1
|
Dick F, Dietz A, Asam S, Rychlik M. Development of a high-throughput UHPLC-MS/MS method for the analysis of Fusarium and Alternaria toxins in cereals and cereal-based food. Anal Bioanal Chem 2024; 416:5619-5637. [PMID: 39222085 PMCID: PMC11493838 DOI: 10.1007/s00216-024-05486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
A QuEChERS (quick, easy, cheap, effective, rugged, and safe)-based multi-mycotoxin method was developed, analyzing 24 (17 free and 7 modified) Alternaria and Fusarium toxins in cereals via ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). A modified QuEChERS approach was optimized for sample preparation. Quantification was conducted using a combination of stable isotope dilution analysis (SIDA) for nine toxins and matrix-matched calibration for ten toxins. Quantification via a structurally similar internal standard was conducted for four analytes. Alternariol-9-sulfate (AOH-9-S) was measured qualitatively. Limits of detection (LODs) were between 0.004 µg/kg for enniatin A1 (ENN A1) and 3.16 µg/kg for nivalenol (NIV), while the limits of quantification were between 0.013 and 11.8 µg/kg, respectively. The method was successfully applied to analyze 136 cereals and cereal-based foods, including 28 cereal-based infant food products. The analyzed samples were frequently contaminated with Alternaria toxins, proving their ubiquitous occurrence. Interestingly, in many of those samples, some modified Alternaria toxins occurred, mainly alternariol-3-sulfate (AOH-3-S) and alternariol monomethyl ether-3-sulfate (AME-3-S), thus highlighting the importance of including modified mycotoxins in the routine analysis as they may significantly add to the total exposure of their parent toxins. Over 95% of the analyzed samples were contaminated with at least one toxin. Despite the general contamination, no maximum or indicative levels were exceeded.
Collapse
Affiliation(s)
- Fabian Dick
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany
| | - Alena Dietz
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany
| | - Stefan Asam
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany.
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany
| |
Collapse
|
2
|
Zhang J, Huang R, Feng Y, Yang T, Sun M, Kuang H, Xu C, Guo L. Development and validation of stable isotope dilution LC-MS/MS method for simultaneous quantification of four Alternaria toxins in 15 food commodities. Food Chem 2024; 457:140122. [PMID: 38908243 DOI: 10.1016/j.foodchem.2024.140122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Alternaria toxins (ATs) are produced from Alternaria species that result in crop losses and harmful impacts on human health. A stable isotope dilution LC-MS/MS method was established to quantify four ATs in 15 food commodities: alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), and tenuazonic acid (TeA). Based on systematically optimization of detection conditions and pre-processing steps, the limits of detection and limits of quantification of the four ATs ranged from 0.1 to 10 μg/kg and 0.2 to 30 μg/kg, respectively. The results showed that the recoveries of the four ATs were 72.0%-119.1%. The intra-precision and inter-precision ranged from 0.7% to 11.1% and 1.1% to 13.1%, respectively. The method was successfully applied to the determination of four ATs in 35 food samples, suggesting that this method could provide meaningful occurrence data to support the assessment of emerging ATs in food commodities.
Collapse
Affiliation(s)
- Jia Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Renzhi Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yongwei Feng
- Wuxi Food Safety Inspection and Test Center, 35-210 South Changjiang Road, Wuxi, Jiangsu Province 214142, People's Republic of China
| | - Ting Yang
- Wuxi Food Safety Inspection and Test Center, 35-210 South Changjiang Road, Wuxi, Jiangsu Province 214142, People's Republic of China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
3
|
Podlech J. Natural resorcylic lactones derived from alternariol. Beilstein J Org Chem 2024; 20:2171-2207. [PMID: 39224229 PMCID: PMC11368053 DOI: 10.3762/bjoc.20.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
In this overview, naturally occurring resorcylic lactones biosynthetically derived from alternariol and almost exclusively produced by fungi, are discussed with view on their isolation, structure, biological activities, biosynthesis, and total syntheses. This class of compounds consists until now of 127 naturally occurring compounds, with very divers structural motifs. Although only a handful of these toxins (i.e., alternariol and its 9-O-methyl ether, altenusin, dehydroaltenusin, altertenuol, and altenuene) were frequently found and isolated as fungal contaminants in food and feed and have been investigated in significant detail, further metabolites, which were much more rarely found as natural products, similarly show interesting biological activities.
Collapse
Affiliation(s)
- Joachim Podlech
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
4
|
Zhang D, Liu B, Xiao T, Wang Y, Zhao Z, Xie J, Li W, Li R, Cui J. Development and validation of a simultaneous quantitative analytical method for two Alternaria toxins and their metabolites in plasma and urine using ultra-high-performance liquid chromatography-tandem mass spectrometry. J Sep Sci 2024; 47:e2400223. [PMID: 39031838 DOI: 10.1002/jssc.202400223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
Much more attention has been paid to the contamination of Alternaria toxins because of food contamination and the threat to human health. In this study, an ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous detection of the prototypical alternariol, alternariol monomethylether, and the metabolites 4-oxhydryl alternariol, and alternariol monomethylether 3-sulfate ammonium salt of Alternaria toxins. The positive samples were used as matrix samples to optimize the different experimental conditions. 0.01% formic acid solution and acetonitrile were used as the mobile phase, and analytes were scanned in negative electron spray ionization under multiple reaction monitoring, and quantitative determination by isotope internal standard method. Application of this method to samples of human plasma and urine showed the detection of the above analytes. The results showed that the recoveries were from 80.40% to 116.4%, intra-day accuracy was between 0.6% and 8.0%, and inter-day accuracy was between 1.1% and 12.1%. The limit of detection of the four analytes ranged from 0.02 to 0.6 µg/L in urine, and 0.02 to 0.5 µg/L in plasma, respectively. Thus, the developed method was rapid and accurate for the simultaneous detection of analytes and provided a theoretical basis for the risk assessment of Alternaria toxins for human exposure.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
| | - Bolin Liu
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Department of Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
| | - Tingting Xiao
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yan Wang
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Ziwei Zhao
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Ji'an Xie
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Weidong Li
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Department of Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
| | - Rui Li
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Jie Cui
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| |
Collapse
|
5
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
6
|
Tang H, Han W, Fei S, Li Y, Huang J, Dong M, Wang L, Wang W, Zhang Y. Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products. Toxins (Basel) 2023; 15:toxins15030201. [PMID: 36977092 PMCID: PMC10055482 DOI: 10.3390/toxins15030201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
In this work, we proposed an acid hydrolysis-based analytical method for the detection of Alternaria toxins (ATs) in solanaceous vegetables and their products with solid-phase extraction (SPE) and ultrahigh-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS). This study was the first to reveal that some compounds in the eggplant matrix bind to altenusin (ALS). Validation under optimal sample preparation conditions showed that the method met the EU criteria, exhibiting good linearity (R2 > 0.99), matrix effects (−66.6–−20.5%), satisfying recovery (72.0–107.4%), acceptable precision (1.5–15.5%), and satisfactory sensitivity (0.05–2 µg/kg for limit of detection, 2–5 µg/kg for limit of quantification). Out of 393 marketed samples, only 47 samples were detected, ranging from 0.54–806 μg/kg. Though the occurrence ratio (2.72%) in solanaceous vegetables could be negligible, the pollution status in solanaceous vegetable products was much more serious, and the incidences were 41.1%. In the 47 contaminated samples, the incidences were 4.26% for alternariol monomethyl ether (AME), 6.38% for alternariol (AOH) and altenuene (ALT), 42.6% for tentoxin (TEN), and 55.3% for tenuazonic acid (TeA).
Collapse
Affiliation(s)
- Hongxia Tang
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wei Han
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shaoxiang Fei
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yubo Li
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jiaqing Huang
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Maofeng Dong
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: ; Tel.: +86-21-62203612; Fax: +86-21-62203612
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Weimin Wang
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Tian Y, Abdallah MF, De Boevre M, Audenaert K, Wang C, De Saeger S, Wu A. Deciphering Alternaria metabolic responses in microbial confrontation via an integrated mass spectrometric targeted and non-targeted strategy. Food Chem 2023; 404:134694. [DOI: 10.1016/j.foodchem.2022.134694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
|
8
|
Scheibenzuber S, Dick F, Bretträger M, Gastl M, Asam S, Rychlik M. Development of analytical methods to study the effect of malting on levels of free and modified forms of Alternaria mycotoxins in barley. Mycotoxin Res 2022; 38:137-146. [PMID: 35396694 PMCID: PMC9038834 DOI: 10.1007/s12550-022-00455-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/04/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022]
Abstract
A liquid chromatography tandem mass spectrometry (LC–MS/MS) multi-mycotoxin method was developed for the analysis of the Alternaria toxins alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), altertoxin I (ATX I), altertoxin II (ATX II), alterperylenol (ALTP), and altenuene (ALT), as well as the modified toxins AOH-3-glucoside (AOH-3-G), AOH-9-glucoside (AOH-9-G), AME-3-glucoside (AME-3-G), AOH-3-sulfate (AOH-3-S), and AME-3-sulfate (AME-3-S) in barley and malt. The toxin tenuazonic acid (TeA) was analyzed separately as it could not be included into the multi-mycotoxin method. Quantitation was conducted by using a combination of stable isotope dilution analysis (SIDA) for AOH, AME, and TeA, and matrix-matched calibration for all other toxins. Limits of detection were between 0.05 µg/kg (AME) and 2.45 µg/kg (ALT), whereas limits of quantitation ranged from 0.16 µg/kg (AME) to 8.75 µg/kg (ALT). Recoveries between 96 and 107% were obtained for the analytes when SIDA was applied, while recoveries between 84 and 112% were found for analytes quantified by matrix-matched calibration. The method was applied for the analysis of 50 barley samples and their respective malts from the harvest years 2016–2020 for their mycotoxin content, showing the overall potential of toxin formation during the malting process. The toxins ALTP and ATX I were mainly found in the malt samples, but not in barley.
Collapse
Affiliation(s)
- Sophie Scheibenzuber
- Chair of Analytical Food Chemistry, Department of Life Science Engineering, School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Germany.
| | - Fabian Dick
- Chair of Analytical Food Chemistry, Department of Life Science Engineering, School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Germany
| | - Marina Bretträger
- Chair of Brewing and Beverage Technology, Department of Life Science Engineering, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Martina Gastl
- Chair of Brewing and Beverage Technology, Department of Life Science Engineering, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Stefan Asam
- Chair of Analytical Food Chemistry, Department of Life Science Engineering, School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Department of Life Science Engineering, School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Germany
| |
Collapse
|
9
|
Determination of Alternaria Toxins in Food by SPE and LC-IDMS: Development and In-House Validation of a Candidate Method for Standardisation. SEPARATIONS 2022. [DOI: 10.3390/separations9030070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alternaria toxins (ATs) are frequently found contaminants in foodstuffs (e.g., alternariol), often reaching high concentrations (e.g., tenuazonic acid). They can spoil a wide variety of food categories (e.g., cereals, vegetables, seeds and drinks) and storage at fridge temperatures does not prevent the growth of Alternaria fungi. Therefore, reliable and validated analytical methods are needed to protect human health and to ensure a transparent and fair trade. This paper describes new technical features that improved a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the analysis of ATs in tomato, wheat and sunflower seeds. This analytical method should be simple to implement in different laboratories across the EU and thus be an attractive candidate for standardisation. The major element for improvement was the use of isotopically labelled internal standards, only recently commercially available, thereby reducing the sample handling and improving the accuracy of the results. In addition, the sample extraction and the solid-phase extraction (SPE) enrichment/clean-up were fine-tuned, whereas a more suitable analytical column (XSelect HSS T3) with improved selectivity was also employed. Overall, this method shows adequate precision (repeatability < 5.7% RSD; intermediate precision < 7.0% RSD) and trueness (recoveries ranging from 74% to 112%). The limits of quantification in wheat (the most analytically demanding matrix) vary between 0.19 and 1.40 µg/kg. These figures were deemed satisfactory by the European Committee for Standardization (CEN) and have formed the basis for a subsequent interlaboratory validation study. The corresponding standard was published by CEN in 2021.
Collapse
|
10
|
Lattanzio VMT, Verdini E, Sdogati S, Bibi R, Ciasca B, Pecorelli I. Monitoring Alternaria toxins in Italian food to support upcoming regulation. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:42-51. [PMID: 34895088 DOI: 10.1080/19393210.2021.2000505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The collection of occurrence data on Alternaria toxins in food and feed across the European countries is required since 2012 by the European Commission, endorsing the relevant scientific opinion by the EFSA CONTAM Panel. Within this framework, occurrence data for Alternaria toxins (Alternariol, Alternariol monomethyl ether, Tenuazonic acid, Tentoxin, and Altenuene) in 97 samples of cereal foods, tomato products, and sunflower seeds have been provided as requested by the Italian national monitoring programme (years 2017-2020). To this purpose, an LC-MS/MS method was set up and validated, obtaining fit for purpose sensitivity, recoveries (70-120%), repeatability (≤20%) and within laboratory reproducibility (≤26%). Occurrence data showed that oilseeds were the most contaminated food group with levels of Tenuazonic acid up to 16752 µg/kg and Tentoxin up to 570 µg/kg, whereas for the other mycotoxin/commodities combinations, the percentage of left censored data (below the limit of quantification) ranged from 74 to 100%.
Collapse
Affiliation(s)
- Veronica M T Lattanzio
- National Research Council of Italy (CNR), Institute of Sciences of Food Production (ISPA), Bari, Italy
| | - Emanuela Verdini
- Chemistry Department, Pesticides and Mycotoxins Laboratory, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Stefano Sdogati
- Chemistry Department, Pesticides and Mycotoxins Laboratory, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Rita Bibi
- Chemistry Department, Pesticides and Mycotoxins Laboratory, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Biancamaria Ciasca
- National Research Council of Italy (CNR), Institute of Sciences of Food Production (ISPA), Bari, Italy
| | - Ivan Pecorelli
- Chemistry Department, Pesticides and Mycotoxins Laboratory, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| |
Collapse
|
11
|
XING J, ZHANG Z, ZHENG R, XU X, MAO L, CHENG H, SHEN J. [Determination of seven Alternaria toxins in infant milk powder by solid phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry]. Se Pu 2022; 40:156-164. [PMID: 35080162 PMCID: PMC9404179 DOI: 10.3724/sp.j.1123.2021.05023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 11/25/2022] Open
Abstract
Alternaria toxin is a general term for a class of toxic metabolites produced by Alternaria, which widely exists in soil, grain, vegetables, and fruits. This mycotoxin is extremely harmful to human health. It is well known that infant milk powder containing vegetable oil is easily contaminated by Alternaria alternata. Alternaria toxins have thus become an increasingly important focus in food. Rapid and accurate detection of Alternaria toxin residues in food is of great significance for food safety. This requires pretreatment to purify the target toxins and maximize the accuracy and precision of the analysis. In this study, a rapid method based on online solid phase extraction/purification and ultra-performance liquid chromatography-tandem mass spectrometry (online SPE UPLC MS/MS) was established to detect seven Alternaria toxins (alternariol monomethyl ether, altenuene, tenuazonic acid, alternariol, tentoxin, altenusin, and altertoxin Ⅰ) in infant milk powder. First, the mass spectrometry and chromatographic conditions were optimized. A BEH-C18 column (50 mm×2.1 mm, 1.7 μm) was selected, with 0.1% formic acid aqueous solution-acetonitrile as the mobile phase. Then, the extraction conditions (extraction agent ratio and extraction method) and the solid phase extraction process (extraction column, type and volume of the eluent, and pH of the sample loading solution) were optimized. One gram of milk powder (accurate to 0.01 g) was weighed into a 50 mL tip and bottom plug centrifuge tube. Acetonitrile-water (84∶16, v/v) was set as the extraction agent for the first two cycles, and acetonitrile-methanol-water (45∶10∶45, v/v/v) was set as the third extraction agent. Horizontal shaking for 30 min was the best extraction method. The sample was centrifuged at 9500 r/min for 10 min, and the supernatant extracted many times was mixed and blown with nitrogen at 40 ℃. The sample was redissolved in first-order water (pH 5.5), purified on an HLB column, and successively activated with 6 mL methanol and 6 mL first-order water (pH 5.5). The solution was then loaded onto the column, and the SPE was adjusted to ensure that the water sample flowed through the column at the rate of 1 mL/min so that the column did not dry up during the analysis process before the end of sample loading. The column was rinsed with 12 mL of first-order water. After leaching, the negative pressure filtration was continued for approximately 5 min, followed by elution with 10 mL methanol, and the eluted solution was directly tested after passing through a 0.22 μm filter membrane, without concentration. The analytes were determined by electrospray ionization (ESI) with alternating positive and negative ions. Under the optimal analysis conditions, the linear relationships of the seven Alternaria toxins were good in the mass concentration range of 0.5-200 μg/L, with coefficients of determination (R2)>0.9903. The limits of detection and limits of quantification were 0.15-0.64 μg/kg and 0.54-2.24 μg/kg, respectively. The recoveries of the seven Alternaria toxins were 79.1%-114.3%, and the relative standard deviations were less than 8.87% at different concentrations. The method was applied to the determination and analysis of 60 samples of infant milk powder, and the results showed that no toxin was found in stage one or stage two of the milk powder. Only one sample of the stage three of milk powder was detected, which was tentoxin, and the content was 4.97 μg/kg. The developed method is accurate, rapid, simple, sensitive, repeatable, and stable. It can be used for the practical determination of seven Alternaria toxins in infant milk powder.
Collapse
|
12
|
Li H, Zhang G, Wang W, Jiao LL, Chen CB, Huo JR, Wu W. Detection of catecholamine metabolites in urine based on ultra-high-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2021; 36:e5280. [PMID: 34788895 DOI: 10.1002/bmc.5280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022]
Abstract
The excretion of neurotransmitter metabolites in normal individuals is of great significance for health monitoring. A rapid quantitative method was developed with ultra-performance liquid chromatography-tandem mass spectrometry. The method was further applied to determine catecholamine metabolites vanilymandelic acid (VMA), methoxy hydroxyphenyl glycol (MHPG), dihydroxy-phenyl acetic acid (DOPAC), and homovanillic acid (HVA) in the urine. The urine was collected from six healthy volunteers (20-22 years old) for 10 consecutive days. It was precolumn derivatized with dansyl chloride. Subsequently, the sample was analyzed using triple quadrupole mass spectrometry with an electrospray ion in positive and multireaction monitoring modes. The method was sensitive and repeatable with the recoveries 92.7-104.30%, limits of detection (LODs) 0.01-0.05 μg/mL, and coefficients no less than 0.9938. The excretion content of four target compounds in random urine samples was 0.20 ± 0.086 μg/mL (MHPG), 1.27 ± 1.24 μg/mL (VMA), 3.29 ± 1.36 μg/mL (HVA), and 1.13 ± 1.07 μg/mL (DOPAC). In the urine, the content of VMA, the metabolite of norepinephrine and adrenaline, was more than MHPG, and the content of HVA, the metabolite of dopamine, was more than DOPAC. This paper detected the levels of catecholamine metabolites and summarized the characteristics of excretion using random urine samples, which could provide valuable information for clinical practice.
Collapse
Affiliation(s)
- Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Guolei Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Li-Li Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Chang-Bao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing-Rui Huo
- Cangzhou Nanobody Technology Innovation Center, Cangzhou Medical College, Cangzhou, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
13
|
Xing J, Zhang Z, Zheng R, Xu X, Mao L, Lu J, Shen J, Dai X, Yang Z. Simultaneous Detection of Seven Alternaria Toxins in Mixed Fruit Puree by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Modified QuEChERS. Toxins (Basel) 2021; 13:toxins13110808. [PMID: 34822592 PMCID: PMC8619939 DOI: 10.3390/toxins13110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
The presence of Alternaria toxins (ATs) in fruit purees may cause potential harm to the life and health of consumers. As time passes, ATs have become the key detection objects in this kind of food. Based on this, a novel and rapid method was established in this paper for the simultaneous detection of seven ATS (tenuazonic acid, alternariol, alternariol monomethyl ether, altenuene, tentoxin, altenusin, and altertoxin I) in mixed fruit purees using ultra-high performance liquid chromatography-tandem mass spectrometry. The sample was prepared using the modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method to complete the extraction and clean-up steps in one procedure. In this QuEChERS method, sample was extracted with water and acetonitrile (1.5% formic acid), then salted out with NaCl, separated on an ACQUITY UPLC BEH C18 with gradient elution by using acetonitrile and 0.1% formic acid aqueous as eluent, and detected by UPLC-MS/MS under positive (ESI+) and negative (ESI−) electrospray ionization and MRM models. Results showed that the seven ATs exhibited a good linearity in the concentration range of 0.5–200 ng/mL with R2 > 0.9925, and the limits of detection (LODs) of the instrument were in the range of 0.18–0.53 μg/kg. The average recoveries ranged from 79.5% to 106.7%, with the relative standard deviations (RSDs) no more than 9.78% at spiked levels of 5, 10, and 20 μg/kg for seven ATs. The established method was applied to the determination and analysis of the seven ATs in 80 mixed fruit puree samples. The results showed that ATs were detected in 31 of the 80 samples, and the content of ATs ranged from 1.32 μg/kg to 54.89 μg/kg. Moreover, the content of TeA was the highest in the detected samples (23.32–54.89 μg/kg), while the detection rate of Ten (24/31 samples) was higher than the other ATs. Furthermore, the other five ATs had similar and lower levels of contamination. The method established in this paper is accurate, rapid, simple, sensitive, repeatable, and stable, and can be used for the practical determination of seven ATs in fruit puree or other similar samples. Moreover, this method could provide theory foundation for the establishment of limit standard of ATs and provide a reference for the development of similar detection standard methods in the future.
Collapse
Affiliation(s)
- Jiali Xing
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China; (J.X.); (X.X.); (L.M.); (J.L.); (J.S.)
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China;
| | - Zigeng Zhang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Ruihang Zheng
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China; (J.X.); (X.X.); (L.M.); (J.L.); (J.S.)
- Correspondence: (R.Z.); (X.D.); Tel.: +86-574-89078647 (R.Z.); +86-574-89077478 (X.D.)
| | - Xiaorong Xu
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China; (J.X.); (X.X.); (L.M.); (J.L.); (J.S.)
| | - Lingyan Mao
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China; (J.X.); (X.X.); (L.M.); (J.L.); (J.S.)
| | - Jingping Lu
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China; (J.X.); (X.X.); (L.M.); (J.L.); (J.S.)
| | - Jian Shen
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China; (J.X.); (X.X.); (L.M.); (J.L.); (J.S.)
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
- Correspondence: (R.Z.); (X.D.); Tel.: +86-574-89078647 (R.Z.); +86-574-89077478 (X.D.)
| | - Zhenfeng Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China;
| |
Collapse
|
14
|
Aichinger G, Del Favero G, Warth B, Marko D. Alternaria toxins-Still emerging? Compr Rev Food Sci Food Saf 2021; 20:4390-4406. [PMID: 34323368 DOI: 10.1111/1541-4337.12803] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022]
Abstract
Alternaria molds are known to cause the contamination of food with their secondary metabolites, a chemically very heterogeneous group of compounds. Yet, after decades of research on the occurrence and the toxicity of Alternaria toxins in academia, no regulation has been implemented yet, thus leaving these potential food contaminants in the status of so-called "emerging mycotoxins". However, research on this topic has been far from static, leading to the European Food Safety Authority repeatedly calling for more data on the occurrence and toxicity of genotoxic metabolites such as alternariol (AOH) and its monomethyl ether (AME). To give an overview on recent developments in the field, this comprehensive review summarizes published data and addresses current challenges arising from the chemical complexity of Alternaria's metabolome, mixture effects and the emergence of novel biological targets like cell membranes or the interaction with different receptors. Besides toxicodynamics, we review recent research on toxicokinetics, including the first in vivo studies which incorporated the rarely investigated-but highly genotoxic-perylene quinones. Furthermore, a particular focus lies on the advances of liquid chromatography/tandem mass spectrometry (LC-MS/MS)-based analytical tools for determining a broader spectrum of Alternaria toxins including modified/masked forms and assessing exposure via human biomonitoring (HBM).
Collapse
Affiliation(s)
- Georg Aichinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Wien, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Wien, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Wien, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Wien, Austria
| |
Collapse
|
15
|
Chen A, Mao X, Sun Q, Wei Z, Li J, You Y, Zhao J, Jiang G, Wu Y, Wang L, Li Y. Alternaria Mycotoxins: An Overview of Toxicity, Metabolism, and Analysis in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7817-7830. [PMID: 34250809 DOI: 10.1021/acs.jafc.1c03007] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The genus Alternaria is widely distributed in the environment. Numerous species of the genus Alternaria can produce a variety of toxic secondary metabolites, called Alternaria mycotoxins. In this review, natural occurrence, toxicity, metabolism, and analytical methods are introduced. The contamination of these toxins in foodstuffs is ubiquitous, and most of these metabolites present genotoxic and cytotoxic effects. Moreover, Alternaria toxins are mainly hydroxylated to catechol metabolites and combined with sulfate and glucuronic acid in in vitro arrays. A more detailed summary of the metabolism of Alternaria toxins is presented in this work. To effectively detect and determine the mycotoxins in food, analytical methods with high sensitivity and good accuracy are also reviewed. This review will guide the formulation of maximum residue limit standards in the future, covering both toxicity and metabolic mechanism of Alternaria toxins.
Collapse
Affiliation(s)
- Anqi Chen
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Xin Mao
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Qinghui Sun
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Zixuan Wei
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Juan Li
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yanli You
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jiqiang Zhao
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, People's Republic of China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| |
Collapse
|
16
|
Awuchi CG, Ondari EN, Ogbonna CU, Upadhyay AK, Baran K, Okpala COR, Korzeniowska M, Guiné RPF. Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification Strategies-A Revisit. Foods 2021; 10:1279. [PMID: 34205122 PMCID: PMC8228748 DOI: 10.3390/foods10061279] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 01/05/2023] Open
Abstract
Mycotoxins are produced by fungi and are known to be toxic to humans and animals. Common mycotoxins include aflatoxins, ochratoxins, zearalenone, patulin, sterigmatocystin, citrinin, ergot alkaloids, deoxynivalenol, fumonisins, trichothecenes, Alternaria toxins, tremorgenic mycotoxins, fusarins, 3-nitropropionic acid, cyclochlorotine, sporidesmin, etc. These mycotoxins can pose several health risks to both animals and humans, including death. As several mycotoxins simultaneously occur in nature, especially in foods and feeds, the detoxification and/or total removal of mycotoxins remains challenging. Moreover, given that the volume of scientific literature regarding mycotoxins is steadily on the rise, there is need for continuous synthesis of the body of knowledge. To supplement existing information, knowledge of mycotoxins affecting animals, foods, humans, and plants, with more focus on types, toxicity, and prevention measures, including strategies employed in detoxification and removal, were revisited in this work. Our synthesis revealed that mycotoxin decontamination, control, and detoxification strategies cut across pre-and post-harvest preventive measures. In particular, pre-harvest measures can include good agricultural practices, fertilization/irrigation, crop rotation, using resistant varieties of crops, avoiding insect damage, early harvesting, maintaining adequate humidity, and removing debris from the preceding harvests. On the other hand, post-harvest measures can include processing, chemical, biological, and physical measures. Additionally, chemical-based methods and other emerging strategies for mycotoxin detoxification can involve the usage of chitosan, ozone, nanoparticles, and plant extracts.
Collapse
Affiliation(s)
- Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda;
- School of Natural and Applied Sciences, Kampala International University, Kampala P.O. Box 20000, Uganda
| | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda;
| | - Chukwuka U. Ogbonna
- Department of Biochemistry, Federal University of Agriculture Abeokuta, Abeokuta P.M.B. 2240, Ogun State, Nigeria;
| | - Anjani K. Upadhyay
- School of Biotechnology, KIIT University, Bhubaneswar 751019, Odisha, India;
| | - Katarzyna Baran
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Małgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
17
|
Scheibenzuber S, Dick F, Asam S, Rychlik M. Analysis of 13 Alternaria mycotoxins including modified forms in beer. Mycotoxin Res 2021; 37:149-159. [PMID: 33666860 PMCID: PMC8163686 DOI: 10.1007/s12550-021-00424-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/13/2023]
Abstract
A multi-mycotoxin LC-MS/MS method was developed to quantify 13 free and modified Alternaria toxins in different beer types by applying a combination of stable-isotope dilution assays (SIDAs) and matrix-matched calibration. With limits of detection (LODs) between 0.03 µg/L (alternariol monomethyl ether, AME) and 5.48 µg/L (altenuene, ALT), limits of quantitation (LOQs) between 0.09 µg/L (AME) and 16.24 µg/L (ALT), and recoveries between 72 and 113%, we obtained a sensitive and reliable method, which also covers the emerging toxins alternariol-3-glucoside (AOH-3-G), alternariol-9-glucoside (AOH-9-G), alternariol monomethyl ether-3-glucoside (AME-3-G) and alternariol-3-sulfate (AOH-3-S) and alternariol monomethylether-3-sulfate (AME-3-S). Furthermore, 50 different beer samples were analyzed, showing no contamination with Alternaria toxins apart from tenuazonic acid (TeA) in concentrations between 0.69 µg/L and 16.5 µg/L. According to this study, the exposure towards TeA through beer consumption can be considered as relatively low, as the threshold of toxicological concern (TTC) value of 1500 ng/kg body weight per day might not be reached when consuming reasonable amounts of beer.
Collapse
Affiliation(s)
- Sophie Scheibenzuber
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Fabian Dick
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Stefan Asam
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany.
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
18
|
Habschied K, Krstanović V, Zdunić Z, Babić J, Mastanjević K, Šarić GK. Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products. J Fungi (Basel) 2021; 7:348. [PMID: 33946920 PMCID: PMC8145935 DOI: 10.3390/jof7050348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
Contamination of crops with phytopathogenic genera such as Fusarium, Aspergillus, Alternaria, and Penicillium usually results in mycotoxins in the stored crops or the final products (bread, beer, etc.). To reduce the damage and suppress the fungal growth, it is common to add antifungal substances during growth in the field or storage. Many of these antifungal substances are also harmful to human health and the reduction of their concentration would be of immense importance to food safety. Many eminent researchers are seeking a way to reduce the use of synthetic antifungal compounds and to implement more eco-friendly and healthier bioweapons against fungal proliferation and mycotoxin synthesis. This paper aims to address the recent advances in the effectiveness of biological antifungal compounds application against the aforementioned fungal genera and their species to enhance the protection of ecological and environmental systems involved in crop growing (water, soil, air) and to reduce fungicide contamination of food derived from these commodities.
Collapse
Affiliation(s)
- Kristina Habschied
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Vinko Krstanović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Zvonimir Zdunić
- Agricultural Institute Osijek, Južno predgrađe 17, 31000 Osijek, Croatia;
| | - Jurislav Babić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Krešimir Mastanjević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Gabriella Kanižai Šarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia;
| |
Collapse
|
19
|
Ma S, Pan LG, You T, Wang K. g-C 3N 4/Fe 3O 4 Nanocomposites as Adsorbents Analyzed by UPLC-MS/MS for Highly Sensitive Simultaneous Determination of 27 Mycotoxins in Maize: Aiming at Increasing Purification Efficiency and Reducing Time. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4874-4882. [PMID: 33861062 DOI: 10.1021/acs.jafc.1c00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
According to known studies, numerous mycotoxins have been found simultaneously in foods and have a certain expansion toxicity, so the simultaneous detection of multiple mycotoxins is absolutely critical. In this article, multifunctional magnetic g-C3N4/Fe3O4 nanocomposites have been fabricated to employ as modified QuEChERS adsorbents. In addition, they were also used in conjunction with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), an accurate quantitative approach, to analyze 27 mycotoxins in maize. The improved method not only has a powerful adsorption effect on the complex matrix by g-C3N4/Fe3O4 but also enables magnetic separation from the sample solution. Experiments proved that this method can exhibit good linearity under the appropriate and optimal external environment (r2 ≥ 0.9954), high sensitivity (the threshold of detection limit is 0.0004-0.6226 μg kg-1, and the threshold of quantification limit is 0.0014-2.0753 μg kg-1), adequate recoveries (77.81-115.21%), and excellent repeatability (with a threshold of intraday precision of 1.5-10.8% and interday precision in the range of 2.9-12.5%). In practice this method has been used to evaluate a variety of mycotoxins in maize specimens, and certain actual outcomes have been achieved.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shu guang hua yuan, Haidian District, Beijing, 100097, P.R. China
| | - Li Gang Pan
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shu guang hua yuan, Haidian District, Beijing, 100097, P.R. China
| | - Tianyan You
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
20
|
Tölgyesi Á, Farkas T, Bálint M, McDonald TJ, Sharma VK. A Dilute and Shoot Strategy for Determining Alternaria Toxins in Tomato-Based Samples and in Different Flours Using LC-IDMS Separation. Molecules 2021; 26:1017. [PMID: 33671906 PMCID: PMC7918963 DOI: 10.3390/molecules26041017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/21/2022] Open
Abstract
Alternaria toxins are emerging mycotoxins whose regulation and standardization are in progress by the European Commission and the European Committee for Standardization. This paper describes a dilute and shoot approach to determine five Alternaria toxins in selected food samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The strategy involves sample extraction with acidified aqueous methanol, followed by a solvent change accomplished via sample evaporation and reconstitution. The quantification is based on isotope dilution, applying all corresponding isotopically labeled internal standards to compensate possible matrix effects of the analysis. The main advantages of the present method over other existing methods includes simple and effective sample preparation, as well as detection with high sensitivity. The five-fold sample dilution can decrease matrix effects, which were evaluated with both external and internal standard methods. The results demonstrated a limit of quantification lower than 1.0 µg/kg for all five analytes for the first time. The newly presented method showed acceptable accuracy (52.7-111%) when analyzing naturally contaminated and spiked standard samples at the described levels. The method was validated for tomato-based and flour samples (wheat, rye, and maize). The absolute recovery ranged from 66.7% to 91.6% (RSD < 10%). The developed method could be an alternative approach for those laboratories that exclude sample cleanup and pre-concentration of state-of-the-art instruments with enhanced sensitivity.
Collapse
Affiliation(s)
- Ádám Tölgyesi
- Bálint Analitika Ltd., Fehérvári út 144, 1116 Budapest, Hungary; (T.F.); (M.B.)
| | - Tamás Farkas
- Bálint Analitika Ltd., Fehérvári út 144, 1116 Budapest, Hungary; (T.F.); (M.B.)
| | - Mária Bálint
- Bálint Analitika Ltd., Fehérvári út 144, 1116 Budapest, Hungary; (T.F.); (M.B.)
| | - Thomas J. McDonald
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843, USA;
| | - Virender K. Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843, USA;
| |
Collapse
|
21
|
Pavicich MA, De Boevre M, Vidal A, Iturmendi F, Mikula H, Warth B, Marko D, De Saeger S, Patriarca A. Fate of free and modified Alternaria mycotoxins during the production of apple concentrates. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Xu Z, Li L, Xu Y, Wang S, Zhang X, Tang T, Yu J, Zhao H, Wu S, Zhang C, Zhao X. Pesticide multi-residues in Dendrobium officinale Kimura et Migo: Method validation, residue levels and dietary exposure risk assessment. Food Chem 2020; 343:128490. [PMID: 33158673 DOI: 10.1016/j.foodchem.2020.128490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/11/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
Dendrobium officinale Kimura et Migo (D. officinale) is a dual-use plant with both botanical medicine and food applications, drawing increasing attentions. Pesticides are inevitably applied on D. officinale in commercial artificial-sheltered cultivation, yet little is known about pesticide residue levels in D. officinale. A modified high through-put QuEChERS method coupled with HPLC-MS/MS was developed and validated to detect 76 pesticides in D. officinale. Graphitized multi-wall carbon nanotubes (g-MWCNTs) was selected as the clean-up sorbent, showing relative weak affinity to triazole fungicide having planar structure in their molecular and low matrix effects of pesticides in D. officinale samples compared to MWCNTs and pesticarb. The validated method was applied to analyze pesticide residues in 86 real D. officinale samples collected from three main producing provinces. 43 different pesticides were detected with highest residue of 6.11 mg/kg for dimethomorph. Given possible health risks related to pesticide residues, accordingly, risk assessment of human exposure to pesticides via intake of D. officinale was thus performed, indicating that the pesticide residue in fresh or dry D. officinale would not cause potential risk to human health either in the long-term or short-term. This work improved our understanding of potential exposure risk of pesticide multi-residues in D. officinale.
Collapse
Affiliation(s)
- Zhenlan Xu
- Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lingxiangyu Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yi Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shanshan Wang
- Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; The Core Faceility Center, CAS Center for Excellence in Molecular Plant Sciences, Shanghai 200000, China
| | - Xiaoxia Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tao Tang
- Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianzhong Yu
- Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huiyu Zhao
- Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shenggan Wu
- Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunrong Zhang
- Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueping Zhao
- Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
23
|
Zhang X, Li G, Wu D, Liu J, Wu Y. Recent advances on emerging nanomaterials for controlling the mycotoxin contamination: From detection to elimination. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.42] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an China
| | - Guoliang Li
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences Queen's University Belfast Belfast United Kingdom
| | - Jianghua Liu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science China National Center for Food Safety Risk Assessment Beijing China
| |
Collapse
|
24
|
Xing L, Zou L, Luo R, Wang Y. Determination of five Alternaria toxins in wolfberry using modified QuEChERS and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem 2020; 311:125975. [DOI: 10.1016/j.foodchem.2019.125975] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
|
25
|
Scheibenzuber S, Hoffmann T, Effenberger I, Schwab W, Asam S, Rychlik M. Enzymatic Synthesis of Modified Alternaria Mycotoxins Using a Whole-Cell Biotransformation System. Toxins (Basel) 2020; 12:toxins12040264. [PMID: 32326012 PMCID: PMC7232528 DOI: 10.3390/toxins12040264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Reference standards for Alternaria mycotoxins are rarely available, especially the modified mycotoxins alternariol-3-glucoside (AOH-3-G), alternariol-9-glucoside (AOH-9-G), and alternariol monomethylether-3-glucoside (AME-3-G). To obtain these three glucosides as analytical standards for method development and method validation, alternariol and alternariol monomethylether were enzymatically glycosylated in a whole-cell biotransformation system using a glycosyltransferase from strawberry (Fragaria x ananassa), namely UGT71A44, expressed in Escherichia coli (E. coli). The formed glucosides were isolated, purified, and structurally characterized. The exact amount of the isolated compounds was determined using high-performance liquid chromatography with UV-detection (HPLC-UV) and quantitative nuclear resonance spectroscopy (qNMR). This method has proved to be highly effective with biotransformation rates of 58% for AOH-3-G, 5% for AOH-9-G, and 24% for AME-3-G.
Collapse
Affiliation(s)
- Sophie Scheibenzuber
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Germany; (S.S.); (S.A.)
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany; (T.H.); (W.S.)
| | | | - Wilfried Schwab
- Biotechnology of Natural Products, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany; (T.H.); (W.S.)
| | - Stefan Asam
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Germany; (S.S.); (S.A.)
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Germany; (S.S.); (S.A.)
- Correspondence:
| |
Collapse
|
26
|
Determination of Alternaria Toxins in Sunflower Oil by Liquid Chromatography Isotope Dilution Tandem Mass Spectrometry. Molecules 2020; 25:molecules25071685. [PMID: 32272657 PMCID: PMC7180471 DOI: 10.3390/molecules25071685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
Alternaria toxins have gained attention as a potential health risk and can be classified as emerging mycotoxins. As a result, they are candidates to be regulated by the European Commission. This paper describes a liquid chromatography tandem mass spectrometric (LC-MS/MS) method for analyzing five Alternaria toxins in sunflower oil, which is a rather different type of sample to those matrices investigated in earlier published papers. An optimal sample preparation condition was achieved when samples were dissolved in n-hexane and extracted with methanol/water mixture, followed by sample pre-concentration with solvent evaporation. This study is the first focusing only on this lipophilic matrix and in using all corresponding isotopically labeled internal standards (ISTD) to compensate the matrix effect that strongly influences the LC-MS/MS analysis of toxins. Target compounds were separated on Zorbax Extend C-18 column enabling the analysis at alkaline pH of 8.8 that was necessary to obtain appropriate peak shape of tenuazonic acid and to separate the analytes at baseline. The method was validated according to the EU 2002/657/EC Decision and all the analytical performance characteristics met the requirements. The recovery was between 74% and 122% in fortified sunflower oil samples and the precision varied from 9% to 22%. The method was successfully demonstrated for sunflower seed quality check (QC) samples. Finally, 16 different sunflower oil samples were measured; and tenuazonic acid and tentoxin toxins were detected at levels close to LOQ concentrations.
Collapse
|
27
|
Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020; 9:E137. [PMID: 32012820 PMCID: PMC7074356 DOI: 10.3390/foods9020137] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are toxic substances that can infect many foods with carcinogenic, genotoxic, teratogenic, nephrotoxic, and hepatotoxic effects. Mycotoxin contamination of foodstuffs causes diseases worldwide. The major classes of mycotoxins that are of the greatest agroeconomic importance are aflatoxins, ochratoxins, fumonisins, trichothecenes, emerging Fusarium mycotoxins, enniatins, ergot alkaloids, Alternaria toxins, and patulin. Thus, in order to mitigate mycotoxin contamination of foods, many control approaches are used. Prevention, detoxification, and decontamination of mycotoxins can contribute in this purpose in the pre-harvest and post-harvest stages. Therefore, the purpose of the review is to elaborate on the recent advances regarding the occurrence of main mycotoxins in many types of important agricultural products, as well as the methods of inactivation and detoxification of foods from mycotoxins in order to reduce or fully eliminate them.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.S.); (T.V.)
| | | | | |
Collapse
|
28
|
Gotthardt M, Kanawati B, Schmidt F, Asam S, Hammerl R, Frank O, Hofmann T, Schmitt‐Kopplin P, Rychlik M. Comprehensive Analysis of the
Alternaria
Mycobolome Using Mass Spectrometry Based Metabolomics. Mol Nutr Food Res 2020; 64:e1900558. [DOI: 10.1002/mnfr.201900558] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Marina Gotthardt
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
| | - Basem Kanawati
- HelmholtzZentrum München Ingolstädter Landstraβe 1 85764 Neuherberg Germany
| | - Frank Schmidt
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
| | - Stefan Asam
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
| | - Richard Hammerl
- Chair of Food Chemistry and Molecular SensoryTechnical University of Munich Lise‐Meitner‐Straβe 34 85354 Freising Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular SensoryTechnical University of Munich Lise‐Meitner‐Straβe 34 85354 Freising Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular SensoryTechnical University of Munich Lise‐Meitner‐Straβe 34 85354 Freising Germany
| | - Philippe Schmitt‐Kopplin
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
- HelmholtzZentrum München Ingolstädter Landstraβe 1 85764 Neuherberg Germany
| | - Michael Rychlik
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
| |
Collapse
|
29
|
Janić Hajnal E, Vukić M, Pezo L, Orčić D, Puač N, Škoro N, Milidrag A, Šoronja Simović D. Effect of Atmospheric Cold Plasma Treatments on Reduction of Alternaria Toxins Content in Wheat Flour. Toxins (Basel) 2019; 11:E704. [PMID: 31816906 PMCID: PMC6950655 DOI: 10.3390/toxins11120704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 02/05/2023] Open
Abstract
Beside Fusarium toxins, Alternaria toxins are among the most commonly found mycotoxins in wheat and wheat products. Currently, investigations of possibilities of reduction of Alternaria toxins in the wheat-processing chain are limited. Therefore, the aim of this study was to explore the potency of cold atmospheric plasma treatments, as a new non-thermal approach, for reduction of alternariol (AOH), alternariol monomethyl ether (AME) and tentoxin (TEN) content in spiked white wheat flour samples. Samples were treated with plasma generated in the air during 30 s to 180 s, with an increment step of 30 s, and at four varying distances from the cold plasma source (6 mm, 21 mm, 36 mm and 51 mm). The reduction of the Alternaria toxins content in samples after treatment was monitored by high performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The maximum reduction of the examined Alternaria toxins was obtained by treatment performed at 6 mm distance from the plasma source, lasting 180 s, resulting in reductions of 60.6%, 73.8% and 54.5% for AOH, AME and TEN, respectively. According to the obtained experimental results, five empirical models in the form of the second-order polynomials were developed for the prediction of AOH, AME and TEN reduction, as well as the temperature and the moisture content of the wheat flour, that gave a good fit to experimental data and were able to predict the response variables successfully. The developed second-order polynomial models showed high coefficients of determination for prediction of experimental results (between 0.918 and 0.961).
Collapse
Affiliation(s)
- Elizabet Janić Hajnal
- Research Center for Technology of Plant Based Food Products, Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Milan Vukić
- Department of Carbohydrate Food Engineering, Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (M.V.); (D.Š.S.)
- Department of Food Technology, Faculty of Technology Zvornik, University of East Sarajevo, 75400 Zvornik, Bosnia and Herzegovina
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dejan Orčić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nevena Puač
- Laboratory for Gaseous Electronics, Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (N.P.); (N.Š.)
| | - Nikola Škoro
- Laboratory for Gaseous Electronics, Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (N.P.); (N.Š.)
| | - Ardea Milidrag
- Chair of general physiology and biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dragana Šoronja Simović
- Department of Carbohydrate Food Engineering, Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (M.V.); (D.Š.S.)
| |
Collapse
|
30
|
Golubović J, Heath E, Heath D. Validation challenges in liquid chromatography-tandem mass spectrometry methods for the analysis of naturally occurring compounds in foodstuffs. Food Chem 2019; 294:46-55. [DOI: 10.1016/j.foodchem.2019.04.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/01/2023]
|
31
|
Zhang H, Gonzales GB, Beloglazova NV, De Saeger S, Shen J, Zhang S, Yang S, Wang Z. Development of a validated direct injection-liquid chromatographic tandem mass spectrometric method under negative electrospray ionization for quantitation of nine microcystins and nodularin-R in lake water. J Chromatogr A 2019; 1609:460432. [PMID: 31431355 DOI: 10.1016/j.chroma.2019.460432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/16/2022]
Abstract
Microcystins (MCs) are cyclic heptapeptide toxins produced by various cyanobacterial genera that are toxic to both animals and humans. In this study, a novel strategy was proposed for the quantitation of nine MCs and Nodularin-R (NOD) in lake water using UHPLC-MS/MS under negative ionization mode, in which only centrifugation was employed during sample preparation. As a result, limits of quantification (LOQ) ranging from 0.05 to 0.1 μg/L for all studied compounds were obtained in water samples, which were lower than the results obtained using positive ionization mode. Additionally, validation was performed by spiking three different levels of MCs at 0.05 or 0.1, 0.5, 1.0 μg/L (n = 6). Recoveries ranged from 88.6% to 101.8%, and intraday and interday variability were lower than 12% and 14%, respectively, for all targeted compounds. Furthermore, the proposed method was applied to investigate microcystins contamination in fifty lake water samples collected in different regions in China. As a result, MC-LR, MC-RR, MC-YR, MC-WR, MC-LW, MC-LA, MC-LY, and MC-HilR were detected in lake water samples at trace level ranging from 0.06 to 0.37 μg/L. The obtained results indicated that it was necessary to monitor the presence of MCs in lake water, especially during regular cyanobacterial blooms during warmer months.
Collapse
Affiliation(s)
- Huiyan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193 Beijing, People's Republic of China; Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing 100093, People's Republic of China; Centre for Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Gerard Bryan Gonzales
- Centre for Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Department of Gastroenterology, Faculty of Medicine and Health Sciences, Ghent University, C Heymanslaan 10, 9000 Ghent, Belgium
| | - Natalia V Beloglazova
- Centre for Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Sarah De Saeger
- Centre for Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Suxia Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193 Beijing, People's Republic of China.
| | - Shupeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing 100093, People's Republic of China.
| | - Zhanhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193 Beijing, People's Republic of China.
| |
Collapse
|
32
|
Puntscher H, Cobankovic I, Marko D, Warth B. Quantitation of free and modified Alternaria mycotoxins in European food products by LC-MS/MS. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Lauwers M, De Baere S, Letor B, Rychlik M, Croubels S, Devreese M. Multi LC-MS/MS and LC-HRMS Methods for Determination of 24 Mycotoxins including Major Phase I and II Biomarker Metabolites in Biological Matrices from Pigs and Broiler Chickens. Toxins (Basel) 2019; 11:toxins11030171. [PMID: 30893895 PMCID: PMC6468661 DOI: 10.3390/toxins11030171] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
A reliable and practical multi-method was developed for the quantification of mycotoxins in plasma, urine, and feces of pigs, and plasma and excreta of broiler chickens using liquid chromatography–tandem mass spectrometry. The targeted mycotoxins belong to the regulated groups, i.e., aflatoxins, ochratoxin A and Fusarium mycotoxins, and to two groups of emerging mycotoxins, i.e., Alternaria mycotoxins and enniatins. In addition, the developed method was transferred to a LC-high resolution mass spectrometry instrument to qualitatively determine phase I and II metabolites, for which analytical standards are not always commercially available. Sample preparation of plasma was simple and generic and was accomplished by precipitation of proteins alone (pig) or in combination with removal of phospholipids (chicken). A more intensive sample clean-up of the other matrices was needed and consisted of a pH-dependent liquid–liquid extraction (LLE) using ethyl acetate (pig urine), methanol/ethyl acetate/formic acid (75/24/1, v/v/v) (pig feces) or acetonitrile (chicken excreta). For the extraction of pig feces, additionally a combination of LLE using acetone and filtration of the supernatant on a HybridSPE-phospholipid cartridge was applied. The LC-MS/MS method was in-house validated according to guidelines defined by the European and international community. Finally, the multi-methods were successfully applied in a specific toxicokinetic study and a screening study to monitor the exposure of individual animals.
Collapse
Affiliation(s)
- Marianne Lauwers
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
- Innovad, Postbaan 69, 2910 Essen, Belgium.
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - Ben Letor
- Innovad, Postbaan 69, 2910 Essen, Belgium.
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| |
Collapse
|
34
|
Sun D, Qiu N, Zhou S, Lyu B, Zhang S, Li J, Zhao Y, Wu Y. Development of Sensitive and Reliable UPLC-MS/MS Methods for Food Analysis of Emerging Mycotoxins in China Total Diet Study. Toxins (Basel) 2019; 11:E166. [PMID: 30884911 PMCID: PMC6468665 DOI: 10.3390/toxins11030166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 11/16/2022] Open
Abstract
With the climatic changes that have taken place during the last decade, the spectrum of fungal pathogens as well as mycotoxins has considerably changed. As a result, some emerging mycotoxins have been shown to occur frequently in agricultural products. In this study, a sensitive and reliable method for the determination of 10 emerging mycotoxins (beauvericin, enniatin A, enniatin A1, enniatin B, enniatin B1, alternariol, alternariol monomethyl ether, altenuene, tentoxin, and tenuazonic acid) in 12 different food matrices (cereals, legumes, potatoes, meats, eggs, aquatic foods, dairy products, vegetables, fruits, sugars, beverages, and alcohol beverages) was developed and validated. After a simple extraction, a one-step sample clean-up by a HLB solid phase extraction (SPE) column was sufficient for all 12 food matrices prior to analysis with ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Isotope internal standards 13C-TeA, TEN-d₃, and 13C-AFB2 were used for accurate quantification. Validation in terms of linearity, selectivity, sensitivity, accuracy, and precision (intra and inter-day variability) were evaluated for the 10 mycotoxins in all selected matrices. The sensitivity varied from 0.0004 to 0.3 ng mL-1 (limits of detection) and from 0.002 to 0.9 ng mL-1 (limits of quantitation). The recoveries of 10 mycotoxins in fortified samples were from 60.6% to 164% including very low spiking levels in all 12 food matrices, with relative standard deviations (RSDs) less than 12%. The proposed methodology was applied to the analysis of 60 samples collected from five provinces within the 6th China Total Diet Study with the results discussed in detail. The advantages of sensitivity, accuracy, and robustness made it a powerful tool for emerging mycotoxin monitoring and dietary exposure assessment.
Collapse
Affiliation(s)
- Danlei Sun
- China National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, National Health Commission, Beijing 100021, China.
| | - Nannan Qiu
- China National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, National Health Commission, Beijing 100021, China.
| | - Shuang Zhou
- China National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, National Health Commission, Beijing 100021, China.
| | - Bing Lyu
- China National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, National Health Commission, Beijing 100021, China.
| | - Shuo Zhang
- China National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, National Health Commission, Beijing 100021, China.
| | - Jingguang Li
- China National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, National Health Commission, Beijing 100021, China.
| | - Yunfeng Zhao
- China National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, National Health Commission, Beijing 100021, China.
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, National Health Commission, Beijing 100021, China.
| |
Collapse
|
35
|
Gotthardt M, Asam S, Gunkel K, Moghaddam AF, Baumann E, Kietz R, Rychlik M. Quantitation of Six Alternaria Toxins in Infant Foods Applying Stable Isotope Labeled Standards. Front Microbiol 2019; 10:109. [PMID: 30787913 PMCID: PMC6373459 DOI: 10.3389/fmicb.2019.00109] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/18/2019] [Indexed: 01/03/2023] Open
Abstract
Alternaria fungi are widely distributed saprophytes and plant pathogens. As pathogens, Alternaria fungi infect crops and vegetables and cause losses in the fields and during postharvest storage. While farmers suffer from declining yields, consumers are endangered by the formation of secondary metabolites, because some of these exhibit a pronounced toxicological potential. The evaluation of the toxicological capabilities is still ongoing and will contribute to a valid risk assessment. Additionally, data on the incidence and the quantity of Alternaria mycotoxins found in food products is necessary for dietary exposure evaluations. A sensitive LC-MS/MS method for the determination of the Alternaria mycotoxins alternariol (AOH), alternariol monomethylether (AME), tentoxin (TEN), altertoxin I (ATX I), alterperylenol (ALTP), and tenuazonic acid (TA) was developed. AOH, AME, and TA were quantified using stable-isotopically labeled standards. TEN, ATX I, and ALTP were determined using matrix matched calibration. The developed method was validated by using starch and fresh tomato matrix and resulted in limits of detection ranging from 0.05 to 1.25 μg/kg for starch (as a model for cereals) and from 0.01 to 1.36 μg/kg for fresh tomatoes. Limits of quantification were determined between 0.16 and 4.13 μg/kg for starch and between 0.02 and 5.56 μg/kg for tomatoes. Recoveries varied between 83 and 108% for starch and between 95 and 111% for tomatoes. Intra-day precisions were below 4% and inter-day precisions varied from 3 to 8% in both matrices. Various cereal based infant foods, jars containing vegetables and fruits as well as tomato products for infants were analyzed for Alternaria mycotoxin contamination (n = 25). TA was the most frequently determined mycotoxin and was detected in much higher contents than the other toxins. AME and TEN were quantified in many samples, but in low concentrations, whereas AOH, ATX I, and ALTP were determined rarely, among which AOH had higher concentration. Some infant food products were highly contaminated with Alternaria mycotoxins and the consumption of these individual products might pose a risk to the health of infants. However, when the mean or median is considered, no toxicological risk was obvious.
Collapse
Affiliation(s)
- Marina Gotthardt
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Stefan Asam
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Klara Gunkel
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Atefeh Fooladi Moghaddam
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany.,National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elisabeth Baumann
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Roland Kietz
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
36
|
Patriarca A, da Cruz Cabral L, Pavicich MA, Nielsen KF, Andersen B. Secondary metabolite profiles of small-spored Alternaria support the new phylogenetic organization of the genus. Int J Food Microbiol 2019; 291:135-143. [DOI: 10.1016/j.ijfoodmicro.2018.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/28/2018] [Accepted: 11/18/2018] [Indexed: 01/25/2023]
|
37
|
Wang SS, Cui H, Ye J, Wu Y, Wang SX, Yin WB. Identification and Determination of Rubrofusarin, Rubrofusarin Isomer, and Their Quinone Forms in Grains Using High-Resolution Mass Spectrometry. ACS OMEGA 2018; 3:15924-15932. [PMID: 30556018 PMCID: PMC6288782 DOI: 10.1021/acsomega.8b02079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/07/2018] [Indexed: 05/04/2023]
Abstract
Fungi of the genus Fusarium can produce secondary metabolites such as naphthopyrones and naphthoquinones that are toxic and expected to threaten the food and feed safety. In this study, the occurrence of rubrofusarin, rubrofusarin isomer, and their quinone forms in grains was identified and confirmed using ultrahigh-performance liquid chromatography coupled with hybrid quadrupole orbital ion trap mass spectrometry (Q-Orbitrap MS). The quantitation of these compounds in grain samples was also investigated using Q-Orbitrap MS. The results showed the concentrations of rubrofusarin ranged from 3.278 to 33.82 μg/kg, from 0.815 to 61.86 μg/kg, and from 7.362 to 47.24 μg/kg for the maize, rice, and wheat samples, respectively. By comparison, the abundances of their quinone forms were relatively lower, and the concentration of quinone form of rubrofusarin isomer was relatively higher than that of quinone form of rubrofusarin. These compounds were also confirmed to coexist with other known Fusarium mycotoxins. The data-dependent tandem mass spectra obtained from the Q-Orbitrap MS were validated to provide a wealth of valuable information that allowed for advanced data interpretation for solid confirmation of these compounds in grains. To the best of our knowledge, this is the first study that concerns the occurrence and quantitation of rubrofusarin, rubrofusarin isomer, and their quinone forms in grains.
Collapse
Affiliation(s)
- Song-shan Wang
- Academy
of State Administration of Grain, 11 Baiwanzhuang Street, Xicheng
District, Beijing 100037, People’s Republic of China
| | - Hua Cui
- Academy
of State Administration of Grain, 11 Baiwanzhuang Street, Xicheng
District, Beijing 100037, People’s Republic of China
| | - Jin Ye
- Academy
of State Administration of Grain, 11 Baiwanzhuang Street, Xicheng
District, Beijing 100037, People’s Republic of China
| | - Yu Wu
- Academy
of State Administration of Grain, 11 Baiwanzhuang Street, Xicheng
District, Beijing 100037, People’s Republic of China
| | - Song-xue Wang
- Academy
of State Administration of Grain, 11 Baiwanzhuang Street, Xicheng
District, Beijing 100037, People’s Republic of China
- E-mail: . Phone/Fax: +86-10-58523708
| | - Wen-bing Yin
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
38
|
Abstract
This review is mainly centered on beverages obtained from tropical crops, including tea, nut milk, coffee, cocoa, and those prepared from fruits. After considering the epidemiological data found on the matrices above, the focus was given to recent methodological approaches to assess the most relevant mycotoxins. Aspects such as singularities among the mycotoxin and the beverage in which their were found, and the economic effects and repercussions that the mycotoxin-tainted ingredients have on the beverage industry were pointed out. Finally, the burden of their consumption through beverages, including risk and health effects on humans, was addressed as well.
Collapse
|
39
|
Qiao X, Yin J, Yang Y, Zhang J, Shao B, Li H, Chen H. Determination of Alternaria Mycotoxins in Fresh Sweet Cherries and Cherry-Based Products: Method Validation and Occurrence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11846-11853. [PMID: 30350977 DOI: 10.1021/acs.jafc.8b05065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sweet cherry is susceptible to disease caused by the Alternaria species and produces various Alternaria mycotoxins. Analytical methodologies based on solid-phase extraction (SPE) and LC-MS/MS to simultaneously determine five main Alternaria mycotoxins (tenuazonic acid, 1; alternariol, 2; alternariol methyl ether, 3; altenuene, 4; and tentoxin, 5) in fresh sweet cherries and cherry products were developed and validated. The limits of quantitation (LOQ) of the analytes ranged from 0.002-0.066 μg/kg. The method was successfully applied to 83 fresh cherry and cherry-related product samples. 1 and 5 were the predominant toxins with detection frequencies >50%, followed by 3 (42%), 2 (35%), and 4 (31%). Daily intakes of Alternaria mycotoxins via fresh sweet cherries were assessed preliminarily using the measured concentrations, and consumption data were obtained from a web-based dietary questionnaire ( n = 476). The maximum exposure of 1 and 3 were 4.6 and 16.7 times the threshold of the toxicological concern (TTC) value, respectively.
Collapse
Affiliation(s)
- Xiaoting Qiao
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P.R. China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning , Beijing Center for Disease Prevention and Control , Beijing 100013 , P.R. China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning , Beijing Center for Disease Prevention and Control , Beijing 100013 , P.R. China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning , Beijing Center for Disease Prevention and Control , Beijing 100013 , P.R. China
| | - Bing Shao
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P.R. China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning , Beijing Center for Disease Prevention and Control , Beijing 100013 , P.R. China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning , Beijing Center for Disease Prevention and Control , Beijing 100013 , P.R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P.R. China
| |
Collapse
|
40
|
Multiwalled Carbon Nanotube for One-Step Cleanup of 21 Mycotoxins in Corn and Wheat Prior to Ultraperformance Liquid Chromatography⁻Tandem Mass Spectrometry Analysis. Toxins (Basel) 2018; 10:toxins10100409. [PMID: 30308981 PMCID: PMC6215200 DOI: 10.3390/toxins10100409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 11/25/2022] Open
Abstract
One-step solid-phase extraction (SPE) using a multiwalled carbon nanotube (MWCNT) for simultaneous analysis of 21 mycotoxins, including nine trichothecenes, zearalenone (ZEN) and its derivatives, four aflatoxins, and two ochratoxins, in corn and wheat was developed. Several key parameters affecting the performance of the one-step SPE procedure—types of MWCNT, combinations with five sorbents (octadecylsilyl (C18), hydrophilic–lipophilic balance (HLB), mixed-mode cationic exchange (MCX), silica gel, and amino-propyl (NH2)), and filling amounts of the MWCNTs—were thoroughly investigated. The combination of 20 mg carboxylic MWCNT and 200 mg C18 was proven to be the most effective, allowing the quantification of all analyzed mycotoxins in corn and wheat. Under the optimized cleanup procedure prior to ultraperformance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) analysis, the method was validated by analyzing samples spiked at the limit of quantification (LOQ), two-times LOQ, and 10-times LOQ. Satisfactory linearity (r2 ≥ 0.9910), high sensitivity (LOQ in different ranges of 0.5–25 μg L−1), good recovery (75.6–110.3%), and acceptable precision (relative standard deviation (RSD), 0.3–10.7%) were obtained. The applicability of the method was further confirmed using raw samples of corn and wheat. In conclusion, the established method was rapid, simple and reliable for simultaneous analysis of 21 mycotoxins in corn and wheat.
Collapse
|
41
|
Oliveira RCD, Carnielli-Queiroz L, Correa B. Epicoccum sorghinum in food: occurrence, genetic aspects and tenuazonic acid production. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
|
43
|
Development and Application of a QuEChERS-Based Liquid Chromatography Tandem Mass Spectrometry Method to Quantitate Multi-Component Alternaria Toxins in Jujube. Toxins (Basel) 2018; 10:toxins10100382. [PMID: 30248926 PMCID: PMC6220753 DOI: 10.3390/toxins10100382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 01/25/2023] Open
Abstract
A simple, rapid and efficient methodology was developed and validated for the analysis of four Alternaria toxins in jujube: Tenuazonic acid, alternariol, alternariol monomethyl ether, and tentoxin. Under the optimized extraction procedure, chromatographic conditions, and instrumental parameters, the four toxins were effectively extracted via a quick, easy, cheap, effective, rugged, and safe (QuEChERS) method, and quantified by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Matrix-matched calibrations ranging from 0.01 to 0.5 μg mL−1 were conducted for the quantification due to the matrix effect. A blank jujube sample was spiked at 40, 80 and 160 μg kg−1, obtaining recoveries in the range of 83.5–109.6%. Limits of detection and limits of quantification were in the range of 0.14–0.26 and 0.47–0.87 μg kg−1, respectively. Finally, the developed method was applied for the quantification of the four toxins in 14 jujube samples, including black spot-infected and uninfected samples. Results showed that the predominant toxin detected in all the samples was tenuazonic acid, the content of which was associated with the infection level; alternariol, alternariol monomethyl ether, and tentoxin were detected in all the infected samples and some of the uninfected samples with rather low contents.
Collapse
|
44
|
Puntscher H, Kütt ML, Skrinjar P, Mikula H, Podlech J, Fröhlich J, Marko D, Warth B. Tracking emerging mycotoxins in food: development of an LC-MS/MS method for free and modified Alternaria toxins. Anal Bioanal Chem 2018; 410:4481-4494. [PMID: 29766221 PMCID: PMC6021461 DOI: 10.1007/s00216-018-1105-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 12/04/2022]
Abstract
Mycotoxins produced by Alternaria fungi are ubiquitous food contaminants, but analytical methods for generating comprehensive exposure data are rare. We describe the development of an LC-MS/MS method covering 17 toxins for investigating the natural occurrence of free and modified Alternaria toxins in tomato sauce, sunflower seed oil, and wheat flour. Target analytes included alternariol (AOH), AOH-3-glucoside, AOH-9-glucoside, AOH-3-sulfate, alternariol monomethyl ether (AME), AME-3-glucoside, AME-3-sulfate, altenuene, isoaltenuene, tenuazonic acid (TeA), tentoxin (TEN), altertoxin I and II, alterperylenol, stemphyltoxin III, altenusin, and altenuic acid III. Extensive optimization resulted in a time- and cost-effective sample preparation protocol and a chromatographic baseline separation of included isomers. Overall, adequate limits of detection (0.03–9 ng/g) and quantitation (0.6–18 ng/g), intermediate precision (9–44%), and relative recovery values (75–100%) were achieved. However, stemphyltoxin III, AOH-3-sulfate, AME-3-sulfate, altenusin, and altenuic acid III showed recoveries in wheat flour below 70%, while their performance was stable and reproducible. Our pilot study with samples from the Austrian retail market demonstrated that tomato sauces (n = 12) contained AOH, AME, TeA, and TEN in concentrations up to 20, 4, 322, and 0.6 ng/g, while sunflower seed oil (n = 7) and wheat flour samples (n = 9) were contaminated at comparatively lower levels. Interestingly and of relevance for risk assessment, AOH-9-glucoside, discovered for the first time in naturally contaminated food items, and AME-3-sulfate were found in concentrations similar to their parent toxins. In conclusion, the established multi-analyte method proved to be fit for purpose for generating comprehensive Alternaria toxin occurrence data in different food matrices. ᅟ ![]()
Collapse
Affiliation(s)
- Hannes Puntscher
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090, Vienna, Austria
| | - Mary-Liis Kütt
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090, Vienna, Austria
| | - Philipp Skrinjar
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Getreidemarkt 9, 1060, Vienna, Austria
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Getreidemarkt 9, 1060, Vienna, Austria
| | - Joachim Podlech
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Johannes Fröhlich
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Getreidemarkt 9, 1060, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090, Vienna, Austria.
| |
Collapse
|
45
|
|
46
|
Rico-Yuste A, Walravens J, Urraca JL, Abou-Hany RAG, Descalzo AB, Orellana G, Rychlik M, De Saeger S, Moreno-Bondi MC. Analysis of alternariol and alternariol monomethyl ether in foodstuffs by molecularly imprinted solid-phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry. Food Chem 2017; 243:357-364. [PMID: 29146349 DOI: 10.1016/j.foodchem.2017.09.125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022]
Abstract
Molecularly imprinted porous polymer microspheres selective to Alternaria mycotoxins, alternariol (AOH) and alternariol monomethyl ether (AME), were synthesized and applied to the extraction of both mycotoxins in food samples. The polymer was prepared using 4-vinylpiridine (VIPY) and methacrylamide (MAM) as functional monomers, ethylene glycol dimethacrylate (EDMA) as cross-linker and 3,8,9-trihydroxy-6H-dibenzo[b,d]pyran-6-one (S2) as AOH surrogate template. A molecularly imprinted solid phase extraction (MISPE) method has been optimized for the selective isolation of the mycotoxins from aqueous samples coupled to HPLC with fluorescence (λex=258nm; λem=440nm) or MS/MS analysis. The MISPE method was validated by UPLC-MS/MS for the determination of AOH and AME in tomato juice and sesame oil based on the European Commission Decision 2002/657/EC. Method performance was satisfactory with recoveries from 92.5% to 106.2% and limits of quantification within the 1.1-2.8µgkg-1 range in both samples.
Collapse
Affiliation(s)
- A Rico-Yuste
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - J Walravens
- Laboratory of Food Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium.
| | - J L Urraca
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; CEI Campus Moncloa, UCM-UPM, Avenida Complutense, s/n, ES-28040 Madrid, Spain.
| | - R A G Abou-Hany
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - A B Descalzo
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - G Orellana
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - M Rychlik
- Technische Universität München, Chair of Analytical Food Chemistry, Alte Akademie 10, DE-85354 Freising, Germany.
| | - S De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium.
| | - M C Moreno-Bondi
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
47
|
Xiao ZL, Wang YL, Shen YD, Xu ZL, Dong JX, Wang H, Situ C, Wang F, Yang JY, Lei HT, Sun YM. Specific Monoclonal Antibody-Based Enzyme Immunoassay for Sensitive and Reliable Detection of Alternaria Mycotoxin Iso-Tenuazonic Acid in Food Products. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1033-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Statistical Analysis for Quality Adjustment of the Analytical Curve for Determination of Pesticide Multiresidue in Pineapple Samples. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1017-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Hickert S, Hermes L, Marques LMM, Focke C, Cramer B, Lopes NP, Flett B, Humpf HU. Alternaria toxins in South African sunflower seeds: cooperative study. Mycotoxin Res 2017; 33:309-321. [DOI: 10.1007/s12550-017-0290-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/25/2022]
|
50
|
Man Y, Liang G, Jia F, Li A, Fu H, Wang M, Pan L. Development of an Immunochromatographic Strip Test for the Rapid Detection of Alternariol Monomethyl Ether in Fruit. Toxins (Basel) 2017; 9:toxins9050152. [PMID: 28468234 PMCID: PMC5450700 DOI: 10.3390/toxins9050152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 12/25/2022] Open
Abstract
A rapid, portable, and semi-quantitative immunochromatographic strip was developed for rapid and visual detection of alternariol monomethyl ether (AME). For this purpose, the anti-AME monoclonal antibody (mAb) was prepared and identified. AME coupled to bovine serum albumin (BSA) via methyl 4-bromobutanoate was prepared as immunogen. The recoveries of AME in spiked cherry and orange fruits determined by competitive ELISA were 86.1% and 80.7%, respectively. A colloidal gold nanoparticle (CGN) and CGNs-mAb conjugate were synthesized, and on this basis, a competitive colloidal gold immunochromatographic strip was developed and applied to the detection of AME toxin in fruit samples. The intensity of red density of the test line (T line) is inversely proportional to AME concentration in the range 0.1-10 ng/mL. The visual limit of detection (LOD) of AME was found to be about 10 ng/mL. The semi-quantitative detection can be completed in 10 min. Moreover, the immunochromatographic strip has lower cross-reactivity with AME analogues, and it has a good stability performance (following 3 months of storage). Hence, the colloidal gold immunochromatographic strip could be used as a semi-quantitative tool for the on-site, rapid, and visual detection of AME in fruit.
Collapse
Affiliation(s)
- Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-Products (Beijing), Ministry of Agriculture P.R. China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Gang Liang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-Products (Beijing), Ministry of Agriculture P.R. China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Fuchao Jia
- School of Science, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - An Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-Products (Beijing), Ministry of Agriculture P.R. China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Hailong Fu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-Products (Beijing), Ministry of Agriculture P.R. China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Meng Wang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-Products (Beijing), Ministry of Agriculture P.R. China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Ligang Pan
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-Products (Beijing), Ministry of Agriculture P.R. China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|