1
|
Mörén L, Östin A, Larsson A, Forsberg J, Wiktelius D, Lindén P. Rapid screening of riot control agents using DART-TD-HRMS. Forensic Toxicol 2024; 42:152-162. [PMID: 38388823 PMCID: PMC11269514 DOI: 10.1007/s11419-024-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/07/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Riot Control Agents (RCAs) are chemicals used in law enforcement for non-lethal riot control and use in conflicts between states that violates the Chemical Weapons Convention. OPCW's Scientific Advisory Board has identified sixteen potential RCAs including capsaicinoids, CS, and CR. RCAs may be misused for criminal purposes, so methods for detecting such misuse are needed. This study therefore evaluates the feasibility of a rapid, high throughput screening method of RCAs on surfaces (particularly clothing surfaces) by Direct Analysis in Real Time with a thermal desorption unit coupled to high-resolution mass spectrometry (DART-TD-HRMS). METHODS A broadly applicable method for detecting potential RCAs was developed and tested on cotton fabric samples sprayed with self-defence sprays from an in-house reference stock. The feasibility of detecting RCAs by direct analysis of surface wipe samples placed in the DART source was also investigated. RESULTS The method detected all sixteen RCAs and contaminated clothing were successfully screened for active agents in a reference collection of self-defence sprays. A pilot study also showed that RCAs can be detected by holding a sample directly in front of the DART source. CONCLUSION DART-TD-HRMS enables rapid and simple screening of RCAs on fabric samples enabling a high sample throughput.
Collapse
Affiliation(s)
- Lina Mörén
- FOI, Swedish Defence Research Agency, CBRN Defence & Security, SE 901 82, Umeå, Sweden
| | - Anders Östin
- FOI, Swedish Defence Research Agency, CBRN Defence & Security, SE 901 82, Umeå, Sweden
| | - Andreas Larsson
- FOI, Swedish Defence Research Agency, CBRN Defence & Security, SE 901 82, Umeå, Sweden
| | - Julia Forsberg
- FOI, Swedish Defence Research Agency, CBRN Defence & Security, SE 901 82, Umeå, Sweden
| | - Daniel Wiktelius
- FOI, Swedish Defence Research Agency, CBRN Defence & Security, SE 901 82, Umeå, Sweden
| | - Pernilla Lindén
- FOI, Swedish Defence Research Agency, CBRN Defence & Security, SE 901 82, Umeå, Sweden.
| |
Collapse
|
2
|
Makni Y, Diallo T, Guérin T, Parinet J. A proof-of-concept study on the versatility of liquid chromatography coupled to high-resolution mass spectrometry to screen for various contaminants and highlight markers of floral and geographical origin for different honeys. Food Chem 2024; 436:137720. [PMID: 37844510 DOI: 10.1016/j.foodchem.2023.137720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
The high-resolution mass spectrometry is a powerful analytical tool for improving food safety and authenticity, but still underused in official control laboratories. The present work is a proof-of-concept study overviewing how liquid-chromatography coupled to high-resolution mass spectrometry could be used simultaneously for large-scale screening of contaminants and differentiation of honey samples. Within this study, the samples were extracted using all-in-one QuEChERS-based protocol that allowed for analysis of various anthropogenic contaminants and endogenous compounds. First, targeted-analysis of 52 honey samples led to unequivocal identification of 23 chemicals, including neonicotinoids, triazole fungicides and synergist. Then, suspect-screening using MSDial software allowed for tentative identification of 30 chemicals including plasticizers, flame-retardants and additives. Suspect-screening also made it possible to highlight tentative markers of chestnut honey (deoxyvasicinone, 2-quinolone, indoleacrylic acid and kynurenic acid) and citrus honey (caffeine, 2-oxindole and indole-3-carbinol). Lastly, non-targeted analysis enabled to separate honeys by their type, floral and geographical origins.
Collapse
Affiliation(s)
- Yassine Makni
- University Paris Est Creteil, ANSES, Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France
| | - Thierno Diallo
- University Paris Est Creteil, ANSES, Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Thierry Guérin
- ANSES, Strategy and Programmes Department, F-94701 Maisons-Alfort, France
| | - Julien Parinet
- University Paris Est Creteil, ANSES, Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France.
| |
Collapse
|
3
|
Yang CL, Yu LH, Pang YH, Shen XF. A colorimetric sensing platform with smartphone for organophosphorus pesticides detection based on PANI-MnO 2 nanozyme. Anal Chim Acta 2024; 1286:342045. [PMID: 38049237 DOI: 10.1016/j.aca.2023.342045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023]
Abstract
Organophosphorus pesticides (OPs) are of great concern due to its potential harms on human health and the environment. Herein, a budget-friendly, rapid and convenient colorimetric sensing platform is developed for detection of OPs in the environmental and food samples. The sensing element, PANI-MnO2 nanozyme with excellent oxidase mimetic activity is synthesized at room temperature, which is able to directly oxidize 3,3,5,5-tetramethylbenzidine (TMB) to generate blue colored oxidized TMB (OxTMB) within 2 min. Ascorbic acid (AA) can inhibit the oxidization reaction of TMB, consequently causing the blue color fading. Ascorbic acid 2-phosphate (AAP) could be hydrolyzed to produce AA by alkaline phosphatase (ALP). In the presence of OPs can effectively decrease ALP activity, resulting in the recovery of catalytic activity of PANI-MnO2. Therefore, sensitive and selective OPs detection is achieved. Under the optimal conditions, excellent detection performance in term of glyphosate as a model is achieved with a linear range from 0.50 to 50 μM, the detection limit is 0.39 μM (S/N = 3). The utility of method is further improved by combining a portable smartphone platform with a color picking application. The colorimetric platform achieves instrument-free detection of OPs and overcomes the uneven color distribution of traditional paper-based chip, providing an alternative strategy for the qualitative discernment and semi-quantitative analysis of OPs on-site.
Collapse
Affiliation(s)
- Cheng-Lin Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Li-Hong Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Udomkun P, Boonupara T, Sumitsawan S, Khan E, Pongpichan S, Kajitvichyanukul P. Airborne Pesticides-Deep Diving into Sampling and Analysis. TOXICS 2023; 11:883. [PMID: 37999535 PMCID: PMC10674914 DOI: 10.3390/toxics11110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
The escalating utilization of pesticides has led to pronounced environmental contamination, posing a significant threat to agroecosystems. The extensive and persistent global application of these chemicals has been linked to a spectrum of acute and chronic human health concerns. This review paper focuses on the concentrations of airborne pesticides in both indoor and outdoor environments. The collection of diverse pesticide compounds from the atmosphere is examined, with a particular emphasis on active and passive air sampling techniques. Furthermore, a critical evaluation is conducted on the methodologies employed for the extraction and subsequent quantification of airborne pesticides. This analysis takes into consideration the complexities involved in ensuring accurate measurements, highlighting the advancements and limitations of current practices. By synthesizing these aspects, this review aims to foster a more comprehensive and informed comprehension of the intricate dynamics related to the presence and measurement of airborne pesticides. This, in turn, is poised to significantly contribute to the refinement of environmental monitoring strategies and the augmentation of precise risk assessments.
Collapse
Affiliation(s)
- Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (P.U.); (T.B.); or (S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (P.U.); (T.B.); or (S.S.)
| | - Sulak Sumitsawan
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (P.U.); (T.B.); or (S.S.)
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA;
| | - Siwatt Pongpichan
- NIDA Center for Research and Development of Disaster Prevention and Management, Graduate School of Social Development and Management Strategy, National Institute of Development Administration (NIDA), Bangkok 10240, Thailand
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (P.U.); (T.B.); or (S.S.)
| |
Collapse
|
5
|
Barut BB, Erkmen C, İpek S, Yıldırım S, Üstündağ A, Uslu B. Analytical studies on some pesticides with antifungal effects: Simultaneous determination by HPLC, investigation of interactions with DNA and DNA damages. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123862. [PMID: 37696115 DOI: 10.1016/j.jchromb.2023.123862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023]
Abstract
A simple, and fast method was developed for the simultaneous determination of five fungicides, namely thiram (THR), epoxiconazole (EPO), hexaconazole (HEX), tebuconazole (TEB), and diethofencarb (DIE), in different matrices by HPLC-UV. Parameters influencing the peak shape and resolution, such as the composition of mobile phase, pH and concentration of buffer solution, and column temperature, were examined and optimized. The proposed method was validated in terms of linearity, sensitivity, precision, and accuracy. Forced degradation studies were carried out for all analytes to demonstrate the specificity of the method and to evaluate the stability of analytes under different conditions. DNA interaction and DNA damage studies were conducted by HPLC and comet assay, respectively. All fungicides were found to bind DNA, except for DIE. While the binding coefficients for EPO, HEX, and TEB were of the order of 104, THR was found to interact more strongly with DNA with a binding coefficient of higher than 106. DIE did not induce DNA damage at any concentration tested. On the other hand, TEB, HEX, and EPO induced DNA damage up to 30 µg/mL. THR showed cytotoxic effects at 20 and 30 µg/mL and caused significant DNA damage at lower concentrations.
Collapse
Affiliation(s)
- Boğaç Buğra Barut
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkiye; Ankara University, The Graduate School of Health Sciences, 06110 Ankara, Turkiye
| | - Cem Erkmen
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkiye
| | - Seda İpek
- Ankara University, The Graduate School of Health Sciences, 06110 Ankara, Turkiye; Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06560 Ankara, Turkiye
| | - Sercan Yıldırım
- Karadeniz Technical University, Faculty of Pharmacy, Department of Analytical Chemistry, Farabi Street, 61080 Trabzon, Turkiye
| | - Aylin Üstündağ
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06560 Ankara, Turkiye
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkiye.
| |
Collapse
|
6
|
Makni Y, Diallo T, Areskoug F, Guérin T, Parinet J. Optimisation and implementation of QuEChERS-based sample preparation for identification and semi-quantification of 694 targeted contaminants in honey, jam, jelly, and syrup by UHPLC-Q/ToF high-resolution mass spectrometry. Food Chem 2023; 425:136448. [PMID: 37285627 DOI: 10.1016/j.foodchem.2023.136448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
A screening and semi-quantitative method was developed for the analysis of 694 various contaminants in honey, jam, jelly and syrup samples by ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry. Sample preparation, which was optimised using split factorial design, was based on acetate-buffered version of QuEChERS, followed by a clean-up step and a concentration step to enhance sensitivity of analytes. The method was validated according to SANTE/11312/2021 guidelines. The screening detection and limits of identification were established as being less than or equal to 0.05 mg.kg-1 for 89% and 74% of the contaminants, respectively. The validated screening method was applied to 50 concentrated sugary products. Overall, 46% of the samples were positive to pesticide residues. Most of the positive samples (78%) contained mixtures of pesticide residues. Three time-and-cost saving convenient strategies suitable for high-throughput analysis were proposed for the targeted semi-quantification of the previously contaminants identified in samples.
Collapse
Affiliation(s)
- Yassine Makni
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France
| | - Thierno Diallo
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Francisca Areskoug
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Thierry Guérin
- ANSES, Strategy and Programmes Department, F-94701 Maisons-Alfort, France
| | - Julien Parinet
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France.
| |
Collapse
|
7
|
Chafiqi N, Karamoko G, Chèné C, Pelzer E, Vanderriele M, Karoui R, Botosoa EP. Development of 2D and 3D front face fluorescence spectroscopy for monitoring ultrasound treatment in the removal of pesticides residues from fresh lettuces at the laboratory and pilot scales. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122278. [PMID: 36592596 DOI: 10.1016/j.saa.2022.122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Pesticide residues in vegetables are potentially toxic components to humans and can cause serious health problems. To remove pesticide residues from fresh agricultural products and improve consumer food safety, various pesticide removal methods have been investigated over the past decades. In this study, the effectiveness of laboratory and pilot scale ultrasonic cleaning on the removal of boscalid and pyraclostrobin residues from lettuce was examined. 2D fluorescence spectroscopy, 3D fluorescence spectroscopy represented by excitation-emission matrix (EEM), and parallel factor analysis (PARAFAC) were used to characterize and discriminate the fluorescence signatures of these pesticides in the cleaning water to determine the effectiveness of the ultrasonic cleaning method as a function of the level of pesticide removal. The 2D fluorescence results showed that the rate of removal of boscalid by ultrasonics at the laboratory scale increased with the cleaning time. The ultrasonic treatment showed a higher cleaning efficiency compared to only soaking in distilled water for 10 min. The same trends were observed at the pilot scale. The EEM also showed differences in the concentration of pesticides removed by ultrasonication between the different parts of the lettuce, the concentration was higher in the upper part than the lower part. This study showed that ultrasonication is an effective technique for the removal of pesticide residues on lettuce, and it also showed the significant potential of fluorescence spectroscopy coupled with PARAFAC for the discrimination and characterization of pesticides.
Collapse
Affiliation(s)
- Nassim Chafiqi
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Gaoussou Karamoko
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | | | - Elise Pelzer
- Chambre d'Agriculture de Hauts-de-France, Pôle Légumes Région Nord, 62840 Lorgies, France
| | - Mathieu Vanderriele
- Chambre d'Agriculture de Hauts-de-France, Pôle Légumes Région Nord, 62840 Lorgies, France
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France; ADRIANOR, F-62217 Tilloy Les Mofflaines, France
| | - Eliot Patrick Botosoa
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France.
| |
Collapse
|
8
|
Amatatongchai M, Thimoonnee S, Somnet K, Chairam S, Jarujamrus P, Nacapricha D, Lieberzeit PA. Origami 3D-microfluidic paper-based analytical device for detecting carbaryl using mesoporous silica-platinum nanoparticles with a molecularly imprinted polymer shell. Talanta 2023; 254:124202. [PMID: 36549139 DOI: 10.1016/j.talanta.2022.124202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Herein, we present a novel Origami 3D-μPAD for colorimetric carbaryl detection using a super-efficient catalyst, namely mesoporous silica-platinum nanoparticles coated with a molecularly imprinted polymer (MSN-PtNPs@MIP). Morphological and structural characterization reveals that coating MIP on the MSN-PtNPs surface significantly increases the selective area, leading to larger numbers of imprinting sites for improved sensitivity and selectivity in determining carbaryl. The as-prepared MSN-PtNPs@MIP was used for catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2. Carbaryl selectively binds to the cavities embedded on the MSN-PtNPs surface and subsequently inhibits TMB oxidation leading the color to change to light blue. The change of reaction color from dark blue to light blue depends on the concentration of carbaryl within the 3D-μPAD detection zone. This design integrates the advantages of highly efficient sample delivery through micro channels (top layer) and efficient partition/separation paths (bottom layer) of the cellulose substrate to achieve both improved detection sensitivity and selectivity. Assay on the Origami 3D-μPAD can determine carbaryl by ImageJ detection, over a dynamic range of 0.002-20.00 mg kg-1, with a very low limit of detection at 1.5 ng g-1. The developed 3D-μPAD exhibit high accuracy when applied to detect carbaryl in fruits, with satisfactory recoveries from 90.1% to 104.0% and relative differences from the reference HPLC values less than 5.0%. Furthermore, the fabricated Origami 3D-μPAD provides reliable durability and good reproducibility (3.19% RSD for fifteen devices).
Collapse
Affiliation(s)
- Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Thailand.
| | - Suphatsorn Thimoonnee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kanpitcha Somnet
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Sanoe Chairam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Duangjai Nacapricha
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, 1090, Vienna, Austria
| |
Collapse
|
9
|
Kottadiyil D, Mehta T, Thasale R, P S. Determination and dietary risk assessment of 52 pesticide residues in vegetable and fruit samples by GC-MS/MS and UHPLC-QTOF/MS from Gujarat, India. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Bauer EM, Bogliardi G, Ricci C, Cecchetti D, De Caro T, Sennato S, Nucara A, Carbone M. Syntheses of APTMS-Coated ZnO: An Investigation towards Penconazole Detection. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8050. [PMID: 36431536 PMCID: PMC9697174 DOI: 10.3390/ma15228050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Extrinsic chemiluminescence can be an efficient tool for determining pesticides and fungicides, which do not possess any intrinsic fluorescent signal. On this basis, (3-aminopropyl) trimethoxysilane (APTMS)-coated ZnO (APTMS@ZnO) was synthesized and tested as an extrinsic probe for the fungicide penconazole. Several synthetic routes were probed using either a one-pot or two-steps method, in order to ensure both a green synthetic pathway and a good signal variation for the penconazole concentration. The synthesized samples were characterized using X-ray diffraction (XRD), infrared (IR), Raman and ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM) imaging and associated energy-dispersive X-ray (EDX) analysis. The average size of the synthesized ZnO nanoparticles (NPs) is 54 ± 10 nm, in line with previous preparations. Of all the samples, those synthesized in two steps, at temperatures ranging from room temperature (RT) to a maximum of 40 °C, using water solvent (G-APTMG@ZnO), appeared to be composed of nanoparticles, homogeneously coated with APTMS. Chemiluminescence tests of G-APTMG@ZnO, in the penconazole concentration range 0.7-1.7 ppm resulted in a quenching of the native signal between 6% and 19% with a good linear response, thus indicating a green pathway for detecting the contaminant. The estimated detection limit (LOD) is 0.1 ± 0.01 ppm.
Collapse
Affiliation(s)
- Elvira Maria Bauer
- Institute of Structure of Matter, Italian National Research Council (ISM-CNR), Via Salaria km 29.3, 00015 Monterotondo, RM, Italy
| | - Gabriele Bogliardi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, RM, Italy
| | - Cosimo Ricci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, RM, Italy
| | - Daniele Cecchetti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, RM, Italy
| | - Tilde De Caro
- Institute of Nanostructure Materials, National Research Council (ISMN-CNR), Via Salaria km 29.3, 00015 Monterotondo, RM, Italy
| | - Simona Sennato
- Institute of Complex Systems, Italian National Research Council (ISC-CNR) Sapienza Unit, and Physics Department, Sapienza University, P.le A. Moro 5, 00185 Rome, RM, Italy
| | - Alessandro Nucara
- Department of Physics, Sapienza University, P.le A. Moro 5, 00185 Rome, RM, Italy
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, RM, Italy
| |
Collapse
|
11
|
Makni Y, Diallo T, Guérin T, Parinet J. Improving the monitoring of multi-class pesticides in baby foods using QuEChERS-UHPLC-Q-TOF with automated identification based on MS/MS similarity algorithms. Food Chem 2022; 395:133573. [DOI: 10.1016/j.foodchem.2022.133573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
|
12
|
Bai M, Tang R, Li G, She W, Chen G, Shen H, Zhu S, Zhang H, Wu H. High-throughput screening of 756 chemical contaminants in aquaculture products using liquid chromatography/quadrupole time-of-flight mass spectrometry. Food Chem X 2022; 15:100380. [PMID: 36211738 PMCID: PMC9532709 DOI: 10.1016/j.fochx.2022.100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022] Open
Abstract
A high-throughput screening method embracing 756 multiclass chemical contaminants in aquaculture products was developed using modified QuEChERS extraction coupled with liquid chromatography/quadrupole time-of-flight mass spectrometry. A mega-database with retention time/accurate mass data for 524 pesticides, 182 veterinary drugs, 32 persistent organic pollutants and 18 marine toxins was established for compound identification via retrospective library searching. In the four representative matrices (muscle tissues of tilapia and grouper, and edible portions of oyster and scallop), all the database compounds showed acceptable recovery and repeatability with the screening detection limit and limit of quantification below 0.01 mg/kg for >90% of them. The matrix-matched calibration revealed acceptable quantitative property of the method in terms of linear range, linearity, and matrix effect, and fish muscle samples showed stronger matrix effect than shellfish samples. Analysis of 64 real-life samples from aquaculture farms and retail markets evidenced applicability of the proposed method to high-throughput screening scenarios.
Collapse
Affiliation(s)
- Mingkai Bai
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ruixue Tang
- Linxia Food Inspection and Testing Center, 8 Renmin Road, Linxia 731100, China
| | - Guorong Li
- Yin-chuan Administration for Market Regulation, 205 South Limin Street, Yinchuan 750001, China
| | - Wenhai She
- Guangdong Aquatic Resources Industrialization Engineering Technology Research Center, Guangzhou Luxe Seafood Enterprises Ltd., 1 Lushi Road, Guangzhou 510820, China
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Gangjun Chen
- Guangdong Aquatic Resources Industrialization Engineering Technology Research Center, Guangzhou Luxe Seafood Enterprises Ltd., 1 Lushi Road, Guangzhou 510820, China
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Hongmei Shen
- Linxia Food Inspection and Testing Center, 8 Renmin Road, Linxia 731100, China
| | - Suqin Zhu
- Yin-chuan Administration for Market Regulation, 205 South Limin Street, Yinchuan 750001, China
| | - Hongwei Zhang
- Technology Center of Qingdao Customs, 83 Xinyue Road, Qingdao 266109, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
13
|
Liu Y, Li N, Li X, Qian W, Liu J, Su Q, Chen Y, Zhang B, Zhu B, Cheng J. A high-resolution Orbitrap Mass spectral library for trace volatile compounds in fruit wines. Sci Data 2022; 9:496. [PMID: 35963960 PMCID: PMC9376066 DOI: 10.1038/s41597-022-01594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
The overall aroma is an important factor of the sensory quality of fruit wines, which attributed to hundreds of volatile compounds. However, the qualitative determination of trace volatile compounds is considered to be very challenging work. GC-Orbitrap-MS with high resolution and high sensitivity provided more possibilities for the determination of volatile compounds, but without the high-resolution mass spectral library. For accuracy of qualitative determination in fruit wines by GC-Orbitrap-MS, a high-resolution mass spectral library, including 76 volatile compounds, was developed in this study. Not only the HRMS spectrum but also the exact ion fragment, relative abundance, retention indices (RI), CAS number, chemical structure diagram, aroma description and aroma threshold (ortho-nasally) were provided and were shown in a database website (Food Flavor Laboratory, http://foodflavorlab.cn/). HRMS library was used to successfully identify the volatile compounds mentioned above in 16 fruit wines (5 blueberry wines, 6 goji berry wines and 5 hawthorn wines). The library was developed as an important basis for further understanding of trace volatile compounds in fruit wines. Measurement(s) | volatile compounds | Technology Type(s) | GC-Orbitrap-MS |
Collapse
Affiliation(s)
- Yaran Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Na Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyao Li
- School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Wenchao Qian
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jiani Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qingyu Su
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Chen
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Jinxin Cheng
- China People's Police University, Hebei, 065000, China.
| |
Collapse
|
14
|
Approaches for assessing performance of high-resolution mass spectrometry-based non-targeted analysis methods. Anal Bioanal Chem 2022; 414:6455-6471. [PMID: 35796784 PMCID: PMC9411239 DOI: 10.1007/s00216-022-04203-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022]
Abstract
Non-targeted analysis (NTA) using high-resolution mass spectrometry has enabled the detection and identification of unknown and unexpected compounds of interest in a wide range of sample matrices. Despite these benefits of NTA methods, standardized procedures do not yet exist for assessing performance, limiting stakeholders’ abilities to suitably interpret and utilize NTA results. Herein, we first summarize existing performance assessment metrics for targeted analyses to provide context and clarify terminology that may be shared between targeted and NTA methods (e.g., terms such as accuracy, precision, sensitivity, and selectivity). We then discuss promising approaches for assessing NTA method performance, listing strengths and key caveats for each approach, and highlighting areas in need of further development. To structure the discussion, we define three types of NTA study objectives: sample classification, chemical identification, and chemical quantitation. Qualitative study performance (i.e., focusing on sample classification and/or chemical identification) can be assessed using the traditional confusion matrix, with some challenges and limitations. Quantitative study performance can be assessed using estimation procedures developed for targeted methods with consideration for additional sources of uncontrolled experimental error. This article is intended to stimulate discussion and further efforts to develop and improve procedures for assessing NTA method performance. Ultimately, improved performance assessments will enable accurate communication and effective utilization of NTA results by stakeholders.
Collapse
|
15
|
Volatilomics-Based Microbiome Evaluation of Fermented Dairy by Prototypic Headspace-Gas Chromatography–High-Temperature Ion Mobility Spectrometry (HS-GC-HTIMS) and Non-Negative Matrix Factorization (NNMF). Metabolites 2022; 12:metabo12040299. [PMID: 35448485 PMCID: PMC9025153 DOI: 10.3390/metabo12040299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/10/2022] Open
Abstract
Fermented foods, such as yogurt and kefir, contain a versatile spectrum of volatile organic compounds (VOCs), including ethanol, acetic acid, ethyl acetate, and diacetyl. To overcome the challenge of overlapping peaks regarding these key compounds, the drift tube temperature was raised in a prototypic high-temperature ion mobility spectrometer (HTIMS). This HS-GC-HTIMS was used for the volatilomic profiling of 33 traditional kefir, 13 commercial kefir, and 15 commercial yogurt samples. Pattern recognition techniques, including principal component analysis (PCA) and NNMF, in combination with non-targeted screening, revealed distinct differences between traditional and commercial kefir while showing strong similarities between commercial kefir and yogurt. Classification of fermented dairy samples into commercial yogurt, commercial kefir, traditional mild kefir, and traditional tangy kefir was also possible for both PCA- and NNMF-based models, obtaining cross-validation (CV) error rates of 0% for PCA-LDA, PCA-kNN (k = 5), and NNMF-kNN (k = 5) and 3.3% for PCA-SVM and NNMF-LDA. Through back projection of NNMF loadings, characteristic substances were identified, indicating a mild flavor composition of commercial samples, with high concentrations of buttery-flavored diacetyl. In contrast, traditional kefir showed a diverse VOC profile with high amounts of flavorful alcohols (including ethanol and methyl-1-butanol), esters (including ethyl acetate and 3-methylbutyl acetate), and aldehydes. For validation of the results and deeper understanding, qPCR sequencing was used to evaluate the microbial consortia, confirming the microbial associations between commercial kefir and commercial yogurt and reinforcing the differences between traditional and commercial kefir. The diverse flavor profile of traditional kefir primarily results from the yeast consortium, while commercial kefir and yogurt is primarily, but not exclusively, produced through bacterial fermentation. The flavor profile of fermented dairy products may be used to directly evaluate the microbial consortium using HS-GC-HTIMS analysis.
Collapse
|
16
|
Lindemann V, Schmidt J, Cramer B, Humpf HU. Detection of Mycotoxins in Highly Matrix-Loaded House-Dust Samples by QTOF-HRMS, IM-QTOF-HRMS, and TQMS: Advantages and Disadvantages. Anal Chem 2022; 94:4209-4217. [PMID: 35231175 PMCID: PMC8928151 DOI: 10.1021/acs.analchem.1c04254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 12/28/2022]
Abstract
The analysis of (trace) contaminants in environmental samples represents an important tool for exposure assessment and for the evaluation of potential risks to human health. Currently, mass spectrometric detection using triple quadrupole (TQMS) systems is the established method of choice. However, screening methods using high resolution mass spectrometry (HRMS) find increasing application as they provide advantages such as enhanced selectivity. A complex composition of environmental samples is known to have enormous effects on mass analyzers. The present work therefore compares the impact of a highly matrix-loaded sample material like house-dust on the performance of mass spectrometric detection of the emerging indoor contaminant group of mycotoxins by quadrupole time-of-flight (QTOF) and TQMS after ultrahigh-performance liquid chromatographic separation. Furthermore, the role of ionization efficiencies of different ion sources in instrument sensitivity was compared using an electrospray ionization source and a newly developed heated electrospray ion source (Bruker VIP-HESI) during QTOF experiments. Finally, it was evaluated whether an additional dimension of separation enables increased sensitivity in QTOF-HRMS detection by applying mycotoxins in house-dust to an (trapped) ion mobility spectrometry instrument. The sensitivity of the QTOF detection was positively influenced by the application of the VIP-HESI ion source, and overall HRMS instruments provided enhanced selectivity resulting in simplified data evaluation compared to the TQMS. However, all performed experiments revealed strong signal suppression due to matrix components. QTOF results showed more severe effects, enabling a more sensitive detection of mycotoxins in house-dust by applying TQMS detection.
Collapse
Affiliation(s)
- Viktoria Lindemann
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Jessica Schmidt
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
17
|
Zhu C, Lai G, Jin Y, Xu D, Chen J, Jiang X, Wang S, Liu G, Xu N, Shen R, Wang L, Zhu M, Wu C. Suspect screening and untargeted analysis of veterinary drugs in food by LC-HRMS: Application of background exclusion-dependent acquisition for retrospective analysis of unknown xenobiotics. J Pharm Biomed Anal 2022; 210:114583. [PMID: 35033942 DOI: 10.1016/j.jpba.2022.114583] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023]
Abstract
The presence of veterinary drug and pesticide residues in food products pose considerable threats to human health. Monitoring of these residues in food is mainly carried out using targeted analysis by triple quadrupole mass spectrometry. However, these methods are not suitable for suspect screening and untargeted analysis of unknowns. The main objectives of this study were to develop a new high-resolution mass spectrometry (HRMS)-based analytical strategy for retrospective analysis of suspect and unknown xenobiotics and to evaluate its performance in the tentative identification of 48 veterinary drugs as "unknowns" spiked in a pork sample. In the analysis, a newly developed background exclusion data-dependent acquisition (BE-DDA) technique was employed to trigger the product ion (MS/MS) spectral acquisition of the "unknowns", and an in-house precise-and-thorough background-subtraction (PATBS) technique was applied to detect these "unknowns". Results showed that untargeted data mining of the acquired LC-MS dataset by PATBS was able to find all the 48 veterinary drugs and 46 of them were triggered by BE-DDA to generate accurate MS/MS spectra. The dataset of recorded accurate full-scan mass and MS/MS spectra of all the xenobiotics of the test pork sample is defined as the xenobiotics profile. Searching the xenobiotic profile of the test pork sample using mass spectral data of selected veterinary drugs (as suspects) from the mzCloud spectral library led to the correct hits. Searching against the mzCloud spectral library using the mass spectral data of selected individual veterinary drugs (as unknowns) from the xenobiotics profile tentatively confirmed their identities. In contrast, analysis of the same sample using ion intensity-data dependent acquisition only recorded the MS/MS spectra for 34 veterinary drugs. In addition, a data independent acquisition method enabled the acquisition of the fragment spectra for 44 veterinary drugs, but their spectral data displayed only one or a few true product ions of individual analytes of interest along with many fragments from coeluted biological components and background noises. This study demonstrates that this analytical strategy has a potential to become a practical tool for the retrospective suspect screening and untargeted analysis of unknown xenobiotics in a biological sample such as veterinary drugs and pesticides in food products.
Collapse
Affiliation(s)
- Chunyan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Guoyin Lai
- Xiamen Customs Technology Center, Xiamen, China
| | - Ying Jin
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Dunming Xu
- Xiamen Customs Technology Center, Xiamen, China
| | - Jiayun Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiaojuan Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Suping Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | | | | | - Rong Shen
- School of Medicine, Xiamen University, Xiamen, China
| | - Luxiao Wang
- Xiamen Customs Technology Center, Xiamen, China
| | - Mingshe Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China; MassDefect Technologies, Princeton, NJ, USA.
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
18
|
Capitain C, Weller P. Non-Targeted Screening Approaches for Profiling of Volatile Organic Compounds Based on Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) and Machine Learning. Molecules 2021; 26:molecules26185457. [PMID: 34576928 PMCID: PMC8468721 DOI: 10.3390/molecules26185457] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Due to its high sensitivity and resolving power, gas chromatography-ion mobility spectrometry (GC-IMS) is a powerful technique for the separation and sensitive detection of volatile organic compounds. It is a robust and easy-to-handle technique, which has recently gained attention for non-targeted screening (NTS) approaches. In this article, the general working principles of GC-IMS are presented. Next, the workflow for NTS using GC-IMS is described, including data acquisition, data processing and model building, model interpretation and complementary data analysis. A detailed overview of recent studies for NTS using GC-IMS is included, including several examples which have demonstrated GC-IMS to be an effective technique for various classification and quantification tasks. Lastly, a comparison of targeted and non-targeted strategies using GC-IMS are provided, highlighting the potential of GC-IMS in combination with NTS.
Collapse
|
19
|
High-resolution mass spectrometry for the determination of mycotoxins in biological samples. A review. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
McCullagh M, Goscinny S, Palmer M, Ujma J. Investigations into pesticide charge site isomers using conventional IM and cIM systems. Talanta 2021; 234:122604. [PMID: 34364418 DOI: 10.1016/j.talanta.2021.122604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
A growing number of pesticides are being used around the world necessitating strict regulatory policies to guarantee consumer safety. Liquid Chromatography - Mass Spectrometry (LC-MS) is a highly sensitive method for pesticide screening, which provides retention time, mass/charge ratios and the relative abundances of characteristic product ions. Variability in the latter necessitates relatively large tolerances (±30%, SANCO/12682/2019, current EU regulation). One cause of this variability may stem from the presence of different charge-site isomers (charge carrier being a proton, sodium cation, potassium cation and alike); each yielding a set of different product ions, of which the relative ratios are influenced by solution and ion source conditions. Consequently, varying relative abundances may be observed for analyte ions produced from calibration standards, chemical residues in food matrices and across different instruments. Ion Mobility Spectrometry (IMS) is a fast, gas phase separation technique which can resolve charge-site isomers based on differences in their collisional cross sections (CCSs). We previously used the IM device embedded in LC-IM-MS geometry to generate a pesticide CCS database and subsequently focussed upon identification of pesticides which form charge-site isomers. Latterly, we applied this approach to screen food commodities for pesticide residues. In some instances, isomer separation was clear, however sometimes broad, unresolved distributions were observed. Using a high-resolution cyclic IM device (cIM) we resolved and determined CCS values of species of indoxacarb, spinosad, fenpyroximate, epoxiconazole, metaflumizone and avermectin. Furthermore, utilising novel cIM functionalities (tandem-IM) we discovered that two spinosyn sodimers can interconvert in the gas phase.
Collapse
Affiliation(s)
| | - Séverine Goscinny
- Scientific Institute of Public Health, 14, Rue Juliette Wytsman, 1050, Brussels, Belgium
| | - Martin Palmer
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, UK
| | - Jakub Ujma
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, UK
| |
Collapse
|
21
|
Gallocchio F, Moressa A, Stella R, Rosin R, Basilicata L, Bille L, Toson M, Biancotto G, Lega F, Angeletti R, Binato G. Fast and simultaneous analysis of carbamate pesticides and anticoagulant rodenticides used in suspected cases of animal poisoning. Forensic Sci Int 2021; 323:110810. [PMID: 33971506 DOI: 10.1016/j.forsciint.2021.110810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022]
Abstract
Carbamate pesticides (CBs) are reported as one of the main causes of intentional or accidental poisoning of animals. Anticoagulant rodenticides (ARs) form the main class of poisons implicated in analyzed poisoned baits. These two groups of pesticide compounds include multiple substances, and thus, the development of a simple and rapid multiclass/multiresidue analytical method for simultaneous identification of both toxicant classes should be a useful strategy for analytical laboratories to reduce analysis time and cost. The present study aimed to elaborate and validate a rapid method to simultaneously determine 11 CBs and 8 ARs in samples of real matrices (bait, stomach content, and liver) from suspected animal poisoning cases. QuEChERS sample treatment and liquid chromatography coupled to hybrid high resolution mass spectrometry were used. The method resulted in good linearity (R2 ≥ 0.98) for all compounds, recovery was between 70% and 120% for CBs and 40-90% for ARs, and precision was ≤ 20% for all compounds. The method was successfully applied to the analysis of 871 real samples originating from suspected cases of animal poisoning, collected from April 2019 to October 2020. Furthermore, full scan dependent data acquisition allowed qualitative retrospective data analysis of an additional 15 compounds outside the scope of the method to be performed; these compounds could potentially be involved in unresolved poisoning cases.
Collapse
Affiliation(s)
- Federica Gallocchio
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy.
| | - Alessandra Moressa
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| | - Roberto Stella
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| | - Roberta Rosin
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| | - Lara Basilicata
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| | - Laura Bille
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| | - Marica Toson
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| | - Giancarlo Biancotto
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| | - Francesca Lega
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| | - Roberto Angeletti
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| | - Giovanni Binato
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| |
Collapse
|
22
|
Wei Q, Zhang L, Song C, Yuan H, Li X. Quantitative detection of dithiocarbamate pesticides by surface-enhanced Raman spectroscopy combined with an exhaustive peak-seeking method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1479-1488. [PMID: 33687382 DOI: 10.1039/d0ay01953d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) based on nanosilver colloid substrates has great potential for rapid detection of pesticide residues because of its advantages of sensitivity, rapidity, simplicity, low cost, etc. However, its poor repeatability and narrow linear quantitative range limit its practical application. In this paper, a silver colloid SERS analysis method combined with an exhaustive peak-seeking method was introduced for quantitative determination of thiram and ziram. This method can establish a linear quantitative relationship in a wide range by use of an own characteristic peak of analysis as an internal standard (IS) which is found via judging the linear correlation between the intensity ratios of two SERS peaks of analytes and the concentrations. Combined with improving the preparation method of silver colloids, adding suitable activators and optimizing the detection process, a liquid detection system with good repeatability and a wide linear quantitation range was obtained. The relative standard deviation (RSD) of the strongest SERS peak is no more than 8.98%, which is better than the general case of the silver colloid SERS substrate. The ratio of I1384/I1148 has a good linear relationship with the concentration of thiram solution, and the 1148 cm-1 characteristic peak was utilized as the IS to establish the standard curve equation for the determination of thiram concentration. The equation is I1384/I1148 = -1.7930 × lg[cthiram (ppm)] + 6.0078 with a linear range of 10-2 to 102 ppm (4.16 × 10-8 to 4.16 × 10-4 mol L-1) and a limit of detection (LOD) of 10-2 ppm. The peak of IS for the determination of ziram concentration is at 938 cm-1, and the equation is I1384/I938 = 4.5531 × lg[cziram (ppm)] + 6.4792 with a linear range of 10-1 to 102 ppm (3.27 × 10-7 to 3.27 × 10-4 mol L-1) and a LOD of 10-4 ppm. Thiram or ziram in apple juice was successfully detected by using this liquid detection system. This analysis system effectively solves the problem of poor repeatability and a narrow linear quantification range in SERS analysis based on silver colloid substrates, and the linear quantification range meets the requirements of the national standard (GB-2763-2019).
Collapse
Affiliation(s)
- Qiaoling Wei
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | | | | | | | | |
Collapse
|
23
|
XIE Y, CHEN H, GE L, HUO S, FAN C, Lü M. [Rapid screening and confirmation of 415 pesticide residues in red cabbages by liquid chromatography-quadrupole-time of flight-mass spectrometry]. Se Pu 2021; 39:301-315. [PMID: 34227311 PMCID: PMC9403803 DOI: 10.3724/sp.j.1123.2020.05006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 11/25/2022] Open
Abstract
An analytical method for the simultaneous rapid screening and accurate confirmation of 415 pesticide residues in red cabbages was established using liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-QTOF/MS) with single acquisition. In the established method, the pesticides in red cabbage were extracted using acetonitrile-acetic acid (99∶1, v/v) and salted-out using anhydrous magnesium sulfate and sodium chloride. The resultant solution was then cleaned-up by automatic solid phase extraction using a Carbon/NH2 cartridge. The SPE cartridge was activated with 4 mL acetonitrile-toluene (3∶1, v/v) and the effluents were discarded. The resultant solution was transferred to the Carbon/NH2 cartridge, using 3×2 mL acetonitrile-toluene (3∶1, v/v) to wash the test sample concentrate bottle, and waited until the surface of the test sample concentrate liquid reached the top layer of anhydrous Na2SO4 before transferring the washing liquid to the cartridge. A 30-mL reservoir was attached to the upper part of the SPE cartridge and 25 mL acetonitrile-toluene (3∶1, v/v) was used to wash the SPE cartridge again. The eluent was evaporated in the glass tube in a water bath at 37 ℃ and shaking speed 150 r/min to reduce the volume to 0.5 mL. Nitrogen was used to dry the concentrates, and the residues were dissolved in 1.0 mL acetonitrile-water (3∶2, v/v), homogenized by ultrasonication, and passed through 0.22-μm filtering membrane before determination. The dissolved sample solution was loaded onto a ZORBAX SB-C18 column (100 mm×2.1 mm, 3.5 μm) and separated under gradient elution using 0.1% (v/v) formic acid aqueous solution containing 5 mmol/L ammonium acetate and acetonitrile as the binary mobile phase. The eluent from the column was further detected by QTOF/MS under electrospray positive ionization in the MS/MS scanning mode. A matrix-matched external calibration method was used for quantitation. By optimizing the different parameters under Auto MS/MS and All Ions MS/MS acquisition modes, the optimal conditions for All Ions MS/MS under each acquisition mode were obtained, which were then compared for selection of a better mode. The results demonstrated that the developed method can be used to accurately screen and quantify all 415 pesticides in red cabbage. The linear regression correlation coefficients (r2) for the 415 pesticides were all greater than 0.990 in the corresponding linear concentration range. In addition, the screening detection limits (SDL) of 411 pesticides were no more than 5 μg/kg, and the limits of quantification (LOQs) of 413 pesticides were no more than 10 μg/kg. At the spiked levels of LOQ, two-fold LOQ, and 10-fold LOQ, the recoveries were in the ranges of 65.7%-118.4%, 72.0%-118.8% and 70.2%-111.2%, with relative standard deviations (RSDs) in the ranges of 0.9%-19.7%, 0.2%-19.9% and 0.6%-19.9%, respectively. The method was applied to detect pesticide residues in the red cabbage samples provided by the 2019 European proficiency test project for unknown pesticide screening (EUPT-SM-11) and accurate quantitation (EUPT-FV-21). For EUPT-SM-11, all the spiked and incurred pesticides in red cabbage were qualified accurately, without false positives or false negatives. This is completely consistent with the final results published by the EU official. For EUPT-FV-21, there were 19 non-volatile pesticides that can be detected by LC-MS, which were then accurately quantitated with the corresponding pesticide standard. The results demonstrate that the proposed method is accurate and reliable. It is also rapid and time-saving, and can be used for high-throughput screening and quantitative determination of pesticide residues in cabbage. It can also be extended to other fruits and vegetable matrices.
Collapse
|
24
|
Ryu E, Park JS, Giri SS, Park SC. A simplified modification to rapidly determine the residues of nitrofurans and their metabolites in aquatic animals by HPLC triple quadrupole mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7551-7563. [PMID: 33037540 DOI: 10.1007/s11356-020-11074-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
A simplified method is described for reducing the analysis time of nitrofurans (NFs) and nitrofuran metabolites (NFMs) in the aquatic animals. Most existing HPLC-MS/MS methods are intended only for NFMs and are based on their fast metabolic transformations. We optimized a method for simultaneously detecting major NFs and their metabolites, including nitrovin (NV) that imply use of an optimized buffer solution. The novel method was validated by six different aquatic animal matrices (loach, catfish, shrimp, lobster, scallop, and eel) spiked with the analytes at 0.5, 1.0, and 2.0 μg kg-1. Recovery rates and %RSDs (relative standard deviations) of 82-97% and 1-8% were observed for NFMs, respectively, with values of 70-96% and 1-8% obtained for furazolidone, furaltadone, nitrofurazone, nitrofurantoin, and NV, respectively. Linearity was observed in the 0.1-20 μg L-1 range, with correlation coefficients greater than 0.99 recorded for all compounds. The developed method is sensitive, accurate, easier to use, and faster than previous methods when applied to real samples. To the best of our knowledge, this is the first method that can simultaneously determine NFs and their metabolites, as well as NV, using a single-step extraction process.
Collapse
Affiliation(s)
- EunChae Ryu
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Sung Park
- Seoul Regional Office, Animal and Plant Quarantine Agency, Seoul, 07670, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
25
|
Chen L, Tian X, Li Y, Lu L, Nie Y, Wang Y. Broad-spectrum pesticide screening by multiple cholinesterases and thiocholine sensors assembled high-throughput optical array system. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123830. [PMID: 33254811 DOI: 10.1016/j.jhazmat.2020.123830] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 05/21/2023]
Abstract
Accurate screening of organophosphorus and carbamates pesticides from the complex real sample is crucial for water quality analysis and food safety control. Herein, a simple, low-cost and accurate pesticides screening method based on a high-throughput optical array system assembled by multiple cholinesterases (ChE) and thiocholine (TCh) sensors is described. The detection mechanism is that the inhibition of ChE activity by pesticides reduces the TCh produced by the hydrolysis of butyryl/acetylthiocholine iodide, thus changing the fluorescence intensity of TCh sensor. The diverse response of ChEs to pesticides and different affinity of sensors to TCh ensure the high-throughput and distinguishable signal output, which allow the establishment of high discrete pesticide database with intra-cluster agglomeration and inter-cluster dispersion. By using the database, the screening of unknown real contaminated samples were successfully operated, and the screened pesticide species and concentrations were consistent with high-performance liquid chromatography. This screening strategy demonstrates the feasibility of replacing existing complex mass spectrometry-based screening strategy with simple optical analysis, providing a new idea for the development of simple accurate screening technologies for widespread organic pollutants including pesticides.
Collapse
Affiliation(s)
- Linfeng Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Liqiang Lu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
26
|
Saito-Shida S, Nemoto S, Akiyama H. Quantitative and Confirmatory Analysis of Pesticide Residues in Cereal Grains and Legumes by Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry. Foods 2021; 10:foods10010078. [PMID: 33401602 PMCID: PMC7823789 DOI: 10.3390/foods10010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
For controlling pesticide residues in food and ensuring food safety, multiresidue methods that can monitor a wide range of pesticides in various types of foods are required for regulatory monitoring. In this study, to demonstrate the applicability of liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) for quantitative and confirmatory analysis of pesticide residues in cereal grains and legumes, the LC-QTOF-MS method using full-scan acquisition was validated for 151 pesticides in brown rice, soybeans, and peanuts at a spiked level of 0.01 mg/kg. With the exception of 5 out of 151 target pesticides, sufficiently high signal intensities were obtained at 0.005 μg/mL (corresponding to 0.01 mg/kg). Trueness was in the range 70-95%, with intra- and inter-day precisions below 16% and 24%, respectively, with the exception of 7 pesticides in brown rice, 10 pesticides in soybeans, and 9 pesticides in peanuts. No interfering peaks were observed near the retention times of the target pesticides. Furthermore, information on accurate fragment-ion masses obtained by a data-independent acquisition enabled unambiguous confirmation. The results suggest that the LC-QTOF-MS method is suitable for pesticide residues' analysis of cereal grains and legumes, and can be utilized for regulatory routine analysis.
Collapse
|
27
|
Lee Y, Kim YJ, Khan MSI, Na YC. Identification and determination of by-products originating from ozonation of chlorpyrifos and diazinon in water by liquid chromatography-mass spectrometry. J Sep Sci 2020; 43:4047-4057. [PMID: 32875636 DOI: 10.1002/jssc.202000584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 11/07/2022]
Abstract
The degradation of two organophosphates, chlorpyrifos and diazinon, in water using microplasma equipment to produce ozone and the identification of their products were studied by using liquid chromatography-mass spectrometry. The organophosphates gradually decreased with time and were completely removed after 10 min, and diazinon was degraded at a relatively fast rate compared to chlorpyrifos. The products formed during the process were identified and determined with accurate mass measurements and tandem mass spectrometry spectra, providing reliable structural determination. Chlorpyrifos oxon was formed through the oxidation of chlorpyrifos, followed by the formation of 3,5,6-trichloro-2-pyridinol and diethyl phosphate by hydrolysis. Diazinon formed various products through more complicated degradation processes than those of chlorpyrifos. The major products of diazinon degradation were 2-isopropyl-6-methyl-4-pyrimidinol and diethyl phosphate by hydrolysis after oxidation, exhibiting diazoxon as an intermediate at trace levels. Direct hydrolysis of diazinon also occurred, producing diethyl thiophosphate, which was observed at a low concentration for a transient time and exhibited a less favorable process than sequential oxidation and hydrolysis. The other products, hydroxy diazinons and hydroxy-2-isopropyl-6-methyl-4-pyrimidinols, formed by hydroxylation, were also identified, but they were present in low amounts. Degradation mechanisms of chlorpyrifos and diazinon were proposed with the quantitatively evaluated products.
Collapse
Affiliation(s)
- Yunhee Lee
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Yun-Ji Kim
- Consumer Safety Research Division, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | | | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| |
Collapse
|
28
|
Guo Z, Zhu Z, Huang S, Wang J. Non-targeted screening of pesticides for food analysis using liquid chromatography high-resolution mass spectrometry-a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1180-1201. [DOI: 10.1080/19440049.2020.1753890] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zeqin Guo
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| | - Zhiguo Zhu
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, P.R. China
| | - Sheng Huang
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| | - Jianhua Wang
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
29
|
Application of a multiclass screening method for veterinary drugs and pesticides using HPLC-QTOF-MS in egg samples. Food Chem 2020; 309:125746. [DOI: 10.1016/j.foodchem.2019.125746] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/03/2019] [Accepted: 10/19/2019] [Indexed: 11/24/2022]
|
30
|
Preliminary Study to Develop an Alternative Method for the Non-targeted Determination of Xenobiotics in Food by Means of Ultra High Performance Liquid Chromatography Coupled to High Resolution and Accuracy Mass Spectrometry. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01727-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThis preliminary study describes the use of high resolution and accuracy mass spectrometry techniques combined with new generation chemical software products for detecting and identifying contaminants in food commodities. As a first step, the extracts of routine target analysis samples (obtained in our official laboratory responsible for food residues control) were acquired and processed with this method in order to search unknown and non-targeted contaminants in food. In order to verify the feasibility of the presented method, the research has been firstly addressed to untargeted pesticides and their metabolites in stone fruits commodities and tomatoes. The differential analysis carried with Compound Discoverer 2.0 between the investigated unknown sample and the blank matrix sample allowed to remove all the matrix molecular components; Aggregated Computational Toxicology Resource (ACToR) helped to understand and predict chemical interpretation of substances. The acquisition in FullScan-AIF and FullScan-ddMS2 allowed the clear detection and identification of isobaric compounds such as quinalphos and phoxim. In order to verify that the proposed method is suitable to the scope of application, the main points of SANTE/11813/2017 Document have been followed. The results demonstrate that no false positives and no false negatives have been detected from the analysis of samples spiked with 55 pesticides at 0.010 and 0.10 mg kg−1. This preliminary study has been also tested with a Proficiency Test (EUPT-FV-SM08) and, according to EUPT-FV-SM08 Final Report, our laboratory has been included in the 67% (56) that clearly detected over 70% pesticides. Finally, this method has been extended to other matrices and contaminants.
Collapse
|
31
|
Hu S, Zhao M, Mao Q, Fang C, Chen D, Yan P. Rapid one-step cleanup method to minimize matrix effects for residue analysis of alkaline pesticides in tea using liquid chromatography–high resolution mass spectrometry. Food Chem 2019; 299:125146. [DOI: 10.1016/j.foodchem.2019.125146] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/07/2019] [Accepted: 07/07/2019] [Indexed: 01/07/2023]
|
32
|
Valand R, Tanna S, Lawson G, Bengtström L. A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:19-38. [PMID: 31613710 DOI: 10.1080/19440049.2019.1675909] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The increasing demand for food and the globalisation of the supply chain have resulted in a rise in food fraud, and recent high profile cases, such as the Chinese milk scandal in 2008 and the EU horsemeat scandal in 2013 have emphasised the vulnerability of the food supply system to adulteration and authenticity frauds. Fourier Transform Infrared (FTIR) spectroscopy is routinely used in cases of suspected food fraud as it offers a rapid, easy and reliable detection method for these investigations. In this review, we first present a brief summary of the concepts of food adulteration and authenticity as well as a discussion of the current legislation regarding these crimes. Thereafter, we give an extensive overview of FTIR as an analytical technique and the different foods where FTIR analysis has been employed for food fraud investigations as well as the subsequent multivariate data analyses that have been applied successfully to investigate the case of adulteration or authenticity. Finally, we give a critical discussion of the applications and limitations of FTIR, either as a standalone technique or incorporated in a test battery, in the fight against food fraud.
Collapse
Affiliation(s)
- Reema Valand
- School of Pharmacy, Faculty of Health and Life Sciences. De Montfort University, Leicester, UK
| | - Sangeeta Tanna
- School of Pharmacy, Faculty of Health and Life Sciences. De Montfort University, Leicester, UK
| | - Graham Lawson
- School of Pharmacy, Faculty of Health and Life Sciences. De Montfort University, Leicester, UK
| | - Linda Bengtström
- School of Pharmacy, Faculty of Health and Life Sciences. De Montfort University, Leicester, UK
| |
Collapse
|
33
|
|
34
|
Jensen T, de Boevre M, Preußke N, de Saeger S, Birr T, Verreet JA, Sönnichsen FD. Evaluation of High-Resolution Mass Spectrometry for the Quantitative Analysis of Mycotoxins in Complex Feed Matrices. Toxins (Basel) 2019; 11:toxins11090531. [PMID: 31547434 PMCID: PMC6783880 DOI: 10.3390/toxins11090531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 02/03/2023] Open
Abstract
The selective and sensitive analysis of mycotoxins in highly complex feed matrices is a great challenge. In this study, the suitability of OrbitrapTM-based high-resolution mass spectrometry (HRMS) for routine mycotoxin analysis in complex feeds was demonstrated by the successful validation of a full MS/data-dependent MS/MS acquisition method for the quantitative determination of eight Fusarium mycotoxins in forage maize and maize silage according to the Commission Decision 2002/657/EC. The required resolving power for accurate mass assignments (<5 ppm) was determined as 35,000 full width at half maximum (FWHM) and 70,000 FWHM for forage maize and maize silage, respectively. The recovery (RA), intra-day precision (RSDr), and inter-day precision (RSDR) of measurements were in the range of 94 to 108%, 2 to 16%, and 2 to 12%, whereas the decision limit (CCα) and the detection capability (CCβ) varied from 11 to 88 µg/kg and 20 to 141 µg/kg, respectively. A set of naturally contaminated forage maize and maize silage samples collected in northern Germany in 2017 was analyzed to confirm the applicability of the HRMS method to real samples. At least four Fusarium mycotoxins were quantified in each sample, highlighting the frequent co-occurrence of mycotoxins in feed.
Collapse
Affiliation(s)
- Tolke Jensen
- Institute of Phytopathology, Christian-Albrechts-Universität Kiel, Hermann-Rodewald-Strasse 9, 24118 Kiel, Germany.
| | - Marthe de Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Nils Preußke
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany.
| | - Sarah de Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Tim Birr
- Institute of Phytopathology, Christian-Albrechts-Universität Kiel, Hermann-Rodewald-Strasse 9, 24118 Kiel, Germany.
| | - Joseph-Alexander Verreet
- Institute of Phytopathology, Christian-Albrechts-Universität Kiel, Hermann-Rodewald-Strasse 9, 24118 Kiel, Germany.
| | - Frank D Sönnichsen
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany.
| |
Collapse
|
35
|
Goscinny S, McCullagh M, Far J, De Pauw E, Eppe G. Towards the use of ion mobility mass spectrometry derived collision cross section as a screening approach for unambiguous identification of targeted pesticides in food. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 2:34-48. [PMID: 30677180 DOI: 10.1002/rcm.8395] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/20/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Mass spectrometry (MS) is the reference method for the screening of ultra-trace residues of pesticides in food because MS offers the required selectivity/sensitivity to gather information and enable the analyst to make informed decisions during the identification process. Here we present and discuss the use of collision cross section (CCS) values in addition to mass accuracy and retention times in a pesticide screening method that integrates all the features offered by coupling ultra-performance liquid chromatography (UPLC) with ion mobility mass spectrometry (IMS-MS). METHODS All experiments were carried out using UHPLC coupled to a travelling wave ion mobility mass spectrometer equipped with an electrospray ionization (ESI) source working in positive mode. An in-house library containing 200 pesticides was built using standard solutions and used as reference for a TWCCS calibration study. Matrix extracts were analyzed to evaluate the performance of different screening workflows based on TWCCS, mass accuracy and retention times. RESULTS The results proved that TWCCS values are very consistent, as the measured values do not differ more than 1% from the in-house reference data library and emphasized the importance of the first low m/z mobility calibration point to guarantee full independence from instrument parameters and calibrant. The screening procedure was simplified to a single step by fully exploiting the content of ion mobility without generating any false detections, either positive or negative, from spiked samples and a previous proficiency test. CONCLUSIONS The screening approach proposed in this study is unconventional and based on large mass accuracy (20 ppm) and retention time windows (0.5 min) to capture, in a first step, a maximum of detected compounds. Compounds of interest are then identified by comparing measured collision cross sections with the measured reference library collision cross sections (with relative error tolerance lower than 2%).
Collapse
Affiliation(s)
- Séverine Goscinny
- Sciensano, 14, rue Juliette Wytsman, 1050, Brussels, Belgium
- MolSys Research Unit, Laboratory of Mass Spectrometry, University of Liège, 3 Allée de la chimie B6C, Liège, Belgium
| | | | - Johann Far
- MolSys Research Unit, Laboratory of Mass Spectrometry, University of Liège, 3 Allée de la chimie B6C, Liège, Belgium
| | - Edwin De Pauw
- MolSys Research Unit, Laboratory of Mass Spectrometry, University of Liège, 3 Allée de la chimie B6C, Liège, Belgium
| | - Gauthier Eppe
- MolSys Research Unit, Laboratory of Mass Spectrometry, University of Liège, 3 Allée de la chimie B6C, Liège, Belgium
| |
Collapse
|
36
|
Soliven A, Rodriguez C, Pareja L, Colazzo M, Cesio V, Shalliker RA, Pérez-Parada A, Heinzen H. The parallel segmented flow column as an alternative front-end LC strategy for trace analyses. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Cavaliere C, Antonelli M, Capriotti AL, La Barbera G, Montone CM, Piovesana S, Laganà A. A Triple Quadrupole and a Hybrid Quadrupole Orbitrap Mass Spectrometer in Comparison for Polyphenol Quantitation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4885-4896. [PMID: 30977362 DOI: 10.1021/acs.jafc.8b07163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liquid chromatography coupled to low-resolution mass spectrometry (LRMS) has historically been a popular approach for compound quantitation. Recently, high-resolution mass spectrometry (HRMS) technical developments led to the introduction of new approaches for quantitative analysis. Whereas the performances of HRMS have been largely assessed for qualitative purposes, there are still questions about its suitability for quantitative analysis. Several papers on LRMS and HRMS comparison have been published; however, none of them was applied to polyphenol quantitation. In this work, a comparison between HRMS, operated in data-dependent acquisition mode, and LRMS, operated in selected-reaction-monitoring mode, was performed for polyphenol quantitation in wine. The two techniques were evaluated in terms of sensitivity, linearity range, matrix effect, and precision, showing the better performances of HRMS. The suitability of HRMS for quantitation purposes as well as qualitative screening makes HRMS the new technique of choice for both targeted and untargeted analysis.
Collapse
Affiliation(s)
- Chiara Cavaliere
- Department of Chemistry , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , Rome 00185 , Italy
| | - Michela Antonelli
- Department of Chemistry , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , Rome 00185 , Italy
| | - Anna Laura Capriotti
- Department of Chemistry , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , Rome 00185 , Italy
| | - Giorgia La Barbera
- Department of Chemistry , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , Rome 00185 , Italy
| | - Carmela Maria Montone
- Department of Chemistry , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , Rome 00185 , Italy
| | - Susy Piovesana
- Department of Chemistry , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , Rome 00185 , Italy
| | - Aldo Laganà
- Department of Chemistry , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , Rome 00185 , Italy
| |
Collapse
|
38
|
Fu L, Zhou H, Miao E, Lu S, Jing S, Hu Y, Wei L, Zhan J, Wu M. Functionalization of amino terminated carbon nanotubes with isocyanates for magnetic solid phase extraction of sulfonamides from milk and their subsequent determination by liquid chromatography-high resolution mass spectrometry. Food Chem 2019; 289:701-707. [PMID: 30955669 DOI: 10.1016/j.foodchem.2019.03.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
A simple modification method was developed for the functionalization of amino terminated carbon nanotubes (CNT-NH2) by using isocyanates as modifiers via the nucleophilic addition reaction. Two types of functionalized magnetic carbon nanotubes (MCNT) were prepared through deposition of magnetic nanoparticles on CNT-NH2 and modification with different isocyanates. p-Tolyl-functionalized MCNT (Tol-MCNT) with better adsorption performance were selected as adsorbent for magnetic solid phase extraction (MSPE), which could extract sulfonamides (SAs) from various milk samples with a enrichment factor of about 30 after optimization. By combining the MSPE with liquid chromatography-high resolution mass spectrometry (LC-HRMS), a new method was developed. Both skimmed and whole milk samples of three brands were analyzed with this method, and 4 SAs including sulfadiazine, sulfisomidine, sulfamethazine and sulfameter were detected with the concentration from unquantifiable to 72 ng/L, which were all well below the maximum residue limits in milk according to the regulations of China and EU.
Collapse
Affiliation(s)
- Lin Fu
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Hao Zhou
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Enming Miao
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Shiwei Lu
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Siyuan Jing
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Yufeng Hu
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Lijuan Wei
- Instrumental Analysis & Research Center, Dalian University of Technology, Panjin 124221, China
| | - Jingjing Zhan
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Minghuo Wu
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
39
|
Wang F, Li S, Feng H, Yang Y, Xiao B, Chen D. An enhanced sensitivity and cleanup strategy for the nontargeted screening and targeted determination of pesticides in tea using modified dispersive solid-phase extraction and cold-induced acetonitrile aqueous two-phase systems coupled with liquid chromatography-high resolution mass spectrometry. Food Chem 2019; 275:530-538. [DOI: 10.1016/j.foodchem.2018.09.142] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/23/2018] [Accepted: 09/23/2018] [Indexed: 01/22/2023]
|
40
|
Bagheri N, Khataee A, Hassanzadeh J, Habibi B. Sensitive biosensing of organophosphate pesticides using enzyme mimics of magnetic ZIF-8. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:118-125. [PMID: 30384017 DOI: 10.1016/j.saa.2018.10.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Development of a sensitive detection method for the reliable screening of widely used organophosphorus (OP) toxins is a crucial request to control their side-effects. Herein, a novel fluorometric assay based on the acetylcholinesterase (AChE) inhibited enzymatic activity and the new peroxidase-like Fe3O4 nanoparticles@ZIF-8 composite (Fe3O4 NPs@ZIF-8) was developed for the determination of OPs. Magnetic Fe3O4 NPs were encapsulated into ZIF-8 and the high mimetic activity of produced composite was assessed on the oxidation of substrates. This observation was applied to the rapid detection of diazinon as a model OP compound. The sensing tool contains AChE and choline oxidase (CHO) enzymes, peroxidase colorimetric or fluorometric substrate, and Fe3O4 NPs@ZIF-8 as the catalyst. In the presence of mimic Fe3O4 NPs@ZIF-8, the generated H2O2 from the enzymatic reactions of acetylcholine is decomposed to hydroxyl radicals. The radicals oxidize the peroxidase substrates to generate a detectable signal. However, due to the inhibition effect of OPs on the enzymatic activity of AChE, lower H2O2 amounts are produced in the presence of diazinon. Using the fluorometric detection system, the generated signal is decreased proportionally by increasing diazinon concentration in the range of 0.5-500 nM. The limit of detection was obtained 0.2 nM. Consequently, the usage of high performance peroxidase-mimic Fe3O4 NPs@ZIF-8 provided a sensitive bio-assay with a potential to be applied as screening tool for toxic OP compounds. The developed assay was successfully applied for the determination of diazinon in water and fruit juices.
Collapse
Affiliation(s)
- Nafiseh Bagheri
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, 53714-161 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Health Promotion Research Center, Iran University of Medical Sciences, 1449614535 Tehran, Iran.
| | - Javad Hassanzadeh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Biuck Habibi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, 53714-161 Tabriz, Iran.
| |
Collapse
|
41
|
Sanchis Y, Coscollà C, Yusà V. Comprehensive analysis of photoinitiators and primary aromatic amines in food contact materials using liquid chromatography High-Resolution Mass Spectrometry. Talanta 2019; 191:109-118. [DOI: 10.1016/j.talanta.2018.08.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
|
42
|
Multiclass screening of >200 pharmaceutical and other residues in aquatic foods by ultrahigh-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry. Anal Bioanal Chem 2018; 410:5545-5553. [PMID: 29748759 DOI: 10.1007/s00216-018-1124-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 01/21/2023]
Abstract
A quick screening method of more than 200 pharmaceutical and other residues in aquatic foods based on ultrahigh-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UHPLC-Q/Orbitrap MS) was established. In this method, after the addition of 200 μL of 1 M EDTA-Na2, 2 g of each sample homogenate was extracted successively with 10 mL of acetonitrile and 10 mL of ethyl acetate. The extracts were combined, dried under nitrogen flow, and redissolved in 0.1% formic acid in acetonitrile/water (4:6, v/v) for analysis. The prepared samples were analyzed by UHPLC- Q/Orbitrap MS system in Full MS/ddMS2 (full-scan data-dependent MS/MS) mode. Compound identification was performed through comparison of the sample data with the database for standard chemicals, including the retention time, precursor ion, product ions, and isotope pattern for all 206 compounds. Five different aquatic food matrices (carp, shrimp, crab, eel, and mussel) spiked with the analytes at 1, 10, and 50 ng/g were evaluated to assess recoveries, precision, matrix effects, stability, and detection limits using the method. UHPLC analyses required 25 min, and 178-200 analytes met identification criteria at 50 ng/g depending on the matrix. Furthermore, practical application of this method for real samples displayed strong screening capability. Graphical abstract A quick screening method of >200 pharmaceutical and other residues in aquatic foods based on ultrahighperformance liquid chromatography-quadrupole-Orbitrap mass spectrometer was established. Fivedifferent aquatic food matrices, including carp, shrimp, crab, eel and mussel, were studied to evaluatescreen limit at 1, 10 and 50 μg·kg-1 level. Results suggest the high reliability, high time-efficiency and goodsimplicity of the method.
Collapse
|
43
|
Alygizakis NA, Samanipour S, Hollender J, Ibáñez M, Kaserzon S, Kokkali V, van Leerdam JA, Mueller JF, Pijnappels M, Reid MJ, Schymanski EL, Slobodnik J, Thomaidis NS, Thomas KV. Exploring the Potential of a Global Emerging Contaminant Early Warning Network through the Use of Retrospective Suspect Screening with High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5135-5144. [PMID: 29651850 DOI: 10.1021/acs.est.8b00365] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A key challenge in the environmental and exposure sciences is to establish experimental evidence of the role of chemical exposure in human and environmental systems. High resolution and accurate tandem mass spectrometry (HRMS) is increasingly being used for the analysis of environmental samples. One lauded benefit of HRMS is the possibility to retrospectively process data for (previously omitted) compounds that has led to the archiving of HRMS data. Archived HRMS data affords the possibility of exploiting historical data to rapidly and effectively establish the temporal and spatial occurrence of newly identified contaminants through retrospective suspect screening. We propose to establish a global emerging contaminant early warning network to rapidly assess the spatial and temporal distribution of contaminants of emerging concern in environmental samples through performing retrospective analysis on HRMS data. The effectiveness of such a network is demonstrated through a pilot study, where eight reference laboratories with available archived HRMS data retrospectively screened data acquired from aqueous environmental samples collected in 14 countries on 3 different continents. The widespread spatial occurrence of several surfactants (e.g., polyethylene glycols ( PEGs ) and C12AEO-PEGs ), transformation products of selected drugs (e.g., gabapentin-lactam, metoprolol-acid, carbamazepine-10-hydroxy, omeprazole-4-hydroxy-sulfide, and 2-benzothiazole-sulfonic-acid), and industrial chemicals (3-nitrobenzenesulfonate and bisphenol-S) was revealed. Obtaining identifications of increased reliability through retrospective suspect screening is challenging, and recommendations for dealing with issues such as broad chromatographic peaks, data acquisition, and sensitivity are provided.
Collapse
Affiliation(s)
- Nikiforos A Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry , University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
- Environmental Institute, s.r.o. , Okružná 784/42 , 972 41 Koš , Slovak Republic
| | - Saer Samanipour
- Norwegian Institute for Water Research (NIVA) , Gaustadalléen 21 , 0349 Oslo , Norway
| | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , 8092 Zürich , Switzerland
| | - María Ibáñez
- Research Institute for Pesticides and Water , University Jaume I , Avda. Sos Baynat s/n , 12071 Castellón de la Plana , Spain
| | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS) , The University of Queensland , 20 Cornwall Street , Woolloongabba , Queensland 4102 , Australia
| | - Varvara Kokkali
- Vitens Laboratory , Snekertrekweg 61 , 8912 AA Leeuwarden , The Netherlands
| | - Jan A van Leerdam
- KWR Watercycle Research Institute , P.O. Box 1072, 3430 BB Nieuwegein , The Netherlands
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS) , The University of Queensland , 20 Cornwall Street , Woolloongabba , Queensland 4102 , Australia
| | - Martijn Pijnappels
- Rijkswaterstaat , Ministry of Infrastructure and the Environment , Zuiderwagenplein 2 , 8224 AD Lelystad , The Netherlands
| | - Malcolm J Reid
- Norwegian Institute for Water Research (NIVA) , Gaustadalléen 21 , 0349 Oslo , Norway
| | - Emma L Schymanski
- Eawag: Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Luxembourg Centre for Systems Biomedicine (LCSB) , University of Luxembourg , 7 Avenue des Hauts Fourneaux , L-4362 Esch-sur-Alzette , Luxembourg
| | - Jaroslav Slobodnik
- Environmental Institute, s.r.o. , Okružná 784/42 , 972 41 Koš , Slovak Republic
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry , University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| | - Kevin V Thomas
- Norwegian Institute for Water Research (NIVA) , Gaustadalléen 21 , 0349 Oslo , Norway
- Queensland Alliance for Environmental Health Sciences (QAEHS) , The University of Queensland , 20 Cornwall Street , Woolloongabba , Queensland 4102 , Australia
| |
Collapse
|
44
|
Bianchi F, Riboni N, Termopoli V, Mendez L, Medina I, Ilag L, Cappiello A, Careri M. MS-Based Analytical Techniques: Advances in Spray-Based Methods and EI-LC-MS Applications. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:1308167. [PMID: 29850370 PMCID: PMC5937452 DOI: 10.1155/2018/1308167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/26/2018] [Indexed: 05/15/2023]
Abstract
Mass spectrometry is the most powerful technique for the detection and identification of organic compounds. It can provide molecular weight information and a wealth of structural details that give a unique fingerprint for each analyte. Due to these characteristics, mass spectrometry-based analytical methods are showing an increasing interest in the scientific community, especially in food safety, environmental, and forensic investigation areas where the simultaneous detection of targeted and nontargeted compounds represents a key factor. In addition, safety risks can be identified at the early stage through online and real-time analytical methodologies. In this context, several efforts have been made to achieve analytical instrumentation able to perform real-time analysis in the native environment of samples and to generate highly informative spectra. This review article provides a survey of some instrumental innovations and their applications with particular attention to spray-based MS methods and food analysis issues. The survey will attempt to cover the state of the art from 2012 up to 2017.
Collapse
Affiliation(s)
- Federica Bianchi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicolò Riboni
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Veronica Termopoli
- Department of Pure and Applied Sciences, LC-MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Lucia Mendez
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Leopold Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Achille Cappiello
- Department of Pure and Applied Sciences, LC-MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
45
|
Wang X, Ma X, Huang P, Wang J, Du T, Du X, Lu X. Magnetic Cu-MOFs embedded within graphene oxide nanocomposites for enhanced preconcentration of benzenoid-containing insecticides. Talanta 2018; 181:112-117. [PMID: 29426488 DOI: 10.1016/j.talanta.2018.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 01/12/2023]
Abstract
Hybrid magnetic nanocomposites based on Cu-MOFs, graphene oxide (GO), and Fe3O4 nanoparticles (NPs) were prepared via chemical bonding approach, which GO were used as platforms to load nanostructured Cu-MOFs and Fe3O4 NPs. The composite features both magnetic separation characteristics and high MOFs porosity, making it an excellent adsorbent for magnetic solid-phase extraction (MSPE). The as-synthesized nanocomposites are characterized by XRD, TGA, SEM, TEM, nitrogen adsorption-desorption analysis and FT-IR spectroscopy. The composites are used in MSPE of six aromatic insecticides from various real samples prior to their quantification by HPLC. Amount of adsorbent, extraction times, extraction temperature, desorption times and oscillation rate are optimized. Under the optimal conditions, the method has a relative standard deviations (RSDs) of 1.9-2.7%, and good linearity (correlation coefficients higher than 0.9931). The low LOD and LOQ for six insecticides are found to be 0.30-1.58μgL-1 and 1.0-5.2μgL-1, respectively. The RSDs of within batch extraction are 1.6-9.5% and 3.9-12% for batch to batch extraction. The experimental results suggest that the nanocomposites have potential application for removal of hazardous pollutants from effluents.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Lanzhou 730070, China.
| | - Xiaomin Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pengfei Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Juan Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tongtong Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Lanzhou 730070, China
| | - Xiaoquan Lu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Lanzhou 730070, China
| |
Collapse
|
46
|
Huérfano Barco IM, Guerrero Dallos JA. Método cualitativo rápido (screening) para la detección de residuos de plaguicidas en frutas y hortalizas. REVISTA COLOMBIANA DE QUÍMICA 2018. [DOI: 10.15446/rev.colomb.quim.v47n1.62240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Debido a la importancia de desarrollar metodologías que permitan el análisis de los residuos agrícolas, el presente trabajo validó un método cualitativo rápido (screening) para el análisis de residuos de plaguicidas en frutas y hortalizas. La metodología se basó en el método de extracción QuEChERS, versión europea, con un paso adicional de limpieza por cromatografía de permeación por gel (GPC), lo cual permitió reducir la cantidad de componentes de la matriz en el extracto final. El análisis fue realizado por cromatografía de gases/espectrometría de masas con un analizador cuadrupolo simple. La metodología resultó adecuada para el análisis cualitativo de 31 plaguicidas a su respectivo límite máximo de residuos. Los resultados en muestras reales fueron consistentes respecto a una metodología cuantitativa de rutina, por ende, la metodología resultó ser una buena alternativa para el análisis rápido de estos contaminantes.
Collapse
|
47
|
Matrix interference evaluation employing GC and LC coupled to triple quadrupole tandem mass spectrometry. Talanta 2017; 174:72-81. [DOI: 10.1016/j.talanta.2017.05.068] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 11/15/2022]
|
48
|
Yang X, Luo J, Duan Y, Li S, Liu C. Simultaneous analysis of multiple pesticide residues in minor fruits by ultrahigh-performance liquid chromatography/hybrid quadrupole time-of-fight mass spectrometry. Food Chem 2017; 241:188-198. [PMID: 28958518 DOI: 10.1016/j.foodchem.2017.08.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 01/03/2017] [Accepted: 08/29/2017] [Indexed: 11/16/2022]
Abstract
An ultrahigh-performance liquid chromatography/hybrid quadrupole time-of-fight mass spectrometry (UPLC/QTOF-MS) method for the simultaneous identification and quantification of 50 multi-class pesticides in minor fruits is reported. The method consists of a sample extraction step, followed by analysis of the pesticides by UPLC/QTOF-MS. Satisfactory chromatographic separation was achieved over a 20min runtime. The pesticides were identified by the accurate mass measurements of the protonated molecules ([M+H]+) and their main fragment ions, isotopic pattern analysis and retention time matching. The mass accuracy obtained was below 2ppm error for all the pesticides analysed. The method was validated by spiking starfruit with the 50 analytes. Satisfactory results regarding sensitivity and linearity were obtained. The method was successfully applied to the analysis of 87 real-world starfruit and Indian jujube samples, demonstrating its applicability for the routine analysis of multiple pesticide residues in minor tropical fruits.
Collapse
Affiliation(s)
- Xinfeng Yang
- Analytical and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; The Supervision, Inspection and Testing Center of Agricultural Products Quality and Security, Ministry of Agriculture, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China.
| | - Jinhui Luo
- Analytical and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; The Supervision, Inspection and Testing Center of Agricultural Products Quality and Security, Ministry of Agriculture, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China
| | - Yun Duan
- Analytical and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China
| | - Shuhuai Li
- Analytical and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; The Supervision, Inspection and Testing Center of Agricultural Products Quality and Security, Ministry of Agriculture, Haikou 571101, China
| | - Chunhua Liu
- Analytical and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; The Supervision, Inspection and Testing Center of Agricultural Products Quality and Security, Ministry of Agriculture, Haikou 571101, China
| |
Collapse
|
49
|
Kaserzon SL, Heffernan AL, Thompson K, Mueller JF, Gomez Ramos MJ. Rapid screening and identification of chemical hazards in surface and drinking water using high resolution mass spectrometry and a case-control filter. CHEMOSPHERE 2017; 182:656-664. [PMID: 28528311 DOI: 10.1016/j.chemosphere.2017.05.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Access to clean, safe drinking water poses a serious challenge to regulators, and requires analytical strategies capable of rapid screening and identification of potentially hazardous chemicals, specifically in situations when threats to water quality or security require rapid investigations and potential response. This study describes a fast and efficient chemical hazard screening strategy for characterising trace levels of polar organic contaminants in water matrices, based on liquid chromatography high resolution mass spectrometry with post-acquisition 'case-control' data processing. This method allowed for a rapid response time of less than 24 h for the screening of target, suspect and non-target unknown chemicals via direct injection analysis, and a second, more sensitive analysis option requiring sample pre-concentration. The method was validated by fortifying samples with a range of pesticides, pharmaceuticals and personal care products (n = 46); with >90% of target compounds positively screened in samples at 1 ng mL-1, and 46% at 0.1 ng mL-1 when analysed via direct injection. To simulate a contamination event samples were fortified with compounds not present in the commercial library (designated 'non-target compounds'; fipronil and fenitrothion), tentatively identified at 0.2 and 1 ng mL-1, respectively; and a compound not included in any known commercial library or public database (designated 'unknown' compounds; 8Cl- perfluorooctanesulfonic acid), at 0.8 ng mL-1. The method was applied to two 'real-case' scenarios: (1) the assessment of drinking water safety during a high-profile event in Brisbane, Australia; and (2) to screen treated, re-circulated drinking water and pre-treated (raw) water. The validated workflow was effective for rapid prioritisation and screening of suspect and non-target potential hazards at trace levels, and could be applied to a wide range of matrices and investigations where comparison of organic contaminants between an affected and control site and or timeframe is warranted.
Collapse
Affiliation(s)
- Sarit L Kaserzon
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, QLD, 4108, Australia.
| | - Amy L Heffernan
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, QLD, 4108, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Kristie Thompson
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, QLD, 4108, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, QLD, 4108, Australia
| | - Maria Jose Gomez Ramos
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, QLD, 4108, Australia; Agrifood Campus of International Excellence (CeiA3), Department of Chemistry and Physics, University of Almeria, European Union Reference Laboratory for Pesticide Residues in Fruit and Vegetables, Almería, Spain
| |
Collapse
|
50
|
La Barbera G, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Samperi R, Zenezini Chiozzi R, Laganà A. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages. Food Res Int 2017; 100:28-52. [PMID: 28873689 DOI: 10.1016/j.foodres.2017.07.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023]
Abstract
The recent years witnessed a change in the perception of nutrition. Diet does not only provide nutrients to meet the metabolic requirements of the body, but it also constitutes an active way for the consumption of compounds beneficial for human health. Fruit and vegetables are an excellent source of such compounds, thus the growing interest in characterizing phytochemical sources, structures and activities. Given the interest for phytochemicals in food, the development of advanced and suitable analytical techniques for their identification is fundamental for the advancement of food research. In this review, the state of the art of phytochemical research in food plants is described, starting from sample preparation, throughout extract clean-up and compound separation techniques, to the final analysis, considering both qualitative and quantitative investigations. In this regard, from an analytical point of view, fruit and vegetable extracts are complex matrices, which greatly benefit from the use of modern hyphenated techniques, in particular from the combination of high performance liquid chromatography separation and high resolution mass spectrometry, powerful tools which are being increasingly used in the recent years. Therefore, selected applications to real samples are presented and discussed, in particular for the analysis of phenols, polyphenols and phenolic acids. Finally, some hot points are discussed, such as waste characterization for high value-compounds recovery and the untargeted metabolomics approach.
Collapse
Affiliation(s)
- Giorgia La Barbera
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Roberto Samperi
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|