Jin Cheng
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Yachen Si
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Jiebin Hou
- Department of Nephrology, The Second Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Tingting Zhao
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, No. 280 Mohe Road, Shanghai, 201999, China
| | - Lei Lv
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, No. 225 Changhai Road, Shanghai, 200438, China
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Zhenyu Zhu
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
| | - Zhiyong Guo
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China.
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
26
|
Li X, Wang L, Huang B, Gu Y, Luo Y, Zhi X, Hu Y, Zhang H, Gu Z, Cui J, Cao L, Guo J, Wang Y, Zhou Q, Jiang H, Fang C, Weng W, Chen X, Chen X, Su J. Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss. SCIENCE ADVANCES 2020; 6:6/47/eabb7135. [PMID: 33208358 PMCID: PMC7673802 DOI: 10.1126/sciadv.abb7135] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/01/2020] [Indexed: 05/15/2023]
Abstract
The actin-bundling protein L-plastin (LPL) mediates the resorption activity of osteoclasts, but its therapeutic potential in pathological bone loss remains unexplored. Here, we report that LPL knockout mice show increased bone mass and cortical thickness with more mononuclear tartrate-resistant acid phosphatase-positive cells, osteoblasts, CD31hiEmcnhi endothelial vessels, and fewer multinuclear osteoclasts in the bone marrow and periosteum. LPL deletion impeded preosteoclasts fusion by inhibiting filopodia formation and increased the number of preosteoclasts, which release platelet-derived growth factor-BB to promote CD31hiEmcnhi vessel growth and bone formation. LPL expression is regulated by the phosphatidylinositol 3-kinase/AKT/specific protein 1 axis in response to receptor activator of nuclear factor-κB ligand. Furthermore, we identified an LPL inhibitor, oroxylin A, that could maintain bone mass in ovariectomy-induced osteoporosis and accelerate bone fracture healing in mice. In conclusion, we showed that LPL regulates osteoclasts fusion, and targeting LPL serves as a novel anabolic therapy for pathological bone loss.
Collapse
Affiliation(s)
- Xiaoqun Li
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Orthopedics, No. 929 Hospital, Naval Medical University, Shanghai 200433, China
| | - Lipeng Wang
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Biaotong Huang
- Institute of translational medicine, Shanghai University, Shanghai 201900, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine of Shanghai Jiao Tong University, Shanghai 201999, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ying Luo
- Central Laboratory, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xin Zhi
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Hu
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hao Zhang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai 201900, China
| | - Jin Cui
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai 201900, China
| | - Jiawei Guo
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yajun Wang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qirong Zhou
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hao Jiang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chao Fang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Weizong Weng
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xiao Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jiacan Su
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
- Institute of translational medicine, Shanghai University, Shanghai 201900, China
| |
Collapse
|
27
|
Li Y, Chen Y, Zhang H, Lam CWK, Li Z, Wang C, Zhao Y, Zhang W, Jiang Z. Immobilization of cell membrane onto a glucose-Zn-based porous coordination polymer and its application to rapid screening of potentially active compounds from Vaccinium corymbosum L. leaves. Mikrochim Acta 2020; 187:630. [PMID: 33125573 DOI: 10.1007/s00604-020-04612-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 11/25/2022]
Abstract
A novel glucose-Zn-based porous coordination polymer (PCP) was selected as a carrier of cell membranes (CMs) to fabricate CM-coated PCP (CMPCP) for rapid screening of potentially active compounds from natural products. The cell disruption and the amount of maximum CMs adsorbed on PCP were optimized according to the amount of immobilized protein. This new kind of matrix exhibited good reproducibility and stability, and was applied for fishing potentially active compounds from the extracts of Vaccinium corymbosum L. leaves (VCL). Using LC-MS/MS, chlorogenic acid and quercetin were identified as the potentially active compounds through comparison of normal and non-alcoholic fatty liver disease (NAFLD)-modeled CMPCP. Our results suggested that the proposed approach based on CMPCP was environmentally friendly, cost-effective, and convenient in terms of green porous material, stable protein loading capacity, and accessible operation process. The developed method could provide a promising platform for efficient drug discovery from natural product resources.Graphical abstract.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Yanli Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Huixia Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Christopher Wai Kei Lam
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Caiyun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Yunfeng Zhao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China.
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China.
| |
Collapse
|
28
|
Gu Y, Chen X, Wang Y, Liu Y, Zheng L, Li X, Wang R, Wang S, Li S, Chai Y, Su J, Yuan Y, Chen X. Development of 3-mercaptopropyltrimethoxysilane (MPTS)-modified bone marrow mononuclear cell membrane chromatography for screening anti-osteoporosis components from Scutellariae Radix. Acta Pharm Sin B 2020; 10:1856-1865. [PMID: 33163340 PMCID: PMC7606177 DOI: 10.1016/j.apsb.2020.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis is a bone metabolic disease caused by the imbalance between osteoblasts and osteoclasts due to excess osteoclastogenesis, manifesting in the decrease of bone density and bone strength. Scutellariae Radix shows good anti-osteoporosis activity, but the effective component is still unclear. Cell membrane chromatography (CMC) is a biological affinity chromatography with membrane immobilized on a silica carrier as the stationary phase. It can realize a dynamical simulation of interactions between drugs and receptors on cell membrane, which is suitable for screening active compounds from complex systems. In this study, the components of Scutellariae Radix with potential anti-osteoporosis activity through inhibiting the differentiation from bone marrow mononuclear cells (BMMCs) to osteoclast were screened by a BMMC/CMC analytical system. Firstly, a new 3-mercaptopropyltrimethoxysilane (MPTS)-modified BMMC/CMC stationary phase was developed to realize covalent binding with cell membrane fractions. By investigating the retention time (tR) of the positive drug, the life span of the MPTS-modified CMC columns was significantly improved from 3 to 12 days. Secondly, 6 components of Scutellariae Radix were screened to show affinity to membrane receptors on BMMCs by a two-dimensional BMMC/CMC–TOFMS analytical system. Among them, tectochrysin demonstrated the best anti-osteoporosis effect in vitro, which has never been reported. We found that tectochrysin could inhibit the differentiation of BMMCs into osteoclasts induced by receptor activator of nuclear factor-κΒ ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) in a concentration-dependent manner in vitro. In vivo, it significantly reduced the loss of bone trabeculae in ovariectomized mice, and decreased the level of C-terminal cross-linking telopeptides of type 1 collagen (CTX-1), tartrate-resistant acid phosphatase 5b (TRAP-5b), interleukin 6 (IL-6) in serum. In conclusion, tectochrysin serves as a potential candidate in the treatment of osteoporosis. The proposed two-dimensional MPTS-modified BMMC/CMC-TOFMS analytical system shows the advantages of long-life span and fast recognition ability, which is very suitable for infrequent cell lines.
Collapse
|
29
|
Liu Y, Wang X, Gu Y, Zhang M, Cao Y, Zhu Z, Lu S, Chai Y, Chen X, Hong Z. Covalent Design of Cell Membrane Stationary Phase with Enhanced Stability for Fast Screening P-Glycoprotein Inhibitors. ACS APPLIED BIO MATERIALS 2020; 3:5000-5006. [PMID: 35021677 DOI: 10.1021/acsabm.0c00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell membrane chromatography (CMC) has been widely used for characterizing the interaction between drugs and membrane receptors to screen target components from herbal medicines. However, the column life, stability, and the efficiency cannot meet the needs of high-throughput screening purpose. In this study, a P-glycoprotein immobilized cell membrane stationary phase (P-gp/CMSP) was prepared with a simple and mild two-step aldehyde modification, realizing the covalent bonding between cell membrane and stationary phase. The column life and stability were significantly enhanced compared with the unmodified columns. The P-gp/CMC column was equipped into a comprehensive 2D P-gp/CMC/Capcell-C18/TOFMS system, which actualizes the automated and high-throughput analytical process and rapid identification of complex chemical samples with no data loss. Five compounds with significant retention were screened out and unambiguously identified by the comprehensive 2D analytical system. Baicalin was confirmed as a P-gp inhibitor with ATP depletion inhibition ratio of 83.4%. Moreover, the reversal index of baicalin on DOX significantly increased to 11.13 when its concentration reached 25 μM, revealing that baicalin could effectively reverse the MDR cell model induced by DOX. The integrated system is a practical drug discovery platform and could be applied to other transmembrane protein models.
Collapse
Affiliation(s)
- Yue Liu
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaoyu Wang
- Institute of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200032, P. R. China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, 280 Mohe Road, Shanghai 201999, China
| | - Mingyong Zhang
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhenyu Zhu
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Shan Lu
- Department of Biochemistry and Molecular Biology, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
30
|
Lecas L, Dugas V, Demesmay C. Affinity Chromatography: A Powerful Tool in Drug Discovery for Investigating Ligand/membrane Protein Interactions. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1749852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lucile Lecas
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| | - Vincent Dugas
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| | - Claire Demesmay
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
31
|
Wu C, Wang N, Xu P, Wang X, Shou D, Zhu Y. Preparation and application of polyvinyl alcohol‐decorated cell membrane chromatography for screening anti‐osteoporosis components from Liuwei Dihuang decoction‐containing serum. J Sep Sci 2020; 43:2105-2114. [DOI: 10.1002/jssc.201901203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Can Wu
- Department of ChemistryZhejiang University Hangzhou Zhejiang P. R. China
| | - Nani Wang
- Department of MedicineZhejiang Academy of Traditional Chinese Medicine Hangzhou Zhejiang P. R. China
| | - Pingcui Xu
- Department of MedicineZhejiang Academy of Traditional Chinese Medicine Hangzhou Zhejiang P. R. China
| | - Xuping Wang
- Department of MedicineZhejiang Academy of Traditional Chinese Medicine Hangzhou Zhejiang P. R. China
| | - Dan Shou
- Department of MedicineZhejiang Academy of Traditional Chinese Medicine Hangzhou Zhejiang P. R. China
| | - Yan Zhu
- Department of ChemistryZhejiang University Hangzhou Zhejiang P. R. China
| |
Collapse
|
32
|
Yang L, Hou A, Wang S, Zhang J, Man W, Guo X, Yang B, Wang Q, Jiang H, Kuang H. Screening and quantification of TNF-α ligand from Angelicae Pubescentis Radix by biosensor and UPLC-MS/MS. Anal Biochem 2020; 596:113643. [PMID: 32105738 DOI: 10.1016/j.ab.2020.113643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/29/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
The aim of this study is to establish a method for rapid screening of active ingredients targeting TNF-α from Chinese herbal medicines. Take Angelicae Pubescentis Radix (APR) as an example, surface plasma resonance technique was used to establish for screening small molecule inhibitors of TNF-α from APR extract. Then UPLC-MS/MS coupled with chemometric was used for quantitative and evaluate the differences of the candidate compounds bound to TNF-α in APR from different sources. In the experiment, TNF-α protein was fixed on the CM5 chip surface of biacore T200 biosensor by amino coupling. A series of small molecular compounds in APR were screened and six phenolic acid compounds had a strong affinity for TNF-α protein and could be used as TNF-α antagonists. In summary, the targeted drug screening method for TNF-α protein based on SPR technology established in this study can be used to screen anti-TNF-α small molecule inhibitors. UPLC-MS/MS can accurately quantify 15 active ingredients, which provides reliable experimental data and new research ideas for targeted drug research on TNF-α protein.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Ajiao Hou
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Song Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Jiaxu Zhang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Wenjing Man
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Xinyue Guo
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Qiuhong Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 528458, PR China
| | - Hai Jiang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China.
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China.
| |
Collapse
|
33
|
Zhou W, Liu Y, Wang J, Guo Z, Shen A, Liu Y, Liang X. Application of two‐dimensional liquid chromatography in the separation of traditional Chinese medicine. J Sep Sci 2019; 43:87-104. [DOI: 10.1002/jssc.201900765] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Weijia Zhou
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
- College of Fisheries and Life ScienceDalian Ocean University Dalian P. R. China
| | - Yanming Liu
- Shandong Institute of Food and Drug Control Jinan P. R. China
| | - Jixia Wang
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Aijin Shen
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| |
Collapse
|
34
|
Zhang YN, Zhu SJ, Li N, Jing YN, Yue XF. Screening and identification of the active components from Puerariae Radix by HUVEC/CMC-LC-MS 2. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1132:121825. [PMID: 31704622 DOI: 10.1016/j.jchromb.2019.121825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/06/2019] [Accepted: 10/05/2019] [Indexed: 11/17/2022]
Abstract
Puerariae Radix (PR) serves as food and medicinal plant for thousands of years with explicit efficacy for heart diseases, while biological target specifically binding-oriented screening of the active components in PR remains a preliminary stage. Cell membrane chromatography (CMC) is newly developed approach where interactions between active components and certain biological targets can be effectively studied, Human umbilical vein endothelial cell (HUVEC) membrane, with its abundant receptors such as β and AT1, is most eligible for constructing CMC. In this study, an HUVEC/CMC-LC-MS2 system was developed for screening active components in PR, 11 compounds were screened out and four of them were identified. Besides puerarin, the rest identified are daidzin, pueroside D and 3'-hydroxypuerarin. The study provides more reference for CMC applications and PR exploitation.
Collapse
Affiliation(s)
- Yan-Ni Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China.
| | - Si-Jin Zhu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China
| | - Na Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China
| | - Yan-Nan Jing
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China
| | - Xuan-Feng Yue
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
35
|
Hu Q, Bu Y, Cao R, Zhang G, Xie X, Wang S. Stability Designs of Cell Membrane Cloaked Magnetic Carbon Nanotubes for Improved Life Span in Screening Drug Leads. Anal Chem 2019; 91:13062-13070. [DOI: 10.1021/acs.analchem.9b03268] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi Hu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi’an 710061, China
| | - Yusi Bu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi’an 710061, China
| | - Ruiqi Cao
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi’an 710061, China
| | - Gao Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi’an 710061, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi’an 710061, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi’an 710061, China
| |
Collapse
|
36
|
Memon N, Qureshi T, Bhanger MI, Malik MI. Recent Trends in Fast Liquid Chromatography for Pharmaceutical Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180912125155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Liquid chromatography is the workhorse of analytical laboratories of pharmaceutical
companies for analysis of bulk drug materials, intermediates, drug products, impurities and
degradation products. This efficient technique is impeded by its long and tedious analysis procedures.
Continuous efforts of scientists to reduce the analysis time resulted in the development of three different
approaches namely, HTLC, chromatography using monolithic columns and UHPLC.
Methods:
Modern column technology and advances in chromatographic stationary phase including
silica-based monolithic columns and reduction in particle and column size (UHPLC) have not only
revolutionized the separation power of chromatographic analysis but also have remarkably reduced the
analysis time. Automated ultra high-performance chromatographic systems equipped with state-ofthe-
art software and detection systems have now spawned a new field of analysis, termed as Fast Liquid
Chromatography (FLC). The chromatographic approaches that can be included in FLC are hightemperature
liquid chromatography, chromatography using monolithic column, and ultrahigh performance
liquid chromatography.
Results:
This review summarizes the progress of FLC in pharmaceutical analysis during the period
from year 2008 to 2017 focusing on detecting pharmaceutical drugs in various matrices, characterizing
active compounds of natural products, and drug metabolites. High temperature, change in the mobile
phase, use of monolithic columns, new non-porous, semi-porous and fully porous reduced particle size
of/less than 3μm packed columns technology with high-pressure pumps have been extensively studied
and successively applied to real samples. These factors revolutionized the fast high-performance separations.
Conclusion:
Taking into account the recent development in fast liquid chromatography approaches,
future trends can be clearly predicated. UHPLC must be the most popular approach followed by the
use of monolithic columns. Use of high temperatures during analysis is not a feasible approach especially
for pharmaceutical analysis due to thermosensitive nature of analytes.
Collapse
Affiliation(s)
- Najma Memon
- National Centre of Excellence in Analytical Chemistry, Univeristy of Sindh, Jamshoro, Sindh, Pakistan
| | - Tahira Qureshi
- National Centre of Excellence in Analytical Chemistry, Univeristy of Sindh, Jamshoro, Sindh, Pakistan
| | - Muhammad Iqbal Bhanger
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Muhammad Imran Malik
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
37
|
Liu RZ, Wang R, An HM, Liu XG, Li CR, Li P, Yang H. A strategy for screening bioactive components from natural products based on two-dimensional cell membrane chromatography and component-knockout approach. J Chromatogr A 2019; 1601:171-177. [PMID: 31056273 DOI: 10.1016/j.chroma.2019.04.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 11/19/2022]
Abstract
Cell membrane chromatography (CMC) is a bioaffinity chromatographic method used to screen active compounds from natural products. However, since the receptor capacity of CMC column is limited, high content/affinity compounds may cause column overloading and thus lead to ignorance of other positive candidates. For avoiding this effect and comprehensively discovering bioactive components, a strategy based on two-dimensional CMC and component-knockout approach was proposed. As an illustrative case study, red yeast rice (RYR), a rice product with good myocardial protective effect in clinical studies, was selected as the model experimental sample. For discovering its potential cardioprotective compounds, a CMC model with H9c2 rat cardiac myoblasts (H9c2/CMC) with good selectivity, stability and reproducibility was established. By using two-dimensional H9c2/CMC-HPLC coupled with QTOF MS system, three components were firstly screened out. After knocking out high content/affinity compound, another four bioactive compounds were then found. By this two-round screening, column overloading caused by high concentration or infinity compounds was avoided, and trace compounds were enriched. As a result, one pigment and six monacolins from RYR were fished out. The results indicate the proposed strategy might be used to discover active compounds from complex matrix.
Collapse
Affiliation(s)
- Run-Zhou Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hai-Ming An
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xin-Guang Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Chao-Ran Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
38
|
Wang J, Jiang Y, Wang B, Zhang N. A review on analytical methods for natural berberine alkaloids. J Sep Sci 2019; 42:1794-1815. [DOI: 10.1002/jssc.201800952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/20/2019] [Accepted: 02/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jiahui Wang
- Experiment Center for Science and TechnologyShanghai University of Traditional Chinese Medicine Shanghai P. R. China
| | - Yanyan Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of Education and PLADepartment of PharmaceuticsSchool of PharmacyFudan University Shanghai P. R. China
| | - Bing Wang
- School of PharmacyShanghai University of Traditional Chinese Medicine Shanghai P. R. China
- Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai P. R. China
| | - Ning Zhang
- Experiment Center for Science and TechnologyShanghai University of Traditional Chinese Medicine Shanghai P. R. China
| |
Collapse
|
39
|
Fu Y, Luo J, Qin J, Yang M. Screening techniques for the identification of bioactive compounds in natural products. J Pharm Biomed Anal 2019; 168:189-200. [PMID: 30825802 DOI: 10.1016/j.jpba.2019.02.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/06/2023]
Abstract
Natural products (NPs) have a long history of clinical use and are rich source of bioactive compounds. The development of tools and techniques for identifying and analyzing NP bioactive compounds to ensure their quality and discover new drugs is thus very important and still in demand. Screening techniques have proven highly useful for screening and analyzing active components in complex mixtures, which rely on cell culture, dialysis, ultrafiltration, chromatographic methods and target molecule immobilization, using biological targets to identify the active compounds. The recent progress in biological screening techniques in the field of natural products is reviewed here. This includes a review on the strategy and application of the screening methods, their detailed description and discussion of their existing limitations of the different models along with prospective in future development of screening techniques.
Collapse
Affiliation(s)
- Yanwei Fu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
40
|
Guo J, Lin H, Wang J, Lin Y, Zhang T, Jiang Z. Recent advances in bio-affinity chromatography for screening bioactive compounds from natural products. J Pharm Biomed Anal 2019; 165:182-197. [DOI: 10.1016/j.jpba.2018.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/01/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023]
|
41
|
WANG XY, CHEN XF, GU YQ, CAO Y, YUAN YF, HONG ZY, CHAI YF. Progress of Cell Membrane Chromatography and Its Application in Screening Active Ingredients of Traditional Chinese Medicine. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61121-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Gu Y, Chen X, Wang R, Wang S, Wang X, Zheng L, Zhang B, Chai Y, Zhu Z, Yuan Y. Comparative two-dimensional HepG2 and L02/ cell membrane chromatography/ C18/ time-of-flight mass spectrometry for screening selective anti-hepatoma components from Scutellariae Radix. J Pharm Biomed Anal 2018; 164:550-556. [PMID: 30458388 DOI: 10.1016/j.jpba.2018.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/07/2018] [Accepted: 10/17/2018] [Indexed: 01/22/2023]
Abstract
Screening active components from Chinese traditional medicine is an effective approach to discover new drugs or active structures. Cell membrane chromatography (CMC), developed rapidly because of its high sensitivity and effectiveness, has achieved a wide application in screening active components on pathological cells or tissues. However, it is hard to clarify the selectivity between pathological and normal tissues through simply using pathological cells. In this study, a novel comparative two-dimensional (2D) cell membrane chromatography system was established. Briefly, hepatic carcinoma HepG2 CMC columns and normal hepatic L02 CMC columns were simultaneously loaded to screen potential selective antitumor components from Scutellariae Radix by comparing the retention behaviors on two kinds of cells. Totally 13 components in Scutellariae Radix retained on both HepG2/ CMC and L02/ CMC columns. Among them, three components, oroxylin A, wogonin and chrysin, were screened out to perform stronger affinity on HepG2 columns, and in further cell proliferation assay, IC50 of these three compounds of HepG2 cells were 9.66 μM, 66.77 μM and 36.26 μM respectively, while of L02 cells, IC50 of chrysin was 59.10 μM and over 200 μM of the other two components. On the whole, the toxity of these three compounds to hepatoma cells was stronger than to normal cells. It can be supposed that oroxylin A, wogonin, and chrysin own the potential to be developed as selective anti-hepatoma active components, which expects further research to validate.
Collapse
Affiliation(s)
- Yanqiu Gu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Xiaofei Chen
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Shaozhan Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Xiaoyu Wang
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Leyi Zheng
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Bin Zhang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China.
| |
Collapse
|
43
|
Ji S, Wang S, Xu H, Su Z, Tang D, Qiao X, Ye M. The application of on-line two-dimensional liquid chromatography (2DLC) in the chemical analysis of herbal medicines. J Pharm Biomed Anal 2018; 160:301-313. [PMID: 30114608 DOI: 10.1016/j.jpba.2018.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022]
Abstract
Herbal medicines are complicated chemical systems containing hundreds of small molecules of various polarities, structural types, and contents. Thus far, the chromatographic separation of herbal extracts is still a big challenge. Two-dimensional liquid chromatography (2DLC) has become an attractive separation tool in the past few years. Particularly, a lot of attention has been paid to on-line 2DLC. In this review, we aim to give an overview on applications of on-line 2DLC in the chemical analysis of herbal medicines since 2010. Firstly, classification and general configurations of on-line 2DLC were briefly introduced. Then, we summarized main applications in herbal medicines of heart-cutting 2DLC (LC-LC), comprehensive 2DLC (LC × LC), and their combinations, with emphasis on LC × LC. Mass spectrometry is the most popular detector coupled with 2DLC, which allows sensitive and accurate structural characterization of herbal compounds. Finally, future developments in on-line 2DLC techniques were also discussed.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Pharmaceutical Analysis, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Shuang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Haishan Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Civil Aviation Medicine Center & Civil Aviation General Hospital, Civil Aviation Administration of China, A-1 Gaojing, Chaoyang District, Beijing 100123, China
| | - Zhenyu Su
- Department of Pharmaceutical Analysis, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Daoquan Tang
- Department of Pharmaceutical Analysis, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
44
|
Zheng L, Chen S, Cao Y, Zhao L, Gao Y, Ding X, Wang X, Gu Y, Wang S, Zhu Z, Yuan Y, Chen X, Chai Y. Combination of comprehensive two-dimensional prostate cancer cell membrane chromatographic system and network pharmacology for characterizing membrane binding active components from Radix et Rhizoma Rhei and their targets. J Chromatogr A 2018; 1564:145-154. [DOI: 10.1016/j.chroma.2018.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
|
45
|
Han S, Lv Y, Wei F, Fu J, Hu Q, Wang S. Screening of bioactive components from traditional Chinese medicines using cell membrane chromatography coupled with mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:341-350. [PMID: 29573482 DOI: 10.1002/pca.2756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/10/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Cell membrane chromatography (CMC), as a highly selective type of affinity chromatography, has been demonstrated as an effective method to screen bioactive components acting on specific receptor from a complicated biological system. OBJECTIVE To review the recent research progress and the technical applications of these analytical methods using CMC combined with gas chromatography-mass spectrometry, (GC/MS) and liquid chromatography-mass spectrometry (LC/MS). METHODOLOGY In this review, we briefly introduce the CMC offline GC/MS, CMC online GC/MS, CMC offline LC/MS, and CMC online LC/MS system. And the practical application of these technologies is also enumerated. Then the future of these technologies and research methods were discussed. RESULTS Many bioactive components interacting with specific receptors have been screened and identified in traditional Chinese medicines. CONCLUSION CMC technique has been combined with GC/MS and HPLC/MS and these combined systems have been successfully used to screen bioactive components acting on specific receptors from a complicated biological system.
Collapse
Affiliation(s)
- Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Fen Wei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jia Fu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Qi Hu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
46
|
Wang Q, Xu J, Li X, Zhang D, Han Y, Zhang X. Comprehensive two-dimensional PC-3 prostate cancer cell membrane chromatography for screening anti-tumor components from Radix Sophorae flavescentis. J Sep Sci 2018; 40:2688-2693. [PMID: 28432774 DOI: 10.1002/jssc.201700208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 12/30/2022]
Abstract
Radix Sophorae flavescentis is generally used for the treatment of different stages of prostate cancer in China. It has ideal effects when combined with surgical treatment and chemotherapy. However, its active components are still ambiguous. We devised a comprehensive two-dimensional PC-3 prostate cancer cell membrane chromatography system for screening anti-prostate cancer components in Radix Sophorae flavescentis. Gefitinib and dexamethasone were chosen as positive and negative drugs respectively for validation and optimization the selectivity and suitability of the comprehensive two-dimensional chromatographic system. Five compounds, sophocarpine, matrine, oxymatrine, oxysophocarpine, and xanthohumol were found to have significant retention behaviors on the PC-3 cell membrane chromatography and were unambiguously identified by time-of-flight mass spectrometry. Cell proliferation and apoptosis assays confirmed that all five compounds had anti-prostate cancer effects. Matrine and xanthohumol had good inhibitory effects, with half maximal inhibitory concentration values of 0.893 and 0.137 mg/mL, respectively. Our comprehensive two-dimensional PC-3 prostate cancer cell membrane chromatographic system promotes the efficient recognition and rapid analysis of drug candidates, and it will be practical for the discovery of prostate cancer drugs from complex traditional Chinese medicines.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Urology, General Hospital of Chinese PLA, Beijing, China.,Organ Transplant Research Institute, The 309th Hospital of Chinese PLA, Beijing, China
| | - Junnan Xu
- Department of Urology, General Hospital of Chinese PLA, Beijing, China.,Organ Transplant Research Institute, The 309th Hospital of Chinese PLA, Beijing, China
| | - Xiang Li
- Organ Transplant Research Institute, The 309th Hospital of Chinese PLA, Beijing, China
| | - Dawei Zhang
- Organ Transplant Research Institute, The 309th Hospital of Chinese PLA, Beijing, China
| | - Yong Han
- Organ Transplant Research Institute, The 309th Hospital of Chinese PLA, Beijing, China
| | - Xu Zhang
- Department of Urology, General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
47
|
A method for screening active components from Chinese herbs by cell membrane chromatography-offline-high performance liquid chromatography/mass spectrometry and an online statistical tool for data processing. J Chromatogr A 2018; 1540:68-76. [PMID: 29433821 DOI: 10.1016/j.chroma.2018.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 01/05/2023]
Abstract
Cell membrane chromatography (CMC) has been successfully applied to screen bioactive compounds from Chinese herbs for many years, and some offline and online two-dimensional (2D) CMC-high performance liquid chromatography (HPLC) hyphenated systems have been established to perform screening assays. However, the requirement of sample preparation steps for the second-dimensional analysis in offline systems and the need for an interface device and technical expertise in the online system limit their extensive use. In the present study, an offline 2D CMC-HPLC analysis combined with the XCMS (various forms of chromatography coupled to mass spectrometry) Online statistical tool for data processing was established. First, our previously reported online 2D screening system was used to analyze three Chinese herbs that were reported to have potential anti-inflammatory effects, and two binding components were identified. By contrast, the proposed offline 2D screening method with XCMS Online analysis was applied, and three more ingredients were discovered in addition to the two compounds revealed by the online system. Then, cross-validation of the three compounds was performed, and they were confirmed to be included in the online data as well, but were not identified there because of their low concentrations and lack of credible statistical approaches. Last, pharmacological experiments showed that these five ingredients could inhibit IL-6 release and IL-6 gene expression on LPS-induced RAW cells in a dose-dependent manner. Compared with previous 2D CMC screening systems, this newly developed offline 2D method needs no sample preparation steps for the second-dimensional analysis, and it is sensitive, efficient, and convenient. It will be applicable in identifying active components from Chinese herbs and practical in discovery of lead compounds derived from herbs.
Collapse
|
48
|
Wang XY, Ding X, Yuan YF, Zheng LY, Cao Y, Zhu ZY, Zhang GQ, Chai YF, Chen XF, Hong ZY. Comprehensive two-dimensional APTES-decorated MCF7-cell membrane chromatographic system for characterizing potential anti-breast-cancer components from Yuanhu-Baizhi herbal medicine pair. J Food Drug Anal 2017; 26:823-833. [PMID: 29567254 PMCID: PMC9322241 DOI: 10.1016/j.jfda.2017.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/21/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Rhizoma corydalis and Radix Angelicae Dahurica (Yuanhu–Baizhi) herbal medicine pair has been used for thousands of years and has been reported to be potentially active in recent cancer therapy. But the exact active components or fractions remain unclear. In this study, a new comprehensive two-dimensional (2D) 3-aminopropyltriethoxysilane (APTES)-decorated MCF7-cell membrane chromatography (CMC)/capcell-C18 column/time-of-flight mass spectrometry system was established for screening potential active components and clarifying the active fraction of Yuanhu–Baizhi pair. APTES was modified on the surface of silica, which can provide an amino group to covalently link cell membrane fragments with the help of glutaraldehyde in order to improve the stability and column life span of the MCF7 CMC column. The comprehensive 2D MCF7-CMC system showed good separation and identification abilities. Our screen results showed that the retention components are mainly from the alkaloids in Yuanhu (12 compounds) and the coumarins (10 compounds) in Baizhi, revealing the active fractions of Yuanhu–Baizhi herbal medicine pair. Oxoglaucine, protopine, berberine, osthole, isopimpinellin and palmitic acid were selected as typical components to test the effects on cell proliferation and their IC50 were calculated as 38.17 μM, 29.45 μM, 45.42 μM, 132.7 μM, 156.8 μM and 90.5 μM respectively. Cell apoptosis assay showed that the drug efficacy was obtained mainly through inducing cell apoptosis. Furthermore, a synergistic assay results demonstrated that oxoglaucine (representative of alkaloids from Yuanhu) and isopimpinellin (representative of coumarins from Baizhi) showed significant synergistic efficacy with GFT, indicating that these components may act on other membrane receptors. The proposed 2D CMC system could also be equipped with other cells for further applications. Besides, the follow-up in-vitro experimental strategy using cell proliferation assay, cell apoptosis assay and synergistic assay proved to be a practical way to confirm the active fractions of herbal medicine.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Xuan Ding
- Department of Pharmacy & Medical Appliance, Hangzhou Sanatorium of PLA, Hangzhou, Zhejiang 310000, China
| | - Yong-Fang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, No. 280 Mohe Road, Shanghai 201999, China
| | - Le-Yi Zheng
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Zhen-Yu Zhu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Guo-Qing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, No. 225 Changhai Road, Shanghai 200438, China
| | - Yi-Feng Chai
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Xiao-Fei Chen
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China.
| | - Zhan-Ying Hong
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
49
|
Biospecific isolation and characterization of angiogenesis-promoting ingredients in Buyang Huanwu decoction using affinity chromatography on rat brain microvascular endothelial cells combined with solid-phase extraction, and HPLC-MS/MS. Talanta 2017; 179:490-500. [PMID: 29310265 DOI: 10.1016/j.talanta.2017.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 02/03/2023]
Abstract
Buyang Huanwu decoction (BHD) was reported to exert angiogenesis-promoting effects, but its active ingredients remain unknown. In this study, we developed a method to screen potential angiogenesis-promoting compounds in BHD, which involved biospecific isolation using live rat brain microvascular endothelial cells (rBMECs) and characterization using solid-phase extraction (SPE) and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Six compounds showed binding affinity to rBMECs and were further identified as 6-hydroxykaempferol-di-O-glucoside, paeoniflorin, calycosin-7-O-β-D-glucoside, galloylpaeoniflorin, formononetin-7-O-β-D-glucoside, and (3R)-7,2'-hydroxy-3',4'-dimethoxy-isoflavan. The results indicated that five of them except 6-hydroxykaempferol-di-O-glucoside showed a protective effect against oxygen glucose deprivation/reperfusion injury in rBMECs and upregulated the secretion of vascular endothelial growth factor and basic fibroblast growth factor, suggesting a mechanism underlying their angiogenic activity. Our findings suggest that biospecific live cell-based isolation combined with SPE and HPLC-MS/MS is an effective method for screening potential bioactive components in traditional Chinese medicines.
Collapse
|
50
|
A simple microdroplet chip consisting of silica nanochannel-assisted electrode and paper cover for highly sensitive electrochemiluminescent detection of drugs in human serum. Anal Chim Acta 2017; 983:96-102. [DOI: 10.1016/j.aca.2017.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/14/2017] [Accepted: 06/15/2017] [Indexed: 11/18/2022]
|