1
|
Jia Q, Lv Y, Miao C, Feng J, Ding Y, Zhou T, Han S, He L. A new MAS-related G protein-coupled receptor X2 cell membrane chromatography analysis model based on HALO-tag technology and its applications. Talanta 2024; 268:125317. [PMID: 37879202 DOI: 10.1016/j.talanta.2023.125317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/04/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
Cell membrane chromatography (CMC) is an effective method for studying receptors with multiple transmembrane structure such as MAS-related G protein-coupled receptor X2 (MrgX2). CMC relies on the maintenance of the complete biological structure of a membrane receptor; however, it needs to be further improved to obtain a more convenient and stable CMC model. In the present study, the haloalkane dehalogenase protein tag (HALO-tag) technology was used to construct a new MrgX2/CMC model. The fusion receptors of MrgX2 with HALO-tag at the C terminus were expressed in HEK293 cells. The silica gel was modified with a substrate of HALO-tag (chloroalkanes) via one-step acylation for the rapid capture of fusion receptors. The new CMC model (MrgX2-HALO-tag/CMC model) was not only quicker to prepare but also more stable and had a longer lifespan than a previous MrgX2-SNAP-tag/CMC model. In combination with the high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) system, the MrgX2-HALO-tag/CMC model was used to screen and identify bioactive components in traditional Chinese medicine. Using this combination, sanggenon C and morusin were identified from Mori Cortex as anti-pseudo-allergic components. The MrgX2-HALO-tag/CMC model alone was also applied to analyze ligand-receptor interaction. The affinity order of four ligands to MrgX2 was as follows: desipramine < imipramine < amitriptyline < clomipramine. This was consistent with the results obtained using the MrgX2-SNAP-tag/CMC model. The MrgX2-HALO-tag/CMC model provides ideas and application prospects for the immobilization of cell membrane that contains receptors with more transmembrane structures.
Collapse
Affiliation(s)
- Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Chenyang Miao
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Jingting Feng
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Yifan Ding
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Tongpei Zhou
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China.
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China.
| |
Collapse
|
2
|
Gao H, Liu Z, Song F, Xing J, Zheng Z, Hou Z, Liu S. Establishment of Polydopamine-Modified HK-2 Cell Membrane Chromatography and Screening of Active Components from Plantago asiatica L. Int J Mol Sci 2024; 25:1153. [PMID: 38256226 PMCID: PMC10816010 DOI: 10.3390/ijms25021153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Cell membrane chromatography (CMC) has been widely recognized as a highly efficient technique for in vitro screening of active compounds. Nevertheless, conventional CMC approaches suffer from a restricted repertoire of cell membrane proteins, making them susceptible to oversaturation. Moreover, the binding mechanism between silica gel and proteins primarily relies on intermolecular hydrogen bonding, which is inherently unstable and somewhat hampers the advancement of CMC. Consequently, this investigation aimed to establish a novel CMC column that could augment protein loading, enhance detection throughput, and bolster binding affinity through the introduction of covalent bonding with proteins. This study utilizes polydopamine (PDA)-coated silica gel, which is formed through the self-polymerization of dopamine (DA), as the carrier for the CMC column filler. The objective is to construct the HK-2/SiO2-PDA/CMC model to screen potential therapeutic drugs for gout. To compare the quantity and characteristics of Human Kidney-2 (HK-2) cell membrane proteins immobilized on SiO2-PDA and silica gel, the proteins were immobilized on both surfaces. The results indicate that SiO2-PDA has a notably greater affinity for membrane proteins compared to silica gel, resulting in a significant improvement in detection efficiency. Furthermore, a screening method utilizing HK-2/SiO2-PDA/CMC was utilized to identify seven potential anti-gout compounds derived from Plantago asiatica L. (PAL). The effectiveness of these compounds was further validated using an in vitro cell model of uric acid (UA) reabsorption. In conclusion, this study successfully developed and implemented a novel CMC filler, which has practical implications in the field.
Collapse
Affiliation(s)
- Hongxue Gao
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
| | - Junpeng Xing
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
| | - Zong Hou
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
3
|
Shang J, Yan W, Cui X, Ma W, Wang Z, Liu N, Yi X, Guo T, Wei X, Sun Y, Hu H, Cui W, Chen L. Schisandrin B, a potential GLP-1R agonist, exerts anti-diabetic effects by stimulating insulin secretion. Mol Cell Endocrinol 2023; 577:112029. [PMID: 37495090 DOI: 10.1016/j.mce.2023.112029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Diabetes mellitus is a metabolic disease that is characterized by elevated blood sugar. Although glucagon-like peptide-1 receptor agonists (GLP-1RA) lower blood glucose in a glucose-dependent manner, most of them are macromolecule polypeptides. Macromolecular peptides are relatively expensive and inconvenient compared with small molecules. Therefore, this study sought to identify the small molecules binding to GLP-1R via cell membrane chromatography (CMC), confirm their agonistic activity, and further study its beneficial effects in a mouse model of type 2 diabetes mellitus (T2DM) induced by a combination of high-fat diet and streptozotocin. We used CMC, calcium imaging and molecular docking techniques to screen and identify the potential small molecule Schisandrin B (Sch B), which exhibits a strong binding effect to GLP-1R, from the small molecule library of traditional Chinese medicine. Through in-vitro experiments, we found that Sch B stimulated insulin secretion in β-TC-6 cells, while GLP-1R antagonist Exendin9-39, adenylate cyclase inhibitor SQ22536, and protein kinase A (PKA) inhibitor H89 could significantly inhibit the insulin secretion induced by Sch B. In vivo, Sch B significantly improved fasting blood glucose levels, intraperitoneal glucose tolerance test damage, and the status of pancreatic tissue damage, and reduced serum insulin levels, total cholesterol, triglyceride and low density lipoprotein in T2DM mice. These results indicate that Sch B alleviates T2DM by promoting insulin release through the GLP-1R/cAMP/PKA signaling pathway, suggesting that Sch B may be a potential GLP-1RA, which is expected to provide a new therapeutic strategy for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Jia Shang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Weina Ma
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zhuanzhuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinyao Yi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaotong Wei
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - Wei Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; International Obesity and Metabolic Disease Research Center (IOMC), Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Lina Chen
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China; International Obesity and Metabolic Disease Research Center (IOMC), Xi'an Jiaotong University, Xi'an, 710061, China; Cardiometabolic Innovation Center, Ministry of Education, Xi'an, 710061, China.
| |
Collapse
|
4
|
Huang H, Dai Y, Zhang Y, Li Y, Ye H, Guo D, Lu Q, Cai X. System to screen and purify active ingredients from herbal medicines using hydrogel-modified human umbilical vein endothelial cell membrane chromatography coupled with semi-preparative high-performance liquid chromatography-offline-high-performance liquid chromatography-mass spectrometry. J Sep Sci 2023:e2201010. [PMID: 37192526 DOI: 10.1002/jssc.202201010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Analytical screening and validation systems based on a combination of cell membrane chromatography and two-dimensional chromatography-tandem mass spectrometry are incapable of providing prepared samples containing the active ingredients found in traditional Chinese medicine; therefore, these samples cannot be directly used in subsequent studies. In this study, a semi-preparative cell membrane chromatography column was developed using a hydrogel-modified carrier and human umbilical vein endothelial cells to optimize prepared conditions, such as hydrogel polymerization, cell fragmentation, and cell membrane volume. This increased the binding ratio of membrane protein and carrier to 15.79 mg/g. The column was systematically evaluated using multitarget tyrosine kinase inhibitors that displayed good specificity and reproducibility. Subsequently, using the column coupled with a semi-preparative high-performance liquid chromatography-offline-high-performance liquid chromatography-mass spectrometry system, 15 active ingredients were screened and purified from Indigo naturalis, and five main components were identified: l-lysine, oxyresveratrol, tryptanthrin, isorhamnetin, and indirubin. Furthermore, the pharmacological effects of the ingredients were confirmed using cell proliferation and apoptosis assays. Results revealed potent proliferation-inhibiting and apoptosis-promoting abilities on human chronic myelogenous leukemic cells and human promyelocytic leukemic cells (p < 0.001). Overall, the system presented screening and purification functions that could be used to prepare I. naturalis samples acting on the epidermal growth factor receptor and vascular endothelial cell growth factor.
Collapse
Affiliation(s)
- Hui Huang
- Technical Assistance Center, Fu Jian Health College, Fuzhou, P. R. China
| | - Yabin Dai
- Technical Assistance Center, Fu Jian Health College, Fuzhou, P. R. China
| | - Yuefen Zhang
- Technical Assistance Center, Fu Jian Health College, Fuzhou, P. R. China
| | - Yongning Li
- School of Pharmacy, Fu Jian Health College, Fuzhou, P. R. China
| | - Huazhen Ye
- School of Pharmacy, Fu Jian Health College, Fuzhou, P. R. China
| | - Dan Guo
- Technical Assistance Center, Fu Jian Health College, Fuzhou, P. R. China
| | - Qiaomei Lu
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou University, Fuzhou, P. R. China
| | - Xiaohua Cai
- Technical Assistance Center, Fu Jian Health College, Fuzhou, P. R. China
- School of Pharmacy, Fu Jian Health College, Fuzhou, P. R. China
| |
Collapse
|
5
|
Lv Y, Wang S, Wang Y, Zhang X, Jia Q, Han S, He L. Construction and application of covalently bonded CD147 cell membrane chromatography model based on polystyrene microspheres. Anal Bioanal Chem 2023; 415:1371-1383. [PMID: 36651973 DOI: 10.1007/s00216-023-04528-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
In this study, a novel cell membrane chromatography (CMC) model was developed to investigate cluster of differentiation 147 (CD147) targeted anti-tumor drug leads for specific screening and ligand-receptor interaction analysis by SNAP-tagged CD147 fusion protein conjugation and polystyrene microspheres (PS) modification. Traditional Chinese medicines (TCMs) are widely used in the treatment of cancer. CD147 plays important roles in tumor progression and acts as an attractive target for therapeutic intervention; therapeutic drugs for CD147-related cancers are limited to date. Thus, a screening method for active components in TCMs is crucial for the further research and development of CD147 antagonists. However, improvement is still needed to perform specific and accurate drug lead screening using the CMC-based method. Recently, our group developed a covalently immobilized receptor-SNAP-tag/CMC model using silica gel as carrier. Besides the carboxyl group on multi-step modified silica particles, the amino group of benzyl-guanine (BG, substrate of SNAP-tag) also possesses reactivity towards the carboxyl group on available carboxyl-modified PS. Herein, we used PS as carrier and an extended SNAP-tag with CD147 receptor to construct the PS-BG-CD147/CMC model for active compound investigation coupled with HPLC/MS and applied this coupled PS-BG-CD147/CMC-HPLC/MS two-dimensional system to drug lead screening from Nelumbinis Plumula extract (NPE) sample. In addition, to comprehensively verify the pharmacological effects of screened ingredients, a cell proliferation inhibition assay was performed, and the interaction between the ingredients and CD147 was studied by the frontal analysis method. This study developed a high-throughput PS-based CMC screening platform, which could be widely applied and utilized in chromatographic separation and drug lead discovery.
Collapse
Affiliation(s)
- Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China
| | - Saisai Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China
- Jiangsu Chia Tai-Tianqing Pharmaceutical Co., Ltd. Lianyungang, Jiangsu, 222062, People's Republic of China
| | - Yamin Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China
| | - Xin Zhang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China.
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China.
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China
| |
Collapse
|
6
|
Chi H, Tian S, Li X, Chen Y, Xu Q, Wang Q, Shi W, Adu-Frimpong M, Tong S. Construction of lipid raft-coupled agarose gels as bioaffinity chromatography materials and validation with tropomyosin-related kinase A-targeted drugs. J Chromatogr A 2023; 1691:463803. [PMID: 36731332 DOI: 10.1016/j.chroma.2023.463803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
In order to improve the separation process of affinity chromatography that has silica as the main carrier material, we sought to construct Lipid Rafts@CNBr-Sepharose 4B affinity chromatography model. We extracted the lipid rafts from U251 cells with a descaler method and sucrose density gradient centrifugation. Afterwards, it was discovered via immunofluorescence that the lipid rafts contain a large amount of tropomyosin-related kinase A (TrkA) protein. Also, agarose powder in the lyophilised state was pretreated, before the lipid rafts were coupled to the agarose gel in a coupling buffer of alkaline pH. CNBr-Sepharose 4B affinity gel packing was characterised using UV spectrophotometric, immunofluorescence and scanning electron microscopic techniques, wherein and the results showed that the lipid rafts were successfully coupled to the agarose gels. Three compounds were used to verify the specific sorption of Sepharose 4B and CNBr-Sepharose 4B, which showed no specific sorption on the materials. Of note, the prepared Lipid Rafts@CNBr-Sepharose 4B agarose gels packed with TrkA-rich target proteins could be successfully validated for the active drug gefitinib with high affinity sorption efficiency and eluted with good recovery and reproducibility. This study broadens the range of affinity chromatography carrier materials and provides a reference for research in active drug screening.
Collapse
Affiliation(s)
- Hao Chi
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Sheng Tian
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Xiu Li
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Yuchu Chen
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Qiumin Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Qixiao Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Wenwan Shi
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Michael Adu-Frimpong
- School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK-0215-5321, Ghana
| | - Shanshan Tong
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China.
| |
Collapse
|
7
|
Chai X, Gu Y, Lv L, Chen C, Feng F, Cao Y, Liu Y, Zhu Z, Hong Z, Chai Y, Chen X. Screening of immune cell activators from Astragali Radix using a comprehensive two-dimensional NK-92MI cell membrane chromatography/C18 column/time-of-flight mass spectrometry system. J Pharm Anal 2022; 12:725-732. [PMID: 36320599 PMCID: PMC9615523 DOI: 10.1016/j.jpha.2022.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Astragali Radix (AR) is a clinically used herbal medicine with multiple immunomodulatory activities that can strengthen the activity and cytotoxicity of natural killer (NK) cells. However, owing to the complexity of its composition, the specific active ingredients in AR that act on NK cells are not clear yet. Cell membrane chromatography (CMC) is mainly used to screen the active ingredients in a complex system of herbal medicines. In this study, a new comprehensive two-dimensional (2D) NK-92MI CMC/C18 column/time-of-flight mass spectrometry (TOFMS) system was established to screen for potential NK cell activators. To obtain a higher column efficiency, 3-mercaptopropyltrimethoxysilane-modified silica was synthesized to prepare the NK-92MI CMC column. In total, nine components in AR were screened from this system, which could be washed out from the NK-92MI/CMC column after 10 min, and they showed good affinity for NK-92MI/CMC column. Two representative active compounds of AR, isoastragaloside I and astragaloside IV, promoted the killing effect of NK cells on K562 cells in a dose-dependent manner. It can thus suggest that isoastragaloside I and astragaloside IV are the main immunomodulatory components of AR. This comprehensive 2D NK-92MI CMC analytical system is a practical method for screening immune cell activators from other herbal medicines with immunomodulatory effects. A comprehensive 2D NK-92MI/CMC system was developed to screen for immune cell activators. Nine components of Astragali Radix were screened as potential immune activators. Isoastragaloside I and astragaloside IV were first confirmed to have immunomodulatory effects.
Collapse
|
8
|
In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography. Acta Pharm Sin B 2022; 12:3682-3693. [PMID: 36176904 PMCID: PMC9513493 DOI: 10.1016/j.apsb.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Cell membrane affinity chromatography has been widely applied in membrane protein (MP)-targeted drug screening and interaction analysis. However, in current methods, the MP sources are derived from cell lines or recombinant protein expression, which are time-consuming for cell culture or purification, and also difficult to ensure the purity and consistent orientation of MPs in the chromatographic stationary phase. In this study, a novel in situ synthesis membrane protein affinity chromatography (iSMAC) method was developed utilizing cell-free protein expression (CFE) and covalent immobilized affinity chromatography, which achieved efficient in situ synthesis and unidirectional insertion of MPs into liposomes in the stationary phase. The advantages of iSMAC are: 1) There is no need to culture cells or prepare recombinant proteins; 2) Specific and purified MPs with stable and controllable content can be obtained within 2 h; 3) MPs maintain the transmembrane structure and a consistent orientation in the chromatographic stationary phase; 4) The flexible and personalized construction of cDNAs makes it possible to analyze drug binding sites. iSMAC was successfully applied to screen PDGFRβ inhibitors from Salvia miltiorrhiza and Schisandra chinensis. Micro columns prepared by in-situ synthesis maintain satisfactory analysis activity within 72 h. Two new PDGFRβ inhibitors, salvianolic acid B and gomisin D, were screened out with KD values of 13.44 and 7.39 μmol/L, respectively. In vitro experiments confirmed that the two compounds decreased α-SMA and collagen Ӏ mRNA levels raised by TGF-β in HSC-T6 cells through regulating the phosphorylation of p38, AKT and ERK. In vivo, Sal B could also attenuate CCl4-induced liver fibrosis by downregulating PDGFRβ downstream related protein levels. The iSMAC method can be applied to other general MPs, and provides a practical approach for the rapid preparation of MP-immobilized or other biological solid-phase materials.
Collapse
|
9
|
Yajun W, Jin C, Zhengrong G, Chao F, Yan H, Weizong W, Xiaoqun L, Qirong Z, Huiwen C, Hao Z, Jiawei G, Xinchen Z, Shihao S, Sicheng W, Xiao C, Jiacan S. Betaine Attenuates Osteoarthritis by Inhibiting Osteoclastogenesis and Angiogenesis in Subchondral Bone. Front Pharmacol 2021; 12:723988. [PMID: 34658862 PMCID: PMC8511433 DOI: 10.3389/fphar.2021.723988] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis with no effective therapy. Subchondral bone and overlying articular cartilage are closely associated and function as “osteo-chondral unit” in the joint. Abnormal mechanical load leads to activated osteoclast activity and increased bone resorption in the subchondral bone, which is implicated in the onset of OA pathogenesis. Thus, inhibiting subchondral bone osteoclast activation could prevent OA onset. Betaine, isolated from the Lycii Radicis Cortex (LRC), has been demonstrated to exert anti-inflammatory, antifibrotic and antiangiogenic properties. Here, we evaluated the effects of betaine on anterior cruciate ligament transection (ACLT)-induced OA mice. We observed that betaine decreased the number of matrix metalloproteinase 13 (MMP-13)-positive and collagen X (Col X)-positive cells, prevented articular cartilage proteoglycan loss and lowered the OARSI score. Betaine decreased the thickness of calcified cartilage and increased the expression level of lubricin. Moreover, betaine normalized uncoupled subchondral bone remodeling as defined by lowered trabecular pattern factor (Tb.pf) and increased subchondral bone plate thickness (SBP). Additionally, aberrant angiogenesis in subchondral bone was blunted by betaine treatment. Mechanistically, we demonstrated that betaine suppressed osteoclastogenesis in vitro by inhibiting reactive oxygen species (ROS) production and subsequent mitogen-activated protein kinase (MAPK) signaling. These data demonstrated that betaine attenuated OA progression by inhibiting hyperactivated osteoclastogenesis and maintaining microarchitecture in subchondral bone.
Collapse
Affiliation(s)
- Wang Yajun
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cui Jin
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Gu Zhengrong
- Department of Orthopedics, Luodian Hospital, Shanghai, China
| | - Fang Chao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hu Yan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Weng Weizong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Xiaoqun
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhou Qirong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Huiwen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhang Hao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guo Jiawei
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhuang Xinchen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng Shihao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wang Sicheng
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics, Zhongye Hospital, Shanghai, China
| | - Chen Xiao
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Su Jiacan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China.,Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China
| |
Collapse
|
10
|
Fu J, Jia Q, Liang P, Wang S, Zhou H, Zhang L, Gao C, Wang H, Lv Y, Han S. Targeting and Covalently Immobilizing the EGFR through SNAP-Tag Technology for Screening Drug Leads. Anal Chem 2021; 93:11719-11728. [PMID: 34415741 DOI: 10.1021/acs.analchem.1c01664] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Membrane protein immobilization is particularly significant in in vitro drug screening and determining drug-receptor interactions. However, there are still some problems in the immobilization of membrane proteins with controllable direction and high conformational stability, activity, and specificity. Cell membrane chromatography (CMC) retains the complete biological structure of membrane proteins. However, conventional CMC has the limitation of poor stability, which results in its limited life span and low reproducibility. To overcome this limitation, we propose a method for the specific covalent immobilization of membrane proteins in cell membranes. We used the SNAP-tag as an immobilization tag fused to the epidermal growth factor receptor (EGFR), and Cys145 located at the active site of the SNAP-tag reacted with the benzyl group of O6-benzylguanine (BG). The SNAP-tagged EGFR was expressed in HEK293 cells. We captured the SNAP-tagged EGFR from the cell membrane suspension onto a BG-derivative-modified silica gel. Our immobilization strategy improved the life span and specificity of CMC and minimized loss of activity and nonspecific attachment of proteins. Next, a SNAP-tagged EGFR/CMC online HPLC-IT-TOF-MS system was established to screen EGFR antagonists from Epimedii folium. Icariin, magnoflorine, epimedin B, and epimedin C were retained in this model, and pharmacological assays revealed that magnoflorine could inhibit cancer cell growth by targeting the EGFR. This EGFR immobilization method may open up possibilities for the immobilization of other membrane proteins and has the potential to serve as a useful platform for screening receptor-binding leads from natural medicinal herbs.
Collapse
Affiliation(s)
- Jia Fu
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Peida Liang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Saisai Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Huaxin Zhou
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Liyang Zhang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Chunlei Gao
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Hong Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an 710115, China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, No. 70 Yuean Road, Haizhu District, Guangzhou 510289, China
| |
Collapse
|
11
|
Arituluk ZC, Horne J, Adhikari B, Steltzner J, Mansur S, Ahirwar P, Velu SE, Gray NE, Ciesla LM, Bao Y. Identification of TrkB Binders from Complex Matrices Using a Magnetic Drug Screening Nanoplatform. ACS APPLIED BIO MATERIALS 2021; 4:6244-6255. [PMID: 35006910 DOI: 10.1021/acsabm.1c00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) have been shown to play an important role in numerous neurological disorders, such as Alzheimer's disease. The identification of biologically active compounds interacting with TrkB serves as a drug discovery strategy to identify drug leads for neurological disorders. Here, we report effective immobilization of functional TrkB on magnetic iron oxide nanoclusters, where TrkB receptors behave as "smart baits" to bind compounds from mixtures and magnetic nanoclusters enable rapid isolation through magnetic separation. The presence of the immobilized TrkB was confirmed by specific antibody labeling. Subsequently, the activity of the TrkB on iron oxide nanoclusters was evaluated with ATP/ADP conversion experiments using a known TrkB agonist. The immobilized TrkB receptors can effectively identify binders from mixtures containing known binders, synthetic small molecule mixtures, and Gotu Kola (Centella asiatica) plant extracts. The identified compounds were analyzed by an ultrahigh-performance liquid chromatography system coupled with a quadrupole time-of-flight mass spectrometer. Importantly, some of the identified TrkB binders from Gotu Kola plant extracts matched with compounds previously linked to neuroprotective effects observed for a Gotu Kola extract approved for use in a clinical trial. Our studies suggest that the possible therapeutic effects of the Gotu Kola plant extract in dementia treatment, at least partially, might be associated with compounds interacting with TrkB. The unique feature of this approach is its ability to fast screen potential drug leads using less explored transmembrane targets. This platform works as a drug-screening funnel at early stages of the drug discovery pipeline. Therefore, our approach will not only greatly benefit drug discovery processes using transmembrane proteins as targets but also allow for evaluation and validation of cellular pathways targeted by drug leads.
Collapse
Affiliation(s)
- Zekiye Ceren Arituluk
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States.,Department of Pharmaceutical Botany, Hacettepe University, Ankara 06100, Turkey
| | - Jesse Horne
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Bishnu Adhikari
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Jeffrey Steltzner
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Shomit Mansur
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Lukasz M Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
12
|
Zhang L, Yi X, Wang S, Liang P, Zhou H, Fu J, Jia Q, Gao J, Lv Y, Han S. Construction of graphene quantum dots-decorated EGFR cell membrane chromatography for screening active components from Peucedanum praeruptorum Dunn. Anal Bioanal Chem 2021; 413:1917-1927. [PMID: 33506335 DOI: 10.1007/s00216-021-03161-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
A novel stability-enhanced graphene quantum dot (GQD)-decorated epidermal growth factor receptor (EGFR) cell membrane chromatography was constructed to study the potential application of GQDs in bioaffinity chromatography, and to screen active components acting on EGFR from traditional Chinese medicine (TCM). The carboxyl groups on the surface of GQDs reacted with the amino groups of the amino-silica gel (SiO2-NH2) to form a covalent bond, thereby preparing the GQD-decorated silica gel (SiO2-GQDs). The EGFR cell membrane was further immobilized on the SiO2-GQDs through the same covalent binding method to obtain the GQD-decorated cell membrane stationary phase (SiO2-GQDs-CMSP). In this way, the cell membrane was firmly immobilized on the decorated silica carrier. The life span and stability of the GQD-decorated cell membrane chromatographic (SiO2-GQDs-CMC) column were both enhanced, and the optimal immobilization conditions of the EGFR cell membrane were also determined. This model was then verified by establishing a SiO2-GQDs-CMC online liquid chromatography-ion trap-time-of-flight (LC-IT-TOF) system to screen possible active components in Peucedanum praeruptorum Dunn. As a result, praeruptorin B (Pra-B) was screened out, and its inhibitory effect against EGFR cell growth was evaluated by the cell counting kit-8 (CCK-8) assay. Molecular docking assay was also conducted to further estimate the interaction between Pra-B and EGFR. Overall, this research indicated that GQDs may be a promising nanomaterial to be used in prolonging the life span of the CMC column, and Pra-B could be a potential EGFR inhibitor so as to treat cancer.
Collapse
Affiliation(s)
- Liyang Zhang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Xinyao Yi
- School of Basic Medical Science, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Saisai Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Peida Liang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Huaxin Zhou
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Jia Fu
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Jiapan Gao
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China. .,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China.
| |
Collapse
|
13
|
Chen C, Gu Y, Wang R, Chai X, Jiang S, Wang S, Zhu Z, Chen X, Yuan Y. Comparative two-dimensional GPC3 overexpressing SK-Hep1 cell membrane chromatography /C18/ time-of-flight mass spectrometry for screening selective GPC3 inhibitor components from Scutellariae Radix. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1163:122492. [PMID: 33418242 DOI: 10.1016/j.jchromb.2020.122492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Screening active components targeting membrane proteins is important for drug discovery from traditional Chinese medicine. Cell membrane chromatography (CMC) has achieved a wide application in screening active components on pathological cells due to its high sensitivity and effectiveness. However, it is hard to clarify the specific target protein through simply using pathological and normal cells. In this study, a novel comparative two-dimensional (2D) cell membrane chromatography system was established. Based on the construction of hepatocellular carcinoma cell line SK-Hep1-GPC3 with high expression of protein Glypican-3 (GPC3), SK-Hep1-GPC3/CMC column was loaded to screen selective antitumor components from Scutellariae Radix according to the retention behaviors on column. Viscidulin I was retained on SK-Hep1-GPC3/CMC column, and showed 4.33 μM affinity to GPC3 according to surface plasmon resonance (SPR). The IC50 of viscidulin I on SK-Hep1-GPC3 cells was 18.01 μM in cell proliferation assay. Thus, this method can be applied to screen complex herbal medicines for ligands bound to specific target protein receptor related to hepatic carcinoma.
Collapse
Affiliation(s)
- Chun Chen
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Xinyi Chai
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Shuya Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Shaozhan Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Zhenyu Zhu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China.
| |
Collapse
|
14
|
Pan P, Cheng J, Si Y, Chen W, Hou J, Zhao T, Gu Y, Lv L, Hong Z, Zhu Z, Chai Y, Guo Z, Chen X. A stop-flow comprehensive two-dimensional HK-2 and HK-2/CIKI cell membrane chromatography comparative analysis system for screening the active ingredients from Pyrrosia calvata (Bak.) Ching against crystal-induced kidney injury. J Pharm Biomed Anal 2020; 195:113825. [PMID: 33339641 DOI: 10.1016/j.jpba.2020.113825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022]
Abstract
Crystal-induced kidney injury (CIKI) is the fundamental pathological change during nephrolithiasis, although the molecular mechanism is still unclear. Pyrrosia calvata (Bak.) Ching has been used in folk medicine to treat urolithiasis for years. To clarify the pharmacodynamic substances and the mechanism of its antiurolithiasis effects, in this study, a novel, stop-flow, comprehensive, two-dimensional (2D) HK-2 and HK-2/CIKI cell membrane chromatography (CMC) comparative analysis system was developed to screen for the potential active ingredients from Pyrrosia calvata (Bak.) Ching against CIKI. The comprehensive 2D CMC comparative analysis system showed satisfactory selectivity, and eight ingredients were screened and identified by this system. Among them, mangiferin exhibited higher affinity for the HK-2/CIKI CMC column than the HK-2 CMC column and was selected for further efficacy verification. Cell proliferation assays showed that mangiferin could protect HK-2 cell viability after stimulation with sodium oxalate (NaOX). Additionally, in a rodent model of CIKI, mangiferin decreased the deposition of calcium oxalate (CaOX) crystals in mouse kidneys, alleviated the pathological damage to kidney tissue, and inhibited the upregulation of OPN, MCP1, and CD44 expression caused by CaOX crystals. The established comprehensive 2D CMC comparative analysis system can be applied to screen active ingredients with disease specificity from traditional Chinese medicine (TCM) and is suitable for other cell models.
Collapse
Affiliation(s)
- Pengchao Pan
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Jin Cheng
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Yachen Si
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Jiebin Hou
- Department of Nephrology, The Second Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Tingting Zhao
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, No. 280 Mohe Road, Shanghai, 201999, China
| | - Lei Lv
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, No. 225 Changhai Road, Shanghai, 200438, China
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Zhenyu Zhu
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
| | - Zhiyong Guo
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China.
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
15
|
Li Y, Chen Y, Zhang H, Lam CWK, Li Z, Wang C, Zhao Y, Zhang W, Jiang Z. Immobilization of cell membrane onto a glucose-Zn-based porous coordination polymer and its application to rapid screening of potentially active compounds from Vaccinium corymbosum L. leaves. Mikrochim Acta 2020; 187:630. [PMID: 33125573 DOI: 10.1007/s00604-020-04612-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 11/25/2022]
Abstract
A novel glucose-Zn-based porous coordination polymer (PCP) was selected as a carrier of cell membranes (CMs) to fabricate CM-coated PCP (CMPCP) for rapid screening of potentially active compounds from natural products. The cell disruption and the amount of maximum CMs adsorbed on PCP were optimized according to the amount of immobilized protein. This new kind of matrix exhibited good reproducibility and stability, and was applied for fishing potentially active compounds from the extracts of Vaccinium corymbosum L. leaves (VCL). Using LC-MS/MS, chlorogenic acid and quercetin were identified as the potentially active compounds through comparison of normal and non-alcoholic fatty liver disease (NAFLD)-modeled CMPCP. Our results suggested that the proposed approach based on CMPCP was environmentally friendly, cost-effective, and convenient in terms of green porous material, stable protein loading capacity, and accessible operation process. The developed method could provide a promising platform for efficient drug discovery from natural product resources.Graphical abstract.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Yanli Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Huixia Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Christopher Wai Kei Lam
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Caiyun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Yunfeng Zhao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China.
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China.
| |
Collapse
|
16
|
Gu Y, Chen X, Wang Y, Liu Y, Zheng L, Li X, Wang R, Wang S, Li S, Chai Y, Su J, Yuan Y, Chen X. Development of 3-mercaptopropyltrimethoxysilane (MPTS)-modified bone marrow mononuclear cell membrane chromatography for screening anti-osteoporosis components from Scutellariae Radix. Acta Pharm Sin B 2020; 10:1856-1865. [PMID: 33163340 PMCID: PMC7606177 DOI: 10.1016/j.apsb.2020.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis is a bone metabolic disease caused by the imbalance between osteoblasts and osteoclasts due to excess osteoclastogenesis, manifesting in the decrease of bone density and bone strength. Scutellariae Radix shows good anti-osteoporosis activity, but the effective component is still unclear. Cell membrane chromatography (CMC) is a biological affinity chromatography with membrane immobilized on a silica carrier as the stationary phase. It can realize a dynamical simulation of interactions between drugs and receptors on cell membrane, which is suitable for screening active compounds from complex systems. In this study, the components of Scutellariae Radix with potential anti-osteoporosis activity through inhibiting the differentiation from bone marrow mononuclear cells (BMMCs) to osteoclast were screened by a BMMC/CMC analytical system. Firstly, a new 3-mercaptopropyltrimethoxysilane (MPTS)-modified BMMC/CMC stationary phase was developed to realize covalent binding with cell membrane fractions. By investigating the retention time (tR) of the positive drug, the life span of the MPTS-modified CMC columns was significantly improved from 3 to 12 days. Secondly, 6 components of Scutellariae Radix were screened to show affinity to membrane receptors on BMMCs by a two-dimensional BMMC/CMC–TOFMS analytical system. Among them, tectochrysin demonstrated the best anti-osteoporosis effect in vitro, which has never been reported. We found that tectochrysin could inhibit the differentiation of BMMCs into osteoclasts induced by receptor activator of nuclear factor-κΒ ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) in a concentration-dependent manner in vitro. In vivo, it significantly reduced the loss of bone trabeculae in ovariectomized mice, and decreased the level of C-terminal cross-linking telopeptides of type 1 collagen (CTX-1), tartrate-resistant acid phosphatase 5b (TRAP-5b), interleukin 6 (IL-6) in serum. In conclusion, tectochrysin serves as a potential candidate in the treatment of osteoporosis. The proposed two-dimensional MPTS-modified BMMC/CMC-TOFMS analytical system shows the advantages of long-life span and fast recognition ability, which is very suitable for infrequent cell lines.
Collapse
|
17
|
Liu Y, Wang X, Gu Y, Zhang M, Cao Y, Zhu Z, Lu S, Chai Y, Chen X, Hong Z. Covalent Design of Cell Membrane Stationary Phase with Enhanced Stability for Fast Screening P-Glycoprotein Inhibitors. ACS APPLIED BIO MATERIALS 2020; 3:5000-5006. [PMID: 35021677 DOI: 10.1021/acsabm.0c00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell membrane chromatography (CMC) has been widely used for characterizing the interaction between drugs and membrane receptors to screen target components from herbal medicines. However, the column life, stability, and the efficiency cannot meet the needs of high-throughput screening purpose. In this study, a P-glycoprotein immobilized cell membrane stationary phase (P-gp/CMSP) was prepared with a simple and mild two-step aldehyde modification, realizing the covalent bonding between cell membrane and stationary phase. The column life and stability were significantly enhanced compared with the unmodified columns. The P-gp/CMC column was equipped into a comprehensive 2D P-gp/CMC/Capcell-C18/TOFMS system, which actualizes the automated and high-throughput analytical process and rapid identification of complex chemical samples with no data loss. Five compounds with significant retention were screened out and unambiguously identified by the comprehensive 2D analytical system. Baicalin was confirmed as a P-gp inhibitor with ATP depletion inhibition ratio of 83.4%. Moreover, the reversal index of baicalin on DOX significantly increased to 11.13 when its concentration reached 25 μM, revealing that baicalin could effectively reverse the MDR cell model induced by DOX. The integrated system is a practical drug discovery platform and could be applied to other transmembrane protein models.
Collapse
Affiliation(s)
- Yue Liu
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaoyu Wang
- Institute of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200032, P. R. China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, 280 Mohe Road, Shanghai 201999, China
| | - Mingyong Zhang
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhenyu Zhu
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Shan Lu
- Department of Biochemistry and Molecular Biology, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
18
|
Bu Y, Hu Q, Zhang X, Li T, Xie X, Wang S. A novel cell membrane-cloaked magnetic nanogripper with enhanced stability for drug discovery. Biomater Sci 2020; 8:673-681. [PMID: 31769454 DOI: 10.1039/c9bm01411j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell membrane-cloaked nanotechnology has attracted increasing attention owing to its unique bionic properties, such as specific recognition and biocompatibility conferred by the integrated membrane structure and receptors. However, this technology is limited by the dissociation of the cell membrane from its carrier. Here, we report a novel type of cell membrane-cloaked modified magnetic nanoparticle with good stability in drug discovery. High α1A-adrenergic receptor (α1A-AR) expressing HEK293 cell membrane-cloaked magnetic nanogrippers (α1A/MNGs) were used as a platform for the specific targeting and binding of α1A-AR antagonists as candidate bioactive compounds from traditional Chinese medicine (TCM). Furthermore, using a dynamic covalent bonding approach, α1A/MNGs showed great stability with positive control drug recoveries of α1A/MNGs showing almost no decline after use in five adsorption-desorption cycles. Moreover, the α1A/MNGs possessed a unilamellar membrane with magnetic features and exhibited good binding capacity and selectivity. Ultimately, TCM and pharmacological studies of the bioactivity of the screened compounds confirmed the considerable targeting and binding capability of α1A/MNGs. Application of aldehyde group modification in this drug-targeting concept further improved biomaterial stability and paves the way for the development of new drug discovery strategies. More importantly, the successful application of α1A/MNGs provides new insights into methodologies to improve the integration of cell membranes with the nanoparticle platform.
Collapse
Affiliation(s)
- Yusi Bu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | | | | | | | | | | |
Collapse
|
19
|
Lecas L, Dugas V, Demesmay C. Affinity Chromatography: A Powerful Tool in Drug Discovery for Investigating Ligand/membrane Protein Interactions. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1749852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lucile Lecas
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| | - Vincent Dugas
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| | - Claire Demesmay
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
20
|
Liu RZ, Wang R, An HM, Liu XG, Li CR, Li P, Yang H. A strategy for screening bioactive components from natural products based on two-dimensional cell membrane chromatography and component-knockout approach. J Chromatogr A 2019; 1601:171-177. [PMID: 31056273 DOI: 10.1016/j.chroma.2019.04.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 11/19/2022]
Abstract
Cell membrane chromatography (CMC) is a bioaffinity chromatographic method used to screen active compounds from natural products. However, since the receptor capacity of CMC column is limited, high content/affinity compounds may cause column overloading and thus lead to ignorance of other positive candidates. For avoiding this effect and comprehensively discovering bioactive components, a strategy based on two-dimensional CMC and component-knockout approach was proposed. As an illustrative case study, red yeast rice (RYR), a rice product with good myocardial protective effect in clinical studies, was selected as the model experimental sample. For discovering its potential cardioprotective compounds, a CMC model with H9c2 rat cardiac myoblasts (H9c2/CMC) with good selectivity, stability and reproducibility was established. By using two-dimensional H9c2/CMC-HPLC coupled with QTOF MS system, three components were firstly screened out. After knocking out high content/affinity compound, another four bioactive compounds were then found. By this two-round screening, column overloading caused by high concentration or infinity compounds was avoided, and trace compounds were enriched. As a result, one pigment and six monacolins from RYR were fished out. The results indicate the proposed strategy might be used to discover active compounds from complex matrix.
Collapse
Affiliation(s)
- Run-Zhou Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hai-Ming An
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xin-Guang Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Chao-Ran Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
21
|
Guo J, Lin H, Wang J, Lin Y, Zhang T, Jiang Z. Recent advances in bio-affinity chromatography for screening bioactive compounds from natural products. J Pharm Biomed Anal 2019; 165:182-197. [DOI: 10.1016/j.jpba.2018.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/01/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023]
|
22
|
WANG XY, CHEN XF, GU YQ, CAO Y, YUAN YF, HONG ZY, CHAI YF. Progress of Cell Membrane Chromatography and Its Application in Screening Active Ingredients of Traditional Chinese Medicine. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61121-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Gu Y, Chen X, Wang R, Wang S, Wang X, Zheng L, Zhang B, Chai Y, Zhu Z, Yuan Y. Comparative two-dimensional HepG2 and L02/ cell membrane chromatography/ C18/ time-of-flight mass spectrometry for screening selective anti-hepatoma components from Scutellariae Radix. J Pharm Biomed Anal 2018; 164:550-556. [PMID: 30458388 DOI: 10.1016/j.jpba.2018.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/07/2018] [Accepted: 10/17/2018] [Indexed: 01/22/2023]
Abstract
Screening active components from Chinese traditional medicine is an effective approach to discover new drugs or active structures. Cell membrane chromatography (CMC), developed rapidly because of its high sensitivity and effectiveness, has achieved a wide application in screening active components on pathological cells or tissues. However, it is hard to clarify the selectivity between pathological and normal tissues through simply using pathological cells. In this study, a novel comparative two-dimensional (2D) cell membrane chromatography system was established. Briefly, hepatic carcinoma HepG2 CMC columns and normal hepatic L02 CMC columns were simultaneously loaded to screen potential selective antitumor components from Scutellariae Radix by comparing the retention behaviors on two kinds of cells. Totally 13 components in Scutellariae Radix retained on both HepG2/ CMC and L02/ CMC columns. Among them, three components, oroxylin A, wogonin and chrysin, were screened out to perform stronger affinity on HepG2 columns, and in further cell proliferation assay, IC50 of these three compounds of HepG2 cells were 9.66 μM, 66.77 μM and 36.26 μM respectively, while of L02 cells, IC50 of chrysin was 59.10 μM and over 200 μM of the other two components. On the whole, the toxity of these three compounds to hepatoma cells was stronger than to normal cells. It can be supposed that oroxylin A, wogonin, and chrysin own the potential to be developed as selective anti-hepatoma active components, which expects further research to validate.
Collapse
Affiliation(s)
- Yanqiu Gu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Xiaofei Chen
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Shaozhan Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Xiaoyu Wang
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Leyi Zheng
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Bin Zhang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China.
| |
Collapse
|
24
|
Wu R, Li C, Li C, Ren J, Sun X, Zhang S, Zou J, Ling X. Rapid screening of multi-target antitumor drugs by nonimmobilized tumor cells/tissues capillary electrophoresis. Anal Chim Acta 2018; 1045:152-161. [PMID: 30454570 DOI: 10.1016/j.aca.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/15/2018] [Accepted: 09/08/2018] [Indexed: 12/31/2022]
Abstract
As there are more target categories on tumor cells/tissues than on receptor-overexpressing cells, and tumor tissues can better simulate TME, we established a new method of screening multi-target antitumor drugs by nonimmobilized tumor cells/tissues capillary electrophoresis under approximately tumor physiological environment. In this method, the natural structure and active conformation of the target proteins on tumor cells/tissues can be well maintained without separation and purification. Therefore, we successfully used this method to study the interactions between the Aidi injection (ADI)/its main components and tumor cells/tissues by optimizing a series of experimental conditions, discovered seven components with binding activity to A549 cells, five of them with specific interaction to tumor tissues, and calculated the binding kinetic parameters (K, ka, kd, and k'). Then, antitumor activity assays in vitro and in vivo were carried out to discover a new drug combination with higher targeting, better pharmaceutical efficacy, and lower toxic side effects. Finally, molecular docking studies were performed to investigate the potential target groups of the interactions between the effective drug combination and A549 cells/tissues. In summary, the method was verified to be valid and feasible, and can be easily transferred to a capillary array electrophoresis for high-throughput drug screening.
Collapse
Affiliation(s)
- Ruijun Wu
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Chen Li
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Cong Li
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Jinyu Ren
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Xiaozhi Sun
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Sufang Zhang
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Juncheng Zou
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Xiaomei Ling
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
25
|
Zheng L, Chen S, Cao Y, Zhao L, Gao Y, Ding X, Wang X, Gu Y, Wang S, Zhu Z, Yuan Y, Chen X, Chai Y. Combination of comprehensive two-dimensional prostate cancer cell membrane chromatographic system and network pharmacology for characterizing membrane binding active components from Radix et Rhizoma Rhei and their targets. J Chromatogr A 2018; 1564:145-154. [DOI: 10.1016/j.chroma.2018.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
|
26
|
Wang Q, Xu J, Li X, Zhang D, Han Y, Zhang X. Comprehensive two-dimensional PC-3 prostate cancer cell membrane chromatography for screening anti-tumor components from Radix Sophorae flavescentis. J Sep Sci 2018; 40:2688-2693. [PMID: 28432774 DOI: 10.1002/jssc.201700208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 12/30/2022]
Abstract
Radix Sophorae flavescentis is generally used for the treatment of different stages of prostate cancer in China. It has ideal effects when combined with surgical treatment and chemotherapy. However, its active components are still ambiguous. We devised a comprehensive two-dimensional PC-3 prostate cancer cell membrane chromatography system for screening anti-prostate cancer components in Radix Sophorae flavescentis. Gefitinib and dexamethasone were chosen as positive and negative drugs respectively for validation and optimization the selectivity and suitability of the comprehensive two-dimensional chromatographic system. Five compounds, sophocarpine, matrine, oxymatrine, oxysophocarpine, and xanthohumol were found to have significant retention behaviors on the PC-3 cell membrane chromatography and were unambiguously identified by time-of-flight mass spectrometry. Cell proliferation and apoptosis assays confirmed that all five compounds had anti-prostate cancer effects. Matrine and xanthohumol had good inhibitory effects, with half maximal inhibitory concentration values of 0.893 and 0.137 mg/mL, respectively. Our comprehensive two-dimensional PC-3 prostate cancer cell membrane chromatographic system promotes the efficient recognition and rapid analysis of drug candidates, and it will be practical for the discovery of prostate cancer drugs from complex traditional Chinese medicines.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Urology, General Hospital of Chinese PLA, Beijing, China.,Organ Transplant Research Institute, The 309th Hospital of Chinese PLA, Beijing, China
| | - Junnan Xu
- Department of Urology, General Hospital of Chinese PLA, Beijing, China.,Organ Transplant Research Institute, The 309th Hospital of Chinese PLA, Beijing, China
| | - Xiang Li
- Organ Transplant Research Institute, The 309th Hospital of Chinese PLA, Beijing, China
| | - Dawei Zhang
- Organ Transplant Research Institute, The 309th Hospital of Chinese PLA, Beijing, China
| | - Yong Han
- Organ Transplant Research Institute, The 309th Hospital of Chinese PLA, Beijing, China
| | - Xu Zhang
- Department of Urology, General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
27
|
Wang XY, Ding X, Yuan YF, Zheng LY, Cao Y, Zhu ZY, Zhang GQ, Chai YF, Chen XF, Hong ZY. Comprehensive two-dimensional APTES-decorated MCF7-cell membrane chromatographic system for characterizing potential anti-breast-cancer components from Yuanhu-Baizhi herbal medicine pair. J Food Drug Anal 2017; 26:823-833. [PMID: 29567254 PMCID: PMC9322241 DOI: 10.1016/j.jfda.2017.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/21/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Rhizoma corydalis and Radix Angelicae Dahurica (Yuanhu–Baizhi) herbal medicine pair has been used for thousands of years and has been reported to be potentially active in recent cancer therapy. But the exact active components or fractions remain unclear. In this study, a new comprehensive two-dimensional (2D) 3-aminopropyltriethoxysilane (APTES)-decorated MCF7-cell membrane chromatography (CMC)/capcell-C18 column/time-of-flight mass spectrometry system was established for screening potential active components and clarifying the active fraction of Yuanhu–Baizhi pair. APTES was modified on the surface of silica, which can provide an amino group to covalently link cell membrane fragments with the help of glutaraldehyde in order to improve the stability and column life span of the MCF7 CMC column. The comprehensive 2D MCF7-CMC system showed good separation and identification abilities. Our screen results showed that the retention components are mainly from the alkaloids in Yuanhu (12 compounds) and the coumarins (10 compounds) in Baizhi, revealing the active fractions of Yuanhu–Baizhi herbal medicine pair. Oxoglaucine, protopine, berberine, osthole, isopimpinellin and palmitic acid were selected as typical components to test the effects on cell proliferation and their IC50 were calculated as 38.17 μM, 29.45 μM, 45.42 μM, 132.7 μM, 156.8 μM and 90.5 μM respectively. Cell apoptosis assay showed that the drug efficacy was obtained mainly through inducing cell apoptosis. Furthermore, a synergistic assay results demonstrated that oxoglaucine (representative of alkaloids from Yuanhu) and isopimpinellin (representative of coumarins from Baizhi) showed significant synergistic efficacy with GFT, indicating that these components may act on other membrane receptors. The proposed 2D CMC system could also be equipped with other cells for further applications. Besides, the follow-up in-vitro experimental strategy using cell proliferation assay, cell apoptosis assay and synergistic assay proved to be a practical way to confirm the active fractions of herbal medicine.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Xuan Ding
- Department of Pharmacy & Medical Appliance, Hangzhou Sanatorium of PLA, Hangzhou, Zhejiang 310000, China
| | - Yong-Fang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, No. 280 Mohe Road, Shanghai 201999, China
| | - Le-Yi Zheng
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Zhen-Yu Zhu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Guo-Qing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, No. 225 Changhai Road, Shanghai 200438, China
| | - Yi-Feng Chai
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Xiao-Fei Chen
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China.
| | - Zhan-Ying Hong
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
28
|
Wang N, Zhang Q, Xin H, Shou D, Qin L. Osteoblast cell membrane chromatography coupled with liquid chromatography and time-of-flight mass spectrometry for screening specific active components from traditional Chinese medicines. J Sep Sci 2017; 40:4311-4319. [DOI: 10.1002/jssc.201700688] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/07/2017] [Accepted: 08/31/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Nani Wang
- Department of Medicine; Zhejiang Academy of Traditional Chinese Medicine; Hangzhou China
- School of Pharmacy; Second Military Medical University; Shanghai China
| | - Qiaoyan Zhang
- School of Pharmacy; Second Military Medical University; Shanghai China
| | - Hailiang Xin
- School of Pharmacy; Second Military Medical University; Shanghai China
| | - Dan Shou
- Department of Medicine; Zhejiang Academy of Traditional Chinese Medicine; Hangzhou China
| | - Luping Qin
- School of Pharmacy; Second Military Medical University; Shanghai China
- School of Pharmacy; Zhejiang Chinese Medical University; Hangzhou China
| |
Collapse
|
29
|
Preparation and characterization of micro-cell membrane chromatographic column with N-hydroxysuccinimide group-modified silica-based porous layer open tubular capillary. J Chromatogr A 2017; 1516:125-130. [DOI: 10.1016/j.chroma.2017.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 11/24/2022]
|
30
|
Ligand Fishing with Cellular Membrane-Coated Magnetic Beads: A New Method for the Screening of Potentially Active Compounds from Natural Products. Chromatographia 2017. [DOI: 10.1007/s10337-017-3370-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Wang X, Xu L, Mao R, Zhao X, Xu B, Tang C, He J, Zhang Y. An insertion/self-fusion mechanism for cell membrane immobilization on porous silica beads to fabricate biomimic carriers. Biomater Sci 2017. [DOI: 10.1039/c7bm00419b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An insertion/self-fusion mechanism for cell membrane immobilization on porous silica beads has been proposed to fabricate biomimic carriers.
Collapse
Affiliation(s)
- Xu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Liang Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Ruizhi Mao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Xinchao Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Bei Xu
- School of Public Health
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Cheng Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Jiahui He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Yanwen Zhang
- Tianjin Medical College
- Tianjin 300222
- P. R. China
| |
Collapse
|
32
|
Ding X, Cao Y, Yuan Y, Gong Z, Liu Y, Zhao L, Lv L, Zhang G, Wang D, Jia D, Zhu Z, Hong Z, Chen X, Chai Y. Development of APTES-Decorated HepG2 Cancer Stem Cell Membrane Chromatography for Screening Active Components from Salvia miltiorrhiza. Anal Chem 2016; 88:12081-12089. [PMID: 28193057 DOI: 10.1021/acs.analchem.6b02709] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xuan Ding
- School
of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China
| | - Yan Cao
- School
of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China
| | - Yongfang Yuan
- Department
of Pharmacy, Shanghai ninth People’s Hospital, No. 280 Mohe
Road, Shanghai 201999, PR China
| | - Zhirong Gong
- School
of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China
| | - Yue Liu
- School
of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China
| | - Liang Zhao
- Department
of Pharmacy, Eastern Hepatobiliary Surgery Hospital, No. 225 Changhai
Road, Shanghai 200438, PR China
| | - Lei Lv
- Department
of Pharmacy, Eastern Hepatobiliary Surgery Hospital, No. 225 Changhai
Road, Shanghai 200438, PR China
| | - Guoqing Zhang
- Department
of Pharmacy, Eastern Hepatobiliary Surgery Hospital, No. 225 Changhai
Road, Shanghai 200438, PR China
| | - Dongyao Wang
- School
of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China
| | - Dan Jia
- School
of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China
| | - Zhenyu Zhu
- School
of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China
| | - Zhanying Hong
- School
of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China
| | - Xiaofei Chen
- School
of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China
| | - Yifeng Chai
- School
of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China
| |
Collapse
|
33
|
Muhammad S, Han S, Xie X, Wang S, Aziz MM. Overview of online two-dimensional liquid chromatography based on cell membrane chromatography for screening target components from traditional Chinese medicines. J Sep Sci 2016; 40:299-313. [DOI: 10.1002/jssc.201600773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Saqib Muhammad
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi China
| | - Shengli Han
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi China
| | - Xiaoyu Xie
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi China
| | - Sicen Wang
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi China
| | | |
Collapse
|
34
|
Wu X, Chen X, Dan J, Cao Y, Gao S, Guo Z, Zerbe P, Chai Y, Diao Y, Zhang L. Characterization of anti-leukemia components from Indigo naturalis using comprehensive two-dimensional K562/cell membrane chromatography and in silico target identification. Sci Rep 2016; 6:25491. [PMID: 27150638 PMCID: PMC4858665 DOI: 10.1038/srep25491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/18/2016] [Indexed: 12/30/2022] Open
Abstract
Traditional Chinese Medicine (TCM) has been developed for thousands of years and has formed an integrated theoretical system based on a large amount of clinical practice. However, essential ingredients in TCM herbs have not been fully identified, and their precise mechanisms and targets are not elucidated. In this study, a new strategy combining comprehensive two-dimensional K562/cell membrane chromatographic system and in silico target identification was established to characterize active components from Indigo naturalis, a famous TCM herb that has been widely used for the treatment of leukemia in China, and their targets. Three active components, indirubin, tryptanthrin and isorhamnetin, were successfully characterized and their anti-leukemia effects were validated by cell viability and cell apoptosis assays. Isorhamnetin, with undefined cancer related targets, was selected for in silico target identification. Proto-oncogene tyrosine-protein kinase (Src) was identified as its membrane target and the dissociation constant (Kd) between Src and isorhamnetin was 3.81 μM. Furthermore, anti-leukemia effects of isorhamnetin were mediated by Src through inducing G2/M cell cycle arrest. The results demonstrated that the integrated strategy could efficiently characterize active components in TCM and their targets, which may bring a new light for a better understanding of the complex mechanism of herbal medicines.
Collapse
Affiliation(s)
- Xunxun Wu
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China.,School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Xiaofei Chen
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Jia Dan
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yan Cao
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Shouhong Gao
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Zhiying Guo
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China.,School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Yifeng Chai
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yong Diao
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China
| | - Lei Zhang
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| |
Collapse
|
35
|
Jia D, Chen X, Cao Y, Wu X, Ding X, Zhang H, Zhang C, Chai Y, Zhu Z. On-line comprehensive two-dimensional HepG2 cell membrane chromatographic analysis system for charactering anti-hepatoma components from rat serum after oral administration of Radix scutellariae : A strategy for rapid screening active compounds in vivo. J Pharm Biomed Anal 2016; 118:27-33. [DOI: 10.1016/j.jpba.2015.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/22/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023]
|
36
|
Wang D, Lv D, Chen X, Liu Y, Ding X, Jia D, Chen L, Zhu Z, Cao Y, Chai Y. Activity ranking of synthetic analogs targeting vascular endothelial growth factor receptor 2 by an integrated cell membrane chromatography system. J Sep Sci 2015; 38:4159-65. [DOI: 10.1002/jssc.201500857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Dongyao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy; Second Military Medical University; Shanghai China
| | - Diya Lv
- Analysis and Measurement Center, School of Pharmacy; Second Military Medical University; Shanghai China
| | - Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy; Second Military Medical University; Shanghai China
| | - Yue Liu
- Department of Pharmaceutical Analysis, School of Pharmacy; Second Military Medical University; Shanghai China
| | - Xuan Ding
- Department of Pharmaceutical Analysis, School of Pharmacy; Second Military Medical University; Shanghai China
| | - Dan Jia
- Department of Pharmaceutical Analysis, School of Pharmacy; Second Military Medical University; Shanghai China
| | - Langdong Chen
- Department of Pharmaceutical Analysis, School of Pharmacy; Second Military Medical University; Shanghai China
| | - Zhenyu Zhu
- Analysis and Measurement Center, School of Pharmacy; Second Military Medical University; Shanghai China
| | - Yan Cao
- Department of Biochemical Pharmacy, School of Pharmacy; Second Military Medical University; Shanghai China
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy; Second Military Medical University; Shanghai China
| |
Collapse
|