1
|
Wang SY, Wang YX, Yue SS, Shi XC, Lu FY, Wu SQ, Herrera-Balandrano DD, Laborda P. G-site residue S67 is involved in the fungicide-degrading activity of a tau class glutathione S-transferase from Carica papaya. J Biol Chem 2024; 300:107123. [PMID: 38417796 PMCID: PMC10958117 DOI: 10.1016/j.jbc.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024] Open
Abstract
Thiram is a toxic fungicide extensively used for the management of pathogens in fruits. Although it is known that thiram degrades in plant tissues, the key enzymes involved in this process remain unexplored. In this study, we report that a tau class glutathione S-transferase (GST) from Carica papaya can degrade thiram. This enzyme was easily obtained by heterologous expression in Escherichia coli, showed low promiscuity toward other thiuram disulfides, and catalyzed thiram degradation under physiological reaction conditions. Site-directed mutagenesis indicated that G-site residue S67 shows a key influence for the enzymatic activity toward thiram, while mutation of residue S13, which reduced the GSH oxidase activity, did not significantly affect the thiram-degrading activity. The formation of dimethyl dithiocarbamate, which was subsequently converted into carbon disulfide, and dimethyl dithiocarbamoylsulfenic acid as the thiram degradation products suggested that thiram undergoes an alkaline hydrolysis that involves the rupture of the disulfide bond. Application of the GST selective inhibitor 4-chloro-7-nitro-2,1,3-benzoxadiazole reduced papaya peel thiram-degrading activity by 95%, indicating that this is the main degradation route of thiram in papaya. GST from Carica papaya also catalyzed the degradation of the fungicides chlorothalonil and thiabendazole, with residue S67 showing again a key influence for the enzymatic activity. These results fill an important knowledge gap in understanding the catalytic promiscuity of plant GSTs and reveal new insights into the fate and degradation products of thiram in fruits.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yan-Xia Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Sheng-Shuo Yue
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Feng-Yi Lu
- School of Life Sciences, Nantong University, Nantong, China
| | - Si-Qi Wu
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
2
|
A Nationwide Study of Residual Fate of Fluxapyroxad and Its Metabolites in Peanut Crops Across China: Assessment of Human Exposure Potential. Molecules 2022; 28:molecules28010194. [PMID: 36615390 PMCID: PMC9822388 DOI: 10.3390/molecules28010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Elaborating on the residual fate of fluxapyroxad and its metabolites based on their nationwide application was vital to protect the human population from their hazardous effects. In this study, a rapid and sensitive analytical method was developed to trace fluxapyroxad and two of its metabolites in peanut matrices using an ultrahigh chromatography method coupled with mass spectrometry (UHPLC−MS/MS) within 3.5 min. The occurrence, pharmacokinetic degradation and terminal magnitudes of fluxapyroxad were reflected in the original deposition of 8.41−38.15 mg/kg, half−lives of 2.5−8.6 d and final concentrations of 0.004−37.38 mg/kg in peanut straw. The total concentrations of fluxapyroxad in peanut straw (0.04−39.28 mg/kg) were significantly higher than those in peanut kernels (<0.001−0.005 mg/kg) and an obvious concentration effect was observed in fresh (0.01−11.56 mg/kg) compared dried peanut straw (0.04−38.97 mg/kg). Fluxapyroxad was demethylated to 3−(difluoromethyl)−N−(3′,4′,5′−trifluoro[1,1′−biphenyl]−2−yl)−1H−pyrazole−4−carboxamide (M700F008, 0.02−5.69 mg/kg) and further N−glycosylated to 3−(difluoromethyl)−1−(ß−D−glucopyranosyl)−N−(3′,4′,5′−triflurobipheny−2−yl)−1H−pyrzaole−4−carboxamide (M700F048, 0.04−39.28 mg/kg).The risk quotients of the total fluxapyroxad for the urban groups were significantly higher than those for the rural groups, and were both negatively correlated with the age of the groups, although both acute (ARfD%, 0.006−0.012%) and chronic (ADI%, 0.415−1.289%) risks are acceptable for the human population. The high-potential health risks of fluxapyroxad should be continuously emphasized for susceptible toddlers (1−3 years), especially those residing in urban areas.
Collapse
|
3
|
Yu H, Zhang J, Chen Y, Chen J, Qiu Y, Zhao Y, Li H, Xia S, Chen S, Zhu J. The adverse effects of fluxapyroxad on the neurodevelopment of zebrafish embryos. CHEMOSPHERE 2022; 307:135751. [PMID: 35863420 DOI: 10.1016/j.chemosphere.2022.135751] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Fluxapyroxad (Flu), one of the succinate dehydrogenase-inhibited (SDHI) fungicides, has been extensively used in crop fungal disease control. Despite its increasing use in modern agriculture and long-term retention in the environment, the potentially toxic effects of Flu in vivo, especially on neurodevelopment, remain under-evaluated. In this study, zebrafish embryos were exposed to Flu at concentrations of 0.5, 0.75, and 1 mg/L for 96 h to evaluate the neurotoxicity of Flu. The results showed that Flu caused concentration-dependent malformations, including shorter body length, smaller head and eyes, and yolk sac edema. After exposure to Flu, larval zebrafish exhibited severe motor aberrations. Flu at a concentration of 1 mg/L significantly decreased dopamine level and notably altered acetylcholinesterase (AChE) activity and acetylcholine (ACh) content. Abnormal central nervous system (CNS) neurogenesis and disordered motor neuron development were observed in Tg (HUC-GFP) and Tg (hb9-GFP) zebrafish in Flu-treated groups. The expression of key genes involved in neurotransmission and neurodevelopment further proved that Flu impaired the zebrafish nervous system. This work contributes to our understanding of the neurotoxic effects and mechanisms induced by Flu in zebrafish and may help us take precautions against the neurotoxicity of Flu.
Collapse
Affiliation(s)
- Huilin Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yinghong Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Juan Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yang Qiu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yan Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Honghao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shengyao Xia
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Jiajin Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
4
|
Yao L, Dou WY, Ma YF, Liu YS. Development and validation of sensitive methods for simultaneous determination of 9 antiviral drugs in different various environmental matrices by UPLC-MS/MS. CHEMOSPHERE 2021; 282:131047. [PMID: 34091295 DOI: 10.1016/j.chemosphere.2021.131047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Trace antiviral drug contamination in aquatic ecosystems is becoming a significant environmental concern that requires an urgent efficient determination method. Here we developed sensitive and robust multi-residue determination methods to simultaneously extract and analyze 9 commonly used antiviral drugs (abacavir, zidovudine, efavirenz, nevirapine, ritonavir, lopinavir, lamivudine, telbivudine and entecavir) in surface water, wastewater, sediment, and sludge. Water samples were extracted with solid-phase extraction (SPE) technique using tandem hydrophilic-lipophilic balance and graphitized carbon black cartridges, while sediment and sludge samples were extracted using QuEChERS (quick, easy, cheap, effective, rugged, and safe) method. The extraction conditions of SPE (pH and cartridge type) and QuEChERS (acetic acid content, salts reagent, and purification sorbent) methods were carefully optimized. We observed that under optimum conditions, the method quantification limits of the 9 antiviral drugs in water and solid samples ranged from 0.05 to 19.23 ng L-1 and from 0.02 to 7.38 ng g-1, respectively. For environmental samples spiking 3 different concentrations, the recovery values for the most targeted antiviral drugs ranged from 70 to 130%, except for efavirenz. All targeted antiviral drugs were detected in wastewater samples except for entecavir. We also found abacavir, efavirenz, ritonavir, lopinavir, and telbivudine in sediment and sludge samples. Notably, telbivudine was identified in all environmental matrices, with a high concentration of 127 ng L-1 and 222 ng g-1 in water and sediment samples, respectively.
Collapse
Affiliation(s)
- Li Yao
- Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Wen-Yuan Dou
- Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Yan-Fang Ma
- Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China.
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Liu Z, Cheng Y, Yuan L, Ren X, Liao X, Li L, Li W, Chen Z. Enantiomeric profiling of mefentrifluconazole in watermelon across China: Enantiochemistry, environmental fate, storage stability, and comparative dietary risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125985. [PMID: 33984784 DOI: 10.1016/j.jhazmat.2021.125985] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/10/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Elucidating the enantiomeric chemistry and enantioselective fate of the novel chiral triazole fungicide mefentrifluconazole is of vital importance for agroecosystem safety and human health. The absolute configuration of mefentrifluconazole was identified firstly as S-(+)-mefentrifluconazole and R-(-)-mefentrifluconazole on a cellulose tris(3-chloro-4-methylphenylcarbamate) chiral phase. A baseline resolution (Rs, 2.51), favorable retention (RT ≤ 2.24 min), and high sensitivity (LOQ, 0.5 μg/kg) of enantiomer pair were achieved by reversed-phase liquid chromatography tandem mass spectrometry combined with a 3D response surface strategy. Nationwide field trials were undertaken to clarify the enantiomer occurrence, enantioselective dissipation, terminal concentrations, and storage stability of S-mefentrifluconazole and R-mefentrifluconazole in watermelon across China. The original deposition of the sum of enantiomer pair was estimated to be 14.4-163.7 μg/kg, and terminally decreased to < LOQ-59.3 μg/kg 10 days after foliage application. S-mefentrifluconazole preferentially degraded (T1/2, 3.3-6.0 days), resulting in the relative enrichment of R-mefentrifluconazole (T1/2, 3.9-6.6 days) in watermelon. A probabilistic model is recommended for the dietary risk assessment, although both acute (%ARfD, 0.435-22.188%) and chronic (%ADI, 1.697-9.658%) risks are acceptable for associated population. The long-term exposures should be continuously emphasized given the increasing applications and persistent fate of mefentrifluconazole, especially for urban children.
Collapse
Affiliation(s)
- Ziqi Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Tianjin Agricultural University, Tianjin 300380, PR China
| | - Youpu Cheng
- Tianjin Agricultural University, Tianjin 300380, PR China
| | - Longfei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xianjun Liao
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, PR China
| | - Li Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
6
|
Podbielska M, Książek P, Szpyrka E. Dissipation kinetics and biological degradation by yeast and dietary risk assessment of fluxapyroxad in apples. Sci Rep 2020; 10:21212. [PMID: 33273693 PMCID: PMC7713434 DOI: 10.1038/s41598-020-78177-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to investigate the dissipation kinetics of fluxapyroxad in apples, the influence of biological treatment with yeast, and the estimation of dietary exposure for consumers, both adults and children. The gas chromatography technique with the electron capture detector was used to analyse the fluxapyroxad residues. Samples of apples were prepared by the quick, easy, cheap, effective, rugged and safe (QuEChERS) method. The average fluxapyroxad recoveries in apple samples ranged from 107.9 to 118.4%, the relative standard deviations ranged from 4.2 to 4.7%, and the limit of quantification was 0.005 mg/kg. The dissipation half-lives in Gala and Idared varieties were 8.9 and 9.0 days, respectively. Degradation levels of the tested active substance after application of yeast included in a biological preparation Myco-Sin were 59.9% for Gala and 43.8% for Idared. The estimated dietary risk for fluxapyroxad in apples was on the acceptable safety level (below 9.8% for children and 1.9% for adults) and does not pose a danger to the health of consumers.
Collapse
Affiliation(s)
- Magdalena Podbielska
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland.
| | - Paulina Książek
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| | - Ewa Szpyrka
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| |
Collapse
|
7
|
Narenderan S, Meyyanathan S, Karri VVSR. Experimental design in pesticide extraction methods: A review. Food Chem 2019; 289:384-395. [DOI: 10.1016/j.foodchem.2019.03.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/27/2022]
|
8
|
Zhang Y, Wu X, Duan T, Xu J, Dong F, Liu X, Li X, Du P, Zheng Y. Ultra high performance liquid chromatography with tandem mass spectrometry method for determining dinotefuran and its main metabolites in samples of plants, animal-derived foods, soil, and water. J Sep Sci 2018; 41:2913-2923. [PMID: 29761641 DOI: 10.1002/jssc.201701551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/24/2023]
Abstract
An ultra high-performance liquid chromatography with tandem triple quadrupole mass spectrometry residue method was developed and validated for the quantification and identification of dinotefuran and its main metabolites 1-methyl-3-(tetrahydro-3-furylmethyl) urea and 1-methyl-3-(tetrahydro-3-furylmethyl) guanidine in fruit (watermelon), vegetable (cucumber), cereal (rice), animal-derived foods (milk, egg, and pork), soil, and water. The samples were extracted with acetonitrile containing 15% v/v acetic acid and purified with dispersive solid-phase extraction with octadecylsilane, primary secondary amine, graphitized carbon black, or zirconia-coated silica prior to analysis. The method had an excellent linearity (R2 ≥ 0.9942, 1-500 μg/L) and satisfactory recoveries (73-102%) at five spiked levels (0.001, 0.01, 0.05, 0.5, and 2 mg/kg) with intra- or interday precision in the range of 0.8-9.5% and 3.0-12.8% for the three compounds in the eight matrices. The limits of quantification were 10 μg/kg for 1-methyl-3-(tetrahydro-3-furylmethyl) guanidine and 1 μg/kg for 1-methyl-3-(tetrahydro-3-furylmethyl) urea and dinotefuran. The applicability of the developed method was demonstrated by determining the occurrence of dinotefuran, 1-methyl-3-(tetrahydro-3-furylmethyl) guanidine, and 1-methyl-3-(tetrahydro-3-furylmethyl) urea in various samples from plants, animal-derived foods, and the environment. From 80 samples, 70 contained dinotefuran (0.8-11.7 μg/kg), among which six also contained 1-methyl-3-(tetrahydro-3-furylmethyl) urea (water and rice, 0.5-0.9 μg/kg).
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, P. R. China.,Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, P. R. China.,College of Plant Protection, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, P. R. China
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, P. R. China
| | - Tingting Duan
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, P. R. China
| | - Jun Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, P. R. China
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, P. R. China
| | - Xingang Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, P. R. China
| | - Xiaogang Li
- College of Plant Protection, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, P. R. China
| | - Pengqiang Du
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, P. R. China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, P. R. China
| |
Collapse
|
9
|
Liu Q, Chen D, Wu J, Yin G, Lin Q, Zhang M, Hu H. Determination of phthalate esters in soil using a quick, easy, cheap, effective, rugged, and safe method followed by GC-MS. J Sep Sci 2018; 41:1812-1820. [DOI: 10.1002/jssc.201701126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/31/2017] [Accepted: 01/01/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Qianjun Liu
- College of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou P. R. China
| | - Di Chen
- College of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou P. R. China
| | - Jiyuan Wu
- College of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou P. R. China
| | - Guangcai Yin
- College of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou P. R. China
| | - Qintie Lin
- College of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou P. R. China
| | - Min Zhang
- School of Materials Science and Energy Engineering; Foshan University; Foshan P. R. China
| | - Huawen Hu
- School of Materials Science and Energy Engineering; Foshan University; Foshan P. R. China
| |
Collapse
|
10
|
Larivière A, Lissalde S, Soubrand M, Casellas-Français M. Overview of Multiresidues Analytical Methods for the Quantitation of Pharmaceuticals in Environmental Solid Matrixes: Comparison of Analytical Development Strategy for Sewage Sludge, Manure, Soil, and Sediment Samples. Anal Chem 2016; 89:453-465. [DOI: 10.1021/acs.analchem.6b04382] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Audrey Larivière
- Research
Group on Water, Soil and Environment (GRESE−EA 4330), University of Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Sophie Lissalde
- Research
Group on Water, Soil and Environment (GRESE−EA 4330), University of Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Marilyne Soubrand
- Research
Group on Water, Soil and Environment (GRESE−EA 4330), University of Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Magali Casellas-Français
- Research
Group on Water, Soil and Environment (GRESE−EA 4330), National
Higher Engineering School of Limoges (ENSIL), Parc ESTER Technopole, 16 Rue Atlantis, 87720 Limoges, France
| |
Collapse
|
11
|
Chen X, Dong F, Xu J, Liu X, Wu X, Zheng Y. Effective Monitoring of Fluxapyroxad and Its Three Biologically Active Metabolites in Vegetables, Fruits, and Cereals by Optimized QuEChERS Treatment Based on UPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8935-8943. [PMID: 27786469 DOI: 10.1021/acs.jafc.6b03253] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Qualitative analysis and quantification of pesticide residues in foodstuff are essential to our health in daily life, especially regarding their metabolites, which may be more toxic and persistent. Thus, a valid analytical measure for detection of fluxapyroxad and its three metabolites (M700F002 (C-2), M700F008 (C-8), M700F048 (C-48)) in vegetables (cucumber, tomato, and pepper), fruits (grape, apple), and cereals (wheat, rice) was developed by UPLC-MS/MS with negative ion mode. The target compounds were extracted by acetonitrile contain 0.2% formic acid (v/v), and the extractions were cleaned up by octadecylsilane sorbents. The limits of quantitation and quantification were less than 0.14 μg kg-1 and 0.47 μg kg-1 in seven matrices. Furthermore, recoveries at levels of 0.01, 0.05, and 0.1 mg kg-1 ranged from 74.9% to 110.5% with relative standard deviations ≤15.5% (n = 5). The method is validated to be effective and robust for the routine supervising of fluxapyroxad and its metabolites.
Collapse
Affiliation(s)
- Xixi Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| |
Collapse
|
12
|
Gan J, Lv L, Peng J, Li J, Xiong Z, Chen D, He L. Multi-residue method for the determination of organofluorine pesticides in fish tissue by liquid chromatography triple quadrupole tandem mass spectrometry. Food Chem 2016; 207:195-204. [DOI: 10.1016/j.foodchem.2016.02.098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/16/2016] [Accepted: 02/14/2016] [Indexed: 10/22/2022]
|
13
|
Shen Y, Li Z, Ma Q, Wang C, Chen X, Miao Q, Han C. Determination of Six Pyrazole Fungicides in Grape Wine by Solid-Phase Extraction and Gas Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3901-3907. [PMID: 27112545 DOI: 10.1021/acs.jafc.6b00530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A gas chromatography-tandem mass spectrometry (GC-MS/MS) method was developed for the first simultaneous identification and quantification of six pyrazole fungicides (furametpyr, rabenzazole, fluxapyroxad, penflufen, bixafen, and isopyrazam) in grape wine samples. The grape wine samples were first diluted with water, then purified by solid-phase extraction, and finally examined by GC-MS/MS in multiple reaction monitoring (MRM) mode. Matrix-matched calibration curves were used to correct the matrix effects. The limits of quantification (LOQs), calculated as 10 times the standard deviation, were 0.2-0.8 μg kg(-1) for the six pyrazole fungicides. The average recoveries were in the range of 74.3-94.5%, with relative standard deviations (RSDs) below 5.8%, measured at three concentration levels. The proposed method is suitable for the simultaneous determination of six pyrazole fungicides in grape wine samples.
Collapse
Affiliation(s)
- Yan Shen
- College of Chemistry and Materials Engineering, Wenzhou University , Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhou Li
- Wenzhou Entry-Exit Inspection and Quarantine Bureau of People's Republic of China , Wenzhou, Zhejiang 325027, People's Republic of China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine , Beijing 100176, People's Republic of China
| | - Chuanxian Wang
- Shanghai Entry-Exit Inspection and Quarantine Bureau of People's Republic of China , Shanghai 200135, People's Republic of China
| | - Xiangzhun Chen
- Wenzhou Entry-Exit Inspection and Quarantine Bureau of People's Republic of China , Wenzhou, Zhejiang 325027, People's Republic of China
| | - Qian Miao
- College of Chemistry and Materials Engineering, Wenzhou University , Wenzhou, Zhejiang 325035, People's Republic of China
| | - Chao Han
- Wenzhou Entry-Exit Inspection and Quarantine Bureau of People's Republic of China , Wenzhou, Zhejiang 325027, People's Republic of China
| |
Collapse
|
14
|
Hecht ES, Oberg AL, Muddiman DC. Optimizing Mass Spectrometry Analyses: A Tailored Review on the Utility of Design of Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:767-85. [PMID: 26951559 PMCID: PMC4841694 DOI: 10.1007/s13361-016-1344-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 05/07/2023]
Abstract
Mass spectrometry (MS) has emerged as a tool that can analyze nearly all classes of molecules, with its scope rapidly expanding in the areas of post-translational modifications, MS instrumentation, and many others. Yet integration of novel analyte preparatory and purification methods with existing or novel mass spectrometers can introduce new challenges for MS sensitivity. The mechanisms that govern detection by MS are particularly complex and interdependent, including ionization efficiency, ion suppression, and transmission. Performance of both off-line and MS methods can be optimized separately or, when appropriate, simultaneously through statistical designs, broadly referred to as "design of experiments" (DOE). The following review provides a tutorial-like guide into the selection of DOE for MS experiments, the practices for modeling and optimization of response variables, and the available software tools that support DOE implementation in any laboratory. This review comes 3 years after the latest DOE review (Hibbert DB, 2012), which provided a comprehensive overview on the types of designs available and their statistical construction. Since that time, new classes of DOE, such as the definitive screening design, have emerged and new calls have been made for mass spectrometrists to adopt the practice. Rather than exhaustively cover all possible designs, we have highlighted the three most practical DOE classes available to mass spectrometrists. This review further differentiates itself by providing expert recommendations for experimental setup and defining DOE entirely in the context of three case-studies that highlight the utility of different designs to achieve different goals. A step-by-step tutorial is also provided.
Collapse
Affiliation(s)
- Elizabeth S Hecht
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - David C Muddiman
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
15
|
Response surface methodology for the enantioseparation of dinotefuran and its chiral metabolite in bee products and environmental samples by supercritical fluid chromatography/tandem mass spectrometry. J Chromatogr A 2015; 1410:181-9. [PMID: 26243706 DOI: 10.1016/j.chroma.2015.07.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 11/20/2022]
Abstract
Tracing the enantiomers of dinotefuran and its metabolite in bee products and relevant environmental matrices is vital because of the high toxicity of their racemates to bees. In this study, a statistical optimization strategy using three-dimensional response surface methodology for the enantioseparation of dinotefuran and its metabolite UF was developed by a novel supercritical fluid chromatography/tandem mass spectrometry (SFC-MS/MS) technique. After direct evaluation of the chromatographic variables - co-solvent content, mobile phase flow rate, automated backpressure regulator pressure (ABPR), and column temperature - involved in the separation mechanism and assessment of the interactions among these variables, the optimal SFC-MS/MS working conditions were selected as a CO2/2% formic acid-methanol mobile phase, 1.9mL/min flow rate, 2009.8psi ABPR, and 26.0°C column temperature using an amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase under electrospray ionization positive mode. Baseline resolution, favorable retention, and high sensitivity of the two pairs of enantiomers were achieved in pollen, honey, water, and soil matrices within 4.5min. Additionally, the parameters affecting the dispersive solid-phase extraction procedure, such as the type and content of extractant or purification sorbents, were systematically screened to obtain better extraction yields of the enantiomers. Mean recoveries were between 78.3% and 100.2% with relative standard deviations lower than 8.0% in all matrices. The limits of quantification ranged from 1.0μg/kg to 12.5μg/kg for the dinotefuran and UF enantiomers. Furthermore, the developed method was effectively applied to authentic samples from a market, an irrigation canal, and a trial field, and the enantioselective dissipation of dinotefuran and UF in soil was demonstrated.
Collapse
|
16
|
Li S, Liu X, Chen C, Dong F, Xu J, Zheng Y. Degradation of Fluxapyroxad in Soils and Water/Sediment Systems Under Aerobic or Anaerobic Conditions. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:45-50. [PMID: 25935333 DOI: 10.1007/s00128-015-1556-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
The persistence and fate of fluxapyroxad were investigated including studies with four soils from Hunan (HN), Shanxi (SX), Jiangsu (JS), and Heilongjiang (HLJ) and two water/sediment systems (water/sediment systems 1 and 2) from Beijing, China. The results demonstrated that the biodegradation efficiency of fluxapyroxad in soils under aerobic conditions was higher than that observed under anaerobic conditions. The order of degradation capability was HLJ soil > JS soil > SX soil > HN soil, and fluxapyroxad dissipated faster in water/sediment system 2 than in system 1. The tested systems (four soils and two water/sediments systems) with rich organic matter content, high oxygen level and neutral pH had a high potential to degrade fluxapyroxad, possibly because rich organic matter and oxygen level stimulated microbial activity and the neutral pH was suitable for microbial growth. These results showed that fluxapyroxad exhibited high persistence in tested systems, with half-lives ≥157.6 day.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
17
|
Abad-Fuentes A, Ceballos-Alcantarilla E, Mercader JV, Agulló C, Abad-Somovilla A, Esteve-Turrillas FA. Determination of succinate-dehydrogenase-inhibitor fungicide residues in fruits and vegetables by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 2015; 407:4207-11. [DOI: 10.1007/s00216-015-8608-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/05/2015] [Accepted: 02/27/2015] [Indexed: 11/28/2022]
|